[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007061075A1 - 固体高分子型燃料電池 - Google Patents

固体高分子型燃料電池 Download PDF

Info

Publication number
WO2007061075A1
WO2007061075A1 PCT/JP2006/323496 JP2006323496W WO2007061075A1 WO 2007061075 A1 WO2007061075 A1 WO 2007061075A1 JP 2006323496 W JP2006323496 W JP 2006323496W WO 2007061075 A1 WO2007061075 A1 WO 2007061075A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
gas
flow path
cell stack
Prior art date
Application number
PCT/JP2006/323496
Other languages
English (en)
French (fr)
Inventor
Norihiko Kawabata
Hiroki Kusakabe
Takashi Morimoto
Toshihiro Matsumoto
Yoshiki Nagao
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007546513A priority Critical patent/JP4129289B2/ja
Priority to US11/815,121 priority patent/US20090017355A1/en
Priority to KR1020077017145A priority patent/KR101226122B1/ko
Publication of WO2007061075A1 publication Critical patent/WO2007061075A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a fuel cell using a solid polymer electrolyte membrane.
  • a fuel cell using a solid polymer electrolyte membrane simultaneously generates electric power and heat by causing an electrochemical reaction between a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air. generate.
  • the fuel cell generally has a polymer electrolyte membrane that selectively transports hydrogen ions, and a pair of electrodes that sandwich the polymer electrolyte membrane.
  • Each electrode is composed of a catalyst layer mainly composed of carbon powder and a platinum group metal catalyst supported thereon, and a gas diffusion layer which is disposed outside the catalyst layer and has both air permeability and electron conductivity.
  • a fuel cell using a solid polymer electrolyte membrane has a gas with a polymer electrolyte membrane sandwiched around electrodes so that supplied fuel gas and oxidant gas do not leak outside or mix with each other.
  • a sealing material may be provided with a gasket.
  • Gas seal materials and gaskets are generally assembled integrally with a polymer electrolyte membrane and electrodes, and this assembly is sometimes referred to as an “MEA (electrolyte membrane electrode assembly)”.
  • MEA electrolyte membrane electrode assembly
  • the MEA is sandwiched between conductive separators, and the separator mechanically fixes the MEAs, and the stacked MEAs are electrically connected to each other in series.
  • a flow path is formed at the contact portion of the separator with the MEA, and the reaction gas is supplied to the electrode through the flow path to discharge generated water and surplus gas. This flow path is generally formed in the separator Force may be formed separately
  • the fuel cell is provided with a gas pipe for supplying a reaction gas to a flow path formed in the separator and exhausting the gas from the flow path.
  • This gas pipe is branched according to the number of separators, and the branch destination is connected to a flow path formed in the separator.
  • the piping jig for the connection is called “male hold”.
  • the material of the polymer electrolyte membrane is generally perfluorosulfonic acid-based resin.
  • the polymer electrolyte membrane exhibits ionic conductivity in a state containing moisture. Therefore, it is usually humidified In order to improve the performance of fuel cells, the relative humidity of these gases should be close to 100% or higher. Good. However, since water is generated by the reaction on the power sword side of the fuel cell, if the gas is humidified and supplied so that it has a dew point higher than the operating temperature of the cell, the flow path inside the cell and the inside of the electrode In some cases, condensation may occur and the battery performance may become unstable or deteriorated due to a phenomenon such as water clogging.
  • Such a decrease in battery performance instability due to excessive wetting (condensation) is generally referred to as a “flatting phenomenon”.
  • a flooding phenomenon occurs on the anode side, it becomes difficult to supply fuel gas, and the required amount is insufficient.
  • carbon carrying the catalyst on the anode side reacts with water in the atmosphere in an attempt to generate electrons and protons.
  • the carbon in the catalyst layer is dissolved and the catalyst layer is destroyed. If such a state continues, the potential of the force sword, which was a positive potential compared with the anode electrode, becomes 0 volts or less.
  • Such a state is called “polarization” and is fatal to the battery.
  • a constriction is formed on the gas supply side cross section of the gas supply side of the external force and between the connecting portion of the hold and the gas flow path and the gas pipe;
  • the gas pipe connected to the hold is extended to the inside of the hold, and a gas supply hole is provided on the upper surface of the extended gas pipe, and the gap between the gas supply holes is There is a proposal to narrow the connection force with the hold as the distance increases.
  • the structure formed on the separator is formed in a lattice shape or the like, thereby simplifying the structure by eliminating the need to form flow channel grooves in the frame (frame body).
  • Patent Document 2 there is a proposal to suppress the gas cross by suppressing the deformation of the frame.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-327425
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-165043
  • the fuel cell is also operated in a transient state that occurs when the operating state is frequently changed, such as starting or stopping, or load fluctuation. Even in operation in a transient state, stable operation switching and performance degradation due to the switching operation itself are required.
  • a fuel cell using a solid polymer electrolyte membrane In order to prevent deterioration of the catalyst at the time of shutdown, a fuel cell using a solid polymer electrolyte membrane generally flows as a sealed gas a raw fuel such as nitrogen or 13A before reforming. Hold the road full.
  • a raw fuel such as nitrogen or 13A before reforming. Hold the road full.
  • the enclosed gas When normal gas is input at startup, the enclosed gas is expelled and the catalyst is activated. After that, protons are filled into the anode electrode, and the potential of the force sword electrode is set to a sufficiently high potential with respect to the anode electrode.
  • the load current can be taken out. If the load of the stacked battery cells included in the fuel cell stack is taken out even before the load current can be taken out, the battery cell ”State. Therefore, power generation cannot be started until all stacked battery cells are ready for load current! /.
  • the timing at which each battery cell included in the fuel cell stack reaches a state where power generation can be started varies depending on the stacking direction of the battery cells.
  • Introduction Battery cells that have become capable of generating electricity will have a higher potential sword electrode for a longer period of time than other battery cells. If this state continues, deterioration of the catalyst is promoted. Therefore, it is preferable that the normal gas input at the time of starting is spread over all the battery cells as much as possible.
  • it is difficult to accurately measure the time when the first battery cell can generate power even in the gas injection input virtually all the batteries can be supplied in as short a time as possible with the normal gas input at startup. It is required to go through the cell.
  • raw fuel before reforming such as nitrogen or 13A is introduced as an enclosed gas. Again in this case It is required to spread the sealed gas to all the battery cells in a short time.
  • the load current to be taken out may be changed by changing the gas flow rate. For example, to decrease the load current, change the load gas to change the amount of force gas; to increase the load current, change the amount of gas to change the load current. For the same reason as when starting and stopping, it is required to spread the gas with the changed flow rate to all the battery cells as quickly as possible.
  • the present invention can be applied to all the stacked battery cells in a short time even in transient operation states such as start / stop / load change only during steady operation.
  • a fuel cell capable of supplying gas is provided. This provides a solid polymer fuel cell that suppresses performance degradation due to stable operation switching and switching operation itself.
  • Proposed force US2005 / 027 1910 suggests supplying uniform gas to all stacked battery cells. According to it, the gas flow is stabilized by dividing the manifold into a fluid supply manifold and a fluid distribution manifold by means of a transition channel. Has been shown to let. However, with these proposals alone, it is difficult to supply uniform gas in a short time to all battery cells.
  • the first of the present invention relates to a fuel cell stack shown below.
  • a polymer electrolyte fuel cell stack including a plurality of fuel cells stacked in series
  • Each of the fuel cells has a polymer electrolyte membrane; a pair of electrodes including a fuel electrode and oxygen as much as possible sandwiching the polymer electrolyte membrane; a flow path in contact with the fuel electrode and through which fuel gas flows A pair of separators that are in contact with the separator and the oxygen electrode and have a flow path through which an oxidant gas flows; an air supply manifold that supplies fuel gas to the separator flow path through which the fuel gas flows; And an exhaust manifold for exhausting; and an air supply manifold for supplying oxidant gas to the separator flow path through which the oxidant gas flows, and an exhaust manifold for exhausting, At least one internal space of the air supply manifold or the exhaust manifold is connected to the separator flow path communicating with each other by a projection or a bridge provided on the inner wall thereof, and the other space.
  • the protrusion or bridge portion controls gas inflow into the connection space with the separator flow path, and the control of gas inflow is constant for each of the stacked fuel cell units.
  • the fuel cell stack has the most controlled gas inflow in the fuel cells in the inner layer.
  • the fuel cell in which the gas inflow is most controlled is located in less than half of the stacked cells from the gas supply side of the external force among the stacked fuel cells.
  • the connecting space with the separator separator flow path is disposed so as to be higher in the direction of gravity than the other space, [1] to [5] The fuel cell stack described.
  • the size of the protrusions or bridges of the fuel cells in the inner layer is constant, and the size of the protrusions or bridges included in each of the stacked fuel cells is constant.
  • the fuel cell stack according to any one of [1] to [7], wherein is a maximum.
  • the height of the protrusions included in each of the stacked fuel cells is constant, and the height of the protrusions or bridges of the fuel cells in the inner layer is the maximum. [1] to The fuel cell stack according to any one of [7].
  • the protrusions or bridge portions included in each of the plurality of stacked fuel cells are plate-shaped rectifying plates
  • the angle between the major axis of the rectifying plate of the fuel cell in the inner layer and the stacking direction of the fuel cell are the smallest, and the angle of each of the rectifying plates is constant, [1] to [7] The fuel cell stack described.
  • the parts are in close contact with each other to form a pipe, and an external force gas supply pipe is connected to the formed pipe,
  • the second aspect of the present invention relates to a frame for a fuel cell shown below and a method for manufacturing the same.
  • An air supply manifold that supplies fuel gas to the separator flow path through which the fuel gas flows, and an exhaust manifold that exhausts air; and an air supply hold that supplies oxidant gas to the separator flow path through which the oxidant gas flows
  • the internal space of at least one of the air supply or exhaust manifold is connected to the separator flow path and the other space by a protrusion provided on the internal wall. And is divided into
  • the projecting portion has one or two or more cuts, and is a frame that can be cut at the cuts.
  • An air supply manifold that supplies fuel gas to the separator flow path through which the fuel gas flows, and an exhaust manifold that exhausts air; and an air supply hold that supplies oxidant gas to the separator flow path through which the oxidant gas flows
  • At least one internal space of the air supply or exhaust manifold is divided into a connection space with the separator flow path and another space by a protrusion or a bridge provided on the inner wall.
  • the manufacturing method of the said frame body including the step which inject
  • FIG. 1 A front view (FIG. 1A) from the force sword surface side and a front view from the anode surface side (FIG. 1B) of the frame-integrated MEA used in the fuel cell stack of Embodiment 1.
  • FIG. 2 Front view (Fig. 2A) of the cathode side of the power sword-side separator of the frame-integrated MEA used in the fuel cell stack of Embodiment 1 (Fig. 2B)
  • FIG. 3 is a perspective view of the fuel cell stack according to Embodiment 1.
  • FIG. 4 is a front view of a frame-integrated MEA used in the fuel cell of Embodiment 2 from the side of the force sword.
  • FIG. 5 is a perspective view of the fuel cell stack according to the second embodiment.
  • FIG. 6 An enlarged perspective view of the power sword-side air supply manifold of the fuel cell stack of Embodiment 3.
  • FIG. 7 An enlarged perspective view of the force sword-side air supply hold of the fuel cell stack of Embodiment 4.
  • FIG. 8 An enlarged perspective view of the power sword-side air supply marker of the fuel cell stack of Embodiment 5.
  • FIG. 9 An enlarged perspective view of the force sword-side air supply hold of the fuel cell stack of Embodiment 6.
  • FIG. 10 An enlarged perspective view of the power sword-side air supply marker of the fuel cell stack of Embodiment 7.
  • FIG. 10 An enlarged perspective view of the power sword-side air supply marker of the fuel cell stack of Embodiment 7.
  • FIG. 11 An enlarged perspective view of the force sword-side air supply hold of the fuel cell stack of Embodiment 8.
  • FIG. 12 An enlarged perspective view of the power sword-side air supply marker of the fuel cell stack of Embodiment 9.
  • FIG. 13 An enlarged perspective view of the force sword-side supply marker of the fuel cell stack of Embodiment 10.
  • FIG. 14 is an enlarged perspective view of the frame-integrated MEA of the eleventh embodiment.
  • FIG. 15 is an enlarged perspective view of the frame-integrated MEA of the eleventh embodiment.
  • FIG. 16 is an enlarged perspective view of the air supply manifold of the fuel cell stack of Comparative Example 1.
  • FIG. 17 is an enlarged perspective view of the supply air hold of the fuel cell stack of Comparative Example 2.
  • FIG. 18 Front view of fuel cell stack frame-integrated MEA of Comparative Example 3
  • FIG. 19 is a diagram showing a simulation result of a concentration distribution in the force sword-side supply manifold 2 seconds after the supply gas piping force starts flowing in when the fuel cell stack of Comparative Example 1 is started.
  • FIG. 20 is a diagram showing a simulation result of the concentration distribution in the force sword-side supply manifold 2 seconds after the supply gas piping force starts flowing in when the fuel cell stack of Comparative Example 2 is started.
  • FIG. 21 is a diagram showing a simulation result of the concentration distribution in the power sword-side supply manifold 2 seconds after the start of inflow of air from the supply gas piping when starting the fuel cell stack of Example 1. The best form to do
  • the fuel cell stack of the present invention is a polymer electrolyte fuel cell stack, and includes a plurality of stacked fuel cells. It is preferable that the plurality of stacked fuel cells be connected in series with each other.
  • Each fuel cell has 1) a polymer electrolyte membrane, 2) a pair of electrodes composed of a fuel electrode and an oxygen electrode sandwiching the polymer electrolyte membrane, and 3) in contact with the fuel electrode and a fuel A separator having a flow path through which the gas flows, and a pair of separators that are in contact with the oxygen electrode and also have a flow path through which the oxidant gas flows; and 4) a separator through which the fuel gas flows. It is preferable to have a hold for supplying / exhausting fuel gas to a single flow path, and 5) a hold for supplying / exhausting oxidant gas to the separator flow path through which the oxidant gas flows.
  • Each fuel cell may further have any other member.
  • the polymer electrolyte membrane is not particularly limited as long as it is a thin film-like membrane that allows hydrogen ions to pass therethrough but does not pass electrons.
  • a fluorocoagulant polymer film is used.
  • the pair of electrodes sandwiching the polymer electrolyte membrane includes an oxygen electrode (also referred to as a force sword) to which an oxidant is supplied and a fuel electrode (also referred to as an anode) to which fuel gas is supplied.
  • Each electrode is not particularly limited, but if it is carbon carrying a catalyst such as platinum.
  • a separator is disposed in contact with each of the pair of electrodes, and a reaction gas is supplied through the separator. That is, the separator disposed at the fuel electrode has a flow path through which fuel gas flows; the separator disposed at the oxygen electrode has a flow path through which oxidant gas flows. Preferred.
  • the shape of the flow path formed in the separator (hereinafter sometimes referred to as “separator flow path”) is not particularly limited, but is, for example, a single pentane shape.
  • the separator is preferably a thermosetting resin, a thermoplastic resin molded product, a pressed metal plate, or the like that is preferably conductive.
  • a pressed metal plate When using a pressed metal plate as a separator, it can be formed by twisting the protrusions and bridges (described later)!
  • an air supply manifold for supplying gas and an exhaust manifold for exhausting the gas (collectively, “to supply and exhaust gas”). Is also connected.
  • An external gas supply pipe is connected to the supply manifold, and an external gas discharge pipe is connected to the exhaust manifold.
  • the inner space of at least one of the hold for supplying and exhausting the fuel gas and the hold for supplying and exhausting the oxidant gas is "separator". It is divided into a “connection space with the flow path” and a “other space”. However, both are in communication and can move gas.
  • connection space with the separator flow path may be a space including a connection portion with the separator separator flow path of the hold.
  • the other space means 1) the space along the axis of the external gas supply pipe, or the space along the axis of the gas discharge pipe to the outside (the “supply Z discharge pipe section”) 2) Space for the buffer to prevent the gas supplied with external force from directly entering the connection space with the separator flow path, or separator flow force. It can be a space for a buffer portion (also referred to as a “buffer portion”) that prevents direct entry into the discharge pipe.
