[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007077921A1 - 排ガスの脱硝方法 - Google Patents

排ガスの脱硝方法 Download PDF

Info

Publication number
WO2007077921A1
WO2007077921A1 PCT/JP2006/326234 JP2006326234W WO2007077921A1 WO 2007077921 A1 WO2007077921 A1 WO 2007077921A1 JP 2006326234 W JP2006326234 W JP 2006326234W WO 2007077921 A1 WO2007077921 A1 WO 2007077921A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
denitration
nitrogen
compound
gas
Prior art date
Application number
PCT/JP2006/326234
Other languages
English (en)
French (fr)
Inventor
Nobuyasu Kanda
Kimihiko Sugiura
Shoichi Ibaragi
Youichi Takahashi
Yutaka Tsukui
Original Assignee
Mitsui Engineering & Shipbuilding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co., Ltd. filed Critical Mitsui Engineering & Shipbuilding Co., Ltd.
Priority to CN2006800502800A priority Critical patent/CN101351629B/zh
Priority to US12/087,363 priority patent/US7700058B2/en
Priority to DK06843612.0T priority patent/DK1970545T3/da
Priority to EP06843612A priority patent/EP1970545B1/en
Publication of WO2007077921A1 publication Critical patent/WO2007077921A1/ja
Priority to NO20083431A priority patent/NO20083431L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • F01N2470/04Tubes being perforated characterised by shape, disposition or dimensions of apertures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/067Surface coverings for exhaust purification, e.g. catalytic reaction usable with sulfurised fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust gas denitration method, and more particularly to an exhaust gas denitration method that reductively removes nitrogen oxides from exhaust gas discharged from ships, power generation diesel engines, and the like.
  • a non-catalytic denitration method and a selective reduction catalyst method are known.
  • the non-catalytic denitration method is widely known as a denitration method using a nitrogen-based reducing agent such as ammonia or urea.
  • a nitrogen-based reducing agent such as ammonia or urea.
  • High activity cannot be obtained unless the exhaust gas temperature is in a high temperature state of 900 to 1000 ° C (for example, patent documents) See 1 and 2.)
  • pre-treatment such as heating the exhaust gas to raise its temperature is necessary for the relatively low-temperature exhaust gas of about 250 to 450 ° C discharged from ships, power generation diesel engines, etc. The treatment cost was increased and it was difficult to apply the non-catalytic denitration method.
  • Non-Patent Document 1 discloses a denitration method in which the ammonia supply amount is divided into two stages before and after the boiler load in the temperature range of 900 to 1050 ° C., and each is controlled and supplied.
  • the denitration rate is the same molar condition between nitrogen oxide and ammonia. In this case, it is only about 40%.
  • ammonia is supplied excessively in order to increase the denitration rate, unreacted ammonia will remain, which will increase the processing cost and if the exhaust gas contains sulfur oxide, it will produce ammonium sulfate. This process causes cost effectiveness to deteriorate.
  • Patent Document 3 nitrogen monoxide in exhaust gas is oxidized to nitrogen dioxide, and then a reducing agent such as ammonia, urea, or hydrocarbon is added in the presence of the SCR catalyst. Proposes catalytic reduction.
  • this SCR method is inferior to the non-catalytic denitration method in that it uses a large amount of SCR catalyst.
  • sulfur trioxide in which sulfur dioxide in the exhaust gas is oxidized Reacts with ammonia to produce hydrogen bisulfate, poisoning the SCR catalyst and reducing the catalytic activity. For this reason, the SCR method was only applied when the sulfur oxide concentration in the exhaust gas was about lppm or less when the exhaust gas was at a high temperature of 300 ° C or higher where ammonium hydrogen sulfate decomposes. .
  • Patent Document 4 forms a heating area in a flue through which a low-temperature exhaust gas containing sulfur oxide passes or a room communicating with the flue, and a nitrogen compound is formed toward the heating area.
  • a method is proposed in which hydrocarbon amines are blown to produce amine radicals, and nitrogen oxides in exhaust gas are denitrated by the amine radicals.
  • the denitration rate in this denitration method is not always sufficient, and it has been desired to further increase the denitration rate.
  • Patent Document 1 US Pat. No. 6,066,303 Specification
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-136837
  • Patent Document 3 Japanese Special Table 2001-525902
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-254093
  • Non-Patent Document 1 “Kyohei Ando”, “Fuel Conversion and SOX * N ⁇ X Countermeasures Technology, Flue Gas Desulfurization and Denitration,” 1st Report News, June 25, 1983, p. 205—207
  • An object of the present invention is to provide a denitration method for removing nitrogen oxides in low-temperature exhaust gas at a high denitration rate. Means for solving the problem
  • the denitration method of the present invention for achieving the above object is a denitration method for reductively removing nitrogen oxides in exhaust gas containing nitrogen monoxide and sulfur dioxide, the nitrogen monoxide in the exhaust gas
  • the number of times it is preferable to cover the process of further mixing the amine radicals with the processing gas discharged from the denitration process power is 2 or more.
  • the temperature of the high temperature region which is preferably formed around the flame of the burner or the electric heater, is preferably 600 to 1000 ° C.
  • the high temperature region is preferably formed inside the flue of the exhaust gas.
  • the preliminary step is to oxidize nitrogen monoxide to nitrogen dioxide by contact treatment of the exhaust gas with an oxidation catalyst or plasma irradiation treatment.
  • the oxidation catalyst is a catalyst in which an active metal is supported on a support containing titanium, and the active metal is at least one selected from a vanadium compound, a niobium compound, a molybdenum compound, and a tungsten compound. It is preferable that
  • the ratio Sc / Nc of the sulfur dioxide oxidation rate Sc to the oxidation rate Nc of nitric oxide is preferably 0.01 to 0.2.
  • the reactivity of nitrogen oxides is increased by oxidizing part of nitrogen monoxide in the exhaust gas in the preliminary process to produce nitrogen dioxide. Makes it easier to reduce and decompose the product.
  • a nitrogen compound and a hydrocarbon compound are added to a high temperature region, and an amine radical is efficiently generated by a reaction between a hydroxy radical generated from the hydrocarbon compound and the nitrogen compound. At this time, an unreacted nitrogen compound hardly remains.
  • this amine radical and the pretreatment gas containing nitrogen monoxide and nitrogen dioxide discharged from the preliminary process force can be mixed to efficiently reduce and decompose nitrogen oxides. it can.
  • the denitration rate can be increased because the reactivity of both nitrogen oxides and amine radicals is high.
  • the denitration rate can be increased because the reactivity of both nitrogen oxides and amine radicals is high.
  • no reduction catalyst since no reduction catalyst is used, even if the exhaust gas contains sulfur oxides, ammonium sulfate or the like will be generated and the denitration efficiency will not be reduced.
  • FIG. 1 is a block flow diagram showing an example of a process in the exhaust gas denitration method of the present invention.
  • FIG. 2 is an explanatory view showing an example of a device configuration used in the exhaust gas denitration method of the present invention.
  • FIG. 3 is an explanatory view showing another example of a device configuration used in the exhaust gas denitration method of the present invention.
  • FIG. 4 is an explanatory view showing still another example of the configuration of the apparatus used in the exhaust gas denitration method.
  • FIG. 5 is an explanatory diagram showing an outline of the test apparatus used in the examples.
  • the exhaust gas X discharged from the diesel engine 1 contains nitrogen monoxide and sulfur dioxide.
  • the exhaust gas X is partially oxidized to a nitrogen dioxide to be converted into nitrogen dioxide, which is sent to the denitration process 4 as a preliminary process gas p.
  • nitrogen compound a and hydrocarbon compound b are added to a high temperature region to generate amine radical force r, which is sent to denitration step 4.
  • the ammine radical r acts on nitrogen monoxide and nitrogen dioxide contained in the pretreatment gas p, and these nitrogen oxides are reduced and decomposed.
  • the process gas y is an exhaust gas from the denitration process 4 in which nitrogen oxides are denitrated.
  • the radical generation step 3 is substantially perpendicular to the flue 10 of the exhaust gas X as shown in FIG.
  • a burner 20 is provided at the end of the pipe part 5 connected to the.
  • a high temperature region 22 is formed at the downstream end of the flame 21 of the burner 20.
  • nitrogen compound a and hydrocarbon compound b are added from nozzles 8 and 9 toward high temperature region 22, amine radical r, which is a reducing gas, is generated.
  • This amine radical r is supplied to the denitration process 4 and acts on the nitrogen oxides in the pretreatment gas p to be reduced and decomposed.
  • the high temperature region is formed by the burner flame, the force S, and the high temperature region is not limited to this, but is formed around an electric heater or heat exchanger. It may be a thing.
  • the preliminary step 2 is a treatment step in which part of the nitric oxide in the exhaust gas X is oxidized to produce nitrogen dioxide. Since the pretreatment gas p discharged from the preparatory process 2 contains nitrogen dioxide, the reactivity of the entire nitrogen oxide becomes high, and it is easy to be reduced and decomposed in the denitration process 4.
  • the ratio of nitric oxide to nitrogen oxides in the pretreatment gas is preferably 40% by weight or more, more preferably 50% by weight or more.
  • the method for oxidizing nitric oxide is not particularly limited, and examples thereof include a method of contacting with an oxidizing catalyst, a plasma irradiation method, and an ozone oxidation method.
  • a method of contacting with an oxidizing catalyst a plasma irradiation method, and an ozone oxidation method.
  • sulfur dioxide oxidizes only with nitric oxide and becomes a particulate matter that is difficult to remove.
  • Nc is the oxidation rate of nitric oxide and S is the oxidation rate of sulfur dioxide.
  • the ratio Sc / Nc of the oxidation rate Sc of sulfur dioxide to the oxidation rate Nc of nitric oxide is preferably 0.01 to 0.2, more preferably 0.01 to 0.1, and still more preferably 0 ⁇ 01 ⁇ .05. Oxidation rate ratio
  • the oxidation rate Nc of nitric oxide is preferably 30% or more, more preferably 40% or more, and further preferably 50% or more.
  • nitrogen dioxide can be generated more effectively.
  • the oxidation rate Sc of sulfur dioxide is preferably 5% or less, more preferably 2% or less, and further preferably 1% or less.
  • the oxidation rate Nc of nitric oxide and the oxidation rate Sc of sulfur dioxide are measured by measuring the nitrogen oxide concentration and sulfur oxide concentration of the exhaust gas X and the pretreatment gas p before and after the preliminary process, respectively. It is calculated as follows.
  • the plasma irradiation treatment is not particularly limited as long as it selectively oxidizes nitric oxide, and an atmospheric pressure low-temperature plasma irradiation treatment is preferable.
