WO2006135016A1 - 窒化アルミニウム焼結体、スラリー、グリーン体、および脱脂体 - Google Patents
窒化アルミニウム焼結体、スラリー、グリーン体、および脱脂体 Download PDFInfo
- Publication number
- WO2006135016A1 WO2006135016A1 PCT/JP2006/312051 JP2006312051W WO2006135016A1 WO 2006135016 A1 WO2006135016 A1 WO 2006135016A1 JP 2006312051 W JP2006312051 W JP 2006312051W WO 2006135016 A1 WO2006135016 A1 WO 2006135016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum nitride
- sintered body
- grain boundary
- range
- slurry
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/62635—Mixing details
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63432—Polystyrenes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3222—Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3895—Non-oxides with a defined oxygen content, e.g. SiOC, TiON
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/608—Green bodies or pre-forms with well-defined density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/85—Intergranular or grain boundary phases
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/95—Products characterised by their size, e.g. microceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Definitions
- the present invention relates to an aluminum nitride sintered body, and an aluminum nitride slurry, an aluminum nitride green body, and an aluminum nitride degreased body used for producing the aluminum nitride sintered body.
- aluminum nitride Since aluminum nitride has high thermal conductivity and excellent insulating properties, its sintered body is used in various applications such as substrates for semiconductor mounting substrates and members of semiconductor manufacturing equipment.
- an aluminum nitride sintered body having improved fracture toughness for example, an aluminum nitride sintered body having a wide particle size distribution using two types of aluminum nitride powders having different particle size distributions is known (for example, Patent Documents 1 and 2). Also known is an aluminum nitride sintered body in which the non-uniform strain of the YAG (3Y O-5A1 O) phase is a specific value or more (for example, Patent Document 3).
- an aluminum nitride powder having an average particle size of 0.5 ⁇ m to 3 ⁇ m and an aluminum nitride powder having an average particle size of 3 am to 15 am are used as raw materials. Yes.
- the aluminum nitride powder with an average particle size of 3 ⁇ to 15 ⁇ is generally manufactured by the direct nitriding method with poor sinterability. A complex process and precise control of the firing temperature were required.
- the fracture toughness value and mechanical strength of the aluminum nitride sintered body obtained by these methods there was room for further improvement in balance.
- Patent Document 3 Although the sintered body of Patent Document 3 has high strength, there is still room for improvement in order to improve the fracture toughness value, thermal conductivity, and mechanical strength in a well-balanced manner.
- Patent Document 1 Japanese Patent Laid-Open No. 2001-2474
- Patent Document 2 JP 2002-220283 A
- Patent Document 3 Japanese Patent Laid-Open No. 10-203873
- the grain boundary phase derived from the sintering aid has a specific structure in the region within 100 ⁇ from the surface of the sintered body, and the average particle diameter of the aluminum nitride particles Is within a specific range, an aluminum nitride sintered body having a high fracture toughness value and a well-balanced improvement in fracture toughness value, thermal conductivity, and mechanical strength can be obtained. It discovered that it could manufacture with an aluminum fluoride slurry, a green body, and a degreased body, and came to propose this invention.
- the present invention is an aluminum nitride sintered body containing aluminum nitride crystal particles and a grain boundary phase derived from a sintering aid, and has an arbitrary region within 100 ⁇ m from the surface of the sintered body.
- the area of the grain boundary phase with a circumscribed circle diameter of 1 zm or less is 50% or more and the average particle diameter of the aluminum nitride particles is 3.
- O xm to 7 It is an aluminum nitride sintered body in the range of 0 ⁇ m.
- such a sintered body contains an aluminum nitride powder, a sintering aid, a binder, and an organic solvent having an average particle size in the range of 1.0 zm to 3. Ozm.
- the cumulative 50% value (D50) in the particle size distribution curve is in the range of 0.8 xm to l.