  • the division is performed by "projections” or “bridges” provided on the inner wall of the interior space of the hold.
  • the protruding portion is a portion that partially protrudes from the inner wall that bridges the internal space.
  • the bridge is the part that bridges the internal space.
  • One or more protrusions may be formed as long as the protrusion is formed at an arbitrary position on the inner wall of the manifold. If the protrusions are provided at the positions facing each other, a “neck” is formed. However, the protrusion is preferably formed on the inner wall on the outer peripheral side of the battery cell among the inner walls of the hold. That is, it is preferable that the protrusion is directed from the outer peripheral side to the electrode side. If protrusions are provided on the inner wall on the outer peripheral side, heat generated by the reaction in the fuel cell is less likely to be released to the outside than when protrusions are provided on the inner wall on the inner periphery side. . Therefore, the heat can be recovered efficiently, contributing to cogeneration.
  • the bridge portion is a portion for communicating both the connection space with the force separator flow path that bridges the inner space of the hold and the other space without completely dividing the other space. (Gas passage part).
  • the protrusion or bridge portion controls the inflow of gas supplied from the outside to the "connection space with the separator channel" in the internal space of the manifold.
  • the inflow control is performed according to the structure of the protrusion or the bridge. For example, the following modes can be considered.
  • the size of the bridge portion means, for example, “the size of the cross-sectional area perpendicular to the longitudinal direction”; “the size of the protrusion portion” means, for example, “the volume of the protrusion protruding from the holder”; Projection height " For example, even if the force that means “the length of the protrusion in the protruding direction from the inner wall of the hold” is shifted, the size of the area of the passage portion to the connection space with the separator flow path may be adjusted.
  • the mode is not limited.
  • the inflow is controlled by adjusting the angle at which the protrusions or bridges are plate-shaped rectifying plates and arranging them (see Fig. 8-9, etc.).
  • the protrusion or bridge portion is formed on one or both of an air supply hold for supplying oxidant gas and an air supply hold for supplying fuel gas.
  • the exhaust manifold for exhausting the oxidant gas or the fuel gas is formed in the exhaust manifold. Providing protrusions or bridges on the exhaust manifold can reduce the deviation of the timing of the separate flow path force gas discharge of each battery cell.
  • the protrusion or the bridge may be provided in the holder formed in the separator, but is preferably provided in the holder formed in the "frame" that houses the MEA.
  • MEA is a composite comprising a polymer electrolyte membrane; and a pair of electrodes consisting of a fuel electrode and an oxygen electrode that sandwich the polymer electrolyte membrane.
  • the MEA is housed in a frame and can preferably be surrounded by the frame. Separators are placed on both sides of the MEA housed in the frame.
  • frame body integrated MEAJ a member in which the MEA and the frame body that accommodates the MEA are integrated.
  • the frame body is usually made of resin, and examples of resin include polypropylene and the like.
  • the frame is formed with a hold for supplying and exhausting fuel gas and a hold for supplying and exhausting oxidant gas. Further, the frame may be formed with a mold for flowing the coolant.
  • the fuel gas is supplied and exhausted.
  • the internal space is preferably divided by a protrusion or a bridge provided on the inner wall.
  • the protrusion may have one or two or more cuts (see FIG. 6), and the protrusions can be removed by cutting at the cuts.
  • the height of the protrusion may vary depending on the battery cells to be stacked. Therefore, the fuel cell stack of the present invention can be easily manufactured by forming a cut in the protrusion and appropriately stacking the protrusions with the height adjusted appropriately.
  • a sealing material is integrally formed on the frame of the frame-integrated MEA.
  • the seal material surrounds the hold and the MEA, and prevents the fluid flowing through the hold from leaking outside.
  • the frame body of the frame-integrated MEA can be manufactured by any method as long as the effects of the present invention are not impaired, but is preferably manufactured by an injection molding method.
  • the injection molding method is a method for obtaining a desired molded article by solidifying molten resin poured from a gate into a mold.
  • a protrusion or a bridge is formed on the inner wall of the manifold of the frame body, it is preferable to provide a gate at a part of the protrusion or the bridge.
  • it is more preferable to provide a gate on the protrusion because it is possible to form stably when the flow of the resin poured into the mold is limited to one direction.
  • the fuel cell stack of the present invention has a force including a plurality of stacked battery cells, and the structure of the protrusions or bridge portions formed in the air supply manifold of each battery cell is different. In other words, the reaction gas flow into the “connection space with the separator flow path” of the supply air hold differs for each battery cell.
  • the inflow is the most. It is preferable that the battery cell laminated
  • the battery cells stacked on the inside are preferably battery cells between the reaction gas (fuel gas or oxidant gas) supply side from the outside and up to half of all stacked cells; more preferably The supplied side force is also a battery cell in the inner layer around one quarter.
  • the present inventor has the gas supplied to the external gas supply pipe force supply air hold to a supply side force of 1/2. It was found that the charge cell hold of the battery cell in the inner layer was reached in a short time, and in particular, it reached the battery cell around one quarter of the supply side force in the shortest time. Based on this knowledge, it is possible to make uniform gas flow in a short time by making it difficult for the battery cells in the inner layer from the supply side to flow into the “connection space with the separator flow path”. We found that it can be supplied to battery cells.
  • the supply / exhaust manifolds of the stacked battery cells are connected to each other, and the supply / exhaust pipes communicate with each other.
  • the “connection space with the separator flow path” of each hold also communicate with each other. If the “connection space with the separator flow path” is in communication with each other, the supplied gas is more uniformly and rectified.
  • the plane of each battery cell is installed parallel to the vertical line, while the plane of each battery cell is preferably not installed perpendicular to the vertical line.
  • the “connection space with the separator flow path” of the hold formed with the protrusions or bridges is more than the “other space (for example, supply Z discharge piping)”. It is preferred to be installed so that it is higher in the direction of gravity.
  • FIG. 1 shows an example of a frame-integrated MEA.
  • FIG. 1A is a front view of the frame-integrated MEA 1 from the force sword surface side
  • FIG. 1B is a front view of the frame-integrated MEA 1 from the anode surface side.
  • a frame 3 is formed around MEA2.
  • the frame 3 is formed with a seal 4 (FIG. 1A) and a seal 4 ′ (FIG. 1B).
  • the seal 4 is formed so as to include the force sword side hold 5Z5 for supplying and exhausting the oxidant gas, and MEA2, but the portion connecting the force sword side hold 5Z5 'and MEA2 6 Is not formed (Fig. 1A).
  • seal 4 is a portion that connects the anode side hold 7Z7 'and the ME A2 formed to include the anode side hold 7/7' for supplying the fuel gas Z and exhausting MEA2. It is not formed in 6 '( Figure 1B). Seal 4Z4 'prevents gas leakage. Further, a seal is formed so as to surround the cooling water holders 8 and 8 ', and leakage of the cooling water to the outside is suppressed.
  • a protruding portion 9A is provided on a part of the inner wall of the force sword-side supply manifold 5, and the protruding portion 9A also protrudes toward the MEA 2 on the outer peripheral side.
  • the protrusion 9A is arranged so as to divide the inner space of the hold 5 into a connection space 5B to the separator flow path and a supply Z discharge pipe portion 5A.
  • a protrusion 9B is also provided on a part of the inner wall of the anode side air supply manifold 7, and the protrusion 9B protrudes toward the MEA 2 from the outer peripheral side.
  • the protruding portion 9B is arranged so as to divide the internal space of the manifold Horned 7 into a connecting space 7B with the separator channel and a supply / discharge piping portion 7A.
  • the size of the MEA 2 is, for example, 150 mm long and 150 mm wide.
  • the size of the frame 3 is, for example, 220 mm long and 220 mm wide, and its material is a resin such as polypropylene.
  • the seal 4 is formed by molding two colors of fluoro rubber.
  • FIG. 2A shows a force sword side front view of the force sword side separator 10.
  • FIG. 2B shows an anode side front view of the anode side separator 10 ′.
  • Gas flow paths 11 and 11 ′ are formed in 10 and 10 ′.
  • the force sword surface of the force sword-side separator 10 in FIG. 2A and the force sword surface of the frame-integrated ME A1 shown in FIG. 1A are brought into contact with each other;
  • a battery cell is fabricated by bringing the anode surface into contact with the anode surface of the frame-integrated MEA 1 shown in FIG. 1B.
  • FIG. 3 shows a fuel cell stack 100 in which a plurality of battery cells are stacked.
  • the height of each protrusion 9A of the battery cell is constant and has a slope.
  • the height of the protruding portion 9A is maximum in a battery cell of a certain inner layer, and is reduced as it goes to the battery cell of each surface layer.
  • the connection position force of the external gas supply pipe 12 also advances in the stacking direction of the battery cells. It becomes smaller, becomes the smallest in the battery cell of an inner layer, and becomes larger gradually as it further proceeds.
  • a similar gradient is given so that the height of each protrusion 9B of the stacked battery cells is constant.
  • FIG. 4 shows a front view of the force sword side of another example of the frame-integrated MEA 1.
  • a protrusion 9 A that protrudes toward the outside of the frame.
  • the protrusion 9A is arranged so as to divide the air supply holder 5 into a connection space 5B between the supply Z discharge piping 5A and the separator flow path.
  • the inner wall of the anode side air supply manifold 7 is also provided with a protrusion 9B that protrudes toward the outside of the frame.
  • the other symbols correspond to those in FIG.
  • FIG. 5 shows a fuel cell stack 100 in which battery cells including the frame-integrated MEA shown in FIG. 4 are stacked.
  • the protrusions 9A of the stacked battery cells have a constant gradient.
  • the height of the protrusion 9A is maximum in a battery cell of an inner layer, and is reduced as it goes to the battery cell of each surface layer.
  • the gas passing partial force from the supply Z discharge pipe 5A to the separator flow path 5B from the mall supply pipe 5A, the connection force of the gas supply pipe 12 from the outside also decreases as the battery cell stacks in the stacking direction. It becomes the smallest in a battery cell in a certain inner layer, and gradually becomes larger as it goes further.
  • FIG. 6 is an enlarged view of an example of an air supply manifold that supplies gas.
  • the protrusion 9A is provided with a plurality of cuts 9C. At 9C The tip of the part can be cut. If a notch 9C is provided in the protrusion 9A of the frame body of the MEA frame, the length of the protrusion can be adjusted by cutting one of the notches 9C according to the stacking order of the battery cells to be stacked. Can do.
  • FIG. 7 is an enlarged view of a power sword-side air supply manifold of a fuel cell stack in which battery cells including a frame-integrated MEA are stacked.
  • the frame hold of the frame-integrated MEA and the separator hold are in close contact with each other.
  • the frame of the frame-integrated MEA has a bridge portion 9D, and the separator has a bridge portion 9E.
  • the bridge portion 9D and the bridge portion 9E divide the manifold into a supply Z discharge piping portion 5A and a connection space 5B between the separator flow path (connection space 5B with the separator flow path). Has a separator channel and a hold connection 6).
  • the bridge portion 9D has a gas flow path 9F, which communicates the supply Z discharge piping section 5A and the connection space 5B with the separator flow path.
  • the area of the gas flow path 9F formed in the bridge portion 9D has a constant gradient.
  • the area of the gas flow path 9F in a battery cell in an inner layer is minimized, and is increased as it goes to the battery cell in each surface layer.
  • the area of the gas flow path 9F becomes smaller as the connection position force of the gas supply pipe from the outside advances in the direction of stacking the battery cells, and becomes the smallest in the battery cell of a certain inner layer, and gradually increases as the process proceeds further.
  • FIG. 8 is an enlarged view of a power sword-side supply manifold of a fuel cell stack in which battery cells including a frame-integrated MEA are stacked.
  • the protrusion 9G formed on the frame of the frame-integrated MEA is a current plate having a plate-like cross section.
  • the angle 16 between the long axis direction 14 of the rectifying plate and the stacking direction 15 of the battery cells is given a gradient that is not constant depending on the stacked battery cells.
  • the angle 16 is the smallest in the battery cell of an inner layer, and the battery cell of each surface layer is It gets bigger as you go.
  • the angle 16 becomes smaller as it proceeds in the stacking direction of the battery cells from the connection position of the gas supply pipe from the outside, becomes the smallest in a battery cell of an inner layer, and gradually increases as it moves further in the stacking direction. growing.
  • FIG. 9 is an enlarged view of a power sword-side supply manifold of a fuel cell stack in which battery cells including frame-integrated MEAs are stacked.
  • the bridge portion 9H formed on the frame of the frame-integrated MEA is a rectifying plate having a plate-like cross section.
  • the angle 16 between the long axis direction 14 of the rectifying plate and the stacking direction 15 of the battery cells is given a constant gradient by the stacked battery cells. That is, the angle 16 is made the smallest in the battery cell of a certain inner layer, and is increased as it goes to the battery cell of each surface layer. In other words, the angle 16 becomes smaller as the connection position force of the gas supply pipe from the outside proceeds toward the battery cell stacking direction, becomes the smallest in the battery cell of an inner layer, and gradually increases as it progresses further in the stacking direction.
  • FIG. 10 is an enlarged view of the cathode side air supply manifold of the fuel cell stack in which battery cells including frame-integrated MEAs are stacked.
  • the tip of the protrusion 91 formed on the frame of the frame-integrated MEA has a hole 9J in the center that is thicker in the stacking direction than the portion other than the tip.
  • the cross section of the hole 9J is substantially circular.
  • the leading ends of the protrusions 91 are in close contact to form a pipe 9K, and a gas supply pipe having an external force is connected to the end of the formed pipe 9K in the stacking direction.
  • the space of 5A acts as a buffer to prevent the supply gas of external force from suddenly entering 5B.
  • a gas outlet 9L is provided on the side surface of the formed pipe 9K.
  • the area of the air outlet 9L has a constant gradient depending on the stacked battery cells. That is, the area of the air outlet 9L is made the smallest in the battery cell of a certain inner layer, and is increased as it goes to the battery cell of each surface layer. In other words, the area of the air outlet 9L becomes smaller as the connecting position force of the gas supply pipe advances in the stacking direction of the battery cells, becomes the smallest in the battery cell of an inner layer, and gradually increases as the stacking direction proceeds. Become. [0064] [Embodiment 8]
  • FIG. 11 is an enlarged view of the cathode side supply manifold of the fuel cell stack in which battery cells including frame-integrated MEAs are stacked.
  • the central part of the bridge part 9M formed in the frame of the frame-integrated MEA has a hole 9J in the center that is thicker in the stacking direction than the part other than the central part.
  • the cross section of the hole 9J is substantially circular.
  • the central part of the bridge part 9M is in close contact with each other to form a pipe 9N, and an external gas supply pipe is connected to the end of the formed pipe 9N in the stacking direction.
  • the 5A space acts as a buffer to prevent externally supplied gas from entering the 5B abruptly.
  • a gas outlet 9L is provided on the side surface of the formed pipe 9N.
  • the area of the air outlet 9L has a constant gradient depending on the stacked battery cells. That is, the area of the air outlet 9L is made the smallest in the battery cell of a certain inner layer, and is increased as it goes to the battery cell of each surface layer. In other words, the area of the air outlet 9L becomes smaller as the connecting position force of the gas supply pipe advances in the battery cell stacking direction, becomes the smallest in the battery cell of an inner layer, and gradually increases in the stacking direction. Become.
  • FIG. 12 is an enlarged view of the cathode side air supply manifold of the fuel cell stack in which the battery cells including the frame-integrated MEA are stacked.
  • the tip of the protrusion 91 formed on the frame of the frame-integrated MEA has a hole 9J in the center that is thicker in the stacking direction than the portion other than the tip.
  • the cross section of the hole 9J is substantially circular.
  • the central portions of the protrusions 91 are in close contact with each other to form the pipe 9K, and an external force gas supply pipe is connected to the end of the formed pipe 9K in the stacking direction.
  • a gas outlet 9L is provided on the side surface of the formed pipe 9K, and the outlet 9L faces the lower side of the drawing, that is, the direction opposite to the connection space 5B with the separator channel.
  • the supply gas from the outside once enters 5A (buffer section) and then moves to 5B, so the rectifying effect is high.
  • the area of the air outlet 9L has a constant gradient depending on the stacked battery cells. In other words, the area of the air outlet 9L is made the smallest for a battery cell in an inner layer, and the battery cell in each surface layer is increased! . That is, the area of the air outlet 9L becomes smaller as the connection position force of the gas supply pipe advances in the direction of stacking the battery cells, becomes the smallest in the battery cell of an inner layer, and gradually increases as it advances in the stacking direction. .