  • Specific examples include microwave discharge, alternating current discharge (for example, pulse discharge), or direct current discharge (for example, spark discharge, arc discharge).
  • the plasma generating electrode is in a state in which exhaust gas is circulated, which preferably generates plasma by atmospheric pressure pulse discharge.
  • plasma generating electrodes include those having a coaxial structure with stainless steel, steel, Kanthal, Inconel, etc. as the core wire. These plasma generating electrodes are low energy and contain nitric oxide. Can be oxidized to nitrogen dioxide.
  • the contact treatment with an oxidation catalyst oxidizes nitrogen monoxide to nitrogen dioxide by passing exhaust gas through a catalyst layer containing an oxidation catalyst.
  • the substrate of the catalyst layer is not particularly limited.
  • a stainless steel metal honeycomb filter, a ceramic honeycomb filter, a wire membrane can be used as long as it supports an oxidation catalyst and can be contacted with exhaust gas.
  • Preferred examples include stainless steel filters and ceramic filter bases, among which stainless steel metal honeycomb filters are preferred.
  • the oxidation catalyst is not particularly limited as long as it selectively oxidizes nitric oxide, but it is preferably a catalyst in which an active metal is supported on a support containing titanium.
  • the active metal include at least one selected from a vanadium compound, a niobium compound, a molybdenum compound, and a tungsten compound, and a vanadium compound and a tandastain compound are particularly preferable.
  • Such an oxidation catalyst functions to selectively oxidize nitric oxide to nitrogen dioxide while suppressing the oxidation of sulfur dioxide to sulfur trioxide or the like.
  • these oxidation catalysts can maintain the selective oxidation function of nitric oxide for a long time with less active metal poisoning by sulfur trioxide or the like in the exhaust gas.
  • the active metal is a vanadium compound, for example, vanadium oxide, vanadyl sulfate, vanadyl nitrate, vanadium salt, etc., and a niobium compound, for example, niobium oxide, niobium sulfate, niobium chloride, etc., a molybdenum compound.
  • a vanadium compound for example, vanadium oxide, vanadyl sulfate, vanadyl nitrate, vanadium salt, etc.
  • a niobium compound for example, niobium oxide, niobium sulfate, niobium chloride, etc., a molybdenum compound.
  • the tungsten compound for example, tungsten oxide, tungsten sulfate, tungsten chloride, and the like can be preferably given. Of these, vanadium oxide, tungsten oxide, molybdenum oxide, and
  • vanadium oxide and tungsten oxide are used as active metals, it is possible to suppress the oxidation rate of sulfur dioxide while increasing the oxidation rate of nitric oxide.
  • the oxidation rate of nitric oxide in these oxidation catalysts is lower than the oxidation rate of platinum catalysts which are general oxidation catalysts.
  • the low oxidation rate can be compensated by increasing the amount of active metal used.
  • these active metals can be obtained at a lower cost than platinum catalysts, and nitrogen dioxide can be increased by increasing the amount used. Can be made equivalent to the platinum catalyst.
  • the carrier supporting the active metal is not particularly limited, but TiO 2, Al 2 O 3, SiO, ZrO,
  • Preferred examples include carriers such as 2 2 3 2 2 oleite.
  • SiO is an oxidation key excluding quartz.
  • the carrier is TiO
  • a general catalyst support other than the support composition such as a metal support base, cordierite, or carbon-based composite can be used.
  • the composition of the support is not particularly limited, and the combination is not limited by the elements constituting the catalyst support.
  • the oxidation catalyst used in the treatment method of the present invention is one in which vanadium oxide and tandastene are supported on TiO, or one in which vanadium oxide is supported on TiO.
  • active metals are powdered, granular, honeycomb-shaped, coated on a wire filter, coated on a ceramic paper roll, coated on a filter cloth, and coated on a honeycomb carrier. It can be in any form. Further, the active metal can be prepared and used by a known method, or can be appropriately selected from commercially available products. Further, the carrier constituting the oxidation catalyst can be prepared and used by a known method, or can be appropriately selected from commercially available products. Therefore, the oxidation catalyst obtained by supporting the active metal on the support can be prepared and used by a known method, or can be used by appropriately selecting the strength of commercially available products.
  • the radical generating step 3 is a step of independently generating a reducing gas, that is, adding a nitrogen compound and a hydrocarbon compound to a high temperature region to generate an amine radical which is a reducing gas. It is a process.
  • the high temperature region for example, when ammonia is used as a nitrogen compound, the following reaction occurs, and an amine radical is generated.
  • Hydroxyl radicals (OH *) are generated during the combustion of hydrocarbon compounds.
  • Hydroxyl radical acts on ammonia, and ammine radical (NH *).
  • the temperature in the high temperature region is preferably 600 to 1000 ° C, more preferably 700 to 1000 ° C, and still more preferably 800 to 900 ° C.
  • an electric heater or the like may be used instead of the burner.
  • the nitrogen compound and the hydrocarbon compound can be individually heated by another heating means, for example, with an electric heating heater or the like, and then individually blown into the pipe portion 5.
  • the collision and confluence region of the blown nitrogen compound and hydrocarbon compound plays the same role as the high temperature region 22 and generates a hydroxy radical and an amine radical.
  • the position where the high temperature region 22 is formed is not particularly limited, and the high temperature region 22 may be formed in the pipe portion 5 communicating with the flue 10 as shown in FIG. A high temperature region 22 may be formed inside the flue 10.
  • ammine radicals can be stably generated without being affected by fluctuations in the exhaust gas flow velocity.
  • the generated amin radicals immediately act on nitrogen oxides, and the temperature of the exhaust gas passing through the flue 10 is increased to increase the denitration efficiency. it can.
  • the distance from the wall surface of the flue 10 to the high temperature region 22 should be set to a distance that does not cause the generated ami radical to disappear before reaching the flue 10. Is preferred.
  • the position force at the intersection of the center line of the nitrogen compound nozzle 8 and the center line of the pipe portion 5 is preferably set to about 0 cm to 15 cm from the wall surface of the flue 10.
  • the burner 20 burns the supplied fuel gas f and air d to form a flame 21. Further, air d may be introduced from the periphery of the burner 20 in order to promote combustion of the hydrocarbon compound b and the flame 21 as necessary.
  • nitrogen compound a and hydrocarbon compound b are separately blown toward high temperature region 22 formed at the downstream end of flame 21 of burner 20, respectively. Compared with the case where nitrogen compound a and hydrocarbon compound b are mixed and blown into the flame 21 or supplied to the burner 20 together with the fuel gas f and burned, an ammine radical is easily generated and an excellent denitration effect is obtained.
  • the nozzle 8 for injecting the nitrogen compound and the nozzle 9 for injecting the hydrocarbon compound are arranged so as to protrude from the inner wall surface of the pipe portion 5. Further, it is preferable that the nozzle 8 and the nozzle 9 are provided so as to blow at a predetermined angle toward the direction of the flue 10 at a position facing each other across the high temperature region 22.
  • the example of FIG. 2 is an example in which the blowing angle of the nozzle 8 and the blowing angle of the nozzle 9 are made equal, but they need not be arranged at the same angle. For example, in order to precede the generation of hydroxy radicals, the hydrocarbon compound nozzle 9 is better.
  • the arrangement position and blowing angle of the nozzle 8 and the nozzle 9 are adjusted according to the distance of the burner 20 to the flame 21 to efficiently generate ammine radicals, and the resulting reducing gas can be easily sent into the flue 10. Good.
  • the nitrogen compound a is not particularly limited as long as it can generate an amine amine, but ammonia, urea, cyanuric acid, amines, nitriles, and the like can be used. It is preferable to use at least one selected from urea, cyanuric acid and aliphatic amine.
  • hydrocarbon compound b aliphatic hydrocarbons, light oils, heavy oils, gasolines, etc. having a carbon number of :! to 16 can be used, in particular, fats having a carbon number of 1 to 12: It is preferable to use at least one selected from group hydrocarbons, light oils and heavy oils.
  • examples of the aliphatic hydrocarbon having carbon numbers:! To 16 include methane, propane, butane, hexane, octane, dotecan and the like, and hexane, octane and dotecan are particularly preferable.
  • the denitration step includes the amine radical generated in the radical generation step 3.
  • the reducing gas is mixed with the pretreatment gas P containing exhausted nitrogen dioxide and the like, and the nitrogen oxides are reduced and decomposed to remove them. Because the nitrogen oxide in the pretreatment gas p contains nitrogen dioxide, it is more reactive than nitrogen monoxide alone, and the reducing gas is a highly reactive amine radical. Therefore, even if the temperature of the gas to be treated is low, reductive decomposition of nitrogen oxides can be performed efficiently. At the same time, since no reduction catalyst is used, even when sulfur oxides are contained, ammonium sulfate and the like are not generated and the denitration efficiency is not lowered.
  • FIG. 3 is an explanatory view showing another embodiment of the exhaust gas denitration method of the present invention, in which a denitration process is further added in series to the denitration method shown in FIG. That is, this is a denitration method in which amin radicals are further acted on the processing gas discharged in the first denitration process.
  • the process from the first denitration process 4 until the processing gas y is discharged is the same as the denitration process described above.
  • the second denitration treatment adds a radical generation process 3 and a denitration process 4 with the same configuration as the first denitration process. For this reason, the symbols are shown in common.
  • the amin radical r may act twice or more times on the processing gas y. Even in this case, since the reactivity of the amine amine is high, even if the temperature of the processing gas y is low or the concentration of nitrogen oxides is low, the nitrogen oxides in the processing gas y are efficiently removed. It is possible.
  • the final denitration rate can be further increased.
  • the denitration rate per denitration treatment is 40%
  • the initial 60% nitrogen oxides remain in the process gas after the first denitration treatment, but if an amin radical is further acted on Nitrogen oxide remaining in the process gas is 36%.
  • the denitration rate is 40% when the denitration treatment is performed once, whereas the denitration rate is 64% when it is performed twice, and 78% when it is performed three times. Rate can be obtained.