- the ratio of the 90% cumulative value to the 10% cumulative value (D90 / D10) in the particle size distribution curve is 6. 0 to 6.8 It can be obtained by using an aluminum nitride slurry in the range of
- such a sintered body includes an aluminum nitride powder having an average particle diameter in the range of 1.0 ⁇ 3.0 ⁇ m to 3.0 ⁇ m, and a binder, and has a density in water. 2. Obtained by an aluminum nitride green body in the range of 25 g / cm 3 to 2.4 5 g / cm 3 .
- such a sintered body is obtained by using an aluminum nitride degreased body in which the maximum peak position of the pore distribution measured with a mercury porosimeter is in the range of 0.18 xm to 0.28 xm. can get.
- the aluminum nitride sintered body of the present invention has a high fracture toughness value and also improves the fracture toughness value, thermal conductivity, and mechanical strength in a well-balanced manner.
- This aluminum nitride sintered body can be easily produced from the aluminum nitride slurry, the aluminum nitride green body, and the aluminum nitride degreased body of the present invention.
- FIG. 1 illustrates a region of 100 zm from the surface of a sintered body when the shape of the sintered body is a rectangular parallelepiped.
- the area from the surface of the cross-sectional view to the dotted line is the area of the sintered body surface force of 100 ⁇ m.
- FIG. 2 illustrates a region of 100 ⁇ m from the surface of the sintered body when the shape of the sintered body is a cylinder.
- the area from the surface of the cross-sectional view to the dotted line is the region where the surface force of the sintered body is 100 ⁇ m.
- FIG. 3 shows the pore distribution of the aluminum nitride degreased body obtained in Example 1.
- the aluminum nitride sintered body of the present invention is manufactured using at least an aluminum nitride powder and a sintering aid as raw materials.
- a grain boundary phase derived from the sintering aid is formed on at least a part of the grain boundaries of the aluminum nitride sintered body.
- the sintering aid capable of forming the grain boundary phase include compounds generally used as a sintering aid for an aluminum nitride sintered body, such as yttrium oxide (YO) and oxidation.
- Gd ⁇ gadolinium oxide
- Nd ⁇ neodymium oxide
- Sm samarium oxide
- yttrium oxide is preferable in that the obtained sintered body is dense and has high thermal conductivity.
- the sintering aid a sintering aid having a residual ratio in the sintered body of 40% or more is preferable, and a sintering aid having 50% or more is more preferable.
- the residual ratio of the sintering aid in the sintered body is (sintering agent-derived component contained in the sintered body after sintering) Z (sintering powder contained in the green body before sintering) The value of the binder was determined.
- the sintering aid having the residual ratio as described above the obtained sintered body has a specific grain boundary phase derived from the sintering aid in a region within 100 ⁇ from the surface of the sintered body.
- Aluminum nitride that has a structure and has an average particle diameter of aluminum nitride particles in a specific range, which has a high fracture toughness value and a good balance between fracture toughness value, thermal conductivity, and mechanical strength. A sintered body is obtained.
- Sintering aids with a residual rate of 40% or more in the sintered body include yttrium oxide (Y0), lanthanum oxide (LaO), cerium oxide (CeO), holmium oxide (HoO), and ytterbium oxide.
- Um Yb 2 O 3
- gadolinium oxide Gd 0
- neodymium oxide Nd 0
- samarium oxide
- rare earth compounds such as dysprosium oxide (Dy 2 O 3); calcium oxide (CaO)
- Alkaline earth metal compounds such as magnesium oxide (MgO) and strontium oxide (SrO), or a mixture thereof.
- the grain boundary phase derived from the sintering aid is a phase formed by the sintering aid alone at the grain boundary of the aluminum nitride crystal particles, and a plurality of sintering aids react. And a phase formed by a reaction between a sintering aid and an aluminum nitride impurity.