  • FIG. 13 is an enlarged view of a cathode side air supply manifold of a fuel cell stack in which battery cells including a frame-integrated MEA are stacked.
  • the central part of the bridge part 9P formed in the frame of the frame-integrated MEA has a hole 9J that is thicker in the stacking direction than the part other than the central part.
  • the cross section of the hole 9J is substantially circular.
  • the central part of the bridge 9P is in close contact with each other to form a pipe 9Q, and an external force gas supply pipe is connected to the end of the formed pipe 9Q in the stacking direction.
  • the side surface of the formed pipe 9Q has a gas outlet 9L.
  • the outlet 9L is on the lower side of the drawing, that is, a connection space 5B (including a connection portion 6 with the separator channel) with the separator channel. It faces in the opposite direction.
  • the supply gas from the outside once enters 5A (buffer section) and then moves to 5B, so the rectification effect is high.
  • the area of the air outlet 9L has a constant gradient depending on the stacked battery cells. In other words, the area of the air outlet 9L is the smallest in a battery cell in an inner layer, and is increased as it goes to the battery cell in each surface layer. In other words, the area of the air outlet 9L becomes smaller as it advances in the stacking direction of the battery cells, the position of the gas supply pipe from the outside, becomes the smallest in the battery cell of an inner layer, and gradually increases as it further advances.
  • a protrusion 9R is formed on the inner wall of the frame of the frame-integrated MEA in FIG. 14, and a bridge portion 9T is formed on the inner wall of the frame of the frame-integrated MEA in FIG.
  • the frame 3 can be manufactured by an injection molding method. However, it is preferable to inject the grease into the mold using the injection molding gate as the tip 9S of the protrusion 9R of the manifold (see FIG. 14). reference). Similarly, it is preferable to inject the resin into the mold using the injection molding gate as the central portion 9S of the bridge portion 9T of the hold (see FIG. 15).
  • the height hi in the stacking direction of the gate 9S is approximately the same as the thickness of the frame, and It is preferable that the total thickness of the anode side separator and the cathode side separator is not exceeded.
  • the acetylene black carbon powder was loaded with 25% by weight of platinum particles having an average particle size of about 30A to form a force sword catalyst. Also, 25% by weight of platinum-ruthenium alloy particles having an average particle size of about 30 A are supported on an acetylene black carbon powder, and each of these powders used as an anode catalyst is dispersed in isopropyl alcohol to obtain perfluorocarbon monobon sulfone.
  • a paste was obtained by mixing with an acid alcohol dispersion of acid rosin powder. Each of the obtained pastes was applied to each surface of a 250 ⁇ m thick carbon non-woven fabric by a screen printing method to form a catalyst layer. The amount of catalytic metal contained in the catalyst layer of each obtained electrode was 0. The amount of perfluorocarbon sulfonic acid rosin was 1.2 mgcz m.
  • All of these electrodes have the same structure except for the catalyst material.
  • a polymer electrolyte membrane having a larger area than these electrodes was prepared.
  • the polymer electrolyte membrane was a perfluorocarbon sulfonic acid resin thinned to a thickness of 30 m.
  • the electrodes (force sword 'anode) were arranged on each surface of the central part of the polymer electrolyte membrane.
  • a MEA was prepared by placing 250 / zm thick fluoro rubber sheet cut out to a predetermined size on both sides with the electrolyte membrane exposed on the outer periphery of the electrode sandwiched and joined together by hot pressing. .
  • a frame-integrated MEA shown in Fig. 1 and a separator shown in Fig. 2 were produced.
  • the frame-integrated MEA frame has a length of 10 mm for the force sword side hold; 30 mm length, a width of 10 mm for the anode side hold; 20 mm length, and R of 4 corners is 15 It was a circle. These air supply halves are arranged vertically in the direction of gravity.
  • projections 9A and 9B that are directed toward the electrode side were formed at the lowest position of the connecting portion 6 between the holder and the electrode.
  • the width of the protrusion is 1.5 mm It was.
  • Four types of protrusions with lengths ranging from 3 mm to 9 mm in 2 mm increments were produced.
  • a battery cell was assembled by laminating a conductive force sword separator; a frame-integrated MEA; and a conductive anode separator. 50 battery cells were stacked. From the connection part of the gas supply pipe from the outside, the length of the protrusion of the battery cell hold of one-fourth of all the stacks was gradually directed in the stacking direction.
  • the obtained laminate is sandwiched between a current collector plate made of a copper plate with a gold plating on the surface, further sandwiched between insulating plates made of polyphenylene sulfide, and further sandwiched between end plates made of stainless steel. . Both end plates were fastened with fastening rods to obtain a battery stack. At this time, the fastening pressure was lOONZcm 2 per unit area of the electrode. Electric power can be taken out by connecting a cable to the current collector plate! The end plate of the stainless steel plate ensures the strength of the battery stack.
  • the battery stack is installed such that the separator plate surface is parallel to the vertical direction, and the cooling water inlet manifold 8 is positioned higher than the direction of gravity.
  • the reaction gas flows downward in the direction of gravity through the serpentine type gas flow path (which also has a horizontal straight portion and a turn force) formed in the separator.
  • the inner wall of the fuel cell stack of Comparative Example 1 has no protrusions or bridges.
  • the reactive gas is supplied along the axis 13 from the front side to the back side of the paper, and is distributed and supplied to the electrode of each battery cell through the electrode-manifold connecting portion 6.
  • the protrusion 9A was provided on the inner wall of the hold of the fuel cell stack of Comparative Example 2.
  • the lengths of the protrusions 9A of all the battery cells were uniformly 7 mm.
  • the reaction gas is supplied from the front side to the back side along the axis line 13 and supplied to the Z discharge piping section 5A; the gas supplied to 5A is connected to the separator channel. 5B; and further distributed to the electrodes from the electrode 6 and the joint 6 of the hold.
  • a fuel cell stack was produced in the same manner except that the structure of the fuel cell stack-integrated MEA of Comparative Example 2 was the structure shown in FIG. That is, the connection space 5B with the separator channel is disposed below the supply / discharge side 5A in the direction of gravity.
  • the reaction gas is supplied from the front side to the back side of the supply Z discharge part 5A; it moves through the protrusion 9A to the connection space 5B with the separator flow path; and further, the connection part 6 between the electrode and the hold 6 Are distributed and supplied to the electrodes of each battery cell.
  • Example 2 a fuel cell stack was manufactured in the same manner as in Example 1 except that the projections of the force sword side air supply manifold of the frame-integrated MEA were changed to the following projections.
  • Protrusions 9A and 9B facing outward were formed at the lowest position of the joint 6 between the hold and the electrode on the inner wall of the hold (see FIG. 4).
  • the width of the protrusions 9A and 9B was 1.5 mm.
  • the length of this protrusion is 3mn! Up to 9mm, 4 types were made every 2mm.
  • the gradient of the battery cell was extended with a maximum length of one-quarter battery cell's cell projection in the stacking direction.
  • Example 3 the protrusion of the power sword side air supply marker hold of the MEA of the frame integrated type is as follows.
  • a fuel cell stack was produced in the same manner as in Example 1 except that the protrusions shown in FIG. Protrusions 9A and 9B facing outward are formed at the lowest position of the inner part 6 of the inner part of the holder and the connecting part 6 between the holder and the electrode.
  • the width of the protrusions 9A and 9B was 1.5 mm.
  • the length of this protrusion was 9 mm, and a wedge-shaped notch with a width of 0.3 mm and a depth of 0.5 mm was formed at 2 mm, 4 mm, and 6 mm from the tip of the protrusion (see Fig. 6).
  • Example 4 a fuel cell stack was produced in the same manner as in Example 1 except that the projections of the force sword side air supply manifold of the frame-integrated MEA were changed to the bridge portions shown below.
  • a 1.5mm wide bridge was provided below the inner wall 6 of the inner side of the hold, where the electrode and the hold were connected.
  • a rectangular hole 9F with a depth of 1.5mm was formed in this bridge (see Fig. 7). The length of the rectangular hole 9F was 2 mm, 4 mm, 6 mm or 8 mm.
  • Example 4 As compared with Example 2, it was confirmed that the concentration distribution in the force hold in which the exchange time of encapsulated nitrogen and air becomes longer becomes more uniform.
  • Example 5 a fuel cell stack was manufactured in the same manner as in Example 1 except that the projections of the force sword side air supply manifold of the frame-integrated MEA were changed to the projections shown below.
  • a protruding portion 9G On the inner wall of the hold, a protruding portion 9G that faces outward was formed (see FIG. 8).
  • the cross section of the protrusion 9G was an ellipse having a major axis of 1.5 mm and a minor axis of 0.5 mm.
  • the angles between the major axis of the ellipse and the stacking direction were 90, 60, 30 and 0 degrees.
  • Example 5 the rectifying action of the protrusion having an elliptical cross section does not cause a delay in the exchange of nitrogen and air that has been enclosed as in Example 4, and it is a mar-hold than Example 1. It was confirmed that the concentration distribution inside became more uniform.
  • Example 6 a fuel cell stack was produced in the same manner as in Example 1 except that the projections of the force sword-side air supply manifold of the frame-integrated MEA were changed to the bridge portions shown below.
  • a bridge portion 9H was provided below the portion 6 of the inner wall of the hold that connects the electrode and the hold (see Fig. 9).
  • the cross section of the bridge section 9H is an ellipse with a major axis of 1.5 mm and a minor axis of 0.5 mm, and a width of 1.5 mm.
  • the angle formed between the major axis of the ellipse and the stacking direction was 90 degrees, 60 degrees, 30 degrees, or 0 degrees.
  • Example 6 the rectifying action of the projection of the elliptical cross section does not cause a delay in replacement of encapsulated nitrogen and air as in Example 5, and the concentration in the mall is higher than in Example 1. It was confirmed that the distribution became more uniform. Furthermore, in Example 6, as compared with Example 5, misalignment at the time of assembly with less deformation after molding of the frame-integrated MEA in which the rigidity of the bridge portion is high could be prevented.
  • Example 7 a fuel cell stack was produced in the same manner as in Example 1 except that the projections of the force sword-side supply manifold of the frame-integrated MEA were changed to the following projections.
  • a protrusion 91 having a width of 1.5 mm toward the outside is provided on the inner wall of the hold (see FIG. 10).
  • a pipe is formed at the tip of the protrusion 91.
  • the outer diameter of the pipe is 5mm, the inner diameter is 3mm, and the length is about 0.05mm shorter than the total thickness of the MEA and separator (9mm).
  • a rectangular hole 9L is provided on the upper surface of this pipe, the width of the hole 9L is 3mm; the length is 7mm, 5mm
  • Each battery cell was laminated so that these pipes were almost in contact with each other. Then, from the inlet of the gas supply pipe from the outside, a gradient was made with the length of the hole in the battery cell of one-fourth of all stacks being minimized in the stacking direction.
  • Example 7 due to the distribution action of the pipe hole 9J, the enclosed nitrogen and air are exchanged in a shorter time than in Example 1, and the concentration distribution in the hold becomes more uniform as in Example 1. It was confirmed.
  • Example 8 a fuel cell stack was produced in the same manner as in Example 1 except that the projection of the force sword-side supply manifold of the frame-integrated MEA was used as the bridge portion shown below.
  • a bridge portion 9M with a width of 1.5 mm was formed below the portion 6 of the inner wall of the hold that connects the hold and the electrode (see Fig. 11).
  • a pipe was formed at the center of the bridge 9M. The outer diameter of the pipe was 5 mm, the inner diameter was 3 mm, and the length was about 0.05 mm shorter than the total thickness (9 mm) of the MEA and separator integrated with the frame.
  • a rectangular hole 9L is provided on the upper surface of this pipe, and the hole 9L has a width of 3mm; a length of 7mm, 5mm, 3mm or lmm.
  • the replacement of the enclosed nitrogen and air is completed in a shorter time than the first embodiment due to the distribution action of the pipe holes 9J. -It was confirmed that the concentration distribution in the holder became more uniform. Further, in Example 8, misalignment could be prevented at the time of assembly in which the frame-integrated MEA in which the rigidity of the bridge portion was higher than that in Example 7 was less deformed after molding.
  • Example 9 a fuel cell stack was fabricated in the same manner as in Example 1 except that the projections of the force sword side air supply manifold of the frame-integrated MEA were changed to the projections shown below.
  • a protrusion 91 having a width of 1.5 mm was formed below the portion 6 of the inner wall of the hold that connects the hold and the electrode (see FIG. 12).
  • a pipe was formed at the tip of the protrusion 91.
  • the outer diameter of the pipe is 5 mm
  • the inner diameter is 3 mm
  • the length is about 0.05 mm shorter than the total thickness (9 mm) of the frame-integrated MEA and separator.
  • a rectangular hole 9L is provided on the lower surface of the pipe, and the width of the hole 9L is 3 mm; S: is 7mm, 5mm, dmm or lmm.
  • Example 9 As in Example 6, the replacement of the encapsulated nitrogen and air was completed in a shorter time than in Example 1 due to the distribution action of pipe hole 9J, and in the same way as in Example 1, -It was confirmed that the concentration distribution in the hold became more uniform. Furthermore, in Example 9, compared to Example 7, the change in the concentration of gas supplied to each battery cell during stable operation is less due to the action of expelling the gas retained below the bridge by the dynamic pressure of the supply gas. It was confirmed that voltage pulsation can be suppressed and more stable operation is possible.
  • Example 10 a fuel cell stack was fabricated in the same manner as in Example 1 except that the projection of the force sword side air supply manifold of the MEA with a frame was used as the bridge portion described below. .
  • a bridge portion 9P with a width of 1.5 mm was formed below the portion 6 of the inner wall of the hold that connects the hold and the electrode (see Fig. 13).
  • a pipe was formed at the center of the bridge 9P. Neub's outer diameter was 5 mm, inner diameter was 3 mm, and the length was about 0.05 mm shorter than the total thickness of the frame-integrated MEA and separator (9 mm).
  • a rectangular hole 9L was provided on the lower surface of this pipe. Hole 9L ipg is 5mm; S: is 7mm, 5mm, 3mm or lmm.
  • Example 10 As in Example 6, the replacement of the encapsulated nitrogen and air was completed in a shorter time than in Example 1 due to the distribution action of the pipe hole 9J, and in the same manner as in Example 1, hole It was confirmed that the concentration distribution in the window became more uniform.
  • Example 10 the gas concentration supplied to each battery cell during the stable operation is smaller than that in Example 8 due to the action of expelling the gas retained below the bridge by the dynamic pressure of the supply gas. It was confirmed that the pulsation of the voltage could be suppressed and more stable operation was possible.
  • the frame of the frame-integrated MEA of Example 11 was formed using a polypropylene (PP) resin as a raw material by the injection molding method.
  • a cylinder (diameter) is formed at the tip of the protrusion 9R (width 1.5 mm) that protrudes when the inner wall force of the force sword-side air supply hold is also directed outward. 5mm) (see Fig. 14).
  • the sum of the height of the remaining gate 9S and the height of the cylinder hi is greater than the sum (9mm) of the thickness of the frame 3 of the frame-integrated MEA and the thickness of the separator (not shown in Fig. 14). I made it smaller.
  • the frame-integrated MEA produced in Example 11 is formed with a central pipe hole and a rectangular hole for ejection, and the frame-integrated type in Example 7 or 9 (see Fig. 10 or 12). MEA can also be made.
  • the frame-integrated MEA of Example 12 was formed using an injection molding method using polypropylene (PP) resin as a raw material.
  • Bridge position 9T width 1 formed on the inner wall of the power sword-side air supply manifold hold part 6 below the part 6 connecting the electrode to the electrode. 5mm
  • the sum of the height of the remaining gate 9S and the height of the cylinder hi is greater than the sum (9mm) of the thickness of the frame 3 of the frame-integrated MEA and the thickness of the separator (not shown in FIG. 14). I made it smaller.
  • the frame-integrated MEA manufactured in Example 12 is formed with a central pipe hole and a rectangular hole for ejection, and the frame-integrated type in Example 8 or 10 (see Fig. 11 or 13).
  • MEA can also be made [0111]
  • the protrusions and bridge portions are formed on the force sword-side supply manifold, but even if similar protrusions and bridge portions are formed on the anode-side supply manifold, It may be formed in both air supply holds.
  • the gas can be replaced in a short time when starting up the fuel cell or when changing the output that requires changing the fuel gas flow rate.
  • the polymer electrolyte fuel cell stack of the present invention it is possible to supply a uniform gas to all the battery cells to be stacked during steady operation. Even in this case, a uniform gas can be supplied in a short time. Therefore, stable operation switching and performance deterioration due to the switching operation itself can be suppressed, so that the reliability of the fuel cell can be improved.
  • This fuel cell is considered suitable for application to household cogeneration systems and automotive fuel cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は、固体高分子型燃料電池スタックに関する。本発明により、定常運転時だけでなく、起動・停止・負荷変更などの過渡運転状態においても、積層された全ての電池セルへ、短時間で均一なガスを供給できる燃料電池が提供される。具体的には、固体高分子型燃料電池スタックに含まれる各電池セルに、給気マニホールドに突起部または橋梁部を形成して、給気マニホールドをセパレータ流路との接続空間ともう一方の空間とに分割し、かつ前記突起部または橋梁部の構造を各電池セルに応じて調整する。