  • denitration treatment in which an amine amine is reacted with nitrogen oxides under a low temperature condition of exhaust gas temperature of 200 to 300 ° C has a denitration rate of 35 to 55%.
  • a denitration rate of 35% Place Even in this case, the cumulative denitration rate when the ammine radical is acted twice is 58%, and when the ammine radical is acted twice, it is 73%.
  • the denitration rate is 55%, the cumulative denitration rate when the amamine radical is applied twice is 80%, and when the demineralization rate is 3 times, it is 91%.
  • amine radicals are generated and directly acted on nitrogen oxides in exhaust gas in a high temperature region, so that the denitration process is affected by the temperature of exhaust gas and the concentration of nitrogen oxides.
  • the denitration reaction can be advanced cumulatively without deteriorating the denitration efficiency per one time. Therefore, the final denitration rate can be further increased by providing a plurality of denitration processes and treating the exhaust gas in multiple stages as described above.
  • the reaction efficiency of the denitration treatment can be increased and the treatment cost can be reduced.
  • the amount of amine amine supplied can be adjusted by the flow rate of the nitrogen compound and hydrocarbon compound added to the high temperature region.
  • the downstream denitration process may be arranged at a position where the flow of exhaust gas disturbed in the upstream denitration process is rectified again.
  • the ratio L / D of the interval L between the denitration steps adjacent to the inner diameter D of the flue 10 is preferably 2 to 20, more preferably 5 to 10.
  • the efficiency of the downstream denitration process can be increased by setting the interval of the denitration process in contact with P within the above range.
  • the direction of connecting the pipe portion of the radical generation process to the flue may be different from each other.
  • the direction to connect to the flue is left / right or vertical
  • FIG. 4 is an explanatory view showing still another embodiment of the exhaust gas denitration method, and is an example in which a preliminary process is removed from the denitration method shown in FIG. In this embodiment, the denitration process is performed a plurality of times as it is without oxidizing the exhaust gas.
  • the pipe portion 5 connected to the flue 10 of the exhaust gas at a substantially right angle is provided with a burner 20, and the nitrogen compound is directed toward the high temperature region 22 formed at the downstream end of the flame 21 of the burner 20.
  • a and hydrocarbon compound b are added from nozzles 8 and 9.
  • amine radicals r are generated, supplied to the flue 10 and mixed and denitrated to reduce and decompose nitrogen oxides in the exhaust gas X to obtain a treated gas y.
  • amine radicals r are generated from this processing gas y in the same manner as described above, supplied and mixed, and the nitrogen oxides remaining in the processing gas y are reduced and decomposed.
  • This treatment gas y may be further subjected to denitration treatment by further applying an amin radical r. Even when a preliminary process is not provided in this way, a plurality of denitration processes are performed to perform a denitration process, whereby nitrogen oxides in exhaust gas can be reduced and decomposed with high denitration efficiency and removed.
  • the exhaust gas to be treated is not particularly limited, but for example, exhaust gas from ships and diesel engines for power generation, exhaust gas from automobile diesel engines, boiler exhaust gas, and plant off-gas Can be mentioned.
  • exhaust gas from diesel engine engines contains harmful substances such as particulate matter, nitrogen oxides, and sulfur oxides.
  • Particulate matter is mainly in the form of soot, and nitrogen oxides are mainly one.
  • nitrogen oxides sulfur oxides are often mainly contained as sulfur dioxide.
  • the concentration of sulfur oxide in the exhaust gas X is preferably 50 ppm or more, more preferably lOO ppm or more, and particularly preferably 500 ppm or more. In this concentration range, the effectiveness of the present invention becomes more remarkable.
  • the exhaust gas from ships and diesel engines for power generation is relatively low in temperature, and until now it has been difficult to apply the non-catalytic denitration method.
  • the denitration method of the present invention is In order to increase the denitration efficiency, it is possible to treat the exhaust gas as it is without heating and heating treatment. Moreover, denitration can be performed with high efficiency.
  • the temperature of the exhaust gas is preferably 200 to 450. C, more preferably ⁇ 250-450. C, especially 250-300. C force is preferable, and even at such a low temperature, a sufficient denitration effect can be obtained.
  • diesel engine fuel there may be used light oil, A heavy oil, C heavy oil, DME and the like, which are not particularly limited.
  • a heavy oil or C heavy oil is preferred because it is preferable to use a fuel containing sulfur in order to make use of the characteristics of the denitration method of the present invention.
  • a heavy oil is stipulated in the JIS standard CJIS K2205) that the sulfur content is 0.5 mass% or less for Type 1 No. 1 and the sulfur content is 2.0 mass% or less for Type 1 No. 2, and the C heavy oil is Class 3 No. 1 Sulfur content is specified as 3.5% by mass or less.
  • heavy oil A used in diesel engines such as ships and diesel generators mainly has a sulfur content of 0.2 mass% or less
  • heavy fuel oil C mainly has a sulfur content of 3.5 mass% or less. is there.
  • the exhaust gas from the diesel engine 1 is drawn to the flue 10 and the bypass line 7, and the preliminary process 2 and the denitration process 4 are arranged in the flue 10, and the radical generation process 3 is replaced with the denitration process 4 It arranged so that it might communicate with.
  • the high temperature region of radical generation step 3 was formed at the downstream end of the Pana flame.
  • the size of the pipe used and the gas flow rate in the pipe are as shown in Table 1.
  • the measurement point 52a is upstream of the preliminary process 2
  • the measurement point 52b is between the preliminary process 2 and the first denitration process 4
  • the measurement point 52c is 2 between the first and second denitration processes 4.
  • Denitration process of the 4th time 4 Measurement point 52d is provided downstream, connected to NOx meter, SO meter and thermometer 51, and nitrogen acid at each measurement point
  • the chemical concentration, sulfur dioxide concentration and gas temperature were measured. Furthermore, an SO injection section 53 is provided upstream of the measurement point 52a so that SO in the exhaust gas can be adjusted to a predetermined concentration.
  • the angle between the center line of nozzle 8 and nozzle 9 in radical generation process 3 and the center line of pipe part 5 is 45 degrees, and the intersection force between the center line of nozzle 8 and nozzle 9 and the center line of pipe part 5 ⁇ Both were set to be 10cm away from the inner wall of flue 10. In addition, the position of the burner and the strength of the flame were adjusted so that the temperature near the intersection was 800-900 ° C.
  • a denitration process was performed by using a Norlas plasma generator so that the second denitration process was not operated.
  • the exhaust gas temperature at measurement point 52a was set to 300 ° C
  • the nitrogen compound blown from nozzle 8 was ammonia
  • the hydrocarbon compound blown from nozzle 9 was propane gas.
  • Example 1 the denitration process was performed in the same manner as in Example 1 except that the plasma generator was turned off and the exhaust gas was not oxidized. The results obtained are shown in Table 2. At the measurement point 52b, the oxidation rate Nc of nitric oxide was 6%, and the ratio Sc / Nc of the oxidation rate of sulfur dioxide to Nc was 0.
  • Example 1 denitration treatment was performed in the same manner as in Example 1 except that nitrogen gas was blown from the nozzle 9 instead of propane gas. The results obtained are shown in Table 2. At the measurement point 52b, the oxidation rate Nc of nitric oxide was 51%, and the ratio Sc / Nc of the oxidation rate of sulfur dioxide to Nc was 0.04.
  • Example 1 had a low exhaust gas temperature of 300 ° C, the NOx removal rate was excellent at about 72%.
  • Comparative Example 1 in which the exhaust gas was not oxidized and treated without a catalyst was compared with Comparative Example 2 in which nitrogen gas was added instead of propane gas, where the denitration rate was as low as about 43%. It was extremely low, about 3%.
  • the angle between the center line of Nozure 8 and Nozure 9 in radical generation process 3 and the center line of pipe part 5 is 45 degrees, and the intersection force between the center line of nozzle 8 and nozzle 9 and the center line of pipe part 5 Smoke
  • the setting was changed so that both are located at a distance of 5 cm from the inner wall surface of Road 10.
  • the position of the burner and the strength of the flame were adjusted so that the temperature near the intersection was 800-900 ° C.
  • the exhaust gas temperature at measurement point 52a is 250 ° C, and the NOx concentration and S0 concentration are shown in Table 3.
  • the nitrogen compound blown from the nozzle 8 in the radical generation process was ammonia, and the ammonia concentration added from the first nozzle 8 was adjusted to 620 ppm, and the ammonia concentration added from the second nozzle 8 was adjusted to 280 ppm.
  • Propane gas was used as the hydrocarbon compound injected from Nozzle 9, and the amount added was adjusted to match the amount of ammonia added in the first and second time.
  • the nitrogen oxidation rate Nc was 51%, and the ratio of sulfur dioxide oxidation rate to Nc Sc / Nc was 0.04.
  • the denitration rates in the first and second denitration reactions were 55% and 45%, and the final denitration rate was 75%.
  • the NOx removal rate in the first stage denitration reaction after oxidizing exhaust gas is higher than that in Example 1.
  • the NOx removal rate in the second stage denitration reaction is also the amount of nitrogen oxides remaining. It was confirmed and confirmed that there was almost no decline despite the small amount.
  • Example 2 the pulsed plasma generator was turned off and the exhaust gas was not oxidized, and the ammonia concentration added from the first Nozure 8 power was 620 ppm, and the ammonia concentration added from the second Nozure 8 was changed.
  • the denitration treatment was performed in the same manner as in Example 2 except that the amount of propane gas was adjusted to 350 ppm so that the amount of propane gas was adjusted to the amount corresponding to the first and second ammonia addition amounts. The results obtained are shown in Table 4. [Table 4]
  • the denitration rates in the first and second denitration reactions were 43% and 41%, and the final denitration rate was 66%. According to this reference example, it was confirmed that the denitration rate in the first-stage and second-stage denitration reactions hardly decreased, and the final denitration rate was as high as 66%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 低温の排ガス中の窒素酸化物を、高い脱硝率で除去する脱硝方法を提供する。  一酸化窒素及び二酸化硫黄を含む排ガスx中の窒素酸化物を還元的に除去する脱硝方法であって、排ガスx中の一酸化窒素の一部を酸化して二酸化窒素を生成する予備工程2、窒素化合物及び炭化水素化合物を高温領域22に添加してアミンラジカルrを生成するラジカル生成工程3、アミンラジカルrと予備工程2から排出した一酸化窒素及び二酸化窒素を含む予備処理ガスpを混合する脱硝工程4からなり、排ガスx中の窒素酸化物を還元分解する。

