[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007052614A1 - 光学的情報記録媒体およびその製造方法 - Google Patents

光学的情報記録媒体およびその製造方法 Download PDF

Info

Publication number
WO2007052614A1
WO2007052614A1 PCT/JP2006/321677 JP2006321677W WO2007052614A1 WO 2007052614 A1 WO2007052614 A1 WO 2007052614A1 JP 2006321677 W JP2006321677 W JP 2006321677W WO 2007052614 A1 WO2007052614 A1 WO 2007052614A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
information
recording medium
thickness
recording
Prior art date
Application number
PCT/JP2006/321677
Other languages
English (en)
French (fr)
Inventor
Haruhiko Habuta
Morio Tomiyama
Hideki Kitaura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP06812186A priority Critical patent/EP1950758A4/en
Priority to US12/092,044 priority patent/US8007887B2/en
Priority to JP2007542734A priority patent/JP4889652B2/ja
Priority to CN2006800400243A priority patent/CN101297363B/zh
Publication of WO2007052614A1 publication Critical patent/WO2007052614A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25708Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 13 elements (B, Al, Ga)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25711Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing carbon
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25713Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing nitrogen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to an optical information recording medium capable of recording and reproducing information signals by irradiating a thin film formed on a substrate with a high energy light beam such as a laser beam, and a method for manufacturing the same. .
  • a phase change recording medium is known as a medium capable of recording and reproducing information at a large capacity and at a high speed.
  • recording is performed by utilizing the fact that the recording material changes into different optically distinguishable states due to heat generated when the recording material is locally irradiated with laser light.
  • This phase change type recording medium has a great advantage that it can be randomly accessed according to need and is excellent in portability. Therefore, its importance is increasing more and more in recent years. For example, there is an increasing demand in various fields such as recording or storage of personal data and video information through a computer, replacement of a medical field, an academic field, or a home video tape recorder.
  • phase change recording media are required to achieve higher capacity, higher density, and higher speed as application performance and image information become higher.
  • the types of media proposed heretofore include rewritable media that can be rewritten many times and write-once media that can be written only once.
  • the write-once medium can be reduced in number of layers as compared with the rewritable medium in many cases. Therefore, the write-once medium is easy to manufacture and the cost of the medium can be reduced.
  • since it cannot be rewritten it is convenient for users to write data that they do not want to be destroyed. For this reason, highly reliable write-once media with a long shelf life are in great demand for archival applications.
  • Te particles are dispersed in an oxide base material such as GeO, TeO, SiO, Sb 2 O, or SnO.
  • a recording material can obtain a large signal amplitude with high sensitivity (Patent Document 1). reference).
  • Patent Document 2 a recording material containing Te—O—Pd as a main component can obtain a large signal amplitude and has very high reliability (see Patent Document 2).
  • the recording mechanism of these Te-O-Pd recording materials is considered as follows.
  • the Te-O-Pd film after film formation is a composite material in which Te-Pd, Te, or Pd is uniformly dispersed as fine particles in TeO.
  • Te, Te—Pd, and Pd are melted and deposited as larger crystal grains, so that the optical state changes, and the difference can be detected as a signal.
  • phase change recording medium generates a large amount of heat in the recording layer during recording. For this reason, there was a problem that thermal diffusion occurred in the recording layer surface and the recording mark edge became unclear.
  • a heat dissipation layer is provided to diffuse the heat.
  • a metal having a large light absorption with respect to the laser beam is used.
  • an Ag alloy is used as the heat dissipation layer, and ZnS-SiO is used as the dielectric layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 58-54338
  • Patent Document 2 International Publication Patent WO98Z09823
  • Patent Document 3 JP 2002-133712 A
  • Patent Document 4 International Patent Publication WO2004Z027770
  • the present invention provides an optical information recording medium that can achieve both high transmittance and high signal quality, can further improve reliability for long-term storage, and can reduce manufacturing costs. And for the purpose of providing its manufacturing method!
  • the optical information recording medium of the present invention is an optical information recording medium comprising at least one information layer on a substrate, and at least one of the information layers.
  • One has a recording layer and a dielectric layer, and the recording layer contains Te, O, and M (where M is one or more elements selected from Au, Pd, and Pt) as main components.
  • the thermal conductivity of the dielectric layer is 0. OlWZK'cm or more, and the extinction coefficient of the dielectric layer is 0 or more and 1.0 or less.
  • the method for producing an information recording medium of the present invention includes a recording containing O and M (wherein M is one or more elements selected from Au, Pd, and Pt) as main components on a substrate.
  • a dielectric layer composed mainly of at least one selected from C and NbC is formed by vapor phase thin film deposition.
  • a large-capacity optical information recording medium that can achieve both high transmittance and high signal quality and has excellent reliability for long-term storage can be achieved at low cost.
  • an information recording medium having the above effects can be manufactured.
  • FIG. 1 is a cross-sectional view of a configuration example of an optical information recording medium of the present invention.
  • FIG. 2 is a cross-sectional view of a configuration example of an optical information recording medium of the present invention.
  • FIG. 3 is a cross-sectional view of a configuration example of an optical information recording medium of the present invention.
  • FIG. 4 is a diagram schematically showing a part of the configuration of a recording / reproducing apparatus used for recording / reproducing of the optical information recording medium of the present invention.
  • the optical information recording medium of the present invention has a substrate and an information layer, and the information layer is composed of at least a recording layer and a dielectric layer.
  • an information layer comprising a first dielectric layer 3 and a recording layer 4 is provided on a substrate 2.
  • the light transparent layer 5 may be formed on the information layer.
  • a dielectric layer may be appropriately inserted between the recording layer 4 and the light transparent layer 5 in order to adjust optical characteristics that enable effective light absorption in the information layer.
  • This optical information recording medium is recorded and reproduced by irradiating a laser beam 6 from the transparent optical layer 5 side.
  • the optical information recording medium 7 of the present invention is configured by providing a first information layer 13 and a second information layer 17 in this order on a substrate 8. It can be a thing.
  • An intermediate layer 14 is interposed between the two information layers as a separation layer in order to optically separate each information layer and eliminate unnecessary optical interference.
  • a light transparent layer 18 may be formed on the second information layer 17.
  • the optical information recording medium 7 is recorded and reproduced by irradiating laser light 19 with a side force of the light transparent layer 18.
  • the first information layer 13 sequentially includes the reflective layer 9, the second dielectric layer 10, the recording layer 11, and the second dielectric layer 12 in order to achieve both high reflectivity and high signal quality. It can be a laminated structure.
  • the second information layer 17 includes a first dielectric layer 15 and a recording layer 16 in order to achieve both high transmittance and high signal quality.
  • a dielectric layer may be appropriately inserted between the recording layer 16 and the light transparent layer 18 in order to adjust optical characteristics that enable effective light absorption in the information layer.
  • a reflective layer such as an alloy material can be provided.
  • the optical information recording medium 20 of the present invention has a first information layer 26, a second information layer 30,..., An nth information layer 33 on a substrate 21. May be provided in this order. An intermediate layer 27 is interposed between each information layer.
  • the optical information recording medium 20 is subjected to recording / reproduction by irradiating the side force of the light transparent layer 34 with the laser beam 35.
  • the first information layer 26 sequentially includes the reflective layer 22, the second dielectric layer 23, the recording layer 24, and the second dielectric layer 25 in order to achieve both high reflectivity and high signal quality. It is a laminated structure.
  • the second information layer 30 to the n-th information layer 33 are composed of at least a first dielectric layer and a recording layer in order to achieve both high transmittance and high signal quality.
  • a dielectric layer may be appropriately inserted between the recording layer and the light transparent layer and between the recording layer and the intermediate layer in order to adjust optical characteristics that enable effective light absorption in the information layer.
  • a reflective layer having an isoelectric force can be provided.
  • the optical information recording medium of the present invention may further include an information layer that does not contain the material constituting the recording layer described above. For example, it is possible to add a rewritable or read-only information layer that is not a write-once type at any position.
  • the information layer may be formed on one surface of the substrate.
  • two optical information recording media in which one or a plurality of information layers are formed on the substrate are arranged on each substrate side. They may be formed on the two front and back surfaces of the substrate, for example, such that they are bonded to form a double-sided structure. As a result, the amount of information that can be stored per medium can be further doubled.
  • transparent polycarbonate resin polymethyl methacrylate resin, polyolefin resin, norbornene resin, ultraviolet curable resin, glass, or these are appropriately used. Combinations or the like can be used.
  • the thickness is not particularly limited, but 0.01 to about L 5 mm is suitable.
  • the shape is not particularly limited, but a disk shape is suitable.
  • the material of the light transparent layers 5, 18, and 34 has a light absorptivity with respect to the wavelength of the laser beam 19 to be used and an optically low birefringence in a short wavelength region.
  • the same material as the substrate can be used.
  • the thickness is not particularly limited, 0.01 to about L 5 mm is suitable.
  • the light transparent layers 5, 18, and 34 minimize the occurrence of information errors when recording and reproducing signals on each information recording layer due to dust or scratches on the laser light incident surface. It is important to set such a thickness. The greater the thickness, the greater the resistance to dust and scratches. For example, in general, in an environment where optical discs are handled, 90% or more of garbage with a size of 30 m or less is occupied (ISOMZODS2002), and such dust with a size of 30 ⁇ m or less can be ignored. It is necessary to set the thickness of the light transparent layer. In the present embodiment, in consideration of the above, the thickness of the light transparent layers 5, 18, and 34 is set to about 60 m.
  • the strength at the time of disc manufacture is increased.
  • the thickness of the substrates 2, 8, 21 is 0.03mm to reduce the allowable width for tilt. It is preferably in the range of ⁇ 0.20 mm.
  • the thickness of the substrates 2, 8, and 21 is in the range of 0.50 to 0.70 mm, and the light transparent layers 5, 18, 34 The thickness is preferably in the range of 0.50 mm to 0.70 mm.
  • the same material as that of the substrate can be used.
  • the thickness is at least the numerical aperture NA and the objective lens so that the other force crosstalk is reduced when reproducing any one of the first information layer, the second information layer, and the n-th information layer. It is necessary that the thickness be equal to or greater than the focal depth determined by the wavelength ⁇ of the laser light. Ma It is also necessary for all information layers to have a thickness that can be collected within a condensable range. When three or more information layers are stacked, it is preferable that each intermediate layer has a different thickness.
  • the intermediate layer has the same thickness, the information layer positions are equally spaced, and when recording and reproducing a certain back layer, the laser beam may be focused on the two layers located in front. This is because the crosstalk may increase. Further, since the amount of crosstalk in the multilayer medium is proportional to the thickness of the intermediate layer, it is preferable to apply the thickest intermediate layer.
  • the first information layer, the first intermediate layer, the second information layer, the second intermediate layer, the third information layer, the third intermediate layer, the fourth information layer light
  • the thicknesses of the intermediate layers are different from each other, and the relationship of the thickness of the second intermediate layer satisfies the relationship of the thickness of the third intermediate layer ⁇ the thickness of the first intermediate layer.
  • the relationship of the thickness of the second intermediate layer satisfies the relationship of the thickness of the third intermediate layer ⁇ the thickness of the first intermediate layer.
  • it is. This is based on the following considerations.
  • the second information layer and the first information layer which have information layers on both sides, are most susceptible to crosstalk, so jitter is degraded. Cheap. Therefore, it is necessary to increase the thickness to minimize the amount of crosstalk.
  • the first information layer and the second information layer since the first information layer has two information layers on the laser incident side, the signal quality is likely to deteriorate. Therefore, it is preferable to further reduce the amount of crosstalk by increasing the thickness of the first intermediate layer.
  • the thinnest is the third intermediate layer.
  • the thickness of the thinnest third intermediate layer is 6 ⁇ m or more and 15 ⁇ m or less.
  • the effect of interlayer crosstalk can be minimized, and the thickness of the light transparent layer It is possible to form a thin film.
  • the refractive indexes of the substrates 2, 8, 21, the light transparent layers 5, 18, 34, and the intermediate layers 14, 27 are 1.4 to 1.
  • a range of 7 is preferable. By selecting a material in this range, it is possible to sufficiently secure optical changes during recording and when not recording.
  • a plan for guiding laser light to at least one of the substrates 2, 8, 21, the light transparent layers 5, 18, 34, and the intermediate layers 14, 27 is proposed.
  • the inner groove or pit is preferably formed on the side where the information layer is located.
  • the recording layers 4, 11, 16, 24, 29, and 32 are made of materials that can take two or more states having different optical characteristics.