Description

明 細 書
固体高分子型燃料電池
技術分野
[0001] 本発明は、固体高分子電解質膜を用いた燃料電池に関する。
背景技術
[0002] 固体高分子電解質膜を用いた燃料電池は、水素を含有する燃料ガスと、空気など の酸素を含有する酸化剤ガスとを、電気化学的に反応させることで、電力および熱を 同時に発生させる。前記燃料電池は一般的に、水素イオンを選択的に輸送する高分 子電解質膜、および高分子電解質膜を挟む一対の電極を有する。各電極は、カー ボン粉末とそれに担持された白金族金属触媒とを主成分とする触媒層、および触媒 層の外側に配置され、通気性と電子伝導性を併せ持つガス拡散層からなる。
[0003] 固体高分子電解質膜を用いた燃料電池は、供給される燃料ガスおよび酸化剤ガス が外部に漏れたり、互いに混合したりしないように、電極の周囲に高分子電解質膜を 挟んでガスシール材ゃ、ガスケットが配置されることがある。ガスシール材ゃガスケット は一般的に、高分子電解質膜や電極と一体ィ匕して組み立てられているが、この組み 立て体を「MEA (電解質膜電極接合体)」と称することがある。 MEAは導電性のセパ レータに挟まれ、セパレータは MEAを機械的に固定し、積層された MEA同士を互 いに電気的に直列に接続する。セパレータの、 MEAとの接触部には流路が形成さ れ、その流路を通じて電極に反応ガスが供給され、生成水や余剰ガスを排出する。こ の流路はセパレータに形成されるのが一般的である力 別個に形成されることもある
[0004] 前記燃料電池には、セパレータに形成された流路に反応ガスを供給したり、流路か らガスを排出したりするためのガス配管が設けられる。このガス配管は、セパレータの 枚数に応じて分岐され、その分岐先をセパレータに形成された流路に接続する。そ の接続のための配管治具を「マ-ホールド」と称する。
[0005] 高分子電解質膜の材質は、一般的にパーフルォロスルホン酸系榭脂である。高分 子電解質膜は、水分を含む状態でイオン伝導性を示す。したがって、通常は加湿さ れた燃料ガスや酸化剤ガスを供給する必要があり、しカゝも燃料電池の高性能化のた めには、これらのガスの相対湿度を 100%近ぐまたはそれ以上にすることが好まし い。し力しながら、燃料電池の力ソード側では反応により水が生成するため、電池の 動作温度よりも高 、露点を有するようにガスを加湿して供給すると、電池内部の流路 や電極の内部で結露が発生し、水詰まりなどの現象によって、電池性能の不安定ィ匕 、低下が生じることがあった。
[0006] このような、濡れすぎ (結露の発生)による電池性能の不安定ィ匕ゃ低下を、一般的 に「フラッティング現象」と称する。フラッティング現象がアノード側で発生すると、燃料 ガスが供給されにくくなり、必要量に不足する。燃料ガスが不足している状態で負荷 電流を強制的に取り出すと、電子とプロトンを生成しょうとして、アノード側の触媒を担 持しているカーボンが雰囲気中の水と反応する。その結果、触媒層のカーボンが溶 出して触媒層が破壊される。このような状態が継続すると、アノード極に比べてプラス の電位であった力ソード極力 0ボルト以下の電位となる。このような状態は「転極」と 称され、電池にとって致命的な状態である。
[0007] このように、定常運転時に、 100%またはそれ以上の相対湿度を有する供給ガスが 流路の上流で結露するフラッティング現象によって、ガス不足が発生するのを防止す るために、いくつかの提案がなされている(特許文献 1を参照)。例えば、
1)外部力ものガス供給側のマ-ホールドの断面にぉ 、て、マ-ホールドとガス流路 との連絡部と、ガス配管との間に括れ部を形成する;
2)マ-ホールドに接続されるガス配管をマ-ホールド内部にまで延長し、延長され たガス配管の上面にガス供給用の穴を設ける;さらに
3)マ-ホールドに接続されるガス配管をマ-ホールド内部にまで延長し、延長され たガス配管の上面にガス供給用の穴を設け、そのガス供給用の穴同士の間隔を、マ 二ホールドとの接続部力も遠くなるに従って狭める、などの提案がある。
[0008] 一方、固体高分子型燃料電池では、反応ガスのガスクロスを防止することが重要と なる。そのため、セパレータに形成されたマ-ホールドを格子状などの形態とすること で、フレーム (枠体)に流路溝を形成する必要をなくして構造を単純化する。それによ りフレームの変形を抑制して、ガスクロスを抑制しょうとする提案がある(特許文献 2を 参照)。
特許文献 1:特開 2004— 327425号公報
特許文献 2 :特開 2004— 165043号公報
発明の開示
発明が解決しょうとする課題
[0009] 燃料電池は、上記のような定常状態で運転される以外に、起動もしくは停止、また は負荷変動など、運転状態の頻繁な変更の際に生じる過渡状態でも運転される。過 渡状態における運転においても、安定な運転の切り替えと、切り替え動作自身による 性能劣化を防止することが求められる。
[0010] 固体高分子電解質膜を用いた燃料電池は、停止時における触媒の劣化を防止す るため、一般的に、窒素や 13Aなどの改質前の原燃料などのガスを封入ガスとして 流路に充満させて保持する。起動時において通常のガスが投入されると封入ガスは 追い出され、触媒が活性ィ匕する。その後にプロトンをアノード電極に充填し、力ソード 電極の電位をアノード電極に対して十分高電位にする。それにより、負荷電流の取り 出しが可能になる。燃料電池スタックに含まれる積層された電池セルのうちの ヽくつ 力が、負荷電流の取り出しが可能な状態になる前にもかかわらず負荷電流を取り出 すと、この電池セルは前記「転極」の状態となる。したがって、積層された全ての電池 セルが負荷電流を取り出せる状態になるまでは、発電を開始できな!/、。
[0011] しカゝしながら、燃料電池スタックに含まれる電池セルそれぞれが、発電開始可能な 状態に達するタイミングは、電池セルの積層方向によってばらつきがある。はじめに 発電可能になった電池セルは、他の電池セルに比べて長時間力ソード極が高電位 状態を保つことになる。この状態が続くと、触媒の劣化が促進される。したがって、起 動時に投入する通常のガスは、できるだけ同時に全ての電池セルにいき亘らせること が好ましい。し力しながら、ガス投入力も最初の電池セルが発電可能になる時間を正 確に測定することは困難であるので、事実上、起動時に投入する通常のガスをできる だけ短時間で全ての電池セルにいき亘らせることが求められる。
[0012] また、通常運転状態力も停止させる場合には、負荷電流の取り出しを停止してから 、窒素や 13Aなどの改質前の原燃料を封入ガスとして投入する。この場合も、でさる だけ短時間で全ての電池セルに封入ガスをいき亘らせることが求められる。
[0013] さらに、ガスの流量を変化させて取り出す負荷電流を変更する場合もある。例えば、 負荷電流を小さくする場合は、負荷電流を変更して力 ガス量を変更し;負荷電流を 大きくする場合は、ガス量を変更して力も負荷電流を変更する。起動や停止の場合と 同様の理由で、流量を変更したガスをできるだけ短時間で全ての電池セルに 、き亘 らせることが求められる。
[0014] 本発明は、固体高分子型燃料電池スタックにおいて、定常運転時だけでなぐ起動 •停止 ·負荷変更などの過渡運転状態においても、積層された全ての電池セルへ、 短時間で均一なガスを供給できる燃料電池を提供する。それにより、安定な運転切り 替えと切り替え動作自身による性能劣化を抑制する固体高分子型燃料電池を提供 する。
[0015] 積層された全ての電池セルへ均一なガスを供給するため提案力 US2005/027 1910に示唆されている。それによればマ-ホールドを、転移チャネル(transition cha nnel)によって、流体供給(fluid supply)マ二ホールドと流体分布(fluid distribution)マ 二ホールドとに分割することによって、ガスの流れを安定ィ匕させることが示されている 。し力しながら、これらの提案だけでは、全ての電池セルへ短時間で均一なガスを供 給することは難しい。
課題を解決するための手段
[0016] 本発明の第一は、以下に示す燃料電池スタックに関する。
[ 1 ] 直列に積層された複数の燃料電池セルを含む固体高分子型燃料電池スタツ クであって、
前記燃料電池セルのそれぞれは、高分子電解質膜;前記高分子電解質膜を挟む 、燃料極および酸素極力ゝらなる一対の電極;前記燃料極に接しており、かつ燃料ガス が流れる流路を有するセパレータ、および酸素極に接しており、かつ酸化剤ガスが流 れる流路を有するセパレータカ なる一対のセパレータ;前記燃料ガスが流れるセパ レータ流路に燃料ガスを給気する給気マ-ホールド、および排気する排気マ-ホー ルド;ならびに前記酸化剤ガスが流れるセパレータ流路に酸化剤ガスを給気する給 気マ-ホールド、および排気する排気マ-ホールドを含み、 前記給気マ-ホールドまたは排気マ-ホールドの少なくとも一の内部空間は、その 内壁に設けられた突起部または橋梁部によって、互いに連通する前記セパレータ流 路との接続空間と、もう一方の空間とに分割されており、
前記突起部または橋梁部は、前記セパレータ流路との接続空間へのガス流入を制 御しており、かつ前記ガス流入の制御は、前記積層された複数の燃料電池セルそれ ぞれについて一定でなぐ積層方向の両端部の燃料電池セルと比べて、内部層の燃 料電池セルにおいてガス流入が最もしに《制御されている、燃料電池スタック。
[2] 前記ガス流入が最もしに《制御されている燃料電池セルは、積層された燃 料電池セルのうち、外部力ゝらのガス供給側から、全積層セルのうち半分以下に位置 する内部層の燃料電池セルである、 [1]に記載の燃料電池スタック。
[3] 前記燃料ガスが流れる流路に燃料ガスを給気する給気マ-ホールド、および 排気する排気マ-ホールド;ならびに前記酸化剤ガスが流れる流路に酸化剤ガスを 給気する給気マ-ホールド、および排気する排気マ-ホールドが、枠体に成形され、 前記枠体に、前記高分子電解質膜;ならびに前記高分子電解質膜を挟む、燃料極 および酸素極力もなる一対の電極が収められている、 [1]または [2]に記載の燃料電 池スタック。
[4] 前記枠体には、さらに前記セパレータ流路を外部から密閉するためのシール 材が一体的に成形されている、 [3]に記載の燃料電池スタック。
[5] 前記積層された複数の燃料電池セルの、それぞれのマ-ホールドのセパレー タ流路との接続空間は、互いに連通している、 [1]〜 [4]のいずれかに記載の燃料 電池スタック。
[6] 前記マ-ホールドのセパレータ流路との接続空間が、前記もう一方の空間より も重力方向に対して上位になるように配置される、 [1]〜 [5]の 、ずれかに記載の燃 料電池スタック。
[7] 前記突起は、前記燃料電池セルの外周側から電極側へ向かっている、 [1]〜 [6]の 、ずれかに記載の燃料電池スタック。
[8] 前記積層された複数の燃料電池セルのそれぞれに含まれる突起部または橋 梁部の大きさは一定でなぐ内部層の燃料電池セルの突起部または橋梁部の大きさ が最大である、 [1]〜 [7]の 、ずれかに記載の燃料電池スタック。
[9] 前記積層された複数の燃料電池セルのそれぞれに含まれる突起部の高さは 一定でなぐ内部層の燃料電池セルの突起部または橋梁部の高さが最大である、 [1 ]〜 [7]の 、ずれかに記載の燃料電池スタック。
[10] 前記積層された複数の燃料電池セルのそれぞれに含まれる突起部または 橋梁部は板状の整流板であり、
当該整流板それぞれの角度は一定でなぐ内部層の燃料電池セルの整流板の長 軸方向と燃料電池セルの積層方向との角度が最小である、 [ 1 ]〜 [ 7]の 、ずれかに 記載の燃料電池スタック。
[11] 前記積層された複数の燃料電池セルのそれぞれに含まれる突起部または 橋梁部の一部は他の部分よりも積層方向に厚ぐかつ前記一部は側方に吹き出し口 を有する環状構造であり、
前記一部同士が密着して配管を形成しており、前記形成された配管に外部力 の ガス供給配管が接続され、
前記吹き出し口それぞれの面積は一定でなぐ内部層の燃料電池セルの吹き出し 口の面積が最小である、 [1]〜[7]に記載の燃料電池スタック。
[12] 前記吹き出し口は、前記セパレータ流路との接続空間とは反対の方向を向 いている、 [11]に記載の燃料電池スタック。
本発明の第二は、以下に示す燃料電池セルのための枠体、およびその製造方法 に関する。
[13] 高分子電解質膜;ならびに前記高分子電解質膜を挟む、燃料極および酸 素極からなる一対の電極を収容し、
燃料ガスが流れるセパレータ流路に燃料ガスを給気する給気マ-ホールド、および 排気する排気マ-ホールド;ならびに酸化剤ガスが流れるセパレータ流路に酸化剤 ガスを給気する給気マ-ホールド、および排気する排気マ-ホールドが成形された 枠体であって、
前記給気または排気マ-ホールドの少なくともいずれか一の内部空間は、その内 壁に設けられた突起部によって、前記セパレータ流路との接続空間ともう一方の空間 とに分割されており、
前記突起部は 1または 2以上の切り込みを有し、前記切り込みにおいて切断可能で ある枠体。
[14] 高分子電解質膜;ならびに前記高分子電解質膜を挟む、燃料極および酸 素極からなる一対の電極を収容し、
燃料ガスが流れるセパレータ流路に燃料ガスを給気する給気マ-ホールド、および 排気する排気マ-ホールド;ならびに酸化剤ガスが流れるセパレータ流路に酸化剤 ガスを給気する給気マ-ホールド、および排気する排気マ-ホールドが成形された 枠体であって、
前記給気または排気マ-ホールドの少なくとも一の内部空間は、その内壁に設けら れた突起部または橋梁部によって、前記セパレータ流路との接続空間ともう一方の空 間とに分割されている枠体の製造方法であって、
ゲートを通して金型に榭脂を注入して射出成形するステップを含み、前記ゲートを 前記突起部または橋梁部に設ける、前記枠体の製造方法。
発明の効果
[0019] 本発明の高分子電解質型燃料電池スタックによれば、定常運転時だけでなぐ起 動 '停止'負荷変更などの過渡運転状態にお!、ても、積層される全ての電池セルへ 短時間で均一なガスを供給できる。したがって、安定な運転切り替えと、切り替え動 作自身による性能劣化を抑制でき、燃料電池の耐久性を向上することができる。 図面の簡単な説明
[0020] [図 1]実施の形態 1の燃料電池スタックに用いられた枠体一体型 MEAの力ソード面 側からの正面図(図 1A)と、アノード面側からの正面図(図 1B)
[図 2]実施の形態 1の燃料電池スタックに用 ヽられた枠体一体型 MEAの力ソード側 セパレータのカソード側正面図(図 2A)と、アノード側正面図(図 2B)
[図 3]実施の形態 1の燃料電池スタックの斜視図
[図 4]実施の形態 2の燃料電池に用いられた枠体一体型 MEAの力ソード面側からの 正面図
[図 5]実施の形態 2の燃料電池スタックの斜視図 [図 6]実施の形態 3の燃料電池スタックの力ソード側給気マ-ホールドの斜視拡大図 [図 7]実施の形態 4の燃料電池スタックの力ソード側給気マ-ホールドの斜視拡大図 [図 8]実施の形態 5の燃料電池スタックの力ソード側給気マ-ホールドの斜視拡大図 [図 9]実施の形態 6の燃料電池スタックの力ソード側給気マ-ホールドの斜視拡大図 [図 10]実施の形態 7の燃料電池スタックの力ソード側給気マ-ホールドの斜視拡大図 [図 11]実施の形態 8の燃料電池スタックの力ソード側給気マ-ホールドの斜視拡大図 [図 12]実施の形態 9の燃料電池スタックの力ソード側給気マ-ホールドの斜視拡大図 [図 13]実施の形態 10の燃料電池スタックの力ソード側給気マ-ホールドの斜視拡大 図
[図 14]実施の形態 11の枠体一体型 MEAの斜視拡大図
[図 15]実施の形態 11の枠体一体型 MEAの斜視拡大図
[図 16]比較例 1の燃料電池スタックの給気マ-ホールドの斜視拡大図
[図 17]比較例 2の燃料電池スタックの給気マ-ホールドの斜視拡大図
[図 18]比較例 3の燃料電池スタックの枠体一体型 MEAの正面図
[図 19]比較例 1の燃料電池スタック起動時に空気を供給ガス配管力 流入開始して 2 秒後の力ソード側給気マ-ホールド内の濃度分布のシミュレーション結果を示す図