Description

明 細 書
排ガスの脱硝方法
技術分野
[0001] 本発明は排ガスの脱硝方法に関し、さらに詳しくは、船舶や発電用ディーゼルェン ジン等から排出される排ガス中の窒素酸化物を還元的に除去する排ガスの脱硝方 法に関する。
背景技術
[0002] 近年、バスやトラックなどの自動車用ディーゼルエンジン力 排出されるパティキュ レートマター及び窒素酸化物の削減が大きな関心を集めているが、同様に船舶や発 電用ディーゼルエンジン等からの排ガスや、ボイラー排ガス、プラントオフガス中の有 害物質の除去も重要な課題である。しかしながら、 自動車用ディーゼルエンジンが、 硫黄分の含有量が少なレ、軽油を燃料とするのに対して、船舶や発電用ディーゼルェ ンジン等は、 A重油又は C重油といった硫黄分の含有量が多い燃料を使用するため 、その排ガス中には硫黄酸化物が多く含まれ、有害物質の除去処理に際して大きな 障害となっている。
[0003] 一般に、排ガスの脱硝方法としては、無触媒脱硝法と選択的還元触媒法(SCR法) が知られている。無触媒脱硝法は、アンモニア又は尿素等の窒素系還元剤による脱 硝方法が広く知られている力 排ガス温度が 900〜1000°Cという高温状態でないと 高活性が得られない (例えば、特許文献 1及び 2参照。)。このため、船舶や発電用デ イーゼルエンジン等から排出される 250〜450°C程度の比較的低温の排ガスに対し ては、排ガスを加熱して昇温させる等の前処理が必要であることから処理コストの増 大を招き、無触媒脱硝法の適用が困難であった。
[0004] また、アンモニアを用いる無触媒脱硝法は、実験室レベルでは高い脱硝率が得ら れる力 実際のボイラーなどの燃焼炉の場合は 50%を超える脱硝率を得ることは困 難であった。例えば、非特許文献 1は、 900〜: 1050°Cの温度範囲で、ボイラー負荷 に応じてアンモニア供給量を前後 2段階に分け、それぞれを制御して供給する脱硝 法を開示している。しかし、その脱硝率は、窒素酸化物とアンモニアとの等モル条件 の場合に、 40%程度に過ぎない。さらに、脱硝率を高めるためにアンモニアを過剰 に供給すると未反応のアンモニアが残ってしまレ、、処理コストの増大及び排ガスが硫 黄酸化物を含む場合には、硫酸アンモニゥムを生成することから、その処理のために 対費用効果の悪化を招いてしまう。
[0005] 一方、特許文献 3は、 SCR法として、排ガス中の一酸化窒素を二酸化窒素に酸化 させてから、 SCR触媒の存在下に、アンモニア、尿素又は炭化水素等の還元剤を添 加し接触還元することを提案している。しかし、この SCR法は、多量の SCR触媒を使 用する点で無触媒脱硝法と比べて劣ること、さらに、排ガス温度が 300°C以下の場合 、排ガス中の二酸化硫黄が酸化した三酸化硫黄等がアンモニアと反応し硫酸水素ァ ンモニゥムが生成し、 SCR触媒を被毒して触媒活性を低下させる問題がある。このた め、 SCR法は、排ガスが、硫酸水素アンモニゥムが分解する 300°C以上の高温状態 である場合ゃ排ガス中の硫黄酸化物濃度が約 lppm以下の場合に、適用されるのみ であった。
[0006] このような中で、特許文献 4は、硫黄酸化物を含む低温の排ガスを通す煙道や煙道 に連通する部屋内に加熱領域を形成し、この加熱領域に向けて窒素化合物と炭化 水素類を吹き込んでァミンラジカルを生成させ、このアミンラジカルにより排ガス中の 窒素酸化物を脱硝する方法を提案している。しかし、この脱硝方法における脱硝率 は必ずしも十分ではなぐさらに脱硝率を高めることが要望されていた。
特許文献 1 :米国特許第 6, 066, 303号明細書
特許文献 2 :日本国特開 2002— 136837号公報
特許文献 3 :日本国特表 2001— 525902号公報
特許文献 4 :日本国特開 2005— 254093号公報
非特許文献 1 :安藤淳平著「燃料転換と SOX*N〇X対策技術一排煙脱硫 ·脱硝を中 、として一」プロジェクトニュース社、 1983年 6月 25曰、 p. 205— 207
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、低温の排ガス中の窒素酸化物を、高い脱硝率で除去する脱硝 方法を提供することにある。 課題を解決するための手段
[0008] 上記目的を達成するための本発明の脱硝方法は、一酸化窒素及び二酸化硫黄を 含む排ガス中の窒素酸化物を還元的に除去する脱硝方法であって、前記排ガス中 の一酸化窒素の一部を酸化して二酸化窒素を生成する予備工程、窒素化合物及び 炭化水素化合物を高温領域に添加してァミンラジカルを生成するラジカル生成工程 、該ァミンラジカルと前記予備工程から排出した一酸化窒素及び二酸化窒素を含む 予備処理ガスとを混合する脱硝工程を含むことを特徴とする。
[0009] ここで、前記脱硝工程力ら排出された処理ガスへ、さらに前記アミンラジカルを混合 する工程をカ卩えることが好ましぐその回数が 2回以上であるとさらによい。
[0010] また、前記高温領域は、バーナーの火炎又は電熱ヒーターの周辺に形成されたも のであることが好ましぐその高温領域の温度を、 600〜: 1000°Cにするとよい。前記 高温領域を前記排ガスの煙道の内部に形成することが好ましい。
[0011] また、前記予備工程は、前記排ガスを酸化触媒との接触処理又はプラズマ照射処 理により、一酸化窒素を二酸化窒素に酸化するものであることが好ましい。ここで、前 記酸化触媒としては、チタンを含有する担体に活性金属を担持した触媒であり、該活 性金属が、バナジウム化合物、ニオブ化合物、モリブデン化合物及びタングステンィ匕 合物から選ばれる少なくとも 1つであることが好ましい。
[0012] また、前記予備工程において、一酸化窒素の酸化率 Ncに対する二酸化硫黄の酸 ィ匕率 Scの比 Sc/Ncが、 0. 01〜0. 2であることが好ましい。
発明の効果
[0013] 本発明の脱硝方法によれば、予備工程において排ガス中の一酸化窒素の一部を 酸化して二酸化窒素を生成することにより窒素酸化物の反応性を高めるので、脱硝 工程において窒素酸化物を還元分解しやすくする。また、ラジカル生成工程におい て窒素化合物及び炭化水素化合物を高温領域に添加して、炭化水素化合物から生 じたヒドロキシラジカルと窒素化合物との反応により、ァミンラジカルが効率よく生成す る。このとき、未反応の窒素化合物が残留することが少ない。さらに、脱硝工程にお レ、て、このアミンラジカルと予備工程力 排出した一酸化窒素及び二酸化窒素を含 む予備処理ガスとが、混合することにより窒素酸化物を効率的に還元分解することが できる。したがって、排ガス温度が低温であっても、窒素酸化物及びアミンラジカルの 双方の反応性が高いことから脱硝率を高くすることができる。さらに、還元触媒を使用 しないため、排ガスが硫黄酸化物を含んでいても、硫酸アンモニゥム等が生成して脱 硝効率を低下させることがなレ、。
[0014] また、上述した脱硝工程から排出した処理ガスに対して、さらにァミンラジカルを作 用させることにより処理ガス中に残存した窒素酸化物を還元分解するので、最終的な 脱硝率を一層高くすることができる。この場合においても、ァミンラジカルの反応性が 高いことから、排ガス及び処理ガスの温度が低温でも、また窒素酸化物の濃度が低く ても、窒素酸化物の除去処理を効率的に行うことが可能である。
図面の簡単な説明
[0015] [図 1]本発明の排ガスの脱硝方法におけるプロセスの一例を示すブロックフロー図で ある。
[図 2]本発明の排ガスの脱硝方法に使用する装置構成の一例を示す説明図である。
[図 3]本発明の排ガスの脱硝方法に使用する装置構成の他の例を示す説明図である
[図 4]排ガスの脱硝方法に使用する装置構成のさらに他の例を示す説明図である。
[図 5]実施例に用いた試験装置の概要を示す説明図である。
発明を実施するための最良の形態
[0016] 以下、本発明の構成につき添付の図面を参照しながら詳細に説明する。
[0017] 図 1において、ディーゼルエンジン 1から排出された排ガス Xは、一酸化窒素及び二 酸化硫黄を含むものである。排ガス Xは、先ず予備工程 2において排ガス X中の一酸 化窒素の一部が酸化されて二酸化窒素となり、予備処理ガス pとして脱硝工程 4へ送 られる。一方、ラジカル生成工程 3において、窒素化合物 a及び炭化水素化合物 bを 高温領域に添カ卩してアミンラジ力ノレ rを生成し、このアミンラジ力ノレ rが脱硝工程 4へ送 られる。脱硝工程 4において、ァミンラジカル rが、予備処理ガス pに含まれる一酸化 窒素及び二酸化窒素に作用して、これらの窒素酸化物が還元分解される。処理ガス yは、窒素酸化物が脱硝処理された脱硝工程 4からの排出ガスである。
[0018] ここで、ラジカル生成工程 3は、図 2に示すように、排ガス Xの煙道 10に対し略直角 に接続された管部 5の端にバーナー 20が備えられる。このバーナー 20の火炎 21の 下流端部に高温領域 22が形成される。高温領域 22に向かって、窒素化合物 a及び 炭化水素化合物 bが、ノズル 8及び 9からそれぞれ添加されると、還元性ガスであるァ ミンラジカル rが生成する。このアミンラジカル rは、脱硝工程 4へ供給され、予備処理 ガス p中の窒素酸化物に作用し、還元分解する。なお、図 2の例は、高温領域がバー ナ一の火炎により形成されたものである力 S、高温領域はこれに限定されるものではな ぐ電熱ヒーターや熱交換器の周囲に形成されるものであってもよい。
[0019] 本発明において、予備工程 2は、排ガス X中の一酸化窒素の一部を酸化して二酸 化窒素を生成する処理工程である。予備工程 2から排出した予備処理ガス pは、二酸 化窒素を含んでいるので窒素酸化物全体の反応性が高くなり、脱硝工程 4において 還元分解されやすくなる。
[0020] 予備工程では、排ガス中の一酸化窒素の全てを酸化する必要はなぐ少なくともそ の一部を二酸化窒素に酸化すればよい。予備処理ガス中の窒素酸化物に対する二 酸化窒素の割合は、好ましくは 40重量%以上、より好ましくは 50重量%以上にする とよレ、。二酸化窒素の割合を上記の範囲内とすることにより、予備処理ガス中の窒素 酸化物の反応性が高くなり、脱硝工程において窒素酸化物が還元分解しやすくなる
[0021] 一酸化窒素を酸化する方法は、特に制限されるものではないが、例えば、酸化触 媒に接触させる方法、プラズマ照射法、オゾン酸化法等を挙げることができる。なか でも、酸化触媒に接触させる方法、プラズマ照射法が好ましぐ排ガス X中の二酸化 硫黄を酸化せずに、一酸化窒素のみを選択的に酸化することができる。一般に、船 舶ゃ発電用ディーゼルエンジン等から排出される排ガスに対して酸化処理を行うと、 一酸化窒素だけでな 二酸化硫黄が酸化してパティキュレートマターとなり除去し 難くなつたり、脱硝反応の際にアンモニアと反応して硫酸アンモニゥムを生成したりす る弊害が起き易くなる。しかし、酸化触媒との接触処理又はプラズマ照射処理は、選 択的に一酸化窒素を二酸化窒素に酸化するため、二酸化硫黄を酸化させることが少 なぐ上述した弊害を防止することができる。
[0022] ここで、予備工程にぉレ、て、一酸化窒素の酸化率を Nc、二酸化硫黄の酸化率を S cとするとき、一酸化窒素の酸化率 Ncに対する二酸化硫黄の酸化率 Scの比 Sc/Nc は、好ましくは 0. 01〜0. 2、より好ましくは 0. 01〜0. 1、さらに好ましくは 0. 01〜0 . 05にするとよレ、。酸化率の比 ScZNcをこのような範囲内にすることにより、一酸化 窒素から二酸化窒素への酸化を選択的に進めて窒素酸化物の反応性を高めつつ、 二酸化硫黄が三酸化硫黄等へ酸化することに伴う弊害を抑制することができる。
[0023] 本発明に使用する酸化処理は、一酸化窒素の酸化率 Ncが、好ましくは 30%以上 、より好ましくは 40%以上、さらに好ましくは 50%以上であるとよい。酸化率 Ncを上 記の範囲とすることにより、より効果的に二酸化窒素を生成することができる。また、二 酸化硫黄の酸化率 Scは、好ましくは 5%以下、より好ましくは 2%以下、さらに好ましく は 1 %以下であるとよい。酸化率 Scを上記の範囲にすることにより、三酸化硫黄等の 発生を有効に抑制することができる。なお、本発明において、一酸化窒素の酸化率 Nc及び二酸化硫黄の酸化率 Scは、予備工程の前後において、排ガス X及び予備処 理ガス pのそれぞれの窒素酸化物濃度及び硫黄酸化物濃度を測定して算出するも のである。
[0024] プラズマ照射処理は、一酸化窒素を選択的に酸化するものであれば特に制限がな レ、が、好ましくは大気圧低温プラズマ照射処理を挙げることができる。具体的に、マイ クロ波放電、交流放電 (例えば、パルス放電)、又は直流放電 (例えば、火花放電、ァ ーク放電)を挙げることができる。
[0025] 大気圧低温プラズマ照射手段は、そのプラズマ発生電極が、大気圧パルス放電に よりプラズマを発生させることが可能であることが好ましぐ排ガスを流通させた状態で