  • the material of the recording layer is preferably Te—O—M (where M is one or more elements selected from Au, Pd, and Pt) that can change irreversibly between these different states.
  • a material having a main component is preferred.
  • the main component means that these compounds are contained in an amount of 50 mol% or more in the recording layer.
  • this material preferably contains 40 atom% or more and 75 atom% or less of oxygen atoms (O atoms) from the viewpoint of securing the size of the recording mark and keeping the thermal conductivity of the recording layer within an appropriate range.
  • Te is contained in an amount of 20 to 50 atomic% and Pd in an amount of 3 to 20 atomic%.
  • a composition is preferred.
  • the recording layer may contain an element other than O and M.
  • an element selected from S, N, F, B, and C forces may be added for the purpose of adjusting thermal conductivity and optical constants, improving heat resistance and environmental reliability, and the like.
  • These additive elements are preferably within 20 atomic% of the entire recording layer.
  • the film thickness of the recording layer is preferably 1 nm or more and 30 nm or less. This is because a sufficient CZN ratio can be easily obtained in the recording / reproducing characteristics, or the thermal diffusion in the thin film surface of the recording layer is adjusted to an appropriate value to prevent the CZN ratio from being lowered in high-density recording. In particular, 5 nm or more is more preferable in order to obtain a sufficient reflectivity and reflectivity change and increase the CZN ratio.
  • the film thickness of each recording layer is changed. This is because the reflectance and transmittance required for each layer are different.
  • the film thickness of LO is 10 nm to 40 nm
  • L The film thickness of 1 is preferably 4 nm to 14 nm
  • the film thickness of L2 is 4 nm to 12 nm
  • the film thickness of L3 is preferably 4 nm to: LOnm.
  • the LO film thickness is preferably larger than lOnm.
  • the film thickness of L 0 is preferably smaller than 40 nm.
  • the film thickness force of Ll, L2 and L3 is greater than nm, it is also preferable that a sufficient optical change can be obtained.
  • L1 is 14 nm
  • L2 is 12 nm
  • L3 is thinner than lOnm, it is preferable that sufficient transmittance can be obtained.
  • the thermal conductivity of the recording layer is preferably low thermal conductivity of 0.1 WZK 'cm or less.
  • the first dielectric layers 3, 15, 28, 31 serve to diffuse the heat generated in the recording layer in the film thickness direction when the first dielectric layer does not use a reflective layer. It must be made of a material with a high thermal conductivity. Also, the main purpose is to adjust the optical properties such as protection of the recording material and effective light absorption in the information layer. Furthermore, since it is applied to the layer on the laser incident side of an optical information recording medium composed of multiple layers, it is preferable that the extinction coefficient of the dielectric layer is small in order to increase the transmittance of the information layer. For this purpose, the following preferable ranges exist for the thermal conductivity, film thickness, and extinction coefficient of the first dielectric layer.
  • the thermal conductivity of the first dielectric layer is preferably high thermal conductivity of 0. OIWZK 'cm or more.
  • the thermal conductivity is 0. OlWZK'cm or more, the heat generated in the recording layer is easily diffused in the direction of the film thickness, so that the edge of the signal becomes clear and the jitter is improved. preferable.
  • a relatively transparent material having an extinction coefficient force ⁇ of 1.0 or less and 1.0 or less in the wavelength region near 405 nm is preferable.
  • an extinction coefficient force
  • the materials used for the first dielectric layer are those that satisfy the above-mentioned thermal conductivity and extinction coefficient: A1N, BN, Si N, HfN, TaN, TiN, ZrN, SiC, BeO, AlO, MgO , Z
  • A1N, Si N, BN, and MgO have large thermal conductivity and small extinction coefficients of 0.1 or less.
  • the main component means that these compounds are contained in the dielectric layer.
  • the thickness of the first dielectric is preferably 1 nm or more and 40 nm or less. If it is lnm or more, the function of protecting the recording layer is sufficient, and if it is 40 nm or less, the time required for film formation is sufficiently short V, which is preferable from the viewpoint of productivity.
  • the second dielectric layers 10, 12, 23, and 25 are provided mainly for adjustment of optical characteristics such as protection of the recording material and enabling effective light absorption in the information layer. .
  • a material having a refractive index n of 1.5 or more, more preferably 2.0 or more, and even more preferably 2.5 or more can be used.
  • sulfur such as ZnS, selenide such as ZnSe, oxide such as Si-0, Al-0, Ti-0, Ta-0, Zr-0, Cr-O, Ge-N , Cr—N, Si—N, Al—N, Nb—N, Mo—N, Ti—N, Zr—N, Ta—N, and other nitrides, Ge—O—N ⁇ Cr O—N, Si— Nitrogen oxides such as O—N ⁇ Al—O—N ⁇ Nb—O—N, Mo—O—N, Ti—O—N, Zr—O—N, Ta—O—N, Ge—C, Cr — Carbides such as C, Si—C, Al—C, Ti—C, Zr—C, Ta—C, fluorides such as Si—F, Al—F, Ca—
  • the reflective layers 9 and 22 are preferably provided in order to obtain optical effects such as a heat dissipation effect and effective light absorption in the recording layer.
  • the reflective layers 9 and 22 can be formed of a metal such as Au, Ag, Cu, Al, Ni, Cr, Ti, or an alloy of appropriately selected metals.
  • the film thickness is preferably greater than or equal to In m. This is to make the film a uniform layer and to ensure thermal and optical effects.
  • the first information layer 13 includes the reflective layer 9, but the second information layer 17 may include the reflective layer, or the first information layer 13 may include the reflective layer 9. It may be a configuration without this.
  • the first information layer 26 has the reflective layer 22, but the second information layer 30 to the n-th information layer 33 may have a reflective layer, or the first information layer 26 26 may be configured without the reflective layer 22.
  • the reflective layer when the reflective layer is provided, the transmittance of the information layer is reduced, but high signal quality can be easily obtained by the heat dissipation effect and the optical effect described above. For this reason, whether or not a reflection layer is provided for the second information layer 17 in FIG. 2 and the second information layer 30 to the n-th information layer 33 in FIG. It is necessary to design appropriately, and when a reflective layer is provided, By making the thickness a thin film of 10 nm or less, for example, the information layer can be kept at a high transmittance.
  • An optical information recording medium that records and reproduces information by moving the focal point of the recording and reproducing light in the thickness direction stacked as shown in the layer configuration shown in FIG. 3 (where n is an integer of 3 or more). If the layer farthest from the light incident side is LO, and Ll, L2,..., Ln—1 are sequentially applied to the incident side, then L1 to Ln—1 are the specific recording layers described above.
  • a recording layer comprising a dielectric layer is preferred.
  • at least one of L1 to Ln-1 may be a specific recording layer, or two or more may be specific recording layers, but all of L1 to Ln-1 are specific recording layers. I prefer to be there. This is because good signal quality can be obtained.
  • the information layer includes at least three (or n) information layers close to the light incident side, and the information layer closest to the light incident side is L3 (or Ln-1). )
  • the intensity of reflected light returning from each information layer when recording / reproducing light is incident on the optical information recording medium is L3 (or Ln).
  • L1 the intensity of reflected light returning from each information layer when recording / reproducing light is incident on the optical information recording medium.
  • the reflected light intensity at which each information layer force returns when recording / reproducing light is incident on the optical information recording medium is L2 U prefers to satisfy L1.
  • the CZN ratio of L1 can be made equal to or higher than that of L2, and a balanced signal quality can be obtained between L1 and L2.
  • the reflected light intensity returned from each information layer when recording / reproducing light is incident on the optical information recording medium satisfies L3 ⁇ L2 ⁇ L1.
  • the CZN ratio of L1 and the CZN ratio of L2 can be made higher than or equal to L3, and a high modulation level can be obtained from L1 to L3. Therefore, a good signal quality with a good balance between Ll, L2, and L3 can be obtained. Obtainable.
  • the reflected light intensity is adjusted by adjusting the film thickness of the layers constituting the information layer as described below, or by adjusting the combination of the information layer material and the film thickness. I can do it.
  • an A1N target is used to form an A1N dielectric layer having a thickness of 8 nm, Te—O—Pd (atom Number ratio 37:53:10)
  • Te—O—Pd atom Number ratio 37:53:10
  • the thickness of A1N can be increased by reducing the thickness, increasing the thickness of ZnS, or decreasing the thickness of Te—O—Pd.
  • the reflected light intensity can be reduced by increasing the thickness of A1N, decreasing the thickness of ZnS, or increasing the thickness of Te—O—Pd.
  • an A1N target is used to form an A1N dielectric layer having a thickness of 20 nm on the intermediate layer formed on the second information layer, Te— O— Pd (Atomic ratio 37:53:10)
  • Te— O— Pd Atomic ratio 37:53:10
  • the reflected light intensity can be increased by reducing the A1N film thickness, ZnS film thickness, or Te—O—Pd film thickness.
  • the reflected light intensity can be reduced by increasing the thickness of A1N, increasing the thickness of ZnS, or increasing the thickness of Te—O—Pd.
  • an A1N target is used to form an A1N dielectric layer having a thickness of 20 nm, Te—O—Pd (Atomic ratio 37: 53: 10)
  • a target to form a 6 nm thick Te—O—Pd recording layer and a ZnS target to form a 45 ⁇ m thick ZnS dielectric layer When using a target to form a 6 nm thick Te—O—Pd recording layer and a ZnS target to form a 45 ⁇ m thick ZnS dielectric layer, the reflected light intensity can be increased by reducing the A1N film thickness, ZnS film thickness, or Te—O—Pd film thickness. The reflected light intensity can be reduced by increasing the thickness of A1N, increasing the thickness of ZnS, or increasing the thickness of Te—O—Pd.
  • the first information layer, the first intermediate layer, the second information layer, the second intermediate layer, the third information layer, the third intermediate layer, the fourth information layer light
  • the first to fourth information layers include at least the recording layer, and the main component of the recording layer is Te—O—M (where M is Au One or a plurality of elements selected from Pd, Pt), and the first information layer and the second information layer include a reflective layer mainly composed of an Ag alloy or an A1 alloy.
  • the layer and the fourth information layer have a dielectric layer, and the dielectric layer is A1N, BN, SiN, HfN, TaN, TiN, ZrN, SiC, BeO, AlO, MgO, Z nO, TiO, C, NbC force is preferred.
  • the first information layer and the second information layer have two information layers on the laser incident side, the first information layer and the second information layer must have high reflectivity, and a reflective layer mainly composed of an Ag alloy or an A1 alloy is required. It is realized by preparing.
  • the third information layer and the fourth information layer need to have high transmittance because an information layer is further provided on the side opposite to the laser incident side, such as A1N, BN, SiN, MgO, etc. High thermal conductivity and extinction coefficient
  • a small dielectric layer is provided. In this way, by changing the material that performs heat dissipation depending on the layer, the target values of reflectivity and jitter are achieved in all four layers.
  • the second information layer does not use a reflective layer mainly composed of an Ag alloy or an A1 alloy, and can be made of A1N, BN, SiN, MgO, etc. High heat conduction and extinction
  • Each of the above thin films can be formed by a vapor phase thin film deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a CVD (Chemical Vapor Deposition) method, an MBE (Molecular Beam Epitaxy) method, or the like. It can. In particular, it is more preferable to form a film by sputtering. Sputtering has been the most commonly used method for producing optical discs so far, which is preferable from the viewpoint of productivity and that it is easy to obtain good film quality.
  • the first dielectric layer 3 and the recording layer 4 are sequentially formed on the substrate 2, and the light transparent layer 5 is formed thereon.
  • the optical transparent layer 5 is formed by the method of forming the recording layer 4 and the recording layer 4 which may be formed by bonding a medium having the recording layer 4 and a substrate having an adhesive resin on one side. It may be formed by adhering the base material to the recording layer 4 using UV resin, or may be formed using a UV curable resin on the medium prepared up to the recording layer 4.
  • FIGS. 2 and 3 can also be produced by providing a film forming process and an intermediate layer and light transparent layer forming process.
  • FIG. 4 shows an outline of an example of the recording / reproducing apparatus 36 used for recording / reproducing when the optical information recording medium is an optical disk.
  • the laser 40 and the objective lens 39 An optical head (not shown), a drive device (not shown) for guiding the laser beam irradiation position to a predetermined position, and a position for controlling the track direction and the direction perpendicular to the film surface
  • a tracking control device and a focusing control device (not shown), a laser driving device (not shown) for modulating the laser power, and a spindle motor 42 for rotating the medium are used.
  • Signal recording and reproduction are performed by first rotating the medium using the spindle motor 42, narrowing the laser beam into a minute spot by the optical system, and irradiating the medium with the laser beam.
  • the optical state of the recording mark is not affected by the laser irradiation at the power level lower than the power level for recording the signal, and the medium force recording mark is reproduced by the irradiation. Therefore, it is possible to irradiate with a laser beam having a power sufficient to obtain a sufficient amount of light and to read a signal from the obtained medium with the photodetector 41.
  • a dielectric layer is inserted between the recording layer and the light transparent layer in order to adjust optical characteristics that enable effective light absorption in the information layer.
  • the substrate polycarbonate resin was used.
  • the substrate diameter was 12 cm
  • the thickness was 1. lm m
  • the group pitch was 0.32 ⁇ m
  • the group depth was 20 nm.
  • an A1N target is used to form a 811? (1 (atomic ratio: 37:53:10) Target 6 nm thick Te—O—Pd recording layer and ZnS target 27 nm thick Zn S dielectric layer using sputtering method
  • an optically transparent layer having a thickness of 100 m was formed by ultraviolet curing resin transparent to laser light.
  • Each layer was formed using a target having a diameter of about 100 mm and a thickness of about 6 mm, the dielectric layer was formed with an RF power supply of 300 W, and the recording layer was formed with an RF power supply of 100 W.
  • the A1N dielectric layer is a mixed gas of Ar25 sccm and nitrogen 0.9 sccm, and the recording layer is Ar25 sccm and oxygen 1.