[図 20]比較例 2の燃料電池スタック起動時に空気を供給ガス配管力 流入開始して 2 秒後の力ソード側給気マ-ホールド内の濃度分布のシミュレーション結果を示す図
[図 21]実施例 1の燃料電池スタック起動時に空気を供給ガス配管カゝら流入開始して 2 秒後の力ソード側給気マ-ホールド内の濃度分布のシミュレーション結果を示す図 発明を実施するための最良の形態
[0021] 本発明の燃料電池スタックは、固体高分子型の燃料電池スタックであって、積層さ れた複数の燃料電池セルを含む。積層された複数の燃料電池セルは、互いに直列 に接続されて ヽることが好ま ヽ。
[0022] 各燃料電池セルには、 1)高分子電解質膜、 2)高分子電解質膜を挟む、燃料極お よび酸素極からなる一対の電極、 3)前記燃料極に接しており、かつ燃料ガスが流れ る流路を有するセパレータ、および酸素極に接しており、かつ酸化剤ガスが流れる流 路を有するセパレータカもなる一対のセパレータ、 4)前記燃料ガスが流れるセパレ 一タ流路に燃料ガスを給排気するためのマ-ホールド、 5)前記酸化剤ガスが流れる セパレータ流路に酸化剤ガスを給排気するためのマ-ホールドを有することが好まし い。各燃料電池セルは、さらに他の任意の部材を有していてもよい。
[0023] 高分子電解質膜は、水素イオンは通すが、電子は通さな 、薄 、フィルム状の膜で あればよく特に限定されない。一般的には、フッ素榭脂系の高分子膜が用いられる。
[0024] 高分子電解質膜を挟む一対の電極は、酸化剤が供給される酸素極 (力ソードとも!ヽ う)と、燃料ガスが供給される燃料極 (アノードともいう)とからなる。各電極は、特に制 限されな 、が、白金などの触媒を担持したカーボンなどであればょ 、。
[0025] 一対の電極のそれぞれに、セパレータを接触させて配置して、セパレータを介して 反応ガスを供給する。すなわち、燃料極に配置されるセパレータには、燃料ガスが流 れる流路が形成されており;酸素極に配置されるセパレータには、酸化剤ガスが流れ る流路が形成されて 、ることが好ま 、。セパレータに形成される流路(以下にぉ ヽ て「セパレータ流路」と称することがある)の形状は、特に制限されないが、例えばサ 一ペンタイン状にされて 、る。
[0026] セパレータは導電性であることが好ましぐ熱硬化榭脂、熱可塑性榭脂の成形物、 プレスされた金属板などであればょ ヽ。プレスされた金属板をセパレータとして使う場 合には、突起部や橋梁部 (後述)をねじって形成してもよ!ヽ。
[0027] ガス流路が形成されるセパレータのそれぞれには、ガスを給気するための給気マ- ホールドおよびガスを排気するための排気マ-ホールド (これらを総称して「給排気 するためのマ-ホールド」ともいう)が接続されている。給気マ-ホールドには外部か らのガス供給管が、排気マ-ホールドには外部へのガス排出管が接続されている。
[0028] 本発明にお 、て、燃料ガスを給排気するためのマ-ホールド、および酸化剤ガスを 給排気するためのマ-ホールドの少なくとも一のマ-ホールドの内部空間は、「セパ レータ流路との接続空間」と、「もう一方の空間」とに分割されている。ただし両者は連 通しており、ガスの移動が可能である。
[0029] 「セパレータ流路との接続空間」とは、マ-ホールドのセパレータ流路との接続部を 含む空間であればよい。「もう一方の空間」とは、 1)外部のガス供給管の軸線に沿つ た空間、もしくは外部へのガス排出管の軸線に沿った空間(「供給 Z排出配管部」と もいう)であるか、または 2)外部力も供給されるガスがセパレータ流路との接続空間に 直接入り込まないようにする緩衝部のための空間、もしくはセパレータ流路力 排出 されたガスが外部への排出管に直接入り込まないようにする緩衝部のための空間(「 緩衝部」ともいう)でありうる。
[0030] 当該分割は、マ-ホールドの内部空間の内壁に設けられた「突起部」または「橋梁 部」によってなされている。突起部とは、内部空間を橋渡しすることなぐ内壁から部 分的に突き出している部位をいう。橋梁部とは、内部空間を橋渡ししている部位をい
[0031] 前記突起部は、マ二ホールドの内壁のうち任意の位置に形成されていればよぐ一 または二以上の突起部が形成されていてもよい。それぞれ対向する位置に突起部を 設ければ、「括れ」が形成されることになる。ただし突起部は、マ-ホールドの内壁の うち、電池セルの外周側の内壁に形成されていることが好ましい。つまり、突起部は 外周側から電極側へ向力つていることが好ましい。外周側の内壁に突起部が設けら れていると、内周側の内壁に突起部が設けられた場合と比較して、燃料電池におけ る反応によって発生した熱が外部に放出されにくくなる。そのため、当該熱を効率よく 回収することができ、コージェネレーションィ匕に寄与する。
[0032] 前記橋梁部は、マ-ホールドの内部空間を橋渡しする部位である力 セパレータ流 路との接続空間と、もう一方の空間とを完全に分断することなぐ両者を連通させるた めの部分 (ガス通過部分)を有する。
[0033] 前記突起部または橋梁部は、マ二ホールドの内部空間のうちの「セパレータ流路と の接続空間」への、外部から供給されたガスの流入を制御する。前記流入の制御は 、突起部または橋梁部の構造に応じて行われる。例えば、以下の態様が考えられる 力 特に制限されるわけではない。
1)突起部または橋梁部が大きさ (例えば突起部の高さ)を調整することによって、セ パレータ流路との接続空間への通過部分の面積を調整して、前記流入を制御する( 図 3, 5, 7などを参照)。
「橋梁部の大きさ」とは、例えば「長手方向と直交する断面積の大きさ」を;「突起部 の大きさ」とは、例えば「マ-ホールドから突出した突起の体積」を;「突起部の高さ」と は、例えば「マ-ホールドの内壁からの突出方向への突起の長さ」を意味する力 い ずれにしてもセパレータ流路との接続空間への通過部分の面積の大小が調整され ればよぐその態様は限定されない。
2)突起部または橋梁部を板状の整流板として、それを配置する角度を調整するこ とによって、前記流入を制御する(図 8〜9などを参照)。
3)突起部または橋梁部の一部を厚くして、その厚くされた一部を、側方に吹き出し 口を有する管状構造とする。厚くされた一部同士を接続して配管として、外部からの ガス管を接続する。前記側方の吹き出し口の面積を調整することによって、前記流入 を制御する(図 10〜 13などを参照)。
[0034] 突起部または橋梁部は、酸化剤ガスを給気するための給気マ-ホールドおよび燃 料ガスを給気するための給気マ-ホールドのいずれか一方または両方に形成されて V、ることが好まし ヽが、酸化剤ガスまたは燃料ガスを排気するための排気マ-ホール ドに形成されていてもよい。排気マ-ホールドに突起部または橋梁部を設けると、各 電池セルの、セパレート流路力 ガスが排出されるタイミングのずれを低減させること ができる。
[0035] 突起部または橋梁部は、セパレータに形成されたマ-ホールドに設けられていても よいが、好ましくは、 MEAを収容する「枠体」に形成されたマ-ホールドに設けられて いる。 MEAとは、高分子電解質膜;ならびに高分子電解質膜を挟む、燃料極および 酸素極からなる一対の電極を含む複合体である。 MEAは枠体に収容され、好ましく は枠体によって囲まれうる。枠体に収容された MEAの両面には、セパレータが配置 される。
[0036] 以下において、 MEAと、それを収容する枠体とを一体化した部材を「枠体一体型 MEAJと称することがある。
[0037] 枠体は、通常榭脂製であり、榭脂の例にはポリプロピレンなどが含まれる。枠体に は、燃料ガスを給排気するためのマ-ホールド、および酸化剤ガスを給排気するため のマ-ホールドが形成されている。さらに枠体には、冷却液を流すためのマ-ホール ドなどが形成されて 、てもよ 、。
[0038] MEAを収容する枠体に形成されたマ-ホールドのうち、燃料ガスを給排気するた めのマ-ホールド (好ましくは給気マ-ホールド)、および酸化剤ガスを給排気するた めのマ-ホールド(好ましくは給気マ-ホールド)の少なくともいずれか一方のマ-ホ 一ルドの内部空間は、その内壁に設けられた突起部または橋梁部によって分割され ていることが好ましい。
[0039] 突起部は、 1または 2以上の切り込みを有していてもよく(図 6を参照)、当該切り込 みにおいて切断して、突起部先端を除去することができる。後述するように、本発明 の燃料電池スタックは、積層される電池セルに応じて突起部の高さが異なることがあ る。そこで、突起部に切り込みを形成し、突起の高さを適宜調整して積層することによ り、容易に本発明の燃料電池スタックを製造することができる。
[0040] 枠体一体型 MEAの枠体には、シール材が一体的に形成されていることが好ましい 。シール材は、マ-ホールドと MEAを囲い、マ-ホールドを流れる流体物が外部に 漏れることを防止する。
[0041] 枠体一体型 MEAの枠体は、本発明の効果を損なわない限り、任意の方法で製造 されうるが、好ましくは射出成型法で製造される。射出成形法とは、ゲートから金型に 流し込まれた溶融榭脂を固化して、所望の成形物を得る方法である。前記枠体のマ 二ホールドの内壁に突起部または橋梁部を形成する場合には、当該突起部または 橋梁部の一部にゲートを設けることが好ましい。射出成形において、金型に流し込ま れる榭脂の流れが一方向に限定されるほうが安定して成形できるので、突起部にゲ ートを設ける方が好まし 、場合がある。
[0042] 一般的に、射出成形後の成形物には残留ゲートが形成されるので、それを除去す る必要がある。しかしながら、ゲートを前記突起部または橋梁部に設ければ、前記突 起部または橋梁部にゲートが残留して ヽても問題はな 、ので、その除去工程が不要 になり、工程数と製作時間を短縮することができる。
[0043] 本発明の燃料電池スタックは積層された複数の電池セルを含む力 各電池セルの 給気マ-ホールドに形成される突起部または橋梁部の構造が異なって 、る。すなわ ち電池セルごとに、給気マ-ホールドの「セパレータ流路との接続空間」への、反応 ガスの流入のしゃすさが異なって 、る。
[0044] 本発明の燃料電池スタックに含まれる積層された電池セルのうち、前記流入が最も しにくくされているのは、内部に積層された電池セルであることが好ましい。内部に積 層された電池セルとは、好ましくは、外部からの反応ガス (燃料ガスまたは酸化剤ガス )供給側から、全積層セルのうち、半分までの間の電池セルであり;より好ましくは、供 給される側力も 4分の 1のあたりの内部層の電池セルである。
[0045] 本発明者は、積層された複数の電池セルを含む燃料電池スタックにお 、て、外部 ガス供給管力 給気マ-ホールドへ供給されたガスが、供給側力 2分の 1までの内 部層の電池セルの給気マ-ホールドに短時間で到達すること、特に供給側力 4分 の 1のあたりの電池セルに最も短時間で到達することを見出した。この知見に基づき 、供給側から 2分の 1までの内部層の電池セルの、「セパレータ流路との接続空間」へ のガス流入をしにくくすることにより、均一のガスを短時間で全ての電池セルに供給 することができることを見出した。
[0046] 本発明の燃料電池スタックは、積層された各電池セルの給排気マ-ホールドそれ ぞれの供給 Z排出配管部が互いに連通していることはもちろんであるが、さらに給排 気マ-ホールドそれぞれの「セパレータ流路との接続空間」も互いに連通していること が好ましい。「セパレータ流路との接続空間」が互いに連通していれば、供給された ガスの均一化、整流化がより促進される。
[0047] 本発明の燃料電池スタックは、各電池セルの平面を鉛直線と平行に設置することが 好ましぐ一方、各電池セルの平面を鉛直線と垂直に設置しないことが好ましい。さら に燃料電池スタックは、前記突起部または橋梁部が形成されたマ-ホールドの「セパ レータ流路との接続空間」が「もう一方の空間 (例えば、供給 Z排出配管部)」よりも、 重力方向に対して上位になるように設置されることが好ま 、。外部から供給された 反応ガスに含まれる水分が、マ-ホールドで結露したときに、その水分がセパレータ 流路に入り込むのを抑制して、セパレータ流路に溜まるのを防止する。
[0048] 以下にぉ 、て本発明につ 、て図面を参照して説明する。
[0049] [実施の形態 1]
図 1には、枠体一体型 MEAの例が示される。図 1 Aは力ソード面側からの枠体一体 型 MEA1の正面図であり、図 1Bはアノード面側からの枠体一体型 MEA1の正面図 である。 図 1Aおよび図 IBにおいて、 MEA2の周囲に枠体 3が成形されている。枠体 3には シール 4 (図 1A)およびシール 4' (図 1B)が形成されている。シール 4は、酸化剤ガス を給気 Z排気する力ソード側マ-ホールド 5Z5,と MEA2とを包含するように形成さ れるが、力ソード側マ-ホールド 5Z5'と MEA2とを連絡する部分 6には形成されな い(図 1A)。またシール 4,は、燃料ガスを給気 Z排気するアノード側マ-ホールド 7 /7'と MEA2とを包含するように形成される力 アノード側マ-ホールド 7Z7'と ME A2とを連絡する部分 6'には形成されない(図 1B)。シール 4Z4'はガスの漏れを防 止する。さらに冷却水マ-ホールド 8および 8'を取り巻くようにシールが形成されてお り、外部への冷却水のもれが抑制される。
[0050] 力ソード側給気マ-ホールド 5の内面壁の一部には突起部 9Aが設けられており、 突起部 9Aは外周側力も MEA2の方へ突出している。突起部 9Aは、マ-ホールド 5 の内部空間を、セパレータ流路との接続空間 5Bと、供給 Z排出配管部 5Aとに分割 するように配置されている。
アノード側給気マ-ホールド 7の内面壁の一部にも、突起部 9Bが設けられており、 突起部 9Bは外周側から MEA2の方へ突出している。突起部 9Bは、マ二ホーノレド 7 の内部空間を、セパレータ流路との接続空間 7Bと、供給'排出配管部 7Aとに分割す るように配置されている。
[0051] 前記 MEA2の大きさは、例えば、縦 150mm、横 150mmである。枠体 3の大きさは 、例えば、縦 220mm、横 220mmであり、その材質はポリプロピレンなどの榭脂であ る。シール 4は、フッ素ゴムを 2色成形することにより形成される。
[0052] 図 2Aには、力ソード側セパレータ 10の力ソード側正面図力 図 2Bにはアノード側 セパレータ 10'のアノード側正面図が示される。 10および 10'には、ガス流路 11およ び 11 'が形成されている。
[0053] 図 2Aの力ソード側セパレータ 10の力ソード面と、図 1 Aに示される枠体一体型 ME A1の力ソード面とを当接して;さらに、図 2Bのアノード側セパレータ 10,のアノード面 と、図 1Bに示される枠体一体型 MEA1のアノード面とを当接して、電池セルが作製 される。
[0054] 図 3には、複数の電池セルが積層された燃料電池スタック 100が示される。積層さ れた電池セルの各突起部 9Aの高さは一定でなぐ勾配がつけられている。つまり、 突起部 9Aの高さは、ある内部層の電池セルにおいて極大であり、それぞれの表面 層の電池セルにいくにしたがって小さくされている。つまり、マ-ホールドの供給 Z排 出配管部 5A力 セパレータ流路との接続空間 5Bへのガス通過部分力 外部からの ガス供給配管 12の接続位置力も電池セルの積層方向に向力つて進むほど小さくなり 、ある内部層の電池セルにおいて最も小さくなり、さらに進むと次第に大きくなる。 積層された電池セルの各突起部 9Bの高さも一定でなぐ同様の勾配がつけられて いる。
[0055] [実施の形態 2]
図 4には、枠体一体型 MEA1の別の例の力ソード側の正面図が示される。 力ソード側給気マ-ホールド 5の内面壁には、枠体の外側に向力つて突出している 突起部 9Aが設けられている。突起部 9Aは、給気マ-ホールド 5を供給 Z排出配管 部 5Aとセパレータ流路との接続空間 5Bに分割するように配置される。同様に、ァノ 一ド側給気マ-ホールド 7の内面壁にも、枠体の外側に向かって突出している突起 部 9Bが設けられている。他の符号は、図 1の符号と対応している。