、プラズマを良好に発生させて照射し一酸化窒素を効率的に酸化するとよい。このよ うなプラズマ発生電極としては、例えば、ステンレス、鋼、カンタル、インコネル等を芯 線とする同軸構造のものを挙げることができ、これらのプラズマ発生電極は、低エネ ルギ一で一酸化窒素を二酸化窒素に酸化することができる。
[0026] 一方、酸化触媒による接触処理は、排ガスを酸化触媒を含む触媒層に通すことに より一酸化窒素を二酸化窒素に酸化するものである。触媒層の基体は、特に限定さ れるものではなぐ酸化触媒を支持して排ガスと接触可能にするものであればよぐ例 えば、ステンレス製メタルハニカムフィルタ、セラッミク製ハニカムフィルタ、ワイヤーメ ッシュフィルタ、セラミックろ過フィルタ基体等を好ましく挙げることができ、中でもステ ンレス製メタルハニカムフィルタが好ましレ、。
[0027] 酸化触媒は、一酸化窒素を選択的に酸化するものであれば特に制限がないが、好 ましくはチタンを含有する担体に活性金属を担持した触媒であるとよい。活性金属は 、バナジウム化合物、ニオブ化合物、モリブデン化合物及びタングステン化合物から 選ばれる少なくとも 1つを挙げることができ、特に、バナジウム化合物及びタンダステ ンィ匕合物がより好ましい。このような酸化触媒が、二酸化硫黄を三酸化硫黄等への酸 化を抑制しつつ、選択的に一酸化窒素を二酸化窒素へ酸化する機能を果たす。ま た、これらの酸化触媒は、排ガス中の三酸化硫黄等により活性金属が被毒されること が少なぐ一酸化窒素の選択的酸化機能を長く維持することが可能となる。
[0028] 活性金属は、バナジウム化合物として、例えば、酸化バナジウム、硫酸バナジル、 硝酸バナジル、バナジウム塩ィ匕物等を、ニオブ化合物として、例えば、酸化ニオブ、 硫酸ニオブ、ニオブ塩化物等を、モリブデン化合物として、例えば、酸化モリブデン、 モリブデン硫酸塩、モリブデン塩化物等を、タングステン化合物として、例えば、酸化 タングステン、タングステン硫酸塩、タングステン塩化物等を、それぞれ好ましく挙げ ることができる。なかでも、酸化バナジウム、酸化タングステン、酸化モリブデン、酸化 ニオブがより好ましい。これらの活性金属は、単独で使用してもよいが、上記のうち 2 以上の活性金属を組み合わせて使用してよい。
[0029] 特に、活性金属として、バナジウム化合物及びタングステン化合物を併用すること により、さらに顕著な効果を得ることができ好ましい。具体的には、酸化バナジウムと 酸化タングステン、酸化バナジウムと酸化モリブデン、酸化バナジウムと酸化ニオブを 好ましく挙げることができる。とりわけ酸化バナジウムと酸化タングステンを活性金属と して使用すると、一酸化窒素の酸化率を高めながら、二酸化硫黄の酸化率を抑制す ること力 Sできる。
[0030] これらの酸化触媒における一酸化窒素の酸化率は、一般的な酸化触媒である白金 触媒における酸化率に比べて低い。しかし、酸化率が低いことは、使用する活性金 属の量を増やすことにより補うことができる。すなわち、これらの活性金属は、白金触 媒と比べて安価に入手することが可能であり、使用量を増やすことにより二酸化窒素 の生成量を白金触媒と同等にすることができる。
[0031] 活性金属を担持する担体は、特に制限はないが、 TiO 、 Al O 、 SiO、 ZrO、ゼ
2 2 3 2 2 オライト等の担体を好ましく挙げることができる。ここで、 SiOは、石英を除く酸化ケィ
2
素であり、シリカ、ゼォライト(Al〇 - SiO )等の化合物である。また、担体は、 TiO
2 3 2 2 と Si〇の組み合わせや Al〇と Si〇の組み合わせのように、 TiO 、 Al〇、 SiO 、 Z
2 2 3 2 2 2 3 2 r〇力らいずれか 2つ以上を組み合わせてブレンドしたものであってもよい。なお、触
2
媒担体をコートする支持体は、メタル支持基体、コージエライトや炭素系コンポジット などの担体組成以外の一般的な触媒支持体を使用することもできる。支持体の組成 は、特に制限されることがなぐまた触媒担体を構成する元素によりその組み合わせ を限定されることもない。活性金属を、チタンを含有する担体、すなわち TiOに担持
2 することが好ましい。担体に TiOを使用することにより、一酸化窒素の酸化率を維持
2
しながら、二酸化硫黄の酸化率を抑制することができる。
[0032] したがって、本発明の処理方法に使用する酸化触媒は、酸化バナジウムと酸化タン ダステンを TiOに担持したもの、又は酸化バナジウムを TiOに担持したものを使用
2 2 すること力 本発明の目的を達成する上で最も好ましい。
[0033] これらの活性金属は、粉末状、粒状、ハニカム状、ワイヤー製フィルタにコートしたも の、セラミックペーパーロールにコートしたもの、ろ布にコートしたもの、ハニカム担体 に浸漬コートしたもののうち、いずれの形態であってもよレ、。また、活性金属は、公知 の方法で調製して使用することも、市販製品の中から適宜選択して使用することもで きる。また、酸化触媒を構成する担体も、公知の方法で調製して使用することも、市販 製品の中から適宜選択して使用することもできる。したがって、活性金属を担体に担 持して得られる酸化触媒は、公知の方法で調製して使用することも、市販製品の中 力 適宜選択して使用することもできる。
[0034] 本発明において、ラジカル生成工程 3は、独立して還元性ガスを生成する工程、す なわち、窒素化合物及び炭化水素化合物を高温領域に添加して還元性ガスである ァミンラジカルを生成する工程である。高温領域では、例えば、窒素化合物としてァ ンモユアを用いた場合、以下のような反応が起こり、ァミンラジカルが生成する。
(1)炭化水素化合物の燃焼の際に、ヒドロキシラジカル (OH*)が生成する。 (2)ヒドロキシラジカルがアンモニアに作用し、下記式のように、ァミンラジカル(NH *
2
)を生成する。
NH + OH*→ H O + NH *
3 2 2
[0035] 本発明において、高温領域に窒素化合物及び炭化水素化合物を添加するので、 炭化水素化合物から生じたヒドロキシラジカルと窒素化合物との反応により、アミンラ ジカルが効率よく生成して、未反応の窒素化合物が還元性ガス中に残留することが 少なレ、。
[0036] 高温領域の温度は、好ましくは 600〜: 1000°C、より好ましくは 700〜1000°C、さら に好ましくは 800〜900°Cである。高温領域の温度を上記範囲内とすることにより、炭 化水素化合物のヒドロキシラジカルへの分解及び窒素化合物のァミンラジカルへの 分解が、効率よぐかつ安定して進行する。
[0037] また、高温領域の形成は、バーナーの代わりに電熱ヒーター等を使用してもよい。
さらに、窒素化合物及び炭化水素化合物を別の加熱手段により、例えば、電熱ヒー ター等で個別に加熱してから、それぞれ別々に管部 5に吹き込むこともできる。この 場合、吹き込まれた窒素化合物及び炭化水素化合物の衝突合流域が高温領域 22 と同じ役割を果たしヒドロキシラジカル及びアミンラジカルを生成する。
[0038] 本発明において、高温領域 22を形成する位置は特に限定されるものではなぐ図 2 のように、煙道 10に連通する管部 5に高温領域 22を形成してもよいし、或いは煙道 1 0の内部に高温領域 22を形成してもよい。管部 5に高温領域 22を形成する場合、排 ガスの流速の変動などの影響を受けずにァミンラジカルを安定的に生成することがで きる。また、煙道 10の内部に高温領域 22を形成する場合、生成したァミンラジカルを すぐに窒素酸化物に作用すると共に、煙道 10を通る排ガスの温度を高くするため脱 硝効率を高くすることができる。
[0039] 管部 5に高温領域 22を形成する場合、煙道 10の壁面から高温領域 22までの距離 は、生成したアミラジカルが煙道 10に至るまでに消失しない程度の距離に設定する ことが好ましい。具体的には、高温領域 22において、窒素化合物用ノズル 8の中心 線と管部 5の中心線との交点の位置力 煙道 10の壁面から 0cm〜15cm程度に設 定するとよい。 [0040] 図 2の実施形態において、バーナー 20は、供給された燃料ガス f及び空気 dを燃焼 して火炎 21を形成する。また、必要に応じて炭化水素化合物 b及び火炎 21の燃焼を 促すために、バーナー 20の周辺部から、空気 dを導入してもよい。
[0041] また、窒素化合物 a及び炭化水素化合物 bをバーナー 20の火炎 21の下流端部に 形成された高温領域 22に向かって、それぞれ別々に吹き込むことが好ましい。窒素 化合物 a及び炭化水素化合物 bを混合し火炎 21に吹き込む場合や燃料ガス fと共に バーナー 20に供給し燃焼させた場合に比べ、ァミンラジカルを生成しやすく優れた 脱硝効果が得られる。
[0042] 窒素化合物を吹き込むノズル 8と、炭化水素化合物を吹き込むノズノレ 9は、管部 5の 内壁面から突出するように配置することが好ましい。また、ノズル 8及びノズル 9は、高 温領域 22を挟んで対向する位置に、かつ煙道 10の方向に向けて所定の角度で吹 き込むように設けることが好ましい。図 2の例は、ノズル 8の吹き込み角度とノズル 9の 吹き込み角度を等しくした例であるが、両者を等角度に配置しなくてもよい。例えば、 ヒドロキシラジカルの生成を先行させるためには、炭化水素化合物用ノズル 9の方が
、吹き込み角度を大きくし高温領域の上流側に向くようにするとよい。ノズル 8及びノ ズル 9の配置位置及び吹き込み角度は、バーナー 20の火炎 21に対する距離に応じ て調整し、ァミンラジカルを効率的に生成し、得られた還元性ガスを煙道 10内に送り やすくするとよい。
[0043] 窒素化合物 aは、ァミンラジカルを生成し得るものであれば特に限定されなレ、が、ァ ンモユア、尿素、シァヌール酸、アミン類、二トリル類等を使用することができ、とりわけ 、アンモニア、尿素、シァヌール酸、脂肪族ァミンから選ばれる少なくとも 1種を使用 することが好ましい。
[0044] また、炭化水素化合物 bは、炭素数が:!〜 16である脂肪族炭化水素、軽油、重油、 ガソリン等を使用することができ、とりわけ、炭素数が 1〜: 12である脂肪族炭化水素、 軽油、重油から選ばれる少なくとも 1種を使用することが好ましい。炭素数が:!〜 16の 脂肪族炭化水素としては、メタン、プロパン、ブタン、へキサン、オクタン、ドテカン等 を例示することができ、なかでもへキサン、オクタン、ドテカンが好ましい。
[0045] 本発明において、脱硝工程は、ラジカル生成工程 3で生成したァミンラジカルを含 む還元性ガスと、予備工程力 排出した二酸化窒素等を含む予備処理ガス Pを混合 して、窒素酸化物を還元分解し除去する工程である。予備処理ガス p中の窒素酸化 物が二酸化窒素を含むことにより一酸化窒素のみの場合と比べて反応性が高くなつ てレ、ることと、還元性ガスが反応性が高いアミンラジカルであることとから、処理するガ スの温度が低温であっても、窒素酸化物の還元分解を効率的に行うことができる。同 時に、還元触媒を使用しないため、硫黄酸化物が含まれている場合でも、硫酸アン モニゥム等が生成して脱硝効率を低下させることがない。
[0046] 図 3は、本発明の排ガスの脱硝方法の他の実施形態を示す説明図であり、図 2で 示した脱硝方法に、さらに脱硝工程を直列的にカ卩えたものである。すなわち、 1回目 の脱硝工程力 排出した処理ガスに対して、さらにァミンラジカルを作用させる脱硝 方法である。
[0047] 図 3において、 1回目の脱硝工程 4から処理ガス yが排出するまでの処理は、上述し た脱硝処理と同じである。 2回目の脱硝処理は、 1回目と同じ構成のラジカル生成ェ 程 3及び脱硝工程 4を追加するものである。このため、符号を共通させて表記してい る。図示の例は、処理ガス yに対して、ァミンラジカル rを 1回作用するものである力 2 回以上作用させてもよい。この場合においても、ァミンラジカルの反応性が高いことか ら、処理ガス yの温度が低い場合や窒素酸化物の濃度が低い場合でも、処理ガス y 中の窒素酸化物の除去処理を効率的に行うことが可能である。
[0048] この実施形態において、処理ガス y中に残存した窒素酸化物を除去処理するので 、最終的な脱硝率を一層高くすることができる。例えば、脱硝処理の 1回当たりの脱 硝率を 40%とすると、 1回目の脱硝処理を終えた処理ガスには、当初の 60%の窒素 酸化物が残存するが、さらにァミンラジカルを作用させると処理ガスに残存する窒素 酸化物は 36%になる。さらに、もう一度アミンラジカルを作用させると処理ガスに残存 する窒素酸化物は 22%になる。したがって、脱硝処理を一回行った場合の脱硝率が 40%であるのに対して、 2回行った場合の脱硝率は 64%、 3回の場合は 78%となり 、 60%以上の高い脱硝率を得ることができる。