  • a mixed gas of 6 sccm was formed in an atmosphere in which the ZnS dielectric layer was Ar25 sccm, and the gas pressure was maintained at about 0.2 Pa. In this way, Disk A was produced.
  • a BN target was used to form an 8 nm thick BN dielectric layer.
  • Disk B was produced.
  • an HfN target was used to form an 8 nm thick HfN dielectric layer. Disk D was produced.
  • an TaN target was used to form an 8 nm thick TaN dielectric layer.
  • Disk E was produced.
  • an 8 nm thick ZrN dielectric layer was formed using a ZrN target. Disk G was manufactured.
  • Disk J was manufactured.
  • an MgO target was used to form an 8 nm thick MgO dielectric layer.
  • Disc K was made.
  • an 8 nm thick ZnO dielectric layer was formed using a ZnO target.
  • a disk L was produced.
  • a disk dielectric was formed in the same manner as disk A, except that an 8 nm thick C dielectric layer was formed using a C target. N was produced.
  • a ZnS target was used to form a 15 nm thick ZnS dielectric layer.
  • AgPdCu weight ratio 98.1: 0.9.1.0
  • AgPdCu reflective layer with a film thickness of 40nm
  • ZrO-SiO-CrO-LaF molecular ratio 23:23:31: 23
  • Te—O—Pd recording layer with a thickness of 20 nm using a target, ZnS—SiO (number ratio 8)
  • the disk Q was produced by sequentially laminating by the method.
  • an acceleration test was performed by holding the disks A to D on which data was recorded in an environment of a temperature of 90 ° C and a relative humidity of 80% for 50 hours. Data recorded on disks A to D after the acceleration test was played back, and the CZN ratio of the playback signal was measured. Here, it was judged as ⁇ if the decrease in CZ N ratio was less than 3 dB, and X if it was more than 3 dB. Although the decrease in CZN was less than 3 dB, it was judged as ⁇ when corrosion caused by dust in the film formation chamber occurred.
  • the number of information layers is determined to be lower when production cost is low. It is determined to be ⁇ when the number is 3 or less, and X when it is 4 or more. Table 1 shows the evaluation results.
  • the first dielectric layer has a high thermal conductivity of 0. OlWZK'cm or more as the first dielectric layer, and an extinction coefficient of 0 or more in the wavelength region near 405 nm.
  • the substrate polycarbonate resin was used.
  • the substrate diameter was 12 cm
  • the thickness was 1. lm m
  • the group pitch was 0.32 ⁇ m
  • the group depth was 20 nm.
  • each layer of a ZnS-SiO dielectric layer with a thickness of 20 nm is deposited in this order.
  • this first information layer On the surface of this first information layer, the same groove pattern as that of the substrate was transferred using an ultraviolet curable resin to form an intermediate layer having a thickness of about 25 ⁇ m.
  • this intermediate layer As the second information layer, an A1N target using a 20 nm thick A1N dielectric layer, Te—O—Pd (atomic ratio 37:53:10) target was used. Then, each layer of a Te—O—Pd recording layer having a thickness of 811111 and a ZnS dielectric layer having a thickness of 35 nm using a ZnS target were laminated in this order by a sputtering method. On this surface, UV light is hardened against laser light. An optically transparent layer having a thickness of 75 m was formed by chemical conversion resin.
  • Each layer was formed using a target with a diameter of about 100 mm and a thickness of about 6 mm, the dielectric layer was formed with an RF power supply of 300 W, the recording layer was formed with an RF power supply of 100 W, and the reflective layer was formed with a DC power supply of 100 W.
  • the A1N dielectric layer is a mixed gas of Ar25sccm and nitrogen 0.9sccm, the recording layer is a mixed gas of Ar25sccm and oxygen 1.2sccm, ZnS dielectric layer, ZnS-SiO dielectric
  • the film was formed in an atmosphere maintained at a gas pressure of about 0.2 Pa. In this way, Disk R was made.
  • the disk S was manufactured by replacing the second information layer of the disk R as follows.
  • Each layer of a 20 nm ZnS—SiO dielectric layer was laminated in order by sputtering.
  • the disk T was manufactured by replacing the second information layer of the disk R as follows. ZnS—SiO (molecular ratio 80:20) on the intermediate layer formed on the first information layer
  • the layers were laminated in this order by the ring method.
  • the disk R was good in all of the number of layers, CZN ratio, signal quality, and reliability.
  • the number of layers in the disk S is large, it is not preferable in terms of production cost and the amount is very small.
  • corrosion of Ag and S also occurred, and there was a problem in reliability.
  • Disc T has not achieved the target value in terms of signal quality.
  • the first dielectric layer has a high thermal conductivity of 0. OlWZK'cm or more as a first dielectric layer, and has a wavelength range near 405 nm. It was confirmed that by applying A1N, which is a material with an extinction coefficient of 0 or more and 1.0 or less, an inexpensive two-layer optical information recording medium with high signal quality and excellent reliability could be provided. .
  • A1N was used here, BN, Si N, HfN, TaN, TiN, ZrN, SiC, BeO,
  • the substrate polycarbonate resin was used.
  • the substrate diameter was 12 cm
  • the thickness was 1.1 mm
  • the group pitch was 0.332 111
  • the groove depth was 2011111.
  • each layer of a ZnS-SiO dielectric layer with a thickness of 30 nm is formed in this order.
  • this intermediate layer As the third information layer, an A1N target using a 20 nm thick A1N dielectric layer, Te—O—Pd (atomic ratio 37:53:10) target was used. Then, each layer of a Te—O—Pd recording layer having a thickness of 811111 and a ZnS dielectric layer having a thickness of 35 nm using a ZnS target were laminated in this order by a sputtering method. On this surface, the same groove pattern as that of the substrate was transferred using an ultraviolet curable resin to form an intermediate layer having a thickness of 9.
  • this intermediate layer As the fourth information layer, an A1N target was used and a 20 nm thick A1N dielectric layer, Te—O—Pd (atomic ratio 37:53:10) target was used. Then, a 6 nm thick Te—O—Pd recording layer and a 45 nm thick ZnS dielectric layer using a ZnS target were laminated in this order by sputtering. On this surface, a light-transparent layer having a thickness of 59.5 ⁇ m was formed using ultraviolet curable resin.
  • Each layer was formed using a target with a diameter of about 100 mm and a thickness of about 6 mm.
  • the dielectric layer was formed with an RF power supply of 300 W
  • the recording layer was formed with an RF power supply of 100 W
  • the reflective layer was formed with a DC power supply of 100 W.
  • the A1N dielectric layer is a mixed gas of Ar25sccm and nitrogen 0.9sccm
  • the recording layer is a mixed gas of Ar25sccm and oxygen 1.2sccm
  • the film was formed in an atmosphere maintained at a gas pressure of about 0.2 Pa. In this way, Disk U was produced.
  • the disk V was manufactured by replacing the second information layer force of the disk U up to the fourth information layer as follows.
  • Te—O—Pd recording layer with a thickness of 8 nm using a target, ZnS—SiO (molecular ratio 80:
  • the layers were laminated in this order by the method. On this surface, the same groove pattern as that of the substrate was transferred using an ultraviolet curable resin to form an intermediate layer having a thickness of 9.5 m.
  • Te—O—Pd recording layer with a thickness of 6 nm using a target, ZnS—SiO (number ratio 80:
  • the layers were laminated in this order by the method. On this surface, a light-transparent layer having a thickness of 59.5 ⁇ m was formed using ultraviolet curable resin. In this way, Disk V was produced.
  • the disk W was manufactured by replacing the second information layer to the fourth information layer of the disk U as follows.
  • AgPdCu weight ratio 98.1: 0. 9: 1.0 target is used as the second information layer.
  • ZrO 2 --SiO 2 --Cr 2 O 3 --LaF molecular number ratio 23: 23: 31: 23
  • an AgPdCu reflective layer with a thickness of 3 nm using an AgPdCu (weight ratio 98. 1: 0. 9: 1. 0) target, ZrO —SiO ⁇ Cr O —LaF (number of molecules
  • Te—O—Pd atomic ratio 37:53:10
  • each layer of ZnS dielectric layer with a thickness of 1 Onm was laminated in this order by sputtering.
  • the same groove pattern as that of the substrate was transferred using an ultraviolet curable resin to form an intermediate layer having a thickness of 9.5 m.
  • an AgPdCu reflective layer having a thickness of 3 nm using an AgPdCu (weight ratio 98.1: 0.9: 1.0) target, ZrO-SiO- Cr O— LaF (number of molecules
  • Te—O—Pd (atomic ratio 37:53:10) target thickness 4 nm Te—O—Pd recording layer, ZnS target thickness 1
  • a light-transparent layer having a thickness of 59.5 ⁇ m was formed using ultraviolet curable resin.
  • the first dielectric layer has a high thermal conductivity of 0. OlWZK'cm or more as the first dielectric layer, and an extinction coefficient of 0 or more in the wavelength region near 405 nm 1. 0 or less
  • the material A1N it was confirmed that it was possible to provide a high-reliability, four-layer optical information recording medium that achieved both high transmittance and high signal quality.
  • the first information layer is defined as LO
  • the second information layer is defined as Ll
  • the third information layer is defined as L2
  • the fourth information layer is defined as L3.
  • the disc was manufactured in the same manner as the disc T of Example 3.
  • the reflectance of each information layer was adjusted by adjusting the film thickness of the ZnS dielectric layer.
  • Three types of discs (X, Y, and ⁇ ) were prepared so that the reflectivity of each information layer was the value shown in Table 4 in the optical information recording medium consisting of four layers.
  • the power to apply a reflective layer mainly composed of Ag to each information layer, or the reflective layer mainly composed of Ag, is used, and the thermal conductivity is 0.01 W / K ⁇ cm or more.
  • the substrate polycarbonate resin was used.
  • the substrate diameter was 12 cm
  • the thickness was 1. lm m
  • the group pitch was 0.32 ⁇ m
  • the group depth was 20 nm.
  • an AgPdCu (weight ratio 98.1: 0.9: 1.0) target is used as the first information layer and a 40 nm thick AgPdCu reflective layer, ZrO-SiO
  • each layer of a ZnS-SiO dielectric layer with a thickness of 30 nm is formed in this order.
  • the same groove pattern as that of the substrate was transferred using an ultraviolet curable resin to form an intermediate layer having a thickness of about 13.5 m.
  • this intermediate layer As a third information layer, an A1N target using a 20 nm-thick A1N dielectric layer, Te—O—Pd (atomic ratio 37:53:10) target was used. Each layer of a Te-O-Pd recording layer with a thickness of 811111 and a ZnS dielectric layer with a thickness of 35 nm using a ZnS target The layers were laminated in this order by a sputtering method. On this surface, the same groove pattern as that of the substrate was transferred using an ultraviolet curable resin to form an intermediate layer having a thickness of 9.
  • this intermediate layer As the fourth information layer, an A1N target using a 20 nm thick A1N dielectric layer, Te—O—Pd (atomic ratio 37:53:10) target was used. Then, a Te—O—Pd recording layer having a thickness of 611111 and a ZnS dielectric layer having a thickness of 45 nm using a ZnS target were laminated in this order by a sputtering method. On this surface, a light-transparent layer having a thickness of 59.5 ⁇ m was formed using ultraviolet curable resin.
  • Each layer was formed using a target with a diameter of about 100 mm and a thickness of about 6 mm.
  • the dielectric layer was formed with an RF power supply of 300 W
  • the recording layer was formed with an RF power supply of 100 W
  • the reflective layer was formed with a DC power supply of 100 W.
  • the A1N dielectric layer is a mixed gas of Ar25sccm and nitrogen 0.9sccm
  • the recording layer is a mixed gas of Ar25sccm and oxygen 1.2sccm
  • the film was formed in an atmosphere maintained at a gas pressure of about 0.2 Pa. In this way, disk AA was produced.
  • the disc AB was manufactured by replacing the second information layer of the disc AA as follows.
  • an A1N target is used to form an 8 1? (1 (atomic ratio: 37:53:10) Target 6 nm thick Te—O—Pd recording layer and ZnS target 27 nm thick Zn S dielectric layer using sputtering method
  • the same groove pattern as that of the substrate is transferred using an ultraviolet curable resin to form an intermediate layer having a thickness of 17.
  • a third information layer is formed in the same manner as the disc AA. In this way, a disk AB was produced.
  • a disk AC was manufactured by replacing the first information layer and the second information layer of disk AA as follows.
  • an A1N target is used as the first information layer, an A1N dielectric layer with a thickness of 20 nm, Te—O—Pd (atomic ratio 37: 53: 10) Using a target, a 20 nm thick Te—O—Pd recording layer and a ZnS target using a 30 nm thick film Each layer of the ZnS dielectric layer was laminated in this order by sputtering. On the surface of the first information layer, the same groove pattern as that of the substrate was transferred using an ultraviolet curable resin to form an intermediate layer having a thickness of about 13.5 / zm.
  • a Te—O—Pd recording layer with a thickness of 6 nm using a target and a ZnS dielectric layer with a thickness of 27 nm using a ZnS target were stacked in this order by sputtering.
  • the same groove pattern as that of the substrate is transferred using ultraviolet curable resin to form an intermediate layer with a thickness of 17.5 m. Formed. In this way, a disk AC was produced.
  • Disc AB was produced by replacing the third information layer of disc AA as follows.
  • AgPdCu weight ratio 98.1: 0.9: 1. 0
  • a Te—O—Pd recording layer having a thickness of 6 nm and a ZnS dielectric layer having a thickness of 20 nm using a ZnS target were laminated in this order by sputtering.
  • the same groove pattern as that of the substrate was transferred using ultraviolet curable resin to form an intermediate layer having a thickness of 9.
  • a fourth information layer and a light transparent layer were formed in the same manner as the disc AA. . In this way, a disk AD was produced.
  • the reflectance was evaluated in the same manner as in Example 4 for all the information layers of the disc. Here, it was determined that the unrecorded portion (groove portion) had a reflectivity of 4.0% or more, and that the unrecorded portion (groove portion) had a reflectance of 4.0% or less, X. Only when good results were obtained in all layers, it was judged as X, and when good results were not obtained in any layer, X was judged.
  • Disk AC 4% of the reflectivity of the first information layer could not be secured. Also in the disc AD, 4% of the reflectivity of the first information layer could not be secured.
  • the reflective layer mainly composed of Ag is applied to the first information layer and the second information layer, so that the third information No reflective layer composed mainly of Ag in the information layer and the fourth information layer has a thermal conductivity of 0. OlW / Kcm or higher and an extinction coefficient in the wavelength region near 405 nm.
  • a reflective layer mainly composed of Ag is applied to the first information layer, and a reflective layer mainly composed of Ag is used for the second information layer, the third information layer, and the fourth information layer.
  • the A1N dielectric layer which is a material with a thermal conductivity of 0.0 lWZK'cm or higher and an extinction coefficient SO of 1.0 or less in the wavelength region near 405 nm, was applied. In this case, it was confirmed that it was possible to provide a four-layer optical information recording medium that achieved the target reflectivity in all information layers.
  • the present invention achieves both high transmittance and high signal quality of the information layer, further improves reliability for long-term storage, and enables reduction in manufacturing cost. It is effective for the manufacturing method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