- yttrium oxide when yttrium oxide is used as a sintering aid, yttrium oxide reacts with impurity oxygen contained in the aluminum nitride raw material powder, and 3Y O-5A1 0 (hereinafter referred to as “YY-5”) Also called “YAG”. ), Y ⁇ ⁇ ⁇ 1 O (hereinafter also referred to as “YAL”), 2Y ⁇ ⁇ ⁇ 1 O (hereinafter “
- the grain boundary phase derived from the sintering aid has a specific structure in a region within 100 ⁇ m from the surface of the sintered body. That is, in the sintered body of the present invention, the area of the grain boundary phase having a circumscribed circle diameter of lxm or less with respect to the total area of the grain boundary phase in an arbitrary cross section within a region of 100 zm from the sintered body surface. More than 50%.
- the region within 100 xm from the surface of the sintered body is selected as an arbitrary cross section including the surface of the sintered body, and at any point on the surface of the sintered body included in the cross section, the surface of the sintered body is curved.
- a circumscribing tangent line is drawn, and a straight line A perpendicular to this tangent line is drawn, it means the area of straight line A that is within 100 / im from the point on the sintered body surface toward the inside of the sintered body. ing.
- FIG. 1 and FIG. 2 exemplify the case where the sintered body has a rectangular parallelepiped shape and a cylindrical shape, respectively.
- the circumscribed circle diameter of the grain boundary phase is determined as follows.
- the sintered body sample obtained by the present invention is broken. Since the structure in the vicinity of the surface of the sintered body is almost equivalent, the direction of the fracture surface is not particularly limited and may be arbitrary, but is usually almost perpendicular to the plane in contact with the surface of the sintered body where fracture is about to start. It breaks at the plane. For example, when the shape of the sintered body sample is a rectangular parallelepiped, the fracture is performed so that a fracture surface almost perpendicular to the surface of the sintered body is formed. The fracture surface is mirror-polished and heat-treated under conditions that do not cause aluminum nitride grain growth.
- a portion of the heat-treated sample fracture surface including a region within 100 zm from the sintered body surface is observed with a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the ratio (%) of the area of the grain boundary phase having a circumscribed circle diameter of 1 ⁇ m or less to the total area of the grain boundary phase in the cross section of the sintered body is based on the result of the image analysis of the SEM photograph described above.
- the ratio force S of the area of the grain boundary phase whose circumscribed diameter is lxm or less is S, and the total area of the grain boundary phase is S, and the total area of the grain boundary phase is
- the toughness value can be increased.
- the ratio of the area of the grain boundary phase is not within the above range, the whole aluminum nitride crystal particles tend to be covered with the grain boundary phase derived from the sintering aid. There is a case where the strength of the material is lowered.
- the grain boundary phase having a circumscribed circle diameter of 1 ⁇ m or less with respect to the total area of the grain boundary phase in an arbitrary cross section within a region of 100 ⁇ m from the sintered body surface.
- the area ratio is preferably 60% or more, more preferably 70% or more.
- the structure of the grain boundary phase derived from the sintering aid outside the region within 100 zm from the surface of the sintered body is not particularly limited. Even in the cross section of the region exceeding m, it is preferable that the ratio force of the area of the grain boundary phase whose circumscribed circle diameter is 1 zm or less to the total area of the grain boundary phase is 50% or more. 60% or more It is more preferable that it is 70% or more. Even in any cross section in the region exceeding 100 zm from the sintered body surface, if the structure of the grain boundary phase is the above structure, the fracture toughness value of the aluminum nitride sintered body can be remarkably improved and the mechanical strength can be improved. To improve the strength And a more reliable sintered body substrate can be obtained.
- the aluminum nitride sintered body of the present invention contains aluminum nitride crystal particles, and the average particle diameter of the aluminum nitride crystal particles is in the range of 3.0 xm to 7. O xm, preferably 3.0 ⁇ m. The range is from ⁇ to 6. O zm, more preferably from 3.5 xm to 5.0 ⁇ m.