[0049] また、排ガス温度が 200〜300°Cの低温条件下で、窒素酸化物にァミンラジカルを 反応させた脱硝処理 1回当たりの脱硝率は 35〜55%である力 脱硝率が 35%の場 合でも、ァミンラジカルを 2回作用させた場合の累積の脱硝率は 58%、 3回の場合は 73%となる。また、脱硝率が 55%の場合には、ァミンラジカルを 2回作用させた場合 の累積の脱硝率は 80%、 3回の場合は 91 %といずれの場合にも極めて高い脱硝率 が得られる。
[0050] 本発明の脱硝方法は、排ガス中の窒素酸化物に対して、高温領域でアミンラジ力 ルを生成し直接作用させることから、脱硝処理が排ガスの温度や窒素酸化物濃度に 影響を受けることが少なレ、。このため、 1回目の脱硝処理を済ませた処理ガスに対し て、さらにァミンラジカルを作用させた場合でも、 1回当たりの脱硝効率が低下するこ とがなぐ累積的に脱硝反応を進めることができる。したがって、上記のように複数の 脱硝工程を設けて多段階に排ガスを処理することにより、最終的な脱硝率をさらに高 くすることができる。また、脱硝処理を複数回繰り返した場合でも、還元触媒を使用し ないこと及び残存する窒素化合物が少ないことから、排ガスが硫黄酸化物を含む場 合でも触媒の被毒や硫酸アンモニゥム等が副生しなレ、ので、脱硝効率が低下するこ とがない。
[0051] なお、排ガス X又は処理ガス yに対して、ァミンラジカルを作用させる 1回の脱硝処 理当たり、ァミンラジカルの単位時間供給量を、処理すべき窒素酸化物の単位時間 流量 1モルに対して 0. 5モル〜 1. 5モルにすることが好ましぐさら好ましくは 0. 7モ ル〜 1. 3モルにするとよい。排ガス及び処理ガス中の窒素酸化物及びアミンラジ力 ルの量を上記範囲にすることにより脱硝処理の反応効率を高めると共に、処理コスト を低減することができる。なお、ァミンラジカルの供給量は、高温領域に添加する窒 素化合物及び炭化水素化合物の流量によって調整することができる。
[0052] また、複数の脱硝工程を連続的に配置するときの間隔は、上流の脱硝工程で乱さ れた排ガスの流れが再び整流される位置に、下流の脱硝工程を配置するとよい。例 えば、煙道 10の内径 Dに対し隣接する脱硝工程同士の間隔 Lの比 L/Dを、好ましく は 2〜20、より好ましくは 5〜: 10にするとよい。 P 接する脱硝工程の間隔を上記の範 圏内とすることにより、下流の脱硝処理の効率を高めることができる。
[0053] さらに、隣接する脱硝工程において、ラジカル生成工程の管部を煙道に接続する 向きを互いに異ならせてもよい。例えば、煙道に対して接続する向きを左右又は垂直 Z水平に分けて配置することにより、 1回目の脱硝処理の際にアミンラジカルが行き 届かなかった領域に対して、 2回目の脱硝処理のときに、別の向きからァミンラジカル を作用させることにより、煙道内に流通する排ガスを均一に脱硝処理することができる
[0054] 図 4は、排ガスの脱硝方法のさらに他の実施形態を示す説明図であり、図 3で示し た脱硝方法から、予備工程を外した例である。この実施形態は、排ガスの酸化処理 を行わずに、そのまま複数回の脱硝処理を行うものである。
[0055] 図 4において、排ガスの煙道 10に略直角に接続した管部 5にバーナー 20を備え、 バーナー 20の火炎 21の下流端部に形成された高温領域 22に向かって、窒素化合 物 a及び炭化水素化合物 bが、ノズル 8及び 9から添加される。この高温領域 22で、ァ ミンラジカル rが生成し、煙道 10へ供給'混合され脱硝反応により、排ガス X中の窒素 酸化物を還元分解し処理ガス yが得られる。さらにこの処理ガス yに対して、上記と同 様にしてアミンラジカル rを生成し供給 ·混合して処理ガス yに残存する窒素酸化物を 還元分解する。図 4は、脱硝反応を 2回繰り返した例である力 この処理ガス yに、さら に繰り返しァミンラジカル rを作用させて脱硝処理してもよい。このように予備工程を設 けない場合でも、複数回の脱硝工程を設けて脱硝処理することにより、排ガス中の窒 素酸化物を高い脱硝効率で還元分解し除去することができる。
[0056] 本発明において、処理対象とする排ガスは、特に制限されるものではなレ、が、例え ば、船舶や発電用ディーゼルエンジンの排ガス、 自動車用ディーゼルエンジンの排 ガス、ボイラー排ガスやプラントオフガスを挙げられる。一般に、ディーゼノレエンジン 力もの排ガスは、パティキュレートマター、窒素酸化物、硫黄酸化物等の有害物質を 含むものであり、パティキュレートマターは、主に煤の形で、窒素酸化物は主に一酸 化窒素として、硫黄酸化物は主に二酸化硫黄として含有されていることが多い。排ガ ス X中の硫黄酸化物の濃度は、好ましくは 50ppm以上、より好ましくは lOOppm以上 、特に好ましくは 500ppm以上である。この濃度範囲において、本発明の有効性がよ り顕著となる。
[0057] また、船舶や発電用ディーゼルエンジンの排ガスは比較的低温であり、従来そのま までは無触媒脱硝法の適用が困難であった。しかし、本発明の脱硝方法は、このよう な排ガスを脱硝効率を上げる目的で加熱'昇温処理せずにそのまま処理することが できる。しかも高効率で脱硝することができる。排ガスの温度は、好ましくは 200〜45 0。C、より好ましく ίま 250〜450。C、特に 250〜300。C力好ましく、このような低温でぁ つても、十分な脱硝効果が得られる。
[0058] ディーゼルエンジンの燃料は、特に制限がなぐ軽油、 A重油、 C重油、 DME等を 使用してよい。なかでも本発明の脱硝方法の特徴を活かすためには硫黄分を含む燃 料を使用することが好ましぐ A重油又は C重油が好ましく挙げられる。 A重油は、 JIS 規格 CJIS K2205)において 1種 1号に硫黄分 0. 5質量%以下、 1種 2号に硫黄分 2 . 0質量%以下と規定され、 C重油は、 3種 1号に硫黄分 3. 5質量%以下と規定され ている。これらのうち、船舶やディーゼル発電機等のディーゼルエンジンに使用され る A重油は、主に硫黄分が 0. 2質量%以下、 C重油は、主に硫黄分が 3. 5質量%以 下である。
[0059] 以下、実施例によって本発明をさらに説明するが、本発明の範囲をこれらの実施例 により限定するものではない。
実施例
[0060] 図 5に示す試験装置を使用して、排ガスを脱硝処理し、各工程における窒素酸化 物濃度及び硫黄酸化物濃度を測定した。
[0061] 図 5において、ディーゼルエンジン 1の排ガスを煙道 10及びバイパスライン 7に引き 出すようにして、煙道 10に予備工程 2及び脱硝工程 4を配置し、ラジカル生成工程 3 を脱硝工程 4に連通するように配置した。ラジカル生成工程 3の高温領域は、パーナ 一火炎の下流端部に形成した。使用した配管のサイズ、管内のガス流速は、表 1に 示す通りとした。
[0062] [表 1] 配管の内径 ガス流速
l!mm」 [mN/秒]
煙道 1 0 1 5 0 1
管部 5 1 0 0 3
窒素化合物用
4 8
ノズル 8
炭化水素化合物用
4 8
ノズル 9
[0063] また、予備工程 2の上流に計測点 52a、予備工程 2と 1回目の脱硝工程 4の間に計 測点 52b、 1回目と 2回目の脱硝工程 4の間に計測点 52c、 2回目の脱硝工程 4下流 の計測点 52dを設け、 NOx計、 SO計及び温度計 51と接続し、各計測点の窒素酸
2
化物濃度、二酸化硫黄濃度及びガス温度を測定した。さらに、計測点 52aの上流に SO注入部 53を設け、排ガス中の SOを所定濃度に調製できるようにした。
2 2
[0064] 〔実施例 1〕
ラジカル生成工程 3のノズル 8及びノズル 9の中心線が管部 5の中心線となす角度 を、共に 45度にし、ノズル 8及びノズル 9の中心線と管部 5の中心線との交点力 \煙 道 10の内壁面から共に 10cmの距離に位置するように設定した。またバーナーの位 置と火炎の強さを調整し、上記交点付近の温度が 800〜900°Cになるようにした。
[0065] 予備工程の酸化処理手段として、ノ ルス式プラズマ発生器を使用し、 2回目の脱硝 工程を稼動させないようにして脱硝処理を行った。なお、計測点 52aにおける排ガス の温度を 300°Cにし、ノズル 8から吹き込む窒素化合物はアンモニアを使用し、ノズ ル 9から吹き込む炭化水素化合物はプロパンガスを使用した。
[0066] 脱硝処理過程における計測点 52a, 52b及び 52cにおける NOx濃度及び SO濃
2 度を測定した。得られた結果を表 2に示す。なお、計測点 52bにおける一酸化窒素の 酸化率 Ncは 51 %、 Ncに対する二酸化硫黄の酸化率の比 ScZNcは 0. 04であった
[0067] [表 2] 計測点 実施例 1 比較例 1 比較例 2
5 2 a 8 6 0 8 6 0 8 6 0
N O x濃度
[ ppm ] 5 2 b 8 6 0 8 6 0 8 6 0
5 2 c 2 4 0 4 9 0 8 3 0
5 2 a 5 4 0 5 4 0 5 4 0
S 0 2濃度
[ ppm ]
5 2 b 5 2 0 5 4 0 5 2 0
5 2 c 5 1 0 5 4 0 5 1 0
脱硝率 7 2 % 4 3 % 3 %
[0068] 〔比較例 1〕
実施例 1において、プラズマ発生器のスィッチを切り、排ガスの酸化処理を行わな 力 たことを除き、実施例 1と同様にして脱硝処理を行った。得られた結果を表 2に示 した。なお、計測点 52bにおける一酸化窒素の酸化率 Ncは 6%、 Ncに対する二酸 化硫黄の酸化率の比 Sc/Ncは 0であった。
[0069] 〔比較例 2〕
実施例 1において、プロパンガスの代わりに窒素ガスをノズル 9から吹き込んだこと を除き、実施例 1と同様にして脱硝処理を行った。得られた結果を表 2に示した。なお 、計測点 52bにおける一酸化窒素の酸化率 Ncは 51%、 Ncに対する二酸化硫黄の 酸化率の比 Sc/Ncは 0. 04であった。
[0070] 表 2の結果から明らかなように、実施例 1は、排ガス温度が 300°Cと低いにも拘らず 、その脱硝率が約 72%と優れた結果が認められた。これに対して、排ガスを酸化処 理せずに、そのまま無触媒処理した比較例 1は、脱硝率が約 43%と低ぐプロパンガ スの代わりに窒素ガスを添加した比較例 2の脱硝率は、約 3%と極めて低かった。
[0071] 〔実施例 2〕
ラジカル生成工程 3のノズノレ 8及びノズノレ 9の中心線が管部 5の中心線となす角度 を、共に 45度にし、ノズル 8及びノズル 9の中心線と管部 5の中心線との交点力 煙 道 10の内壁面から共に 5cmの距離に位置するように設定を変更した。またバーナー の位置と火炎の強さを調整し、上記交点付近の温度が 800〜900°Cになるようにした [0072] 計測点 52aにおける排ガスの温度を 250°Cにし、 NOx濃度及び S〇濃度を表 3に
2
示すように変更し、予備工程のノ ルス式プラズマ発生器、 1回目及び 2回目の脱硝ェ 程を稼動させて脱硝処理を行った。なお、ラジカル生成工程のノズル 8から吹き込む 窒素化合物はアンモニアを使用し、 1回目のノズル 8から添加するアンモニア濃度を 620ppm、 2回目のノズノレ 8から添加するアンモニア濃度を 280ppmに調整した。ノズ ル 9から吹き込む炭化水素化合物はプロパンガスを使用し、その添カ卩量は、 1回目及 び 2回目のアンモニア添加量に見合う量となるように調整した。
[0073] 脱硝処理過程における計測点 52a, 52b, 52c及び 52dにおける NOx濃度及び S 〇濃度を測定した。得られた結果を表 3に示す。なお、計測点 52bにおける一酸化
2
窒素の酸化率 Ncは 51 %、 Ncに対する二酸化硫黄の酸化率の比 Sc/Ncは 0. 04 であった。
[0074] [表 3]
Figure imgf000019_0001
[0075] 表 3の結果から、 1段目及び 2段目の脱硝反応における脱硝率は、 55%及び 45% であり、最終的な脱硝率は 75%であった。本実施例により、排ガスを酸化処理した後 の 1段目の脱硝反応の脱硝率が実施例 1の場合と比べて高ぐ 2段目の脱硝反応に おける脱硝率も残存する窒素酸化物の量が少ないにも拘らずほとんど低下しないこ とが認、められた。
[0076] 〔参考例〕
実施例 2において、パルス式プラズマ発生器のスィッチを切り、排ガスの酸化処理 を行わなかったこと、及び 1回目のノズノレ 8力 添加するアンモニア濃度を 620ppm、 2回目のノズノレ 8から添加するアンモニア濃度を 350ppmに調整し、プロパンガスの 添加量は、 1回目及び 2回目のアンモニア添カ卩量に見合う量となるように調整したこと を除き、実施例 2と同様にして脱硝処理を行った。得られた結果を表 4に示す。 [表 4]
Figure imgf000020_0001
表 4の結果から、 1段目及び 2段目の脱硝反応における脱硝率は、 43%及び 41 % であり、最終的な脱硝率は 66%であった。本参考例により、 1段目及び 2段目の脱硝 反応における脱硝率がほとんど低下しないこと、最終的な脱硝率が 66%と高いことが 認められた。