[0056] 図 5には、図 4に示される枠体一体型 MEAを含む電池セルが積層された燃料電池 スタック 100が示される。積層された電池セルの各突起部 9Aの高さは一定でなぐ勾 配がつけられている。つまり、突起部 9Aの高さはある内部層の電池セルにおいて極 大であり、それぞれの表面層の電池セルにいくにしたがって小さくされている。つまり 、マ-ホールドの供給 Z排出配管部 5Aからセパレータ流路との接続空間 5Bへのガ ス通過部分力 外部からのガス供給配管 12の接続位置力も電池セルの積層方向に 向かって進むほど小さくなり、ある内部層の電池セルにおいて最も小さくなり、さらに 進むと次第に大きくなる。
積層された電池セルの各突起部 9Bの高さも一定でなぐ同様の勾配がつけられて いる。
[0057] [実施の形態 3]
図 6はガスを給気する給気マ-ホールドの例の拡大図である。
突起部 9Aには複数の切り込み 9Cが設けられている。切り込み 9Cにおいて、突起 部の先端を切断することができる。枠体一体型 MEAの枠体の突起部 9Aに切り込み 9Cを設けておけば、積層する電池セルの積層順に応じて、切り込み 9Cの 1つを切 断して突起部の長さを調整することができる。
したがって、供給 Z排出配管部 5A力 セパレータ流路との接続空間 5Bへのガス 通過部分を調整することが容易となり、図 3や図 5に示されたように勾配をつけやすい
[0058] [実施の形態 4]
図 7は、枠体一体型 MEAを含む電池セルを積層した、燃料電池スタックの力ソード 側給気マ-ホールドの拡大図である。図 7において、枠体一体型 MEAの枠体のマ 二ホールドと、セパレータのマ-ホールドは互いに密着している。枠体一体型 MEA の枠体は橋梁部 9Dを、セパレータは橋梁部 9Eをそれぞれ有して 、る。
[0059] 橋梁部 9Dおよび橋梁部 9Eは、マ二ホールドを、供給 Z排出配管部 5Aと、セパレ 一タ流路との接続空間 5Bとに分割している(セパレータ流路との接続空間 5Bには、 セパレータ流路とマ-ホールドの接続部 6がある)。橋梁部 9Dにはガス流路 9Fがあり 、供給 Z排出配管部 5Aと、セパレータ流路との接続空間 5Bとを連通させている。
[0060] 橋梁部 9Dに形成されたガス流路 9Fの面積は一定でなぐ勾配がつけられている。
ある内部層の電池セルにおけるガス流路 9Fの面積を最も小さくして、それぞれの表 面層の電池セルにいくにしたがって大きくしている。つまり、外部からのガス供給配管 の接続位置力も電池セルの積層方向に向力つて進むほどガス流路 9Fの面積は小さ くなり、ある内部層の電池セルにおいて最も小さくなり、さらに進むと次第に大きくなる
[0061] [実施の形態 5]
図 8は、枠体一体型 MEAを含む電池セルを積層した、燃料電池スタックの力ソード 側給気マ二ホールドの拡大図である。
枠体一体型 MEAの枠体に形成された突起部 9Gは、その断面が板状である整流 板とされている。整流板の長軸方向 14と、電池セルの積層方向 15との角度 16は、積 層された電池セルによって一定ではなぐ勾配をつけられている。すなわち角度 16を 、ある内部層の電池セルにおいて最も小さくして、それぞれの表面層の電池セルに いくにしたがって大きくしている。つまり角度 16は、外部からのガス供給配管の接続 位置から、電池セルの積層方向に向力つて進むほど小さくなり、ある内部層の電池セ ルにおいて最も小さくなり、さらに積層方向に向力うと次第に大きくなる。
[0062] [実施の形態 6]
図 9は、枠体一体型 MEAを含む電池セルを積層した、燃料電池スタックの力ソード 側給気マ二ホールドの拡大図である。
枠体一体型 MEAの枠体に形成された橋梁部 9Hは、その断面が板状である整流 板とされている。整流板の長軸方向 14と電池セルの積層方向 15との角度 16が、積 層された電池セルによって一定ではなぐ勾配をつけられている。すなわち角度 16を 、ある内部層の電池セルにおいて最も小さくして、それぞれの表面層の電池セルに いくにしたがって大きくしている。つまり角度 16は、外部からのガス供給配管の接続 位置力 電池セルの積層方向に向かって進むほど小さくなり、ある内部層の電池セ ルにおいて最も小さくなり、さらに積層方向に進むと次第に大きくなる。
[0063] [実施の形態 7]
図 10は、枠体一体型 MEAを含む電池セルを積層した、燃料電池スタックのカソー ド側給気マ二ホールドの拡大図である。
枠体一体型 MEAの枠体に形成された突起部 91の先端は、先端以外の部分より積 層方向に厚ぐ中央に穴 9Jを有する。穴 9Jの断面は略円形である。突起部 91の先端 部どうしが密着して配管 9Kを形成し、形成された配管 9Kの積層方向末端には外部 力ものガス供給配管が接続されている。 5Aの空間は、外部力もの供給ガスが急激に 5Bに入り込まないようにするための緩衝部として作用する。
また、形成された配管 9Kの側面には、ガスの吹き出し口 9Lが設けられている。吹き 出し口 9Lの面積は、積層された電池セルによって一定ではなぐ勾配がつけられて いる。つまり吹き出し口 9Lの面積を、ある内部層の電池セルにおいて最も小さくして 、それぞれの表面層の電池セルにいくにしたがって大きくしている。すなわち吹き出 し口 9Lの面積は、ガス供給配管の接続位置力も電池セルの積層方向に向力つて進 むほど小さくなり、ある内部層の電池セルにおいて最も小さくすなり、さらに積層方向 進むと次第に大きくなる。 [0064] [実施の形態 8]
図 11は、枠体一体型 MEAを含む電池セルを積層した、燃料電池スタックのカソー ド側給気マ二ホールドの拡大図である。
枠体一体型 MEAの枠体に形成された橋梁部 9Mの中央部は、当該中央部以外の 部分より積層方向に厚ぐ中央に穴 9Jを有する。穴 9Jの断面は略円形である。橋梁 部 9Mの中央部どうしが密着して配管 9Nを形成し、形成された配管 9Nの積層方向 末端には外部からのガス供給配管が接続されている。 5Aの空間は、外部からの供 給ガスが急激に 5Bに入り込まないようにするための緩衝部として作用する。
また、形成された配管 9Nの側面にはガスの吹き出し口 9Lが設けられている。吹き 出し口 9Lの面積は、積層された電池セルによって一定ではなぐ勾配がつけられて いる。つまり吹き出し口 9Lの面積を、ある内部層の電池セルにおいて最も小さくして 、それぞれの表面層の電池セルにいくにしたがって大きくしている。すなわち吹き出 し口 9Lの面積は、ガス供給配管の接続位置力も電池セルの積層方向に向力つて進 むほど小さくなり、ある内部層の電池セルにおいて最も小さくなり、さらに積層方向に 進むと次第に大きくなる。
[0065] [実施の形態 9]
図 12は、枠体一体型 MEAを含む電池セルを積層した、燃料電池スタックのカソー ド側給気マ二ホールドの拡大図である。
枠体一体型 MEAの枠体に形成された突起部 91の先端部は、先端部以外の部分 より積層方向に厚ぐ中央に穴 9Jを有する。穴 9Jの断面は略円形である。突起部 91 の中央部どうしが密着して配管 9Kを形成し、形成された配管 9Kの積層方向末端に は外部力 のガス供給配管が接続されて 、る。
また、形成された配管 9Kの側面にはガスの吹き出し口 9Lがあり、吹き出し口 9Lは 、図面下側、つまりセパレータ流路との接続空間 5Bと反対の方向を向いている。外 部からの供給ガスは、いったん 5A (緩衝部)に入り、その後 5Bに移動するので整流 効果が高い。吹き出し口 9Lの面積は、積層された電池セルによって一定ではなぐ 勾配がつけられている。つまり、吹き出し口 9Lの面積を、ある内部層の電池セルにお Vヽて最も小さくして、それぞれの表面層の電池セルに!/、くにしたがって大きくして!/、る 。すなわち、吹き出し口 9Lの面積は、ガス供給配管の接続位置力も電池セルの積層 方向に向力つて進むほど小さくなり、ある内部層の電池セルにおいて最も小さくなり、 さらに積層方向に進むと次第に大きくなる。
[0066] [実施の形態 10]
図 13は、枠体一体型 MEAを含む電池セルを積層した、燃料電池スタックのカソー ド側給気マ二ホールドの拡大図である。
枠体一体型 MEAの枠体に形成された橋梁部 9Pの中央部が、中央部以外の部分 より積層方向に厚ぐ穴 9Jを有する。穴 9Jの断面は略円形である。橋梁部 9Pの中央 部どうしが密着して配管 9Qを形成し、形成された配管 9Qの積層方向末端には外部 力 のガス供給配管が接続されて 、る。
また、形成された配管 9Qの側面にはガスの吹き出し口 9Lがあり、吹き出し口 9Lは 、図面下側、つまりセパレータ流路との接続空間 5B (セパレータ流路との接続部 6を 含む)と反対の方向を向いている。外部からの供給ガスは、いったん 5A (緩衝部)に 入り、その後 5Bに移動するので整流効果が高い。吹き出し口 9Lの面積は、積層され た電池セルによって一定ではなぐ勾配がつけられている。つまり吹き出し口 9Lの面 積を、ある内部層の電池セルにおいて最も小さくして、それぞれの表面層の電池セ ルにいくにしたがって大きくしている。すなわち吹き出し口 9Lの面積は、外部からの ガス供給配管の接続位置力 電池セルの積層方向に向力つて進むほど小さくなり、 ある内部層の電池セルにおいて最も小さくなり、さらに進むと次第に大きくなる。
[0067] [実施の形態 11]
図 14および図 15は、枠体一体型 MEAの例が示される。図 14の枠体一体型 MEA のマ-ホールドの内壁には突起部 9Rが形成されており、図 15の枠体一体型 MEA のマ-ホールドの内壁には橋梁部 9Tが形成されている。
前述の通り枠体 3は射出成形法により作製されうるが、射出成形のゲートを、マニホ 一ルドの突起部 9Rの先端 9Sとして、金型内に榭脂を注入することが好ましい(図 14 を参照)。同様に、射出成形のゲートを、マ-ホールドの橋梁部 9Tの中央部 9Sとして 、金型内に榭脂を注入することが好ま 、(図 15参照)。
このとき、ゲート 9Sの積層方向の高さ hiは、枠体の厚さとほぼ同一寸法とし、かつ アノード側セパレータとカソード側セパレータとの厚さの合計を超えな 、ようにすること が好ましい。
実施例
[0068] [実施例 1]
アセチレンブラック系カーボン粉末に、平均粒度約 30Aの白金粒子を 25重量%担 持させて、力ソード触媒とした。また、アセチレンブラック系カーボン粉末に、平均粒 度約 30 Aの白金—ルテニウム合金粒子を 25重量%担持させて、アノード触媒とした これらの粉末それぞれを、イソプロピールアルコールに分散させ、パーフルォロカ 一ボンスルホン酸榭脂粉末のエチルアルコール分散液と混合してペーストを得た。 得られたペーストそれぞれを、厚さ 250 μ mのカーボン不織布のそれぞれの面に、ス クリーン印刷法で塗工して触媒層を形成した。得られた各々の電極の触媒層に含ま れる触媒金属の量は 0.
Figure imgf000022_0001
パーフルォロカーボンスルホン酸榭脂の量は 1 . 2mgcz mとした。
[0069] これらの電極 (力ソード'アノード)はいずれも、触媒材料以外は同一構造である。こ れらの電極よりも、ひとまわり大きい面積を有する高分子電解質膜を準備した。高分 子電解質膜は、 30 mの厚さに薄膜ィ匕したパーフルォロカーボンスルホン酸榭脂と した。
高分子電解質膜の中心部の各面に、前記電極 (力ソード'アノード)をそれぞれ配 置した。所定の大きさに切り抜いた厚さ 250 /z mのフッ素系ゴムシートを、電極外周 部に露出している電解質膜を挟んで両側に配置し、ホットプレスによって接合一体ィ匕 させ、 MEAを作製した。
[0070] 図 1に示される枠体一体型 MEAと、図 2に示されるセパレータを作製した。
枠体一体型 MEAの枠体の、力ソード側マ-ホールドは幅 10mm;長さ 30mm、ァノ ード側マ-ホールドは幅 10mm;長さ 20mmとして、 4つのコーナーの Rが 15の長円 形とした。これらの給気マ-ホールドを重力方向縦長に配置した。
[0071] また、給気マ-ホールドの外側内壁に、マ-ホールドと電極の連絡部分 6の最下位 置において、電極側に向力う突起部 9Aと 9Bを形成した。突起部の幅は 1. 5mmとし た。突起部の長さが 3mm〜9mmまで 2mm刻みに、 4種類のものを作製した。
[0072] 導電性力ソードセパレータ;枠体一体型 MEA;導電性アノードセパレータを積層し て電池セルを組立てた。 50の電池セルを積層した。外部からのガス供給配管の接続 部から、積層方向に向力つて全積層体の 4分の 1の電池セルのマ-ホールドの突起 部の長さを極大として、勾配つけた。
[0073] 得られた積層体を、表面に金メッキを施した銅板カゝらなる集電板で挟み、さらにそ れをポリフエ-レンサルファイド製の絶縁板で挟み、さらにステンレス製の端板で挟む 。両端板を締結ロッドで締結して電池スタックを得た。このとき、締結圧は電極の単位 面積あたり lOONZcm2とした。集電板にケーブルをつな!/、で電力をとりだすことがで きる。ステンレス板の端板は、電池スタックの強度を確保する。
[0074] セパレータの板面を鉛直方向に平行として、かつ冷却水の入り口マ-ホールド 8が 重力方向に対して上位となるようにして、電池スタックを設置する。セパレータに形成 されたサーペンタイン型ガス流路 (水平方向の直線部とターン部力もなる)を、反応ガ スが重力方向にっ 、て下向きに流れる。
[0075] [比較例 1]
実施例 1の燃料電池スタックの枠体一体型 MEAの力ソード側給気マ-ホールド、 およびアノード側給気マ-ホールドの内部構造を、図 16に示される構造とする以外 は、同様の方法で燃料電池スタックを作製した。つまり、比較例 1の燃料電池スタック のマ-ホールドの内壁には突起や橋梁部がない。反応ガスは、軸線 13に沿って紙 面手前から奥に向かって供給され、電極とマ二ホールドの連絡部 6を通って、各電池 セルの電極に分配供給される。
[0076] [比較例 2]
実施例 1の燃料電池スタックの枠体一体型 MEAの力ソード側給気マ-ホールド、 およびアノード側給気マ-ホールドの内部構造を、図 17に示される構造とする以外 は、同様の方法で燃料電池スタックを作製した。つまり、比較例 2の燃料電池スタック のマ-ホールドの内壁に突起部 9Aを設けた。すべての電池セルの突起部 9Aの長さ を、均等に 7mmとした。反応ガスは軸線 13に沿って紙面手前から奥に向力つて供給 Z排出配管部 5Aに供給され; 5Aに供給されたガスはセパレータ流路との接続空間 5Bに移動し;さらに電極とマ-ホールドの接続部 6から電極に分配供給される。
[0077] [比較例 3]
比較例 2の燃料電池スタックの枠体一体型 MEAの構造を、図 18に示される構造と する以外は、同様の方法で燃料電池スタックを作製した。つまり、セパレータ流路との 接続空間 5Bを、供給'排出側 5Aよりも重力方向について下側に配置した。反応ガス は、供給 Z排出部 5Aの部分に紙面手前から奥に向かって供給され;突起部 9Aを通 つてセパレータ流路との接続空間 5Bに移動し;さらに電極とマ-ホールドの接続部 6 から各電池セルの電極に分配供給される。
[0078] 比較例 1、比較例 2および実施例 1の高分子電解質膜型燃料電池の力ソード側給 排気マ-ホールドおよび力ソード側セパレータ流路を、 75°C露点の 100%窒素で充 満させた。 75°Cに保持した状態から、 75°C露点の空気をガス供給配管力も流入させ た。それから 2秒後における、力ソード側給気マ-ホールド内の濃度分布のシミュレ一 シヨン結果を、図 19 (比較例 1)、図 20 (比較例 2)、図 21 (実施例 1)に示す。
[0079] 図 19 (比較例 1)における力ソード側給気マ-ホールドでは、ガス供給配管入り口( 図中左)から積層方向奥(図中右)に向かって、約 4分の 1の部位に流入空気が集中 して流れ込み、ガス供給配管入り口近く(図中左端)と積層方向奥(図中右端)で渦が 発生し、空気の流入が滞っており、特に積層方向奥(図中右端)では、高濃度の窒素 が依然として停留している。