 情報層の高透過率と高信号品質とを両立し、さらに長期保存に対する信頼性を高めるとともに、製造コストを低減することができる光学的情報記録媒体とその製造方法を提供する。そのために、本願では、基板上に情報層を少なくとも1つ以上備える光学的情報記録媒体において、情報層の少なくとも1つは、記録層と誘電体層とを有し、記録層は、Te、OおよびM(ただし、Mは、Au、Pd、Ptから選ばれる1つまたは複数の元素)を主成分として含み、誘電体層の熱伝導率が、0.01W/K・cm以上であり、誘電体層の消衰係数が、0以上1.0以下である。

Description

明 細 書
光学的情報記録媒体およびその製造方法
技術分野
[0001] 本発明は、基板上に形成された薄膜に、レーザビーム等の高エネルギー光ビーム を照射することにより、情報信号を記録'再生することのできる光学的情報記録媒体 およびその製造方法に関する。
背景技術
[0002] 大容量、高速度での情報の記録再生が可能な媒体として、相変化型記録媒体が 知られている。これは、記録材料にレーザ光を局所的に照射した際に生じる熱によつ て、記録材料が、光学的に区別可能な異なる状態へ変化することを利用して記録を 行うものである。この相変化型記録媒体は、必要に応じてランダムアクセスが可能で あり、かつ可搬性にも優れるという大きな利点を有しているため、近年ますますその重 要性が高まっている。例えば、コンピュータを通じた個人データおよび映像情報等の 記録または保存、医療分野、学術分野または家庭用ビデオテープレコーダーの置き 換え等、様々な分野での需要が高まっている。
[0003] 現在、相変化形記録媒体につ!、て、アプリケーションの高性能化や画像情報の高 性能化に伴い、さらに大容量化、高密度化、高速ィ匕を達成することが求められている 従来から提案されて 、る媒体の種類としては、多数回の書き換えが可能な書き換え 型媒体、 1回のみ書き込み可能な追記型媒体が挙げられる。追記型媒体は、一般に 、書き換え型媒体と比較して層数を少なくできる場合が多いため、製造が容易であり 、媒体の低コストィ匕が可能である。また、書き換えができないことから、ユーザーが破 壊されたくないデータを書きこむ際に好都合である。このことから、保存寿命が長ぐ 信頼性の高い追記型媒体は、アーカイバル用途として大きな需要がある。
[0004] そこで、追記型の記録材料として、 Vヽくつかの酸化物材料が提案されて!ヽる。例え ば、 GeO、 TeO、 SiO、 Sb O、 SnO等の酸化物母材中に Te粒子を分散させた
2 2 2 2 3 2
記録材料は、高感度で大きな信号振幅が得られることが開示されている (特許文献 1 参照)。例えば、 Te— O— Pdを主成分とする記録材料は大きい信号振幅が得られ、 信頼性も非常に高いことが知られている(特許文献 2参照)。これら Te— O— Pd系記 録材料の記録メカニズムは次のように考えられる。成膜後での Te— O— Pd膜は、 Te Oの中に Te— Pd、 Te、或いは Pdが微粒子として一様に分散している複合材料であ
2
る。レーザ光の照射後は、溶融されて Teや Te— Pdや Pdがより大きな結晶粒子とな つて析出するため、光学状態が変化し、その差が信号として検出できる。
[0005] 一方、近年、情報の大容量化に伴って、光学的情報記録媒体のさらなる記録密度 向上が要求されている。よって、より短波長 ·高 NAの光学系、特に青紫色レーザ光 を用いた高密度記録に対応できる記録媒体を開発することが必要とされている。
[0006] そこで、上述した Te— O— Pd記録材料を、青紫色波長域で用いるために、記録層 に誘電体層を併設して、反射率差を大きくすることが提案されている (特許文献 3参 照)。また、一般的には、記録層を保護し反射率差を大きくする目的カゝら記録層の両 側には誘電体を、記録層で生じた熱を膜厚方向に効果的に拡散し、反射率を向上さ せる目的力 レーザ入射側と反対方向の基板と誘電体層との間に反射層を設けてい る。
[0007] また、より記録密度を向上させるために、複数の層に情報を記録する多層媒体があ る。このような媒体に対しては、光入射面から遠い側の情報層にデータを記録する際 、レーザ光が、光入射面に近い側の情報層を透過する必要がある。よって、光入射 面に近い側の情報層は、レーザ光に対する透過率が高いまま、良好な信号品質を 確保しなければならない。 Te— O— Pdを主成分とする材料は、ほぼ透明な TeOを
2 母材としているため、膜の透過率を高めることが容易であり、片側から多層の情報層 に記録可能な多層光学情報媒体に好適に適用することができる。
[0008] Te— O— Pd記録材料を使用して 4層の情報層を作製した例も提案されて ヽる(特 許文献 4参照)がある。このとき、レーザ入射側に位置する 3つの層には反射層を用 V、ずに記録層を誘電体層で挟んだ構成が適用されており、誘電体層の材料として Z nS-SiOが適用されている。し力し、この場合、記録した信号のジッタが低いといつ
2
た課題があった。これは、記録層で生じた熱が厚さ方向に拡散することができず、膜 面方向に拡散し、その結果記録マークのエッジがぼやけてしまったためと考えられて いる。
[0009] このように相変化型の記録媒体は、記録の際に記録層で多量の熱が発生する。そ のため、記録層面内で熱拡散がおこり、記録マークエッジが不鮮明になるという課題 かあつた。
通常、その熱を拡散させるために放熱層が設けられる。放熱層としては、レーザ光 に対する光吸収が大きい金属が用いられる。一方、多層の情報層を有する媒体では 、全ての層から適度な反射率を確保するために光入射面に近い側の透過率を高め る必要がある。よって、放熱性を確保しながら、光吸収を低減できる材料の選定が困 難であった。
[0010] また、信号品質および信頼性を高めるためには、放熱層、誘電体層、記録層、およ び誘電体層の多層からなる情報層を形成することが一般的であり、光学的情報記録 媒体の材料および製造コストが高くなるという課題があった。
[0011] さらに、通常、放熱層としては Ag合金、誘電体層としては ZnS— SiOが用いられて
2
おり、 Agと Sとの反応に起因した腐食が発生するため、 Ag合金を用いる際には信頼 '性に課題があった。
[0012] このように大容量記録媒体を実現するために、長期間の保存信頼性が高ぐ製造コ ストが安い、高信号品質および高透過率を両立できる光学的情報記録媒体が強く望 まれていた。
特許文献 1:特開昭 58 - 54338号公報
特許文献 2:国際公開特許 WO98Z09823号公報
特許文献 3 :特開 2002— 133712号公報
特許文献 4:国際公開特許 WO2004Z027770号公報
発明の開示
[0013] 本発明は、高透過率および高信号品質を両立することができ、さらに長期保存に対 する信頼性を高めることができるとともに、製造コストを低減することが可能な光学的 情報記録媒体およびその製造方法を提供することを目的として!、る。
[0014] 上記課題を解決するために、本発明の光学的情報記録媒体は、基板上に、情報 層を少なくとも 1つ以上備える光学的情報記録媒体であって、情報層の少なくとも 1 つは、記録層と誘電体層とを有し、記録層は、 Te、 Oおよび M (ただし、 Mは、 Au、 P d、 Ptから選ばれる 1つまたは複数の元素)を主成分として含み、誘電体層の熱伝導 率力 0. OlWZK'cm以上であり、誘電体層の消衰係数が、 0以上 1. 0以下である
[0015] また、本発明の情報記録媒体の製造方法は、基板上に、 Oおよび M (ただし、 Mは 、 Au、 Pd、 Ptから選ばれる 1つまたは複数の元素)を主成分として含む記録層と、 A1 N、 BN、 Si N、 HfN、 TaN、 TiN、 ZrN、 SiC、 BeO、 Al O、 MgO、 ZnO、 TiO、
3 4 2 3 2
C、 NbCから選ばれる少なくとも一つを主成分とする誘電体層とを、気相薄膜堆積法 により形成する。
[0016] 本発明によれば、高透過率および高信号品質を両立することができ、かつ長期保 存に対する信頼性に優れた大容量の光学的情報記録媒体を、低コストィ匕を図りつつ 、提供することができる。また、本発明の情報記録媒体の製造方法によれば、上記の ような効果を奏する情報記録媒体を作製することができる。
図面の簡単な説明
[0017] [図 1]本発明の光学的情報記録媒体の一構成例の断面図。
[図 2]本発明の光学的情報記録媒体の一構成例の断面図。
[図 3]本発明の光学的情報記録媒体の一構成例の断面図。
[図 4]本発明の光学的情報記録媒体の記録再生に用いられる記録再生装置につい て構成の一部を模式的に示す図。
符号の説明
[0018] 1、 7、 20、 37 光学的情報記録媒体
2、 8、 21 基板
3、 15、 28、 31 第 1の誘電体層
4、 11、 16、 24、 29、 32 記録層
5、 18、 34 光透明層
6、 19、 35、 38 レーザ光
9、 22 反射層
10、 12、 23、 25 第 2の誘電体層 13、 26 第 1の情報層
14、 27 中間層
17、 30 第 2の情報層
33 第 nの情報層
36 記録再生装置
39 対物レンズ
40 レーザ
41 光検出器
42 スピンドノレモータ
発明を実施するための最良の形態
[0019] 以下、本発明の光学的情報記録媒体およびその製造方法の実施の形態について 、図面を参照しながら説明する。なお、以下の実施の形態は一例であり、本発明は以 下の実施形態に限定されない。また、以下の実施形態では、同一の部分については 同一の符号を付して重複する説明を省略する場合がある。
[0020] 本発明の光学的情報記録媒体は、基板および情報層を有し、さらにその情報層は 、少なくとも記録層と誘電体層とで構成されて!ヽればよ ヽ。
具体的には、本発明の光学的情報記録媒体 1には、図 1に示すように、基板 2上に 第 1の誘電体層 3と記録層 4とからなる情報層が設けられている。さらに情報層の上に 光透明層 5を形成してもよい。記録層 4と光透明層 5との間には、情報層での効果的 な光吸収を可能にする光学特性の調節のために誘電体層を適宜挿入してもよい。こ の光学的情報記録媒体に対し、光透明層 5の側からレーザ光 6を照射して記録再生 を行う。
[0021] また、図 2に示すように、本発明の光学的情報記録媒体 7は、基板 8上に第 1の情 報層 13および第 2情報層 17がこの順に設けられて構成されているものであってもよ い。 2つの情報層の間には分離層として、各情報層を光学的に分離して不要な光学 干渉を排除するために、中間層 14が介在している。さらに第 2の情報層 17の上に光 透明層 18が形成されていてもよい。この光学的情報記録媒体 7に対し、光透明層 18 の側力もレーザ光 19を照射して記録再生を行う。 [0022] 第 1の情報層 13は、高反射率および高信号品質を両立するために、反射層 9、第 2 の誘電体層 10、記録層 11、および第 2の誘電体層 12を順次積層した構成とすること ができる。第 2の情報層 17は、高透過率および高信号品質を両立するために、第 1 の誘電体層 15と記録層 16とからなる。
[0023] 記録層 16と光透明層 18との間には、情報層での効果的な光吸収を可能にする光 学特性の調節のために誘電体層を適宜挿入してもよ ヽ。記録層および誘電体層以 外にも合金材料等カゝらなる反射層を設けることもできる。
[0024] また、図 3に示すように、本発明の光学的情報記録媒体 20は、基板 21上に第 1の 情報層 26、第 2情報層 30、 · · ·、第 nの情報層 33がこの順に設けられて構成されて いるものであってもよい。各情報層の間には中間層 27が介在している。この光学的 情報記録媒体 20に対し、光透明層 34の側力もレーザ光 35を照射して記録再生を行
[0025] 第 1の情報層 26は、高反射率および高信号品質を両立するために、反射層 22、第 2の誘電体層 23、記録層 24、および第 2の誘電体層 25を順次積層した構成である。 第 2の情報層 30から第 nの情報層 33は、高透過率および高信号品質を両立するた めに、少なくとも第 1の誘電体層と記録層とからなる。記録層と光透明層および記録 層と中間層との間には、情報層での効果的な光吸収を可能にする光学特性の調節 のために、誘電体層を適宜挿入してもよい。記録層および誘電体層以外にも合金材 料等力 なる反射層を設けることもできる。
[0026] 本発明においては、複数の情報層を備える場合には、そのうちの少なくとも 1つが、 第 1の誘電体層と記録層とからなる情報層であればよいが、図 2における第 2の情報 層、および図 3における第 2の情報層から第 nの情報層に対しても同様である。一方、 本発明の光学的情報記録媒体では、上述した記録層を構成する材料を含まな ヽ情 報層をさらに設けてもよい。例えば、追記型ではなぐ書き換え型または再生専用型 の情報層を、任意の位置に追加することができる。
[0027] また、情報層は、基板の一面上に形成されていてもよいし、例えば、基板上に 1また は複数の情報層を形成した光学的情報記録媒体 2枚を、それぞれの基板側を対向 させて貼り合わせ、両面構造とする等、基板の表裏二面上に形成されていてもよい。 これにより、媒体 1枚あたりに蓄積できる情報量をさらに倍増することができる。
[0028] 基板 2、 8、 21の材料としては、透明なポリカーボネイト樹脂、ポリメチルメタクリレー ト榭脂、ポリオレフイン榭脂、ノルボルネン系榭脂、紫外線硬化性榭脂、ガラス、ある いはこれらを適宜組み合わせたもの等を用いることができる。その厚さは、特に限定 されないが、 0. 01〜: L 5mm程度が適している。その形状も特に限定されないが、 円盤状が適している。
[0029] 光透明層 5、 18、 34の材料としては、使用するレーザ光 19の波長に対して光吸収 力 、さぐ短波長域において光学的に複屈折率が小さいことが好ましい。例えば、基 板と同様の材料を用いることができる。その厚さは特に限定されないが、 0. 01〜: L 5mm程度が適している。
[0030] また、光透明層 5、 18、 34は、レーザ光入射面の埃や傷等により、各情報記録層へ の信号の記録や再生を行う際に、情報エラーの発生を極力少なくするような厚みに 設定することが重要となる。厚みが厚いほど、埃や傷からの耐性は大きくなる。例えば 、一般的に、光ディスクが扱われる環境下において、のゴミは 30 m以下の大きさの ものが 90%以上占めており(ISOMZODS2002)、この 30 μ m以下の大きさのゴミ を無視できる程度の光透明層の厚みの設定が必要となる。本実施例では、上記を考 慮して光透明層 5、 18、 34の厚みを 60 m程度としている。
[0031] 特に、対物レンズの開口数が 0. 75-0. 95 (ここで、 「〜」は、両端の値も含んでお り、以下同様である)の場合、ディスク製造時の強度を保っために基板 2、 8、 21の厚 さは、 1. 00-1. 20mmの範囲で、チルトに対する許容幅を小さくするために光透明 層 5、 18、 34の厚さは、 0. 03mm〜0. 20mmの範囲であることが好ましい。
[0032] 一方、対物レンズの開口数が 0. 55〜0. 75の場合、基板 2、 8、 21の厚さは 0. 50 〜0. 70mmの範囲で、光透明層 5、 18、 34の厚さは 0. 50mm〜0. 70mmの範囲 であることが好ましい。
[0033] 中間層 14、 27の材料としては、基板と同様の材料を用いることができる。その厚さ は、第 1の情報層、第 2の情報層および第 nの情報層のいずれか一つを再生する際 に他方力 クロストークが小さくなるように、少なくとも対物レンズの開口数 NAおよび レーザ光の波長 λにより決定される焦点深度以上の厚さであることが必要である。ま た、全ての情報層が、集光可能な範囲に収まる厚さであることも必要である。 3層以 上の情報層を積層する場合は、それぞれの中間層の厚さを異なる厚さとすることが好 ましい。なぜなら、中間層が同じ厚さの場合、情報層の位置が等間隔となり、ある奥 の層を記録再生する際に、 2つ手前に位置する層でレーザ光が焦点を結び得ること があり、クロストークが大きくなる可能性があるためである。また、多層媒体におけるク ロストーク量は、中間層の厚みに比例するため、可能な限り厚い中間層を適用するほ うが好ましい。
[0034] 基板上に、第 1の情報層、第 1の中間層、第 2の情報層、第 2の中間層、第 3の情報 層、第 3の中間層、第 4の情報層、光透明層をこの順に備える光学的情報記録媒体 においては、各中間層の厚みが互いに異なっており、第 3中間層の厚み <第 1中間 層の厚みく第 2中間層の厚みの関係を満たしていることが好ましい。これは以下の考 えに基づく。
[0035] 4層からなる光学的情報記録媒体では、両側に情報層が存在する第 2の情報層お よび第 1の情報層が最もクロストークの影響を受けやすいため、ジッタが悪ィ匕しやす い。そこでクロストーク量を最小限にするために最も厚くする必要がある。次に、第 1 の情報層および第 2の情報層では、第 1の情報層の方がレーザ入射側に 2つの情報 層を有するために、信号品質が劣化しやすい。したがって、次に第 1中間層を厚くす ることによってクロストーク量をさらに減らす方が好ましい。そして、最も薄いのが第 3 の中間層となる。
[0036] さらに、上記 4層からなる光学的情報記録媒体では、最も薄い第 3中間層の厚みが 6 μ m以上 15 μ m以下であることが好ましい。レーザ光の波長が 400〜410nm、対 物レンズの開口数が 0. 85であるヘッドによって記録もしくは再生される場合に層間ク ロストークよる影響を最低限に抑えることができ、且つ光透明層の厚みを薄く形成す ることがでさるカゝらである。