Claims

請求の範囲
[1] 一酸化窒素及び二酸化硫黄を含む排ガス中の窒素酸化物を還元的に除去する脱 硝方法であって、前記排ガス中の一酸化窒素の一部を酸化して二酸化窒素を生成 する予備工程、窒素化合物及び炭化水素化合物を高温領域に添加してアミンラジ力 ルを生成するラジカル生成工程、該ァミンラジカルと前記予備工程から排出した一酸 化窒素及び二酸化窒素を含む予備処理ガスとを混合する脱硝工程を含む排ガスの 脱硝方法。
[2] 前記脱硝工程から排出された処理ガスへ、さらに前記アミンラジカルを混合するェ 程を加えた請求項 1に記載の排ガスの脱硝方法。
[3] 前記処理ガスへ前記アミンラジカルを混合する工程を 2回以上含む請求項 2に記 載の排ガスの脱硝方法。
[4] 前記高温領域が、バーナーの火炎又は電熱ヒーターの周辺に形成された請求項 1
、 2又は 3に記載の排ガスの脱硝方法。
[5] 前記高温領域が、 600〜: 1000°Cである請求項 1〜4のいずれかに記載の排ガスの 脱硝方法。
[6] 前記高温領域が、前記排ガスの煙道の内部に形成された請求項 1〜5のいずれか に記載の排ガスの脱硝方法。
[7] 前記予備工程において、前記排ガスを酸化触媒との接触処理又はプラズマ照射処 理により、一酸化窒素を二酸化窒素に酸化する請求項 1〜6のいずれかに記載の排 ガスの脱硝方法。
[8] 前記酸化触媒が、チタンを含有する担体に活性金属を担持した触媒であり、該活 性金属が、バナジウム化合物、ニオブ化合物、モリブデン化合物及びタングステンィ匕 合物から選ばれる少なくとも 1つである請求項 7に記載の排ガスの脱硝方法。
[9] 前記予備工程において、一酸化窒素の酸化率 Ncに対する二酸化硫黄の酸化率 S cの比 Sc/Ncが、 0· 01〜0. 2である請求項 1〜8のいずれかに記載の排ガスの脱 硝方法。
PCT/JP2006/326234 2006-01-06 2006-12-28 排ガスの脱硝方法 WO2007077921A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800502800A CN101351629B (zh) 2006-01-06 2006-12-28 排气的脱硝方法
US12/087,363 US7700058B2 (en) 2006-01-06 2006-12-28 Process for denitration of exhaust gas
DK06843612.0T DK1970545T3 (da) 2006-01-06 2006-12-28 Fremgangsmåde til denitrering af udstødningsgas
EP06843612A EP1970545B1 (en) 2006-01-06 2006-12-28 Process for denitration of exhaust gas
NO20083431A NO20083431L (no) 2006-01-06 2008-08-05 Fremgangsmate for denitrering av eksosgass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006001815A JP2007182812A (ja) 2006-01-06 2006-01-06 排ガスの脱硝方法
JP2006-001815 2006-01-06