[0080] 図 20 (比較例 2)における力ソード側給気マ-ホールドでは、比較例 1でみられるよ うな、空気の集中した流れ込みはみられない。これは、マ-ホールド内壁に設けた突 起部 9Aによって、重力方向下の部分 (供給 Z排出配管部)で供給空気の静圧回復 が十分行われた後に、 9A同士の隙間から空気が重力方向下の部分 (セパレータ流 路との接続空間)に流れ込むため、積層方向での偏流発生が抑制されたためである 。しかしながら、ガス供給配管入り口近 図中左端)と積層方向奥(図中右端)、およ び積層方向中央部付近 (図中中央)には渦が発生し、依然として濃度の偏りがみら れる。
[0081] 比較例 3のシミュレーション結果(図面なし)も、図 20と同様であった。しかしながら、 発電実験にぉ 、てガス供給配管の接続位置に近 、電池セルにぉ 、て、電圧が不安 定になり、特に流量が少ない低負荷運転時に、この現象が顕著に現れることが確認 された。これは、ガス供給配管が接続される軸線が発電部分から離れているため、マ 二ホールドの内壁の温度がガス温より低くなり、そのため結露水が発生しやすいため である。また、セパレータ流路との接続空間 5Bが、ガス供給'排出菅側 5Aよりも、重 量方向について下にあるため、発生した結露水の一部がセパレータ流路に浸入しや すぐ流路を閉塞させたためである。
[0082] 図 21 (実施例 1)における力ソード側給気マ-ホールドでは、比較例 1でみられたよ うな空気の集中した流れ込みは見られず、さらに、比較例 2でみられたようなガス供給 配管入り口近 図中左端)と積層方向奥(図中右端)の濃度の偏りもほとんどみられ ない。
[0083] これは、マ-ホールド内壁に設けた突起部 9Aによって、重力方向下の部分 (供給 Z排出配管部)で、供給空気の静圧回復が十分行われ、さらに静圧された空気が、 セパレータ流路連絡部へ移動するタイミングのずれ力 各電池セルによって生じるの を抑制したためである。
このタイミングのずれの抑制は、動圧を最も受けやすい部位、つまりガス供給配管 入り口(図中左)から積層方向奥(図中右)に向かって約 4分の 1の部位で、突起部 9 Aの長さを最も長くし、手前または奥に向力つて勾配をつけたためである。これらの結 果から、本発明の有効性が確認された。
[0084] [実施例 2]
実施例 2では、枠体一体型 MEAの力ソード側給気マ-ホールドの突起部を、以下 に示す突起部にしたこと以外は、実施例 1と同様にして燃料電池スタックを作製した。 マ-ホールド内壁の、マ-ホールドと電極の連絡部分 6の最下位置に、外側に向か う突起部 9Aと 9Bを形成した(図 4を参照)。突起部 9Aと 9Bの幅は 1. 5mmとした。こ の突起部の長さを、 3mn!〜 9mmまで 2mm刻みに、 4種類のものを作製した。
外部からのガス供給配管入り口から、積層方向に向力つて全積層体の 4分の 1の電 池セルのマ-ホールドの突起部の長さを極大として、勾配をつけた。
[0085] [実施例 3]
実施例 3では、枠体一体型 MEAの力ソード側給気マ-ホールドの突起部を、以下 に示す突起部にしたこと以外は、実施例 1と同様にして燃料電池スタックを作製した。 マ-ホールド内壁の、マ-ホールドと電極の連絡部分 6の最下位置に、外側に向か う突起部 9Aと 9Bを形成した。突起部 9Aと 9Bの幅は 1. 5mmとした。この突起部の 長さを 9mmとして、突起先端から 2mm、 4mmおよび 6mmの位置に、幅 0. 3mm; 深さ 0. 5mmの楔型切欠きを形成した(図 6を参照)。
電池セルを積層するとき、積層する順番に応じて、上記切欠きのうちの 0個または 一個を選択して、そこカゝら先端を切除し、突起部の長さを 9mm、 7mm, 5mmまたは
3mmに調整した。
このようにして、電池セルの積層体の、ガス供給配管入り口から、積層方向に向か つて全積層体の 4分の 1の電池セルのマ-ホールドの突起部の長さが極大として、勾 酉己をつけた。
[0086] 実施例 3の燃料電池スタックの力ソード側給気マ-ホールド内の濃度分布のシミュ レーシヨンにおいても、実施例 2と同様にマ-ホールド内の濃度はほぼ均一であるこ とが確認された。また実施例 1と比較すると、金型製作費用の大幅な削減と、金型の 組み換え変更時間などを含めた製作時間の大幅な短縮が達成された。
[0087] [実施例 4]
実施例 4では、枠体一体型 MEAの力ソード側給気マ-ホールドの突起部を、以下 に示す橋梁部にしたこと以外は、実施例 1と同様にして燃料電池スタックを作製した。 マ-ホールド内壁の、電極とマ-ホールドを連絡する部分 6より下部に、幅 1. 5mm の橋梁部を設けた。この橋梁部に、奥行き 1. 5mmの矩形穴 9Fを形成した(図 7参 照)。矩形穴 9Fの長さを、 2mm, 4mm, 6mmまたは 8mmとした。
[0088] そして、外部からのガス供給配管入り口から、積層方向に向かって全積層体の 4分 の 1の電池セルのマ-ホールドの橋梁部の矩形穴の長さを極小として、勾配をつけ た。実施例 4では、実施例 2と比べて、封入済窒素と空気の入れ替わり時間が長くな る力 マ-ホールド内の濃度分布がより均一になることが確認された。
[0089] [実施例 5]
実施例 5では、枠体一体型 MEAの力ソード側給気マ-ホールドの突起部を、以下 に示す突起部としたこと以外は、実施例 1と同様にして燃料電池スタックを作製した。 マ-ホールド内壁に、外側に向力う突起部 9Gを形成した(図 8参照)。突起部 9Gの 断面は、長軸 1. 5mm;短軸 0. 5mmの楕円とした。楕円の長軸と積層方向のなす角 度を、 90度、 60度、 30度、 0度とした。
[0090] そして、外部からのガス供給配管入り口から、積層方向に向かって全積層体の 4分 の 1の電池セルのマ-ホールドの突起部の前記角度を極小として、勾配をつけた。
[0091] 実施例 5では、楕円断面を有する突起の整流作用により、実施例 4のように封入済 みの窒素と空気との入れ替わりの遅延が生じることなぐかつ実施例 1よりもマ-ホー ルド内の濃度分布がより均一になることが確認された。
[0092] [実施例 6]
実施例 6では、枠体一体型 MEAの力ソード側給気マ-ホールドの突起部を、以下 に示す橋梁部としたこと以外は、実施例 1と同様にして燃料電池スタックを作製した。 マ-ホールド内壁の、電極とマ-ホールドを連絡する部分 6より下部に、橋梁部 9H を設けた(図 9参照)。橋梁部 9Hの断面を、長軸 1. 5mm;短軸 0. 5mmの楕円とし て、幅を 1. 5mmとした。楕円の長軸と、積層方向のなす角度を、 90度、 60度、 30度 または 0度とした。
[0093] そして、外部からのガス供給配管入り口から、積層方向に向かって全積層体の 4分 の 1の電池セルのマ-ホールドの突起部の前記角度を極小として、勾配をつけた。
[0094] 実施例 6では、楕円断面の突起の整流作用により、実施例 5のように封入済窒素と 空気との入れ替わりの遅延が生じることなぐかつ実施例 1よりもマ-ホールド内の濃 度分布がより均一になることが確認された。さらに、実施例 6では、実施例 5と比べて、 橋梁部の剛性が高ぐ枠体一体型 MEAの成形後の変形が少なぐ組立時における ミスァライメントを防止することができた。
[0095] [実施例 7]
実施例 7では、枠体一体型 MEAの力ソード側給気マ-ホールドの突起部を、以下 に示す突起部にしたこと以外は、実施例 1と同様にして燃料電池スタックを作製した。 マ-ホールド内壁に、外側に向かう幅 1. 5mmの突起部 91を設けた(図 10を参照) 。突起部 91の先端にはパイプを形成し、そのパイプの外径を 5mm、内径を 3mm、長 さを枠体一体型 MEAとセパレータの厚さの合計(9mm)よりも約 0. 05mm短くした。 このパイプの上面には矩形の穴 9Lを設け、穴 9Lの幅を 3mm;長さを 7mm、 5mm
、 3mmまたは lmmとした。
[0096] これらのパイプがほぼ接するように各電池セルを積層した。そして、外部からのガス 供給配管入り口から、積層方向に向かって全積層体の 4分の 1の電池セルのマ-ホ 一ルドの穴の長さを極小として、勾配をつけた。
[0097] 実施例 7では、パイプ穴 9Jの分配作用により、実施例 1よりも短時間で封入済窒素 と空気とが入れ替わり、実施例 1と同様にマ-ホールド内濃度分布がより均一になる ことが確認された。
[0098] [実施例 8]
実施例 8では、枠体一体型 MEAの力ソード側給気マ-ホールドの突起部を、以下 に示す橋梁部とすること以外は、実施例 1と同様にして燃料電池スタックを作製した。 マ-ホールド内壁の、マ-ホールドと電極を連絡する部分 6より下に、幅 1. 5mmの 橋梁部 9Mを形成した(図 11を参照)。橋梁部 9Mの中央部にはパイプを形成した。 パイプの外径を 5mm、内径を 3mm、長さを枠体一体型 MEAとセパレータの厚さの 合計(9mm)よりも約 0. 05mm短い長さとした。
このパイプの上面に矩形の穴 9Lを設け、穴 9Lの幅を 3mm;長さを 7mm、 5mm, 3 mmまたは lmmとし 7こ。
[0099] これらのパイプがほぼ接するように各電池セルを積層した。そして、外部からのガス 供給配管入り口から、積層方向に向かって全積層体の 4分の 1の電池セルのマ-ホ 一ルドの穴の長さを極小として、勾配をつけた。
[0100] 実施例 8では、実施例 6と同様に、パイプ穴 9Jの分配作用により、実施例 1よりも短 時間で封入済窒素と空気の入れ替わりが完了し、かつ実施例 1と同様にマ-ホール ド内の濃度分布がより均一になることが確認された。さらに実施例 8においては、実施 例 7と比べて橋梁部の剛性が高ぐ枠体一体型 MEAの成形後の変形が少なぐ組 立時においてミスァライメントを防止することができた。
[0101] [実施例 9]
実施例 9では、枠体一体型 MEAの力ソード側給気マ-ホールドの突起部を、以下 に示す突起部としたこと以外は、実施例 1と同様にして燃料電池スタックを作製した。 マ-ホールド内壁の、マ-ホールドと電極を連絡する部分 6より下に、幅 1. 5mmの 突起部 91を形成した(図 12を参照)。突起部 91の先端にパイプを形成した。パイプの 外径を 5mm、内径を 3mm、長さを枠体一体型 MEAとセパレータの厚さの合計(9m m)よりも約 0. 05mm短くした。パイプの下面に矩形の穴 9Lを設けて、穴 9Lの幅を 3 mm; S: を 7mm、 5mm、 dmmまたは lmmとしに。
[0102] これらのパイプが接するように電池セルを積層した。そして、外部からのガス供給配 管入り口から、積層方向に向力つて全積層体の 4分の 1の電池セルのマ-ホールド の穴の長さを極小として、勾配をつけた。
[0103] 実施例 9では、実施例 6と同様にパイプ穴 9Jの分配作用により、実施例 1よりも短時 間で封入済窒素と空気の入れ替わりが完了し、かつ実施例 1と同様にマ-ホールド 内の濃度分布がより均一になることが確認された。さらに実施例 9においては、実施 例 7と比べて、橋梁部より下に停留した気体を供給ガスの動圧で追い出す作用により 、安定運転時において各電池セルに供給されるガス濃度変化が少なぐ電圧の脈動 を抑制でき、より安定した運転が可能であることが確認された。
[0104] [実施例 10]
実施例 10では、枠体一体型 MEAの力ソード側給気マ-ホールドの突起部を、以 下に記載の橋梁部とすること以外は、実施例 1と同様にして燃料電池スタックを作製 した。
マ-ホールド内壁の、マ-ホールドと電極を連絡する部分 6より下に幅 1. 5mmの 橋梁部 9Pを形成した(図 13を参照)。橋梁部 9Pの中央にパイプを形成した。ノイブ の外径を 5mm、内径を 3mm、長さを枠体一体型 MEAとセパレータの厚さの合計(9 mm)より約 0. 05mm短くした。このパイプの下面に矩形の穴 9Lを設けた。穴 9Lの ipgを 5mm; S: を 7mm、 5mm、 3mmまたは lmmとした。
[0105] これらのパイプがほぼ接するように電池セルを積層した。そして、外部からのガス供 給配管入り口から、積層方向に向力つて全積層体の 4分の 1の電池セルのマ-ホー ルドの穴の長さを極小として、勾配をつけた。
[0106] 実施例 10では、実施例 6と同様にパイプ穴 9Jの分配作用により、実施例 1よりも短 時間で封入済窒素と空気の入れ替わりが完了し、かつ実施例 1と同様にマ-ホール ド内の濃度分布がより均一になることが確認された。
さらに実施例 10においては、実施例 8と比べて、橋梁部より下に停留した気体を供 給ガスの動圧で追い出す作用により、安定運転時において各電池セルに供給される ガス濃度変化が少なぐ電圧の脈動を抑制でき、より安定した運転が可能であること が確認された。
[0107] [実施例 11]
実施例 11の枠体一体型 MEAの枠体を、ポリプロピレン (PP)榭脂を原料として、射 出成形法を用いて形成した。金型内への榭脂注入位置 (ゲート)を、力ソード側給気 マ-ホールドの内壁力も外側に向力つて突出する突起部 9R (幅 1. 5mm)の先端に 形成される円柱 (直径 5mm)の底面に対応させた(図 14を参照)。残留するゲート 9S の高さと、円柱の高さ hiとの合計を、枠体一体型 MEAの枠体 3の厚さと、セパレータ (図 14に図示せず)の厚さとの合計 (9mm)よりも小さくした。
[0108] 金型内への榭脂注入位置を突起部 9Rの先端とすることにより、残留ゲートを除去 する工程が不要となり、工程数と製作時間を短縮できた。また、実施例 11によって作 製された枠体一体型 MEAに、中央のパイプ穴と噴出し用矩形穴を形成して、実施 例 7または 9 (図 10または 12を参照)の枠体一体型 MEAを作製することもできる。
[0109] [実施例 12]
実施例 12の枠体一体型 MEAでは、ポリプロピレン (PP)榭脂を原料として、射出 成形法を用いて形成した。金型内への榭脂注入位置 (ゲート)を、力ソード側給気マ 二ホールドの内壁の、マ-ホールドと電極を連絡する部分 6より下の部位に形成され た橋梁部 9T (幅 1. 5mm)の中央部の円柱(直径 5mm)の底面に対応させた(図 15 を参照)。残留するゲート 9Sの高さと、円柱の高さ hiとの合計を、枠体一体型 MEA の枠体 3の厚さと、セパレータ(図 14に図示せず)の厚さとの合計(9mm)よりも小さく した。
[0110] 金型内への榭脂注入位置を橋梁部 9Tの中央部とすることにより、残留ゲートを削 除する工程が不要となり、工程数と製作時間を短縮できた。また、実施例 12によって 作製された枠体一体型 MEAに、中央のパイプ穴と噴出し用矩形穴を形成して、実 施例 8または 10 (図 11または 13を参照)の枠体一体型 MEAを作製することもできる [0111] 以上の実施例において、力ソード側給気マ-ホールドに突起部や橋梁部を形成し たが、アノード側給気マ-ホールドに同様の突起部や橋梁部を形成しても、両方の 給気マ-ホールドに形成してもよい。燃料電池を起動させる時や、燃料ガス流量の変 更が必要とされる出力変更時に、ガスの入れ替えを短時間でおこなうことができる。 産業上の利用可能性
[0112] 本発明の高分子電解質型燃料電池スタックによれば、積層される全ての電池セル へ、定常運転時に均一なガスを供給できるだけでなぐ起動 '停止'負荷変更などの 過渡状態の運転時においても、短時間で均一なガスを供給できる。したがって、安定 な運転切り替えと、切り替え動作自身による性能劣化を抑制できるため、燃料電池の 信頼性を向上することができる。この燃料電池は家庭用コージェネレーションシステ ムゃ自動車用燃料電池への応用が好適であると考えられる。
[0113] 2005年 11月 25日出願の特願 2005— 339944の日本出願に含まれる明細書、図 面および要約書の開示内容は、全て本願に援用される。