[0037] 基板 2、 8、 21、光透明層 5、 18、 34、および中間層 14、 27の屈折率は、 1. 4〜1.
7の範囲にあることが好ましい。この範囲のものを選ぶことによって、記録時および未 記録時の光学変化を十分に確保することができる。また、基板 2、 8、 21、光透明層 5 、 18、 34、および中間層 14、 27の少なくともいずれかには、レーザ光を導くための案 内溝またはピットが、情報層の位置する側に形成されていることが好ましい。
[0038] 記録層 4、 11、 16、 24、 29、 32は、光学特性が異なる 2つ以上の状態間をとりうる 材料より構成する。記録層の材料は、この異なる状態間を非可逆的に変化しうるもの が好ましぐ Te— O— M (ただし、 Mは Au、 Pd、 Ptから選ばれる 1つまたは複数の元 素)を主成分とする材料が好適である。ここで主成分とは、これらの化合物を、記録層 において 50モル%以上含むことを意味する。また、この材料は、記録マークの大きさ を確保するとともに記録層の熱伝導率を適切な範囲に保つ観点から、酸素原子 (O 原子)を 40原子%以上 75原子%以下含むものが好ましい。さらに、レーザ光照射時 に十分な光学特性の変化を確保し、適切な CZN比を得て適切な結晶化速度を得る 観点から、 Teを 20〜50原子%、 Pdを 3〜20原子%含む組成であることが好ましい。
[0039] 記録層には、 Oおよび M以外の元素が含まれていてもよい。例えば、熱伝導率や 光学定数の調整、耐熱性'環境信頼性の向上等を目的として、 S、 N、 F、 Bおよび C 力も選ばれる少なくとも 1種の元素を添カ卩してもよい。これらの添加元素は、記録層全 体の 20原子%以内とすることが好ましい。
[0040] 記録層の膜厚は、 lnm以上 30nm以下が好ましい。記録再生特性において十分な CZN比が得やすいこと、または記録層の薄膜面内の熱拡散を適当な値に調整して 、高密度記録において CZN比が低くなることを防止するからである。特に、十分な反 射率および反射率変化を得、 CZN比を高めるために、 5nm以上がより好ましい。
[0041] 光学的情報記録媒体が 4層からなる場合には、記録層の膜厚を各層で変化させる ことが好ましい。これは各層で求められる反射率および透過率が異なるからである。 4 層からなる光学的情報記録媒体では、例えばレーザ入射側からみて最も奥の層から 手前の層に向けて LO、 Ll、 L2、 L3と呼ぶとすると、 LOの膜厚は 10nm〜40nm、 L 1の膜厚は 4nm〜14nm、 L2の膜厚は 4nm〜12nm、 L3の膜厚は 4nm〜: LOnmで あることが好ましい。つまり、十分な光学変化が得られることを考慮すると、 LOの膜厚 は lOnmより大きいことが好ましい。また、十分な反射率が得られることを考慮して、 L 0の膜厚は 40nmより小さいことが好ましい。 Ll、 L2、および L3の膜厚力 nmより大 きい場合は、十分な光学変化が得られること力も好ましい。 L1が 14nm、 L2が 12nm 、 L3が lOnmより薄い場合は、十分な透過率が得られること力も好ましい。 LOの記録 層の膜厚は 20nmが特に好ましいことから、 4層からなる光学的情報記録層の各層の 記録層の比力 LO :Ll :L2 :L3 = l : 0. 2〜0. 7 : 0. 2〜0. 6 : 0. 2〜0. 5になること が全層でのバランスがとりやす 、と!/、う観点力 好まし 、。
[0042] 記録層の熱伝導率は、 0. 1WZK' cm以下の低熱伝導性であることが好ましい。
熱伝導率が高い場合には、記録の際に熱が面内方向に拡散するためジッタが低下 する。そのために記録層の熱伝導率を低くすることによって、良好なジッタを得やすく なる。
[0043] 第 1の誘電体層 3、 15、 28、 31は、第 1の誘電体層が反射層を用いない場合に、 記録層で生じた熱を膜厚方向に拡散する役目を担うために高い熱伝導率をもつ材 料からなる必要がある。また、記録材料の保護、情報層での効果的な光吸収を可能 にする等の光学特性の調節が主な目的として設けられる。さらに多層からなる光学的 情報記録媒体のレーザ入射側の層へ適用することから、情報層の透過率を高めるた めに、誘電体層の消衰係数は小さい方が好ましい。このような目的から、第 1の誘電 体層の熱伝導率、膜厚、および消衰係数に以下のような好ましい範囲がある。
[0044] 第 1の誘電体層の熱伝導率は 0. OIWZK' cm以上の高熱伝導性であることが好 ましい。熱伝導率が 0. OlWZK'cm以上の場合には、記録層で生じた熱が膜厚方 向に拡散しやす 、ために信号のエッジが鮮明になりジッタが向上すると!/、う観点から 好ましい。
[0045] また、 405nm近傍の波長域において消衰係数力 ^以上 1. 0以下の比較的透明な 材料が好ましい。 0以上 1. 0以下の場合、誘電体層において光を吸収する割合が小 さいため、情報層の透過率を高めることができる。 1. 0より大きい場合には誘電体層 における光の吸収が増加するため、多層の光学的情報記録媒体への適用が困難と なる。第 1の誘電体層に用いる材料としては、上記の熱伝導率、消衰係数をみたすも のとして、 A1N、 BN、 Si N、 HfN、 TaN、 TiN、 ZrN、 SiC、 BeO、 Al O、 MgO、 Z
3 4 2 3 nO、 TiO、 C、 NbC力 選ばれる少なくとも一つを主成分とする材料が挙げられる。
2
なかでも、 A1N、 Si N、 BN、 MgOは、熱伝導率が大きぐ消衰係数が 0. 1以下と小
3 4
さいことから、より好ましい。ここで主成分とは、これらの化合物を、誘電体層において
50モル%以上含むことを意味し、 80モル%以上、さらに 90モル%以上含むことが好 ましい。
[0046] 第 1の誘電体の膜厚は、 lnm以上 40nm以下が好ましい。 lnm以上であれば記録 層を保護する機能が十分であり、 40nm以下であれば成膜に必要な時間が十分短 V、ことから生産性の観点で好ま 、。
[0047] 第 2の誘電体層 10、 12、 23、 25は、記録材料の保護、情報層での効果的な光吸 収を可能にする等の光学特性の調節が主な目的として設けられる。
第 2の誘電体層の材料としては、屈折率 nが 1. 5以上、より好ましくは 2. 0以上、さ らに好ましくは 2. 5以上の材料を用いることができる。具体的には、 ZnS等の硫ィ匕物 、 ZnSe等のセレン化物、 Si— 0、 Al— 0、 Ti— 0、 Ta— 0、 Zr— 0、 Cr— O等の酸 化物、 Ge— N、 Cr— N、 Si— N、 Al— N、 Nb— N、 Mo— N、 Ti— N、 Zr— N、 Ta— N等の窒化物、 Ge— O— Nゝ Cr O— N、 Si— O— Nゝ Al— O— Nゝ Nb— O— N、 Mo— O— N、 Ti— O— N、 Zr— O— N、 Ta— O— N等の窒酸化物、 Ge— C、 Cr— C 、 Si— C、 Al— C、 Ti— C、 Zr— C、 Ta— C等の炭化物、 Si— F、 Al— F、 Ca— F、 La F等の弗化物またはこれらの適当な組み合わせ (例えば、 ZnS— SiO等)等が挙
2
げられる。
[0048] 反射層 9、 22は、放熱効果や記録層での効果的な光吸収等の光学的効果を得る ために設けられることが好ましい。反射層 9、 22は、 Au、 Ag、 Cu、 Al、 Ni、 Cr、 Ti等 の金属または適宜選択された金属の合金より形成することができる。その膜厚は In m以上であることが好ましい。膜を均一層とし、熱的、光学的な効果を確保するため である。なお、図 2では第 1の情報層 13のみ反射層 9を有する構成であるが、第 2の 情報層 17が反射層を有していてもよいし、第 1の情報層 13が反射層 9を有さない構 成であってもよい。図 3では第 1の情報層 26のみ反射層 22を有する構成であるが、 第 2の情報層 30から第 nの情報層 33が反射層を有していてもよいし、第 1の情報層 2 6が反射層 22を有さない構成であってもよい。一般に、反射層を設けると情報層の透 過率は低下するが、上記で述べた放熱効果や光学的効果により、高い信号品質を 容易に得ることができる。このため、レーザ光の入射側に位置する図 2における第 2の 情報層 17および図 3における第 2の情報層 30から第 nの情報層 33につ 、ては、反 射層を設けるかどうか適宜設計を行うことが必要であり、反射層を設けた場合はその 厚さを例えば 10nm以下の薄膜にすることにより、情報層を高い透過率に保つことが できる。
[0049] 図 3に示した層構成 (ただし、 nは 3以上の整数)のように積層された厚み方向に記 録再生光の焦点を移動させて情報の記録再生を行う光情報記録媒体であって、光 入射側からもっとも遠い層を LOとし、入射側に向力つて順に Ll、 L2、 · · ·、 Ln— 1と した場合、 L1から Ln— 1が、上述した特定の記録層と誘電体層とからなる記録層で あることが好ましい。この場合、 L1から Ln— 1の少なくとも 1つが特定の記録層であつ てもよいし、 2以上が特定の記録層であってもよいが、 L1から Ln— 1の全てが特定の 記録層であることが好ま 、。良好な信号品質を得ることができるからである。
[0050] また、図 3に示した層構成 (ただし、 nは 3以上の整数、例えば、 n=4)のように積層 された厚み方向に記録再生光の焦点を移動させて情報の記録再生を行う光情報記 録媒体であって、少なくとも光入射側に近い 3つ (または n個)の情報層が前記情報 層であって、光入射側に最も近い情報層を L3 (または Ln— 1)、光入射側から 3番目 に近い情報層を L1とした場合に、前記光情報記録媒体に記録再生光を入射したと きに各情報層から戻ってくる反射光強度が、 L3 (または Ln— 1) <L1を満足すること が好ましい。これにより L1の CZN比を L3と同等以上に高くすることができ、 L1と L3 とでバランスのよ ヽ信号品質を得ることができる。
[0051] また、光入射側から 2番目に近 、情報層を L2とした場合に、前記光情報記録媒体 に記録再生光を入射したときに各情報層力も戻ってくる反射光強度が、 L2く L1を満 足することが好ま U、。これにより L1の CZN比を L2と同等以上に高くすることができ 、 L1と L2とでバランスのよい信号品質を得ることができる。
[0052] 前記光情報記録媒体に記録再生光を入射したときに各情報層から戻ってくる反射 光強度が、 L3<L2<L1を満足することが好ましい。これにより L1の CZN比および L2の CZN比を L3と同等以上に高くすることができ、 L1から L3において高変調度が 得られるため、 Ll、 L2、 L3でバランスのよい、良好な信号品質を得ることができる。
[0053] 以下のように情報層を構成している層の膜厚を調整するか、情報層の材料と膜厚と の組み合わせを調整すること等によって、上述した反射光強度の調整を行うことがで きる。 例えば、第 2の情報層では、第 1の情報層を設けた上に形成された中間層の上に、 A1Nターゲットを用 ヽて膜厚 8nmの A1N誘電体層、 Te— O— Pd (原子数比 37 : 53 : 10)ターゲットを用 ヽて膜厚 6nmの Te— O— Pd記録層、 ZnSターゲットを用 ヽて膜 厚 27nmの ZnS誘電体層を形成する場合に、 A1Nの膜厚を薄くする、 ZnSの膜厚を 厚くする、もしくは Te— O— Pdの膜厚を薄くすることによって反射光強度をあげること ができる。また、 A1Nの膜厚を厚くする、 ZnSの膜厚を薄くする、もしくは Te— O— Pd の膜厚を厚くすることによって反射光強度をさげることができる。
[0054] 第 3の情報層では、第 2の情報層を設けた上に形成された中間層の上に、 A1Nター ゲットを用 ヽて膜厚 20nmの A1N誘電体層、 Te— O— Pd (原子数比 37: 53: 10)タ 一ゲットを用 ヽて膜厚 8nmの Te— O— Pd記録層、 ZnSターゲットを用 ヽて膜厚 35η mの ZnS誘電体層を形成する場合に、 A1Nの膜厚を薄くする、 ZnSの膜厚を薄くす る、もしくは Te— O— Pdの膜厚を薄くすることによって反射光強度をあげることができ る。また、 A1Nの膜厚を厚くする、 ZnSの膜厚を厚くする、もしくは Te— O— Pdの膜 厚を厚くすることによって反射光強度をさげることができる。
[0055] 第 4の情報層では、第 3の情報層を設けた上に形成された中間層の上に、 A1Nター ゲットを用 ヽて膜厚 20nmの A1N誘電体層、 Te— O— Pd (原子数比 37: 53: 10)タ 一ゲットを用 ヽて膜厚 6nmの Te— O— Pd記録層、 ZnSターゲットを用 ヽて膜厚 45η mの ZnS誘電体層を形成する場合に、 A1Nの膜厚を薄くする、 ZnSの膜厚を薄くす る、もしくは Te— O— Pdの膜厚を薄くすることによって反射光強度をあげることができ る。また、 A1Nの膜厚を厚くする、 ZnSの膜厚を厚くする、もしくは Te— O— Pdの膜 厚を厚くすることによって反射光強度をさげることができる。
[0056] 基板上に、第 1の情報層、第 1の中間層、第 2の情報層、第 2の中間層、第 3の情報 層、第 3の中間層、第 4の情報層、光透明層をこの順に備えてなる光学的情報記録 媒体においては、第 1から第 4の情報層が少なくとも記録層を含んでおり、記録層の 主成分が Te— O— M (ただし、 Mは Au、 Pd、 Ptから選ばれる 1つまたは複数の元素 )であり、第 1の情報層および第 2の情報層は Ag合金もしくは A1合金を主成分とする 反射層を備えており、第 3の情報層および第 4の情報層は誘電体層を備えており、誘 電体層が A1N、 BN、 Si N、 HfN、 TaN、 TiN、 ZrN、 SiC、 BeO、 Al O、 MgO、 Z nO、 TiO、 C、 NbC力も選ばれる少なくとも一つを主成分とする材料であることが好
2
ましい。これは 4つの情報層を有する光学的情報記録媒体の全ての層の反射率、ジ ッタの目標値を満たすために必要である。第 1の情報層および第 2の情報層はレー ザ入射側に 2つの情報層を有することから、高反射率である必要があり、 Ag合金もし くは A1合金を主成分とする反射層を備えることによって実現している。また、第 3の情 報層および第 4の情報層はレーザ入射側と反対側にさらに情報層を設けているため に高透過率である必要があり、 A1N、 BN、 Si N、 MgO等の高熱伝導で消衰係数の
3 4
小さ 、誘電体層を設けて 、る。このように層によって放熱の働きをする材料を変化さ せることにより、 4つの層全ての層で反射率、ジッタの目標値を達成している。
[0057] また、第 2の情報層に関しても第 3、第 4の情報層と同様に Ag合金もしくは A1合金 を主成分とする反射層を用いないで、 A1N、 BN、 Si N、 MgO等の高熱伝導で消衰
3 4
係数の小さい誘電体層を設けることによって、上記と同様の効果を得ることができる。
[0058] 上記の各薄膜は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法 、 CVD (Chemical Vapor Deposition)法、 MBE (Molecular Beam Epitaxy )法等の気相薄膜堆積法によって形成することができる。特にスパッタリング法により 成膜することがより好まし 、。これまで光ディスクの作製方法としてスパッタリング法が 最も一般的に使用されていることから生産性の観点で好ましぐまた良好な膜質を得 やす 、と 、つた品質の観点からも好ま 、。
[0059] 各層の作製順序は、図 1の場合、基板 2上に、第 1の誘電体層 3、記録層 4を順次 成膜し、その上に光透明層 5を形成する。光透明層 5の形成方法は、記録層 4まで作 製した媒体と、接着榭脂を片面に有する基材とを貼り合わせることによって形成して もよぐ記録層 4まで作製した媒体とシート状の基材とを UV榭脂によって貼り合わせ ることにより形成してもよぐさらに記録層 4まで作製した媒体上に紫外線硬化樹脂に よって形成してもよい。図 2、図 3に関しても、同様に成膜工程と中間層および光透明 層の形成工程とを設けることによって作製することができる。
[0060] 次に、本発明の光学情報記録媒体の記録再生方法の一例について述べる。
図 4に、光学情報記録媒体が光ディスクである場合に、記録再生に用いる記録再 生装置 36の一例の概略を示す。信号の記録再生には、レーザ 40と対物レンズ 39と を搭載した光学ヘッド (図示省略)と、レーザ光を照射する位置を所定の位置へと導く ための駆動装置(図示省略)と、トラック方向および膜面に垂直な方向の位置を制御 するためのトラッキング制御装置およびフォーカシング制御装置(図示省略)と、レー ザパワーを変調するためのレーザ駆動装置(図示省略)、媒体を回転させるためのス ピンドルモータ 42とを用いる。
[0061] 信号の記録、再生は、まず媒体をスピンドルモータ 42を用いて回転させ、光学系に よりレーザ光を微小スポットに絞りこんで、媒体へレーザ光を照射することにより行う。 信号の再生の際には、信号の記録を行うパワーレベルよりも低ぐそのパワーレベル でのレーザ照射によって記録マークの光学的な状態が影響を受けず、かつその照射 によって媒体力 記録マークの再生のために十分な光量が得られるパワーのレーザ ビームを照射し、得られる媒体からの信号を光検出器 41で読みとることによって行う ことができる。
[0062] 以下、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明 を限定するものではない。