- the average particle size of the aluminum nitride crystal particles described above is determined as follows. As in the case of obtaining the circumscribed circle diameter of the grain boundary phase, the sintered body sample obtained in the present invention is fractured, and the fractured surface is mirror-polished and then heat-treated under the condition that grain growth of aluminum nitride does not occur. SEM observation of the part of the heat-treated sample containing the region within 100 ⁇ m from the sintered body surface. Select an area with a particularly average structure within the area of 100 xm from the sintered body surface, and set the magnification to include 1000 to 2000 aluminum nitride crystal particles in one SEM photograph. Take a photo. Prepare 5 SE photos like this. The image data of these photographs is taken into an image analysis system, and the particle diameter of each aluminum nitride crystal particle in the image data is measured. A value obtained by dividing the integrated value of the particle diameters by the number of particles was defined as an average particle diameter.
- the obtained aluminum nitride sintered body has a high fracture toughness value, and the fracture toughness value, thermal conductivity, and mechanical strength are well balanced.
- An improved aluminum nitride sintered body is obtained.
- the average particle diameter of the aluminum nitride crystal particles exceeds the above range, the thermal conductivity is improved, but the mechanical strength and fracture toughness value may be lowered. If the average particle diameter of the aluminum nitride crystal particles is less than the above range, the mechanical strength is improved but the fracture toughness value may be lowered.
- the aluminum nitride powder used as the raw material for the aluminum nitride sintered body of the present invention is used without particular limitation as long as the average particle diameter of the aluminum nitride crystal particles contained in the aluminum nitride sintered body is within the above range. it can.
- aluminum nitride powder contained in an aluminum nitride slurry described later can be used.
- the above-described aluminum nitride sintered body of the present invention includes, for example, the following aluminum nitride slurry.
- One can be produced as a raw material. That is, the aluminum nitride sintered body of the present invention includes an aluminum nitride powder having an average particle diameter in the range of 1.0 ⁇ to 3.0 ⁇ , a sintering aid, a binder, and an organic solvent,
- the cumulative 50% value (D50) in the particle size distribution curve is in the range of 0.8 ⁇ to 1 ⁇ , and the ratio of the cumulative 90% value to the cumulative 10% value (D90 / D10) is 6.0 to 6.8. It can be produced from an aluminum nitride slurry in the range of
- the average particle diameter of the aluminum nitride powder used in the aluminum nitride slurry of the present invention is in the range of 1.0 x m to 3. O x m.
- the average particle diameter of the aluminum nitride powder refers to the average particle diameter determined by the average number of aggregated aluminum nitride particles measured with a laser diffraction particle size distribution analyzer.
- the aluminum nitride powder has an average particle size in the above range, the solid content concentration of the resulting aluminum nitride slurry can be increased, and it is easy to uniformly disperse and has good fluidity and drying efficiency.
- the aluminum nitride sintered body of the present invention in which the aluminum nitride crystal particles have a predetermined structure can be easily obtained.
- aluminum nitride powders having an average particle size in the range of 1.0 / im to 2.5 / im are preferred.
- the range of 1.0 / im to 2.0 / im Is more preferred.
- the average particle diameter of the aluminum nitride powder is within the above range, it can be dispersed more uniformly and soon has good fluidity and drying efficiency.
- an aluminum nitride powder having an average particle diameter in the above range may be used alone, or two or more kinds of nitrides having different average particle diameters may be used.
- Aluminum powder may be mixed and used so that the average particle diameter is in the above range.
- the aluminum nitride powder used in the aluminum nitride slurry of the present invention is not particularly limited except for the average particle diameter.
- the production method of aluminum nitride powder is not particularly limited.
- Aluminum nitride powder obtained by a reduction nitriding method, aluminum nitride powder obtained by a direct nitriding method, or a mixture thereof may be used.
- the aluminum nitride powder obtained by the reduction nitriding method is preferred in that the obtained aluminum nitride sintered body has good thermal conductivity.
- the impurities in the aluminum nitride powder are not particularly limited, but those having less impurities such as oxygen and cations are preferred.
- the oxygen content is preferably 1.5% by weight or less.