Publications (1)

Publication Number Publication Date
WO2007077921A1 true WO2007077921A1 (ja) 2007-07-12

Family

ID=38228270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326234 WO2007077921A1 (ja) 2006-01-06 2006-12-28 排ガスの脱硝方法

Country Status (8)

Country Link
US (1) US7700058B2 (ja)
EP (1) EP1970545B1 (ja)
JP (1) JP2007182812A (ja)
KR (1) KR101004737B1 (ja)
CN (2) CN101356344B (ja)
DK (1) DK1970545T3 (ja)
NO (1) NO20083431L (ja)
WO (1) WO2007077921A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004493B2 (ja) * 2006-04-03 2012-08-22 三井造船株式会社 排ガスの脱硝方法
JP4656071B2 (ja) * 2007-03-01 2011-03-23 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN102596371B (zh) * 2009-11-16 2015-02-25 株式会社Ihi 汞除去装置以及汞除去方法
JP5995400B2 (ja) * 2010-10-14 2016-09-21 三菱重工業株式会社 舶用排気ガス脱硝装置
KR101057342B1 (ko) * 2010-11-09 2011-08-22 주식회사 기스코 가속 선택적 촉매 환원법을 이용한 저온 탈질 효율 증가 및 가시매연 제거 시스템
US8940260B2 (en) * 2011-06-10 2015-01-27 International Engine Intellectual Property Company, Llc. Supplemental ammonia storage and delivery system
EP2770178B1 (en) 2013-02-25 2017-04-05 Cummins Inc. System and method for sulfur recovery on an SCR catalyst
US9057303B2 (en) * 2013-03-14 2015-06-16 Tenneco Automotive Operating Company Inc. Exhaust system for dual fuel engines
JP6085245B2 (ja) * 2013-11-11 2017-02-22 国立大学法人岐阜大学 無触媒脱硝装置及び無触媒脱硝方法
EP3037635B1 (en) * 2014-12-22 2017-08-09 Alfa Laval Corporate AB Exhaust gas treatment system and method, as well as ship comprising, and use of, such a system
KR101567745B1 (ko) 2015-05-28 2015-11-09 박정봉 마이크로웨이브 플라즈마를 이용한 질소산화물 저감시스템
CN105056758B (zh) * 2015-07-31 2017-07-04 湘潭大学 一种流化催化脱除氮氧化物的方法及装置
JP6624965B2 (ja) * 2016-02-16 2019-12-25 三菱重工業株式会社 排ガス脱硝装置および排ガス脱硝装置の制御方法
CN105854568B (zh) * 2016-06-07 2018-05-04 南京蓝色天空环保科技有限公司 低温脱硝烟道反应室
JP2020084930A (ja) * 2018-11-29 2020-06-04 いすゞ自動車株式会社 排気浄化装置および車両
KR102241826B1 (ko) * 2019-08-08 2021-04-19 한국생산기술연구원 미세먼지 저감을 위한 황산화물 및 질소산화물 전구물질 입자화 시스템 및 그 방법
CN111001279B (zh) * 2019-12-26 2021-08-24 佛山科学技术学院 一种高效干法脱硝剂及其制备方法和脱硝效果的评价方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119370A (en) * 1978-03-09 1979-09-17 Babcock Hitachi Kk Removing method for nitrogen oxide contained
JPH11125110A (ja) * 1997-08-09 1999-05-11 Man Nutzfahrzeuge Ag 酸素を含む機関排気ガス中における触媒nox還元を行なう装置及び方法
US6066303A (en) 1996-11-01 2000-05-23 Noxtech, Inc. Apparatus and method for reducing NOx from exhaust gases produced by industrial processes
JP2001525902A (ja) 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト 酸素を含有する排ガス中の酸化有害物質を除去するための方法および装置ならびにこれにより駆動されるエンジン
JP2002136837A (ja) 2000-11-01 2002-05-14 Taiheiyo Cement Corp 無触媒脱硝方法
JP2004188388A (ja) * 2002-12-13 2004-07-08 Babcock Hitachi Kk ディーゼル排ガス浄化用フィルタおよびその製造方法
JP2005002968A (ja) * 2003-06-16 2005-01-06 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2005254093A (ja) 2004-03-10 2005-09-22 Mitsui Eng & Shipbuild Co Ltd 脱硝方法、および脱硝装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682709B2 (en) * 1997-10-31 2004-01-27 Noxtech, Inc. Method for reducing NOx from exhaust gases produced by industrial processes
JP4658404B2 (ja) * 2001-08-23 2011-03-23 三菱重工業株式会社 ディーゼル機関排気ガス回収すすの燃料化方法及びその装置
KR100549778B1 (ko) * 2003-09-27 2006-02-08 한국전력기술 주식회사 저온 탈질 특성을 갖는 바나듐/티타니아계 질소산화물제거용 촉매, 이의 사용방법 및 이의 탈질방법
DK1975381T3 (da) * 2006-01-06 2013-07-29 Mitsui Shipbuilding Eng Fremgangsmåde til denitrificering af udstødningsgas samt apparat dertil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119370A (en) * 1978-03-09 1979-09-17 Babcock Hitachi Kk Removing method for nitrogen oxide contained
US6066303A (en) 1996-11-01 2000-05-23 Noxtech, Inc. Apparatus and method for reducing NOx from exhaust gases produced by industrial processes
JP2001525902A (ja) 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト 酸素を含有する排ガス中の酸化有害物質を除去するための方法および装置ならびにこれにより駆動されるエンジン
JPH11125110A (ja) * 1997-08-09 1999-05-11 Man Nutzfahrzeuge Ag 酸素を含む機関排気ガス中における触媒nox還元を行なう装置及び方法
JP2002136837A (ja) 2000-11-01 2002-05-14 Taiheiyo Cement Corp 無触媒脱硝方法
JP2004188388A (ja) * 2002-12-13 2004-07-08 Babcock Hitachi Kk ディーゼル排ガス浄化用フィルタおよびその製造方法
JP2005002968A (ja) * 2003-06-16 2005-01-06 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2005254093A (ja) 2004-03-10 2005-09-22 Mitsui Eng & Shipbuild Co Ltd 脱硝方法、および脱硝装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNPEI ANDO: "Fuel Conversion and SOX/NOX Countermeasure Technologies: A Focus on Exhaust Desulfurization/Denitration", PROJECT NEWS, 25 June 1983 (1983-06-25), pages 205 - 207
See also references of EP1970545A4 *

Also Published As

Publication number Publication date
EP1970545B1 (en) 2013-02-13
US7700058B2 (en) 2010-04-20
JP2007182812A (ja) 2007-07-19
KR101004737B1 (ko) 2011-01-04
DK1970545T3 (da) 2013-03-04
US20090053122A1 (en) 2009-02-26
KR20080083302A (ko) 2008-09-17
CN101356344B (zh) 2012-03-14
CN101351629B (zh) 2011-05-04
CN101351629A (zh) 2009-01-21
NO20083431L (no) 2008-08-05
EP1970545A4 (en) 2011-03-02
EP1970545A1 (en) 2008-09-17
CN101356344A (zh) 2009-01-28

Similar Documents

Publication Publication Date Title
WO2007077921A1 (ja) 排ガスの脱硝方法
EP1975381B1 (en) Method of denitrification of exhaust gas and apparatus therefor
EP3045220B1 (en) Exhaust gas treatment method and denitrification/so3 reduction apparatus
US20060075743A1 (en) Exhaust treatment systems and methods for using the same
KR101949478B1 (ko) 촉매 연소를 이용한 과불화 화합물 처리 장치 및 그 방법
KR101902331B1 (ko) 선택적 비촉매 환원법에 기반한 마이크로웨이브 플라즈마를 이용하는 질소산화물 저감시스템
JPH0268404A (ja) 燃焼排気ガスから窒素酸化物(NOx)を削減する方法及び装置
JP2017006813A (ja) 脱硝装置および窒素酸化物の処理方法
AU5579600A (en) Method for removing nitrogen oxides from an oxygen-containing gas stream
CN105642115A (zh) 一种烟气脱硝的装置和方法
JP5230900B2 (ja) 排ガスの脱硝方法
JP4902834B2 (ja) 脱硝方法、および脱硝装置
JPH0691138A (ja) 排気ガス処理装置および方法
KR100910053B1 (ko) 질소산화물 제거 시스템 및 방법
KR101567745B1 (ko) 마이크로웨이브 플라즈마를 이용한 질소산화물 저감시스템
JP7061622B2 (ja) Scr触媒を有するファブリックフィルターバッグを用いて煙道ガスから有害化合物を除去するための方法およびシステム
JP4676343B2 (ja) 排ガス処理方法及び装置
JP5004493B2 (ja) 排ガスの脱硝方法
JP4652047B2 (ja) 排ガス処理方法及び尿素scr型自動車排ガス処理装置
US5547651A (en) Process for production and use of deactivated gaseous atomic nitrogen for post combustion gas nitric oxide emissions control
KR100593403B1 (ko) 배기가스의 질소산화물 처리장치 및 이의 처리방법
JP2001179050A (ja) アンモニア注入による窒素酸化物の処理方法
JPS592534B2 (ja) 窒素酸化物含有ガスの処理方法
Song et al. A Combined De-NOx Process with NH, SCR and Non

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680050280.0

Country of ref document: CN

Ref document number: 12087363

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087016540

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006843612

Country of ref document: EP