(実施例 1)
図 1に示した層構成を有する光学的情報記録媒体を作製した例につ!ヽて述べる。 ここでは記録層と光透明層との間に、情報層での効果的な光吸収を可能にする光学 特性の調節のために誘電体層を挿入する。
[0063] 基板としては、ポリカーボネイト榭脂を用いた。基板の直径は 12cm、厚さは 1. lm m、グループピッチは 0. 32 ^ m,グループ深さは 20nmとした。
基板のグループが形成された側の表面上に、第 1の情報層として、 A1Nターゲット を用ぃて膜厚811111の八1?^誘電体層、丁6— 0—?(1(原子数比37 : 53 : 10)ターゲット を用 ヽて膜厚 6nmの Te— O— Pd記録層、 ZnSターゲットを用 ヽて膜厚 27nmの Zn S誘電体層、の各層をスパッタリング法によりこの順に積層した。この表面上に、レー ザ光に対して透明な紫外線硬化榭脂により、厚さ 100 mの光透明層を形成した。
[0064] 各層の成膜は、いずれも、直径 100mm、厚さ 6mm程度のターゲットを用い、誘電 体層は RF電源 300W、記録層は RF電源 100Wで成膜した。また、 A1N誘電体層は 、 Ar25sccmおよび窒素 0. 9sccmの混合ガスを、記録層は Ar25sccmおよび酸素 1. 6sccmの混合ガスを、 ZnS誘電体層層は、 Ar25sccmを、いずれも、ガス圧約 0. 2Paに保った雰囲気で成膜した。このようにして、ディスク Aを作製した。
[0065] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 BNターゲ ットを用いて膜厚 8nmの BN誘電体層を形成した点を除き、ディスク Aと同様にして、 ディスク Bを作製した。
[0066] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 Si Nター
3 4 ゲットを用いて膜厚 8nmの Si N誘電体層を形成した点を除き、ディスク Aと同様にし
3 4
て、ディスク cを作製した。
[0067] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 HfNターゲ ットを用いて膜厚 8nmの HfN誘電体層を形成した点を除き、ディスク Aと同様にして 、ディスク Dを作製した。
[0068] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 TaNターゲ ットを用いて膜厚 8nmの TaN誘電体層を形成した点を除き、ディスク Aと同様にして 、ディスク Eを作製した。
[0069] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 TiNターゲ ットを用いて膜厚 8nmの TiN誘電体層を形成した点を除き、ディスク Fと同様にして、 ディスク Fを作製した。
[0070] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 ZrNターゲ ットを用いて膜厚 8nmの ZrN誘電体層を形成した点を除き、ディスク Aと同様にして、 ディスク Gを作製した。
[0071] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 SiCターゲ ットを用いて膜厚 8nmの SiC誘電体層を形成した点を除き、ディスク Aと同様にして、 ディスク Hを作製した。
[0072] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 BeOターゲ ットを用いて膜厚 8nmの BeO誘電体層を形成した点を除き、ディスク Aと同様にして 、ディスク Iを作製した。
[0073] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 Al Oター
2 3 ゲットを用いて膜厚 8nmの Al O誘電体層を形成した点を除き、ディスク Aと同様にし て、ディスク Jを作製した。
[0074] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 MgOター ゲットを用いて膜厚 8nmの MgO誘電体層を形成した点を除き、ディスク Aと同様にし て、ディスク Kを作製した。
[0075] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 ZnOターゲ ットを用いて膜厚 8nmの ZnO誘電体層を形成した点を除き、ディスク Aと同様にして
、ディスク Lを作製した。
[0076] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 TiOター
2 ゲットを用いて膜厚 8nmの TiO誘電体層を形成した点を除き、ディスク Aと同様にし
2
て、ディスク Mを作製した。
[0077] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 Cターゲット を用いて膜厚 8nmの C誘電体層を形成した点を除き、ディスク Aと同様にして、デイス ク Nを作製した。
[0078] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 NbCター ゲットを用いて膜厚 8nmの NbC誘電体層を形成した点を除き、ディスク Aと同様にし て、ディスク Oを作製した。
[0079] A1Nターゲットを用いて膜厚 8nmの A1N誘電体層を形成するかわりに、 ZnSターゲ ットを用 ヽて膜厚 15nmの ZnS誘電体層を形成した点を除き、ディスク Aと同様にして
、ディスク Pを作製した。
[0080] AgPdCu (重量比 98. 1 : 0. 9 : 1. 0)ターゲットを用いて膜厚 40nmの AgPdCu反 射層、 ZrO -SiO -Cr O—LaF (分子数比 23 : 23 : 31 : 23)ターゲットを用いて膜
2 2 2 3 3
厚 20nmの ZrO—SiO -Cr O—LaF誘電体層、丁6— 0— ?(1(原子数比37 : 53:
2 2 2 3 3
10)ターゲットを用いて膜厚 20nmの Te— O— Pd記録層、 ZnS— SiO (分子数比 8
2
0: 20)ターゲットを用 ヽて膜厚 20nmの ZnS— SiO誘電体層の各層をスパッタリング
2
法により順に積層することによって、ディスク Qを作製した。
[0081] 上記ディスクに対し、信頼性試験として、波長 405nm、開口数 NA0. 85の光学系 を用い線速度 4. 5mZsで回転させながら、 12. 2MHzの単一信号を記録した。未 記録のトラックに 1回だけ記録を行い、その信号の CZN比をスペクトラムアナライザ で測定した。ここで 40dB以上の CZN比がえられれば〇、 40dB未満の場合には X と判定した。
[0082] また、データを記録したディスク A〜Dを温度 90°C、相対湿度 80%の環境下にお いて 50時間にわたり、保持することによって加速試験を実行した。加速試験後のディ スク A〜Dに記録されたデータを再生し、再生信号の CZN比を測定した。ここで CZ N比の低下が 3dB未満であれば〇、 3dB以上の場合には Xと判定した。なお、 CZ Nの低下は 3dB未満であるが、成膜室内等のゴミに起因する腐食が発生した場合に は△と判定した。
[0083] 情報層の層数は生産コストの観点力 少ない方が好ましぐ 3層以下の場合に〇、 4 層以上の場合に Xと判定した。評価結果を表 1に示す。
[0084] [表 1]
Figure imgf000020_0001
表 1によると、ディスク Α〜0では層数、 CZN比、信頼性の全ての点において良好 であった。しかし、誘電体層に ZnSを用いたディスク Ρでは信頼性に問題が見られた また、ディスク Qでは層数が多くなることから生産コストの点で好ましくなぐまた微量 であるが Agおよび Sの腐食も発生した。
[0086] このように、本発明のとおり、第 1の誘電体層として熱伝導率が 0. OlWZK'cm以 上の高熱伝導性で、 405nm近傍の波長域において消衰係数が 0以上 1. 0以下の 材料である A1N、 BN、 Si N、 HfN、 TaN、 TiN、 ZrN、 SiC、 BeO、 Al O、 MgO、
3 4 2 3
ZnO、 TiO、 C、 NbCを適用することによって、高信号品質で信頼性に優れた安価
2
な 1層の追記型記録媒体を提供できることを確認できた。また、図 2、図 3の場合にも 同様の効果があることを確認した。
[0087] (実施例 2)
図 2に示した層構成を有する光学的情報記録媒体を作製した例について述べる。 ここでは 2層媒体のレーザ入射側の情報層の誘電体層に、熱伝導率が 0. 01W/K •cm以上である A1Nを用いた場合、 0. を用い
Figure imgf000021_0001
た場合、さらに Ag合金反射層と通常の誘電体層とを用 ヽた場合の 3種類の比較を示 す。
[0088] 基板としては、ポリカーボネイト榭脂を用いた。基板の直径は 12cm、厚さは 1. lm m、グループピッチは 0. 32 ^ m,グループ深さは 20nmとした。
基板のグループが形成された側の表面上に、第 1の情報層として、 AgPdCu (重量 比 98. 1 : 0. 9 : 1. 0)ターゲットを用いて膜厚 40nmの AgPdCu反射層、 ZrO— SiO
2
— Cr O -LaF (分子数比 23: 23: 31: 23)ターゲットを用いて膜厚 20nmの ZrO
2 2 3 3 2
-SiO -Cr O -LaF誘電体層、 Te— O— Pd (原子数比 37 : 53 : 10)ターゲットを
2 2 3 3
用いて膜厚 20nmの Te— O— Pd記録層、 ZnS— SiO (分子数比 80 : 20)ターゲット
2
を用いて膜厚 20nmの ZnS— SiO誘電体層、の各層をスパッタリング法によりこの順
2
に積層した。この第 1の情報層の表面上に、紫外線硬化性榭脂を用いて基板と同じ 溝パターンを転写し、厚さ約 25 μ mの中間層を形成した。
[0089] この中間層の表面上に、第 2の情報層として、 A1Nターゲットを用いて膜厚 20nmの A1N誘電体層、 Te— O— Pd (原子数比 37 : 53 : 10)ターゲットを用ぃて膜厚811111の Te— O— Pd記録層、 ZnSターゲットを用いて膜厚 35nmの ZnS誘電体層、の各層を スパッタリング法によりこの順に積層した。この表面上に、レーザ光に対して紫外線硬 化榭脂により、厚さ 75 mの光透明層を形成した。
[0090] 各層の成膜は、いずれも、直径 100mm、厚さ 6mm程度のターゲットを用い、誘電 体層は RF電源 300W、記録層は RF電源 100W、反射層は DC電源 100Wで成膜し た。また、 A1N誘電体層は、 Ar25sccmおよび窒素 0. 9sccmの混合ガスを、記録層 は Ar25sccmおよび酸素 1. 2sccmの混合ガスを、 ZnS誘電体層、 ZnS— SiO誘電
2 体層、 ZrO -SiO— Cr O— LaF誘電体層、 AgPdCu反射層は Ar25sccmを、い
2 2 2 3 3
ずれも、ガス圧約 0. 2Paに保った雰囲気で成膜した。このようにして、ディスク Rを作 製した。
[0091] また、ディスク Rの第 2の情報層を以下のように置換することによってディスク Sを作 製した。第 1の情報層の上に形成された中間層の上に AgPdCu (重量比 98. 1 : 0. 9 : 1. 0)ターゲットを用いて膜厚 10nmの AgPdCu反射層、 ZrO—SiO -Cr O— L
2 2 2 3 aF (分子数比 23 : 23 : 31 : 23)ターゲットを用いて膜厚 lOnmの ZrO—SiO— Cr
3 2 2 2
O -LaF誘電体層、丁6— 0—?(1(原子数比37 : 53 : 10)ターゲットを用ぃて膜厚1
3 3
Onmの Te— O— Pd記録層、 ZnS— SiO (分子数比 80 : 20)ターゲットを用いて膜厚
2
20nmの ZnS— SiO誘電体層、の各層をスパッタリング法により順に積層した。
2
[0092] また、ディスク Rの第 2の情報層を以下のように置換することによってディスク Tを作 製した。第 1の情報層の上に形成された中間層の上に ZnS— SiO (分子数比 80 : 20
2
)ターゲットを用いて膜厚 20nmの ZnS— SiO誘電体層、 Te— O— Pd (原子数比 37
2
: 53 : 10)ターゲットを用いて膜厚 8nmの Te— O— Pd記録層、 ZnS— SiO (分子数
2 比 80 : 20)ターゲットを用いて膜厚 30nmの ZnS— SiO誘電体層、の各層をスパッタ
2
リング法によりこの順に積層した。
[0093] 上記ディスクの第 2の情報層に対し、実施例 1と同様にして、 CZN比、信頼性、さら に信号品質に関して評価を行った。信号品質を評価するためにジッタの評価もあわ せて行った。ここではジッタが 8. 5%以下であれば〇、 8. 5%以上であれば Xと判定 した。この値は Blu—ray Discフォーマットにおいて安定してエラーなく信号の記録 再生が行える基準値である。評価結果を表 2に示す。
[0094] [表 2] ディスク 第 1の誘電体層もしくは
層数 C ZN比 1§ 品質 信頼性
N o . 反射層ノ誘電体層
R A 1 N 〇 〇 〇 〇
A g P d C u /
S Z r 0 2— S i 0 2— X 〇 〇 Δ
し r 2 0。一 L a t。
T Z n S— S i 0 2 〇 〇 X 〇
[0095] 表 2によると、ディスク Rでは層数、 CZN比、信号品質、および信頼性の全ての点 において良好であった。しかし、ディスク Sでは層数が多くなることから生産コストの点 で好ましくなぐまた微量であるが Agおよび Sの腐食も発生したため信頼性にも課題 があった。ディスク Tでは、信号品質の点で目標値を達成できていない。
[0096] このように、本発明のとおり、 2層からなる情報記録媒体において、第 1の誘電体層 として熱伝導率が 0. OlWZK'cm以上の高熱伝導性で、 405nm近傍の波長域に おいて消衰係数が 0以上 1. 0以下の材料である A1Nを適用することによって、高信 号品質で信頼性に優れた安価な 2層の光学的情報記録媒体を提供できることを確認 できた。
[0097] また、ここでは A1Nを用いたが、 BN、 Si N、 HfN、 TaN、 TiN、 ZrN、 SiC、 BeO、
3 4
Al O、 MgO、 ZnO、 TiO、 C、 NbCを用いても同様の効果があることも確認した。
2 3 2
[0098] (実施例 3)
図 3 (n=4)に示した層構成を有する光学的情報記録媒体を作製した例について 述べる。基板としては、ポリカーボネイト榭脂を用いた。基板の直径は 12cm、厚さは 1. 1mm、グループピッチは 0. 32 111、グルーブ深さは2011111とした。
[0099] 基板のグループが形成された側の表面上に、第 1の情報層として、 AgPdCu (重量 比 98. 1 : 0. 9 : 1. 0)ターゲットを用いて膜厚 40nmの AgPdCu反射層、 ZrO— SiO
2
— Cr O -LaF (分子数比 23: 23: 31: 23)ターゲットを用いて膜厚 20nmの ZrO
2 2 3 3 2
-SiO -Cr O -LaF誘電体層、 Te— O— Pd (原子数比 37 : 53 : 10)ターゲットを
2 2 3 3
用いて膜厚 20nmの Te— O— Pd記録層、 ZnS— SiO (分子数比 80 : 20)ターゲット
2
を用いて膜厚 30nmの ZnS— SiO誘電体層の各層をスパッタリング法によりこの順に
2
積層した。この第 1の情報層の表面上に、紫外線硬化性榭脂を用いて基板と同じ溝 ノターンを転写し、厚さ約 13. 5 mの中間層を形成した。 [0100] この中間層の表面上に、第 2の情報層として、 A1Nターゲットを用いて膜厚 8nmの A1N誘電体層、 Te— O— Pd (原子数比 37 : 53 : 10)ターゲットを用ぃて膜厚611111の Te— O— Pd記録層、 ZnSターゲットを用いて膜厚 27nmの ZnS誘電体層、の各層を スパッタリング法によりこの順に積層した。この表面上に、紫外線硬化性榭脂を用い て基板と同じ溝パターンを転写し、厚さ 17. の中間層を形成した。
[0101] この中間層の表面上に、第 3の情報層として、 A1Nターゲットを用いて膜厚 20nmの A1N誘電体層、 Te— O— Pd (原子数比 37 : 53 : 10)ターゲットを用ぃて膜厚811111の Te— O— Pd記録層、 ZnSターゲットを用いて膜厚 35nmの ZnS誘電体層、の各層を スパッタリング法によりこの順に積層した。この表面上に、紫外線硬化性榭脂を用い て基板と同じ溝パターンを転写し、厚さ 9. の中間層を形成した。
[0102] この中間層の表面上に、第 4の情報層として、 A1Nターゲットを用いて膜厚 20nmの A1N誘電体層、 Te— O— Pd (原子数比 37 : 53 : 10)ターゲットを用いて膜厚 6nmの Te— O— Pd記録層、 ZnSターゲットを用いて膜厚 45nmの ZnS誘電体層、の各層を スパッタリング法によりこの順に積層した。この表面上に、紫外線硬化性榭脂を用い て厚さ 59. 5 μ mの光透明層を形成した。