- pure aluminum nitride is a compound having a molar ratio of aluminum to nitrogen of 1: 1, it is derived from elements contained in the raw material aluminum nitride powder that fall outside this quantitative ratio range. Are treated as cationic impurities. For example, if aluminum nitride contains metallic aluminum as an impurity, it is handled as a cation impurity. However, the surface of the aluminum nitride powder is inevitably oxidized in the air, and at least a part of the A1 —N bond may be replaced by an Al—O bond. The derived components are not handled as cation impurities in the aluminum nitride powder, but are handled as oxygen.
- the sintering aid used in the aluminum nitride slurry of the present invention the sintering aid described in the above section of the aluminum nitride sintered body can be used. The same applies to suitable sintering aids.
- These sintering aids can be used in an amount of usually 2 to 6 parts by weight, preferably 3 to 5 parts by weight, based on 100 parts by weight of the aluminum nitride powder.
- the fracture toughness value of the sintered body obtained from the aluminum nitride slurry of the present invention can be increased, and the grains derived from the sintering aid can be used.
- the aluminum nitride sintered body of the present invention having a predetermined phase structure can be easily produced.
- the binder used for the aluminum nitride slurry of the present invention is not particularly limited, and general binders for forming ceramic powders can be used.
- Hydrocarbon organic polymers such as petroleum resin, polyethylene, polypropylene, polystyrene, etc.
- Other organic polymers such as polysalt cellulose, wax, etc., or a mixture of two or more of these can be used.
- the oxygen-containing organic polymer is preferable in that it has excellent chemical affinity with the aluminum nitride powder and can be strongly bonded to the aluminum nitride powder.
- the number average molecular weight is not particularly limited, but the number average molecular weight in terms of polystyrene is usually in the range of 3000 to 1000000, preferably 5000 to 300000. It is a range. When the number average molecular weight of the organic polymer is in the above range, a green body having high strength and excellent flexibility may be obtained.
- binders are not particularly limited. For example, they may be used as they are or as emulsions.
- These binders can be used in an amount of usually 4 to 30 parts by weight, preferably 5 to 20 parts by weight, based on 100 parts by weight of the aluminum nitride powder.
- the organic solvent used in the aluminum nitride slurry of the present invention is not particularly limited, and a general organic solvent can be used.
- Ketones such as acetone, methyl ethyl ketone, and methyl isopropyl ketone
- Alcohols such as ethanol, propanol, and butanol
- Aromatic hydrocarbons such as benzene, toluene, and xylene
- Halogenated hydrocarbons such as trichloroethylene, tetrachloroethylene, and bromochloromethane; or a mixture of these organic solvents can be used.
- These organic solvents can be used in an amount of usually 20 parts by weight to 200 parts by weight, preferably 40 parts by weight to 150 parts by weight with respect to 100 parts by weight of the aluminum nitride powder.
- additives such as a surfactant and a plasticizer can be used as other components.
- Surfactants can be used without any particular limitation, but nonionic surfactants are preferred.
- nonionic surfactant examples include, for example, carboxytrioxyethylene tridecyl etherate, diglycerin monooleate, diglycerin monostearate, force-noroxylated heptaoxyethylene tridecyl ether, tetraglycerin mono Oleate, polyoxyethylene sonolebitan monooleate, propylene glycoloremonostearate, glycerol monostearate, glycerol tristearate, glycerol monooleate, glycerol trioleate, sorbitan trioleate, and sorbitan monooleate, etc. Or a mixture of two or more of these.
- These surfactants are usually used in an amount in the range of 0.01 to 10 parts by weight, preferably 0.02 to 3.0 parts by weight, with respect to 100 parts by weight of the aluminum nitride powder. be able to.
- the surfactant is used within the above range, the dispersion between the binder and the aluminum nitride is improved, and the strength of the aluminum nitride green body obtained from the aluminum nitride slurry can be increased. .
- the plasticizer can be used without particular limitation, for example, polyethylene glycol and its derivatives; phthalates such as dimethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, and dioctyl phthalate; butyl stearate, etc. And stearic acid esters; tritaresol phosphate; tri-N-butyl phosphate; and glycerin, or a mixture of two or more of these.