Claims

請求の範囲
[1] 直列に積層された複数の燃料電池セルを含む固体高分子型燃料電池スタックであ つて、
前記燃料電池セルのそれぞれは、高分子電解質膜;前記高分子電解質膜を挟む 、燃料極および酸素極力ゝらなる一対の電極;前記燃料極に接しており、かつ燃料ガス が流れる流路を有するセパレータ、および酸素極に接しており、かつ酸化剤ガスが流 れる流路を有するセパレータカ なる一対のセパレータ;前記燃料ガスが流れるセパ レータ流路に燃料ガスを給気する給気マ-ホールド、および排気する排気マ-ホー ルド;ならびに前記酸化剤ガスが流れるセパレータ流路に酸化剤ガスを給気する給 気マ-ホールド、および排気する排気マ-ホールドを含み、
前記給気マ-ホールドまたは排気マ-ホールドの少なくとも一の内部空間は、その 内壁に設けられた突起部または橋梁部によって、互いに連通する前記セパレータ流 路との接続空間と、もう一方の空間とに分割されており、
前記突起部または橋梁部は、前記セパレータ流路との接続空間へのガス流入を制 御しており、かつ前記ガス流入の制御は、前記積層された複数の燃料電池セルそれ ぞれについて一定でなぐ積層方向の両端部の燃料電池セルと比べて、内部層の燃 料電池セルにおいてガス流入が最もしに《制御されている、燃料電池スタック。
[2] 前記ガス流入が最もしに《制御されている燃料電池セルは、積層された燃料電池 セルのうち、外部力ゝらのガス供給側から、全積層セルのうち半分以下に位置する内部 層の燃料電池セルである、請求項 1に記載の燃料電池スタック。
[3] 前記燃料ガスが流れる流路に燃料ガスを給気する給気マ-ホールド、および排気 する排気マ-ホールド;ならびに前記酸化剤ガスが流れる流路に酸化剤ガスを給気 する給気マ-ホールド、および排気する排気マ-ホールドが、枠体に成形され、 前記枠体に、前記高分子電解質膜;ならびに前記高分子電解質膜を挟む、燃料極 および酸素極力もなる一対の電極が収められている、請求項 1に記載の燃料電池ス タック。
[4] 前記枠体には、さらに前記セパレータ流路を外部力 密閉するためのシール材が 一体的に成形されて 、る、請求項 3に記載の燃料電池スタック。
[5] 前記積層された複数の燃料電池セルの、それぞれのマ-ホールドのセパレータ流 路との接続空間は、互いに連通している、請求項 1に記載の燃料電池スタック。
[6] 前記マ-ホールドのセパレータ流路との接続空間力 前記もう一方の空間よりも重 力方向に対して上位になるように配置される、請求項 1に記載の燃料電池スタック。
[7] 前記突起は、前記燃料電池セルの外周側から電極側へ向かって!/ヽる、請求項 1に 記載の燃料電池スタック。
[8] 前記積層された複数の燃料電池セルのそれぞれに含まれる突起部または橋梁部 の大きさは一定でなぐ内部層の燃料電池セルの突起部または橋梁部の大きさが最 大である、請求項 1に記載の燃料電池スタック。
[9] 前記積層された複数の燃料電池セルのそれぞれに含まれる突起部の高さは一定 でなぐ内部層の燃料電池セルの突起部の高さが最大である、請求項 1に記載の燃 料電池スタック。
[10] 前記積層された複数の燃料電池セルのそれぞれに含まれる突起部または橋梁部 は板状の整流板であり、
当該整流板それぞれの角度は一定でなぐ内部層の燃料電池セルの整流板の長 軸方向と燃料電池セルの積層方向との角度が最小である、請求項 1に記載の燃料電 池スタック。
[11] 前記積層された複数の燃料電池セルのそれぞれに含まれる突起部または橋梁部 の一部は他の部分よりも積層方向に厚ぐかつ前記一部は側方に吹き出し口を有す る環状構造であり、
前記一部同士が密着して配管を形成しており、前記形成された配管に外部力 の ガス供給配管が接続され、
前記吹き出し口それぞれの面積は一定でなぐ内部層の燃料電池セルの吹き出し 口の面積が最小である、請求項 1に記載の燃料電池スタック。
[12] 前記吹き出し口は、前記セパレータ流路との接続空間とは反対の方向を向いてい る、請求項 11に記載の燃料電池スタック。
[13] 高分子電解質膜;ならびに前記高分子電解質膜を挟む、燃料極および酸素極から なる一対の電極を収容し、 燃料ガスが流れるセパレータ流路に燃料ガスを給気する給気マ-ホールド、および 排気する排気マ-ホールド;ならびに酸化剤ガスが流れるセパレータ流路に酸化剤 ガスを給気する給気マ-ホールド、および排気する排気マ-ホールドが成形された 枠体であって、
前記給気または排気マ-ホールドの少なくともいずれか一の内部空間は、その内 壁に設けられた突起部によって、前記セパレータ流路との接続空間ともう一方の空間 とに分割されており、
前記突起部は 1または 2以上の切り込みを有し、前記切り込みにおいて切断可能で ある枠体。
高分子電解質膜;ならびに前記高分子電解質膜を挟む、燃料極および酸素極から なる一対の電極を収容し、
燃料ガスが流れるセパレータ流路に燃料ガスを給気する給気マ-ホールド、および 排気する排気マ-ホールド;ならびに酸化剤ガスが流れるセパレータ流路に酸化剤 ガスを給気する給気マ-ホールド、および排気する排気マ-ホールドが成形された 枠体であって、
前記給気または排気マ-ホールドの少なくとも一の内部空間は、その内壁に設けら れた突起部または橋梁部によって、前記セパレータ流路との接続空間ともう一方の空 間とに分割されている枠体の製造方法であって、
ゲートを通して金型に榭脂を注入して射出成形するステップを含み、前記ゲートを 前記突起部または橋梁部に設ける、前記枠体の製造方法。
PCT/JP2006/323496 2005-11-25 2006-11-24 固体高分子型燃料電池 WO2007061075A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007546513A JP4129289B2 (ja) 2005-11-25 2006-11-24 固体高分子型燃料電池
US11/815,121 US20090017355A1 (en) 2005-11-25 2006-11-24 Solid polymer fuel cell
KR1020077017145A KR101226122B1 (ko) 2005-11-25 2006-11-24 고체 고분자형 연료 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005339944 2005-11-25
JP2005-339944 2005-11-25

Publications (1)

Publication Number Publication Date
WO2007061075A1 true WO2007061075A1 (ja) 2007-05-31

Family

ID=38067298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323496 WO2007061075A1 (ja) 2005-11-25 2006-11-24 固体高分子型燃料電池

Country Status (5)

Country Link
US (1) US20090017355A1 (ja)
JP (1) JP4129289B2 (ja)
KR (1) KR101226122B1 (ja)
CN (1) CN100573990C (ja)
WO (1) WO2007061075A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158390A (ja) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 燃料電池スタック
JP2009224194A (ja) * 2008-03-17 2009-10-01 Honda Motor Co Ltd 燃料電池スタック
JP2010129477A (ja) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd セパレータ及び燃料電池
EP2226877A1 (en) * 2007-12-28 2010-09-08 Panasonic Corporation Fuel cell
WO2012157266A1 (ja) * 2011-05-17 2012-11-22 パナソニック株式会社 固体高分子型燃料電池
JP2020107600A (ja) * 2018-12-26 2020-07-09 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー スタック内部の熱分布が改善された燃料電池
JP2021180154A (ja) * 2020-05-15 2021-11-18 トヨタ自動車株式会社 燃料電池スタック

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113240A1 (ja) * 2008-03-11 2009-09-17 パナソニック株式会社 膜電極接合体
EP2306567B1 (en) * 2008-05-28 2014-03-26 Panasonic Corporation Fuel cell
CN101971405B (zh) * 2009-03-27 2013-10-09 松下电器产业株式会社 固体高分子型燃料电池组
JP5349184B2 (ja) * 2009-07-23 2013-11-20 本田技研工業株式会社 燃料電池スタック
KR101417496B1 (ko) * 2012-12-20 2014-07-08 현대자동차주식회사 연료전지의 분리판
JP6164198B2 (ja) * 2014-11-14 2017-07-19 トヨタ自動車株式会社 燃料電池
FR3040549B1 (fr) 2015-08-26 2017-09-15 Commissariat Energie Atomique Empilement de cellules electrochimiques reparties en groupes distincts comportant un compartiment d’homogeneisation
JP6690574B2 (ja) * 2017-02-17 2020-04-28 トヨタ自動車株式会社 燃料電池
JP7373385B2 (ja) * 2019-12-19 2023-11-02 住友理工株式会社 燃料電池用セパレータおよびその製造方法
CN113346120B (zh) * 2021-05-19 2022-08-16 武汉理工大学 一种燃料电池电堆用歧管装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150667A (ja) * 1985-12-25 1987-07-04 Hitachi Ltd 内部マニホ−ルド型燃料電池
JPH05129032A (ja) * 1991-11-07 1993-05-25 Sanyo Electric Co Ltd 内部マニホールド方式燃料電池
JPH0955216A (ja) * 1995-08-15 1997-02-25 Yamaha Motor Co Ltd 燃料電池
JP2000149977A (ja) * 1998-11-06 2000-05-30 Honda Motor Co Ltd 燃料電池スタック
JP2003059524A (ja) * 2001-08-22 2003-02-28 Fuji Electric Co Ltd リン酸形燃料電池の空気入口マニホールド

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6840969B2 (en) * 2001-01-31 2005-01-11 Matsushita Electric Industrial Co., Ltd. High polymer electrolyte fuel cell and electrolyte film-gasket assembly for the fuel cell
JP3793141B2 (ja) * 2002-11-14 2006-07-05 株式会社日立製作所 固体高分子形燃料電池及びセパレータ
JP3894109B2 (ja) * 2002-11-28 2007-03-14 トヨタ自動車株式会社 燃料電池
EP1469542A1 (en) * 2003-04-09 2004-10-20 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7601451B2 (en) 2004-05-11 2009-10-13 Gm Global Technologies Operations, Inc. Variable active area for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150667A (ja) * 1985-12-25 1987-07-04 Hitachi Ltd 内部マニホ−ルド型燃料電池
JPH05129032A (ja) * 1991-11-07 1993-05-25 Sanyo Electric Co Ltd 内部マニホールド方式燃料電池
JPH0955216A (ja) * 1995-08-15 1997-02-25 Yamaha Motor Co Ltd 燃料電池
JP2000149977A (ja) * 1998-11-06 2000-05-30 Honda Motor Co Ltd 燃料電池スタック
JP2003059524A (ja) * 2001-08-22 2003-02-28 Fuji Electric Co Ltd リン酸形燃料電池の空気入口マニホールド

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158390A (ja) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 燃料電池スタック
EP2226877A1 (en) * 2007-12-28 2010-09-08 Panasonic Corporation Fuel cell
EP2226877A4 (en) * 2007-12-28 2013-05-15 Panasonic Corp FUEL CELL
JP2009224194A (ja) * 2008-03-17 2009-10-01 Honda Motor Co Ltd 燃料電池スタック
JP2010129477A (ja) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd セパレータ及び燃料電池
WO2012157266A1 (ja) * 2011-05-17 2012-11-22 パナソニック株式会社 固体高分子型燃料電池
JP5096647B1 (ja) * 2011-05-17 2012-12-12 パナソニック株式会社 固体高分子型燃料電池
US9373854B2 (en) 2011-05-17 2016-06-21 Panasonic Intellectual Property Management Co., Ltd. Solid polymer fuel cell
JP2020107600A (ja) * 2018-12-26 2020-07-09 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー スタック内部の熱分布が改善された燃料電池
US11050066B2 (en) 2018-12-26 2021-06-29 Korea Institute Of Science And Technology Fuel cell with improved thermal distribution in stack
JP2021180154A (ja) * 2020-05-15 2021-11-18 トヨタ自動車株式会社 燃料電池スタック
JP7226392B2 (ja) 2020-05-15 2023-02-21 トヨタ自動車株式会社 燃料電池スタック

Also Published As

Publication number Publication date
JP4129289B2 (ja) 2008-08-06
KR20080069118A (ko) 2008-07-25
KR101226122B1 (ko) 2013-01-25
US20090017355A1 (en) 2009-01-15
CN101107742A (zh) 2008-01-16
JPWO2007061075A1 (ja) 2009-05-07
CN100573990C (zh) 2009-12-23

Similar Documents

Publication Publication Date Title
WO2007061075A1 (ja) 固体高分子型燃料電池
US8227130B2 (en) Fuel cell
EP2549573B1 (en) Polymer electrolyte fuel cell and fuel cell stack equipped with same
KR20040048315A (ko) 연료 전지용 세퍼레이터 및 이를 이용한 연료 전지
KR20190104548A (ko) 바이폴라 플레이트/밀봉 어셈블리 및 바이폴라 플레이트/밀봉 어셈블리를 갖는 연료 전지 스택
US9559376B2 (en) Fuel cell with an electrolyte membrane and gas diffusion layers
WO2012114681A1 (ja) 燃料電池及びそれを備える燃料電池スタック
JP2000251907A (ja) 固体高分子型燃料電池
KR100619193B1 (ko) 연료 전지 및 연료 전지용 세퍼레이터
KR100627749B1 (ko) 연료 전지
JP2002100380A (ja) 燃料電池および燃料電池スタック
JP4848824B2 (ja) 固体高分子型燃料電池
KR101282619B1 (ko) 연료전지용 분리판
JP4989185B2 (ja) 燃料電池用セパレータセット
JP4739880B2 (ja) 固体高分子形燃料電池
JP2009252469A (ja) 燃料電池セパレータ
KR102063060B1 (ko) 연료전지 스택
JP2004207082A (ja) 燃料電池および燃料電池用セパレータ
JP4397603B2 (ja) 高分子電解質型燃料電池
JP2004213954A (ja) 燃料電池用セパレータおよびこれを用いた燃料電池
JP2004158435A (ja) 燃料電池およびその運転方法
CN103875105A (zh) 中间注入气体的隔板、燃料电池、为燃料电池供料的方法
JP5694103B2 (ja) 燃料電池セル及び燃料電池
JP2004327425A (ja) 高分子電解質型燃料電池
Apblett et al. Fabrication and testing of a miniature H2/O2 and MeOH/O2 fuel cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007546513

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680003168.1

Country of ref document: CN

Ref document number: 1020077017145

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11815121

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833300

Country of ref document: EP

Kind code of ref document: A1