[0103] 各層の成膜は、いずれも、直径 100mm、厚さ 6mm程度のターゲットを用い、誘電 体層は RF電源 300W、記録層は RF電源 100W、反射層は DC電源 100Wで成膜し た。また、 A1N誘電体層は、 Ar25sccmおよび窒素 0. 9sccmの混合ガスを、記録層 は Ar25sccmおよび酸素 1. 2sccmの混合ガスを、 ZnS誘電体層、 ZnS— SiO誘電
2 体層、 ZrO -SiO— Cr O— LaF誘電体層、 AgPdCu反射層は Ar25sccmを、い
2 2 2 3 3
ずれも、ガス圧約 0. 2Paに保った雰囲気で成膜した。このようにして、ディスク Uを作 製した。
[0104] また、ディスク Uの第 2の情報層力 第 4の情報層までを以下のように置換すること によってディスク Vを作製した。
第 1の情報層の上に形成された中間層の上に、第 2の情報層として、 ZnS -SiO (
2 分子数比 80 : 20)ターゲットを用いて膜厚 15nmの ZnS— SiO誘電体層、 Te— O—
2
Pd (原子数比 37: 53: 10)ターゲットを用 ヽて膜厚 1 Onmの Te— O— Pd記録層、 Zn S -SiO (分子数比 80 : 20)ターゲットを用いて膜厚 20nmの ZnS— SiO誘電体層、 の各層をスパッタリング法によりこの順に積層した。この表面上に、紫外線硬化性榭 脂を用いて基板と同じ溝パターンを転写し、厚さ 17. 5 mの中間層を形成した。
[0105] この中間層の表面上に、第 3の情報層として、 ZnS— SiO (分子数比 80:20)ター
2
ゲットを用いて膜厚 20nmの ZnS— SiO誘電体層、 Te— O— Pd (原子数比 37:53:
2
10)ターゲットを用いて膜厚 8nmの Te— O— Pd記録層、 ZnS— SiO (分子数比 80:
2
20)ターゲットを用いて膜厚 30nmの ZnS— SiO誘電体層、の各層をスパッタリング
2
法によりこの順に積層した。この表面上に、紫外線硬化性榭脂を用いて基板と同じ溝 ノターンを転写し、厚さ 9. 5 mの中間層を形成した。
[0106] この中間層の表面上に、第 4の情報層として、 ZnS— SiO (分子数比 80:20)ター
2
ゲットを用いて膜厚 25nmの ZnS— SiO誘電体層、丁6— 0—?(1(原子数比37:53:
2
10)ターゲットを用いて膜厚 6nmの Te— O— Pd記録層、 ZnS— SiO (分子数比 80:
2
20)ターゲットを用いて膜厚 30nmの ZnS— SiO誘電体層、の各層をスパッタリング
2
法によりこの順に積層した。この表面上に、紫外線硬化性榭脂を用いて厚さ 59. 5μ mの光透明層を形成した。このようにして、ディスク Vを作製した。
[0107] また、ディスク Uの第 2の情報層から第 4の情報層までを以下のように置換すること によってディスク Wを作製した。
第 1の情報層の上に形成された厚さ 13. 5 mの中間層の上に、第 2の情報層とし て、 AgPdCu (重量比 98. 1:0. 9:1. 0)ターゲットを用いて膜厚 3nmの AgPdCu反 射層、 ZrO -SiO -Cr O —LaF (分子数比 23 :23 :31 :23)ターゲットを用いて膜
2 2 2 3 3
厚 35nmの ZrO —SiO -Cr O —LaF誘電体層、丁6— 0— ?(1(原子数比37:53:
2 2 2 3 3
10)ターゲットを用 ヽて膜厚 6nmの Te— O— Pd記録層、 ZnSターゲットを用 ヽて膜 厚 20nmの ZnS誘電体層の各層をスパッタリング法によりこの順に積層した。この表 面上に、紫外線硬化性榭脂を用いて基板と同じ溝パターンを転写し、厚さ 17. δμΐη の中間層を形成した。
[0108] この中間層の上に、第 3の情報層として、 AgPdCu (重量比 98. 1:0. 9:1. 0)ター ゲットを用いて膜厚 3nmの AgPdCu反射層、 ZrO —SiO -Cr O —LaF (分子数
2 2 2 3 3 比 23 :23 :31 :23)ターゲットを用いて膜厚 20nmの ZrO —SiO -Cr O —LaF誘
2 2 2 3 3 電体層、 Te— O— Pd (原子数比 37: 53: 10)ターゲットを用 ヽて膜厚 4nmの Te— O - Pd記録層、 ZnSターゲットを用 ヽて膜厚 1 Onmの ZnS誘電体層の各層をスパッタ リング法によりこの順に積層した。この表面上に、紫外線硬化性榭脂を用いて基板と 同じ溝パターンを転写し、厚さ 9. 5 mの中間層を形成した。
[0109] この中間層の上に、第 4の情報層として、 AgPdCu (重量比 98. 1 : 0. 9 : 1. 0)ター ゲットを用いて膜厚 3nmの AgPdCu反射層、 ZrO— SiO— Cr O— LaF (分子数
2 2 2 3 3 比 23 : 23 : 31 : 23)ターゲットを用いて膜厚 10nmの ZrO—SiO—Cr O—LaF誘
2 2 2 3 3 電体層、 Te— O— Pd (原子数比 37: 53: 10)ターゲットを用 ヽて膜厚 4nmの Te— O - Pd記録層、 ZnSターゲットを用 ヽて膜厚 1 Onmの ZnS誘電体層の各層をスパッタ リング法によりこの順に積層した。この表面上に、紫外線硬化性榭脂を用いて厚さ 59 . 5 μ mの光透明層を形成した。
このようにして、ディスク Wを作製した。
[0110] 上記ディスクの第 2の情報層から第 4の情報層に対し、実施例 2と同様にして、 C ZN比および信号品質に関して評価を行った。さらに 4層各層の反射率に関しても評 価を行った。ここでは未記録部 (溝部)の反射率が 4. 0%以上であれば〇、4. 0%以 下であれば Xと判定した。全ての層において良好な結果が得られたときのみ〇、どれ かの層で良好な結果がえられなければ Xと判定した。
[0111] [表 3]
Figure imgf000026_0001
[0112] 表 3によると、ディスク Uでは CZN比、信号品質、反射率の全ての点において良好 であった。しかし、ディスク Vでは信号品質の点で良好な結果が得られな力つた。また 、ディスク Wではレーザ入射側からみて奥の層ほど反射率が低下したため、全層に ぉ 、て 4%を確保することができな力つた。
[0113] このように、本発明のとおり、第 1の誘電体層として熱伝導率が 0. OlWZK'cm以 上の高熱伝導性で、 405nm近傍の波長域において消衰係数が 0以上 1. 0以下の 材料である A1Nを適用することによって、高透過率および高信号品質を両立し、信頼 性に優れた 4層の光学的情報記録媒体を提供できることを確認できた。
[0114] (実施例 4)
図 3 (n=4)に示した層構成を有する光学的情報記録媒体において、各情報層の 反射率設計を行うことによって全層で信号品質のバランスをとつた例について述べる 。ここで第 1の情報層を LO、第 2の情報層を Ll、第 3の情報層を L2、第 4の情報層を L3と定義する。ディスクの作製方法は実施例 3のディスク Tと同様にして作製した。こ こでは ZnS誘電体層の膜厚を調整することにより、各情報層の反射率を調整した。 4 層からなる光学的情報記録媒体において各々の情報層における反射率が表 4に示 す値になるようにディスクを 3種類 (X、 Y、 Ζ)作製した。
[0115] [表 4]
Figure imgf000027_0001
[0116] 表 4によると、ディスク Xでは各々の情報層の反射率が、 L3<L2<L1を満足する ため、 Ll、 L2、 L3でバランスのよい信号品質を得ることができる。
し力し、ディスク Yでは、 L3<L1は満たしている力 L2<L1を満たしていないために 各層の信号品質におけるバランスが好ましくない。また、ディスク Zでは、 L3 >L2>L 1となっていることから各層の信号品質におけるバランスがより好ましくない。
[0117] このように、本発明のとおり、 4層からなる光学的情報記録媒体に記録再生光を入 射したときに各々の情報層から戻ってくる反射光強度が、 L3<L2く L1を満足するこ とによって Ll、 L2、 L3でバランスのよい信号品質を得ることができることを確認でき た。
[0118] (実施例 5)
図 3(n=4)に示した層構成を有する光学的情報記録媒体を作製した例について 述べる。ここでは各情報層に Agを主成分とする反射層を適用する力、もしくは Agを 主成分とする反射層を用 ヽな 、で熱伝導率が 0.01W/K · cm以上の高熱伝導性 で 405nm近傍の波長域において消衰係数力 ^以上 1.0以下の材料である A1N誘 電体層を適用した場合の組み合わせの比較を示す。
[0119] 基板としては、ポリカーボネイト榭脂を用いた。基板の直径は 12cm、厚さは 1. lm m、グループピッチは 0.32 ^m,グループ深さは 20nmとした。
基板のグループが形成された側の表面上に、第 1の情報層として、 AgPdCu (重量 比 98.1:0.9:1.0)ターゲットを用いて膜厚 40nmの AgPdCu反射層、 ZrO— SiO
2
— CrO -LaF (分子数比 23: 23: 31: 23)ターゲットを用いて膜厚 20nmの ZrO
2 2 3 3 2
-SiO -CrO -LaF誘電体層、 Te— O— Pd (原子数比 37:53: 10)ターゲットを
2 2 3 3
用いて膜厚 20nmの Te— O— Pd記録層、 ZnS— SiO (分子数比 80 :20)ターゲット
2
を用いて膜厚 30nmの ZnS— SiO誘電体層の各層をスパッタリング法によりこの順に
2
積層した。この第 1の情報層の表面上に、紫外線硬化性榭脂を用いて基板と同じ溝 ノターンを転写し、厚さ約 13.5 mの中間層を形成した。
[0120] この中間層の表面上に、 AgPdCu (重量比 98.1:0.9:1.0)ターゲットを用いて 膜厚 3nmの AgPdCu反射層、 ZrO—SiO—CrO—LaF (分子数比 23 :23 :31:
2 2 2 3 3
23)ターゲットを用いて膜厚 35nmの ZrO—SiO—CrO—LaF誘電体層、 Te—
2 2 2 3 3
O— Pd (原子数比 37:53:10)ターゲットを用ぃて膜厚611111の丁6— 0—?(1記録層、 ZnSターゲットを用いて膜厚 20nmの ZnS誘電体層の各層をスパッタリング法によりこ の順に積層した。この表面上に、紫外線硬化性榭脂を用いて基板と同じ溝パターン を転写し、厚さ 17.5 /zmの中間層を形成した。
[0121] この中間層の表面上に、第 3の情報層として、 A1Nターゲットを用いて膜厚 20nmの A1N誘電体層、 Te— O— Pd (原子数比 37:53:10)ターゲットを用ぃて膜厚811111の Te— O— Pd記録層、 ZnSターゲットを用いて膜厚 35nmの ZnS誘電体層、の各層を スパッタリング法によりこの順に積層した。この表面上に、紫外線硬化性榭脂を用い て基板と同じ溝パターンを転写し、厚さ 9. の中間層を形成した。
[0122] この中間層の表面上に、第 4の情報層として、 A1Nターゲットを用いて膜厚 20nmの A1N誘電体層、 Te— O— Pd (原子数比 37 : 53 : 10)ターゲットを用ぃて膜厚611111の Te— O— Pd記録層、 ZnSターゲットを用いて膜厚 45nmの ZnS誘電体層、の各層を スパッタリング法によりこの順に積層した。この表面上に、紫外線硬化性榭脂を用い て厚さ 59. 5 μ mの光透明層を形成した。
[0123] 各層の成膜は、いずれも、直径 100mm、厚さ 6mm程度のターゲットを用い、誘電 体層は RF電源 300W、記録層は RF電源 100W、反射層は DC電源 100Wで成膜し た。また、 A1N誘電体層は、 Ar25sccmおよび窒素 0. 9sccmの混合ガスを、記録層 は Ar25sccmおよび酸素 1. 2sccmの混合ガスを、 ZnS誘電体層、 ZnS— SiO誘電
2 体層、 ZrO -SiO— Cr O— LaF誘電体層、 AgPdCu反射層は Ar25sccmを、い
2 2 2 3 3
ずれも、ガス圧約 0. 2Paに保った雰囲気で成膜した。このようにして、ディスク AAを 作製した。
[0124] また、ディスク AAの第 2の情報層を以下のように置換することによってディスク ABを 作製した。
第 1の情報層の上に形成された中間層の上に、第 2の情報層として、 A1Nターゲット を用ぃて膜厚811111の八1?^誘電体層、丁6— 0—?(1(原子数比37 : 53 : 10)ターゲット を用 ヽて膜厚 6nmの Te— O— Pd記録層、 ZnSターゲットを用 ヽて膜厚 27nmの Zn S誘電体層、の各層をスパッタリング法によりこの順に積層した。この表面上に、紫外 線硬化性榭脂を用いて基板と同じ溝パターンを転写し、厚さ 17. の中間層を 形成し、ディスク AAと同様に第 3の情報層、光透明層を形成した。このようにして、デ イスク ABを作製した。
[0125] また、ディスク AAの第 1の情報層および第 2の情報層を以下のように置換すること によってディスク ACを作製した。
基板のグループが形成された側の表面上に、第 1の情報層として、 A1Nターゲット を用 ヽて膜厚 20nmの A1N誘電体層、 Te— O— Pd (原子数比 37: 53: 10)ターゲッ トを用 ヽて膜厚 20nmの Te— O— Pd記録層、 ZnSターゲットを用 ヽて膜厚 30nmの ZnS誘電体層の各層をスパッタリング法によりこの順に積層した。この第 1の情報層 の表面上に、紫外線硬化性榭脂を用いて基板と同じ溝パターンを転写し、厚さ約 13 . 5 /z mの中間層を形成した。第 1の情報層の上に形成された中間層の上に、第 2の 情報層として、 A1Nターゲットを用いて膜厚 8nmの A1N誘電体層、 Te— O— Pd (原 子数比 37: 53: 10)ターゲットを用いて膜厚 6nmの Te— O— Pd記録層、 ZnSターゲ ットを用いて膜厚 27nmの ZnS誘電体層、の各層をスパッタリング法によりこの順に積 層した。この表面上に、紫外線硬化性榭脂を用いて基板と同じ溝パターンを転写し、 厚さ 17. 5 mの中間層を形成し、ディスク AAと同様に第 3の情報層、光透明層を 形成した。このようにして、ディスク ACを作製した。
[0126] また、ディスク AAの第 3の情報層を以下のように置換することによってディスク ABを 作製した。
第 2の情報層の上に形成された中間層の上に、第 3の情報層として、 AgPdCu (重 量比 98. 1 : 0. 9 : 1. 0)ターゲットを用いて膜厚 3nmの AgPdCu反射層、 ZrO—Si
2
O— Cr O -LaF (分子数比 23 : 23 : 31 : 23)ターゲットを用いて膜厚 35nmの ZrO
2 2 3 3
-SiO -Cr O -LaF誘電体層、 Te— O— Pd (原子数比 37 : 53 : 10)ターゲットを
2 2 2 3 3
用 ヽて膜厚 6nmの Te— O— Pd記録層、 ZnSターゲットを用 ヽて膜厚 20nmの ZnS 誘電体層の各層をスパッタリング法によりこの順に積層した。この表面上に、紫外線 硬化性榭脂を用いて基板と同じ溝パターンを転写し、厚さ 9. の中間層を形成 し、ディスク AAと同様に第 4の情報層、光透明層を形成した。このようにして、デイス ク ADを作製した。
[0127] 上記ディスクの全ての情報層に対し、実施例 4と同様にして、反射率に関して評価 を行った。ここでは未記録部 (溝部)の反射率が 4. 0%以上であれば〇、4. 0%以下 であれば Xと判定した。全ての層において良好な結果が得られたときのみ〇、どれか の層で良好な結果がえられなければ Xと判定した。
[0128] [表 5] ディスク
第 1の情報層 第 2の情報層 第 3の情報層 第 4の情報層 反射率
N o .
A A 反射層あり 反射層あり A 1 Nあり A 1 Nあり 〇
A B 反射層あり A 1 Nあり A 1 Nあり A 1 Nあり 〇
A C A 1 Nあり A 1 Nあり A 1 Nあり A 1 Nあり X
A D 反射層あり 反射層あり 反射層あり A 1 Nあり X
[0129] 表 5によると、ディスク UAAと ABとでは全ての情報層で、反射率が目標値を達成し た。
しかし、ディスク ACでは、第 1の情報層の反射率に関して 4%を確保することができ なかった。また、ディスク ADにおいても第 1の情報層の反射率に関して、 4%を確保 することができな力つた。
[0130] このように、本発明のとおり、 4層からなる光学的情報記録媒体において、第 1の情 報層および第 2の情報層に Agを主成分とする反射層を適用し、第 3の情報層および 第 4の情報層に Agを主成分とする反射層を用いな 、で熱伝導率が 0. OlW/K-c m以上の高熱伝導性で、 405nm近傍の波長域において消衰係数が 0以上 1. 0以 下の材料である A1N誘電体層を適用した。この場合、全ての情報層で、目標の反射 率を達成した 4層の光学的情報記録媒体を提供できることを確認できた。
また、第 1の情報層に Agを主成分とする反射層を適用し、第 2の情報層、第 3の情報 層、および第 4の情報層に、 Agを主成分とする反射層を用いないで熱伝導率が 0. 0 lWZK'cm以上の高熱伝導性で、 405nm近傍の波長域において消衰係数力 SO以 上 1. 0以下の材料である A1N誘電体層を適用した。この場合、全ての情報層で、目 標の反射率を達成した 4層の光学的情報記録媒体を提供できることを確認できた。 産業上の利用可能性
[0131] 本発明は、情報層の高透過率と高信号品質を両立し、さらに長期保存に対する信 頼性を高めるとともに、製造コストの低減を可能にするため、光学的情報記録媒体お よびその製造方法に対して有効である。

Claims

請求の範囲
[1] 基板上に、情報層を少なくとも 1つ以上備える光学的情報記録媒体であって、 前記情報層の少なくとも 1つは、記録層と誘電体層とを有し、
前記記録層は、 Te、 Oおよび M (ただし、 Mは、 Au、 Pd、 Ptから選ばれる 1つまた は複数の元素)を主成分として含み、
前記誘電体層の熱伝導率が、 0. OlWZK'cm以上であり、
前記誘電体層の消衰係数が、 0以上 1. 0以下である、
光学的情報記録媒体。
[2] 前記誘電体層が、 A1N、 BN、 Si N、 HfN、 TaN、 TiN、 ZrN、 SiC、 BeO、 Al O
3 4 2 3
、 MgO、 ZnO、 TiO、 C、 NbCから選ばれる少なくとも一つを主成分とする材料を含
2
む、
請求項 1に記載の光学的情報記録媒体。
[3] 前記 Teの割合が 20〜50原子%、前記 Oの割合が 40〜70原子%、および前記 Pd の割合が 3〜20原子%の組成範囲内である、
請求項 1または 2に記載の光学的情報記録媒体。
[4] 前記誘電体層の膜厚が、 lnm以上 40nm以下である、
請求項 1から 3のいずれかに 1項に記載の光学的情報記録媒体。
[5] 前記誘電体層が、 A1N、 BN、 Si N、 MgOから選ばれる少なくとも一つを主成分と
3 4
する材料を含む、
請求項 1から 4のいずれかに 1項に記載の光学的情報記録媒体。
[6] 前記記録層の膜厚が、 lnm以上 30nm以下である、
請求項 1から 5のいずれか 1項に記載の光学的情報記録媒体。
[7] 基板上に、情報層を n層(nは 3以上の整数)備える光学的情報記録媒体であって、 記録再生光入射側から最も遠い層を第 1の情報層 L0として、前記入射側に向かつ て順に、第 2の情報層 Ll、 · · ·、第 nの情報層 Ln— 1とした場合に、
前記第 2の情報層 L1から前記第 nの情報層 Ln— 1までが、記録層と誘電体層とを 有し、
前記記録層は、 Te、 Oおよび M (ただし、 Mは、 Au、 Pd、 Ptから選ばれる 1つまた は複数の元素)を主成分として含み、
前記誘電体層の熱導率が、 0. OlWZK'cm以上であり、
前記誘電体層の消衰係数が、 0以上 1. 0以下である、
光学的情報記録媒体。
[8] 前記情報層を 4層 (n=4)備え、
入射した前記記録再生光が各情報層により反射される反射光強度が、 L3く L1の 関係である、
請求項 7に記載の光学的情報記録媒体。
[9] 前記情報層を 4層 (n=4)備え、
入射した前記記録再生光が各情報層により反射される反射光強度が、 L2く L1の 関係である、
請求項 7に記載の光学的情報記録媒体。
[10] 請求項 2から 6の 、ずれか 1項に記載の光学的情報記録媒体の製造方法であって 基板上に、 Te、 Oおよび M (ただし、 Mは、 Au、 Pd、 Ptから選ばれる 1つまたは複 数の元素)を主成分として含む記録層と、 A1N、 BN、 Si N、 HfN、 TaN、 TiN、 ZrN
3 4
、 SiC、 BeO、 Al O、 MgO、 ZnO、 TiO、 C、 NbCから選ばれる少なくとも一つを主
2 3 2
成分とする誘電体層とを、気相薄膜堆積法により形成する、
光学的情報記録媒体の製造方法。
[11] 基板上に、第 1の情報層、第 1の中間層、第 2の情報層、第 2の中間層、第 3の情報 層、第 3の中間層、第 4の情報層、光透明層をこの順に備える光学的情報記録媒体 であって、
前記第 1から第 4の情報層は、 Te、 Oおよび M (ただし、 Mは、 Au、 Pd、 Ptから選 ばれる 1つまたは複数の元素)を主成分として含む記録層を少なくとも有しており、 前記第 1の情報層は、 Ag合金もしくは A1合金を主成分とする反射層をさらに有して おり、
前記第 3の情報層および前記第 4の情報層は、 A1N、 BN、 Si N、 HfN、 TaN、 Ti
3 4
N、 ZrN, SiC、 BeO、 Al O、 MgO、 ZnO、 TiO、 C、 NbCから選ばれる少なくとも 一つを主成分とする材料を含む誘電体層をさらに有している、
光学的情報記録媒体。
[12] 前記第 2の情報層は、前記反射層をさらに有している、
請求項 11に記載の光学的情報記録媒体。
[13] 前記第 2の情報層は、前記誘電体層をさらに有している、
請求項 11に記載の光学的情報記録媒体。
[14] 前記第 1の中間層、前記第 2の中間層、前記第 3の中間層、および前記光透明層 は、ポリカーボネイト樹脂、ポリメチルメタタリレート榭脂、ポリオレフイン榭脂、ノルボル ネン系榭脂、および紫外線硬化性榭脂から選ばれる少なくとも 1つを含む、 請求項 11から 13のいずれか 1項に記載の光学的情報記録媒体。
[15] 前記基板、前記第 1の中間層、前記第 2の中間層、前記第 3の中間層、および前記 光透明層の屈折率が、 1. 4〜1. 7の範囲である、
請求項 11から 14のいずれか 1項に記載の光学的情報記録媒体。
[16] 前記第 1の中間層、前記第 2の中間層、および前記第 3の中間層の厚みが、互いに 異なっており、
各中間層の厚みは、前記第 3中間層の厚み <前記第 1中間層の厚み <前記第 2 中間層の厚み、を満たし、
前記第 3中間層の厚みが、 6 m以上 15 m以下である、
請求項 11から 15のいずれか 1項に記載の光学的情報記録媒体。
[17] 基板、第 1の情報層、第 2の情報層、第 3の情報層、第 4の情報層、光透明層をこの 順に備える光学的情報記録媒体であって、
前記第 1の情報層、前記第 2の情報層、前記第 3の情報層、および前記第 4の情報 層は、記録層を有しており、
前記記録層は、 Te、 Oおよび M (ただし、 Mは、 Au、 Pd、 Ptから選ばれる 1つまた は複数の元素)を主成分として含み、
前記第 1の情報層における前記記録層の膜厚を A、前記第 2の情報層における前 記記録層の膜厚を B、前記第 3の情報層における前記記録層の膜厚を C、前記第 4 の情報層における前記記録層の膜厚を Dとしたとき、 A:B:C:D=1:0.2〜0.7:0.2〜0.6:0.2〜0.5 の関係にある、
光学的情報記録媒体。
PCT/JP2006/321677 2005-10-31 2006-10-30 光学的情報記録媒体およびその製造方法 WO2007052614A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06812186A EP1950758A4 (en) 2005-10-31 2006-10-30 OPTICAL INFORMATION RECORDING MEDIUM AND METHOD OF MANUFACTURING THE SAME
US12/092,044 US8007887B2 (en) 2005-10-31 2006-10-30 Optical information recording medium and method for manufacturing the same
JP2007542734A JP4889652B2 (ja) 2005-10-31 2006-10-30 光学的情報記録媒体
CN2006800400243A CN101297363B (zh) 2005-10-31 2006-10-30 光学信息记录介质及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-315723 2005-10-31
JP2005315723 2005-10-31

Publications (1)

Publication Number Publication Date
WO2007052614A1 true WO2007052614A1 (ja) 2007-05-10

Family

ID=38005767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321677 WO2007052614A1 (ja) 2005-10-31 2006-10-30 光学的情報記録媒体およびその製造方法

Country Status (7)

Country Link
US (1) US8007887B2 (ja)
EP (1) EP1950758A4 (ja)
JP (1) JP4889652B2 (ja)
KR (1) KR20080066054A (ja)
CN (1) CN101297363B (ja)
TW (1) TW200739572A (ja)
WO (1) WO2007052614A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228061A (ja) * 2008-03-24 2009-10-08 Mitsubishi Materials Corp パーティクル発生の少ない光記録媒体膜形成用Te系スパッタリングターゲット
WO2009156461A1 (en) * 2008-06-26 2009-12-30 Thomson Licensing Storage medium for optical data and optical data disc
WO2010044245A1 (ja) * 2008-10-16 2010-04-22 パナソニック株式会社 光記録媒体、及び光記録媒体の製造方法
JP5148629B2 (ja) * 2007-12-04 2013-02-20 パナソニック株式会社 情報記録媒体、及びその製造法、ならびに記録再生装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261905A1 (en) * 2009-06-12 2010-12-15 Thomson Licensing Compatible optical recording medium
JP2011198410A (ja) * 2010-03-19 2011-10-06 Sony Corp 多層光記録媒体
EP2589025A2 (fr) * 2010-07-01 2013-05-08 Thomson Licensing Procede d'estimation de diffusion de la lumiere
JP5786304B2 (ja) * 2010-10-21 2015-09-30 Tdk株式会社 多層光記録媒体
JP5796180B2 (ja) * 2011-03-03 2015-10-21 パナソニックIpマネジメント株式会社 情報記録媒体およびその製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854338A (ja) 1981-09-28 1983-03-31 Matsushita Electric Ind Co Ltd 光学記録媒体および記録方法
WO1998009823A1 (fr) 1996-09-09 1998-03-12 Matsushita Electric Industrial Co., Ltd. Support d'enregistrement d'informations optiques, procede de fabrication correspondant, et procede et dispositif d'enregistrement et de lecture d'informations optiques
JP2001155380A (ja) * 2000-10-27 2001-06-08 Victor Co Of Japan Ltd 光記録媒体
JP2002133712A (ja) 2000-08-17 2002-05-10 Matsushita Electric Ind Co Ltd 光学的情報記録媒体とその製造方法、記録再生方法及び記録再生装置
JP2002251778A (ja) * 2000-12-18 2002-09-06 Matsushita Electric Ind Co Ltd 光学的情報記録媒体、その製造方法、その記録方法及び記録装置
WO2004027770A1 (ja) 2002-09-18 2004-04-01 Matsushita Electric Industrial Co., Ltd. 光学情報記録媒体とその製造方法
WO2004032130A1 (ja) * 2002-10-01 2004-04-15 Matsushita Electric Industrial Co., Ltd. 光学的情報記録媒体とその製造方法
JP2004220758A (ja) * 2002-12-26 2004-08-05 Hitachi Maxell Ltd 光情報記録媒体及び光情報記録媒体の情報記録再生方法
JP2004227622A (ja) * 2003-01-20 2004-08-12 Toshiba Corp 光記録媒体および光記録再生方法
JP2005293821A (ja) * 2004-03-10 2005-10-20 Matsushita Electric Ind Co Ltd 情報記録媒体とその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3689612B2 (ja) 2000-01-26 2005-08-31 株式会社日立製作所 情報記録媒体
TW556185B (en) 2000-08-17 2003-10-01 Matsushita Electric Ind Co Ltd Optical information recording medium and the manufacturing method thereof, record reproduction method and record reproduction device
US6768710B2 (en) * 2000-12-18 2004-07-27 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method for producing the same, and method and apparatus for recording information thereon
CN1312686C (zh) 2001-11-23 2007-04-25 皇家飞利浦电子股份有限公司 多堆叠光学数据存储介质和这种介质的使用
JP2003281780A (ja) 2002-03-26 2003-10-03 Toshiba Corp 光記録媒体
DE60308958T2 (de) 2002-07-22 2007-03-15 Ricoh Co., Ltd. Optisches Phasenübergangsaufzeichnungsmedium
US7033659B2 (en) * 2002-12-26 2006-04-25 Hitachi Maxell, Ltd. Optical information recording medium and method of recording and reproducing information on and from optical information recording medium
JP4215497B2 (ja) * 2002-12-27 2009-01-28 Tdk株式会社 光記録媒体
TW200428382A (en) * 2003-05-09 2004-12-16 Matsushita Electric Ind Co Ltd Optical information recording medium
TW200506926A (en) * 2003-06-13 2005-02-16 Matsushita Electric Ind Co Ltd Optical information recording medium and method for manufacturing the same
EP1523002B1 (en) * 2003-10-08 2008-05-07 Matsushita Electric Industrial Co., Ltd. Information recording medium, method of manufacturing the same, and sputtering target
TW200534235A (en) * 2004-03-10 2005-10-16 Matsushita Electric Ind Co Ltd Information recording medium and method for manufacturing the same
CN100530383C (zh) * 2004-10-18 2009-08-19 松下电器产业株式会社 光学信息记录介质及其制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854338A (ja) 1981-09-28 1983-03-31 Matsushita Electric Ind Co Ltd 光学記録媒体および記録方法
WO1998009823A1 (fr) 1996-09-09 1998-03-12 Matsushita Electric Industrial Co., Ltd. Support d'enregistrement d'informations optiques, procede de fabrication correspondant, et procede et dispositif d'enregistrement et de lecture d'informations optiques
JP2002133712A (ja) 2000-08-17 2002-05-10 Matsushita Electric Ind Co Ltd 光学的情報記録媒体とその製造方法、記録再生方法及び記録再生装置
JP2001155380A (ja) * 2000-10-27 2001-06-08 Victor Co Of Japan Ltd 光記録媒体
JP2002251778A (ja) * 2000-12-18 2002-09-06 Matsushita Electric Ind Co Ltd 光学的情報記録媒体、その製造方法、その記録方法及び記録装置
WO2004027770A1 (ja) 2002-09-18 2004-04-01 Matsushita Electric Industrial Co., Ltd. 光学情報記録媒体とその製造方法
WO2004032130A1 (ja) * 2002-10-01 2004-04-15 Matsushita Electric Industrial Co., Ltd. 光学的情報記録媒体とその製造方法
JP2004220758A (ja) * 2002-12-26 2004-08-05 Hitachi Maxell Ltd 光情報記録媒体及び光情報記録媒体の情報記録再生方法
JP2004227622A (ja) * 2003-01-20 2004-08-12 Toshiba Corp 光記録媒体および光記録再生方法
JP2005293821A (ja) * 2004-03-10 2005-10-20 Matsushita Electric Ind Co Ltd 情報記録媒体とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1950758A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148629B2 (ja) * 2007-12-04 2013-02-20 パナソニック株式会社 情報記録媒体、及びその製造法、ならびに記録再生装置
US8426003B2 (en) 2007-12-04 2013-04-23 Panasonic Corporation Information recording medium, method for manufacturing the same, and recording/reproducing apparatus
JP2009228061A (ja) * 2008-03-24 2009-10-08 Mitsubishi Materials Corp パーティクル発生の少ない光記録媒体膜形成用Te系スパッタリングターゲット
WO2009156461A1 (en) * 2008-06-26 2009-12-30 Thomson Licensing Storage medium for optical data and optical data disc
WO2010044245A1 (ja) * 2008-10-16 2010-04-22 パナソニック株式会社 光記録媒体、及び光記録媒体の製造方法
US8206805B2 (en) 2008-10-16 2012-06-26 Panasonic Corporation Optical recording medium, and method for producing optical recording medium
JP5411153B2 (ja) * 2008-10-16 2014-02-12 パナソニック株式会社 光記録媒体、及び光記録媒体の製造方法

Also Published As

Publication number Publication date
US8007887B2 (en) 2011-08-30
CN101297363B (zh) 2010-11-17
US20090263613A1 (en) 2009-10-22
EP1950758A1 (en) 2008-07-30
CN101297363A (zh) 2008-10-29
TW200739572A (en) 2007-10-16
EP1950758A4 (en) 2009-07-22
KR20080066054A (ko) 2008-07-15
JPWO2007052614A1 (ja) 2009-04-30
JP4889652B2 (ja) 2012-03-07

Similar Documents

Publication Publication Date Title
US6841217B2 (en) Optical information recording medium and method for manufacturing the same
WO2007052614A1 (ja) 光学的情報記録媒体およびその製造方法
KR20040063839A (ko) 광기록 매체
JP4834666B2 (ja) 情報記録媒体およびその製造方法
WO2004027770A1 (ja) 光学情報記録媒体とその製造方法
WO2002054396A1 (fr) Support d&#39;enregistrement optique
JP4892549B2 (ja) 情報記録媒体及びその製造方法
JP2004362748A (ja) 光学情報記録媒体
JP4892562B2 (ja) 情報記録媒体、その製造方法および情報記録媒体を形成するためのスパッタリングターゲット
JP5148629B2 (ja) 情報記録媒体、及びその製造法、ならびに記録再生装置
JPWO2004032130A1 (ja) 光学的情報記録媒体とその製造方法
WO2006043357A1 (ja) 光学的情報記録媒体及びその製造法
JP5437793B2 (ja) 情報記録媒体及びその製造方法
US8247058B2 (en) Information recording medium and manufacturing method thereof
WO2011048751A1 (ja) 光学的情報記録媒体及びその製造方法
KR20110086668A (ko) 정보 기록 매체, 기록 장치, 재생 장치 및 재생 방법
WO2012120816A1 (ja) 情報記録媒体とその製造方法
JP2005339761A (ja) 光記録媒体
EP1764793A1 (en) Optical recording medium and process for producing the same
JP2005004948A (ja) 光学的情報記録媒体およびその製造方法
WO2005041181A1 (ja) 光記録ディスク
JPH03178480A (ja) 情報記録用材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040024.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1583/KOLNP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2007542734

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12092044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087012527

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006812186

Country of ref document: EP