- plasticizers are usually used in an amount in the range of 0.1 to 20 parts by weight, preferably 0.4 to 15 parts by weight, with respect to 100 parts by weight of the aluminum nitride powder. it can.
- the aluminum nitride slurry of the present invention is a mixture of the above-mentioned aluminum nitride powder, sintering aid, binder, organic solvent, and other raw materials, and has a specific particle size distribution.
- the aluminum nitride slurry of the present invention has a cumulative 50% value (D50) force in the particle size distribution curve in the range of 0.8 x m to l.
- D50 cumulative 50% value
- the ratio between the cumulative 90% value and the cumulative 10% value (D50)
- the particle size distribution of the aluminum nitride slurry is determined by a laser diffraction method.
- the particles in the particle size distribution measurement of the aluminum nitride slurry include all particles that can be measured by laser diffraction method, including binders, sintering aids, additives, etc. Sometimes it is.
- the measurement result is expressed as a particle size distribution curve, and for all particles that can be measured by the laser diffraction method contained in the aluminum nitride slurry, the cumulative value is 10% from the smaller particle diameter.
- the particle size was determined as D10, the particle size when the cumulative value was 50% as D50, and the particle size when the cumulative value was 90% as D90. From these values, the ratio (D90 / D10) of the cumulative 90% value and the cumulative 10% value was calculated.
- the particle size distribution of the aluminum nitride slurry of the present invention is within the above range, even when the solid content concentration of the aluminum nitride slurry is high, the viscosity can be reduced as compared with a general slurry.
- the slurry is easy to handle. Also, the amount of organic solvent contained in the aluminum nitride slurry is small.
- the aluminum nitride sintered body obtained by using this aluminum nitride slurry as a raw material is excellent in both fracture toughness and mechanical strength, and variation in physical properties such as mechanical strength is reduced. Further, the dimensional accuracy of the obtained sintered body can be improved and the end warp can be reduced. Furthermore, it is possible to easily obtain the aluminum nitride sintered body of the present invention in which the grain boundary phase derived from the sintering aid has a predetermined structure.
- the force D50 having a particle size distribution within the above range is in the range of 0.9 ⁇ to 1.1 zm, and the D90ZD10 force 6.2 ⁇ ! ⁇ 6.6 ⁇ m range It is preferable.
- the particle size distribution of the aluminum nitride slurry is within the above range, the aluminum nitride sintered body obtained using the aluminum nitride slurry as a raw material has a higher fracture toughness value.
- the method for producing the aluminum nitride slurry having the above particle diameter is not particularly limited.
- an aluminum nitride solution is prepared by dissolving and mixing an aluminum nitride powder, a sintering aid, a binder, an organic solvent, etc. with a motor stirrer or a ball mill. After being obtained, it can be produced by introducing it into a known dispersing device and dispersing solid components such as aluminum nitride and sintering aid in an organic solvent.
- Known dispersion devices include, for example, an ultrasonic dispersion device, a bead mill, a Rono Reminole, a homomixer, an ultramixer, a disperser mixer, a homomixer, a through-type high-pressure dispersion device, a collision-type high-pressure dispersion device, a porous high-pressure dispersion device, It is possible to enumerate deceiving type high-pressure dispersers, (collision + penetration) type high-pressure dispersers, ultra-high pressure homogenizers, etc.
- a through-type high-pressure dispersing device a collision-type high-pressure dispersing device, a porous-type high-pressure dispersing device, a fraud-type high-pressure dispersing device, a (collision + penetration) -type high-pressure dispersing device, an ultrahigh-pressure homogenizer
- the high pressure dispersion treatment is preferable in that an aluminum nitride slurry satisfying the particle size distribution requirement of the present application can be easily obtained.
- the shape, size, processing pressure, number of times of processing, etc. of the device are not particularly limited.
- the raw material mixture is usually passed 1 to 9 times, preferably 1 to 3 times, more preferably 1 to 2 times at a pressure of 100 MPa to 200 MPa, The ability to produce an aluminum nitride slurry that satisfies the above particle size distribution requirements.
- the aluminum nitride green body of the present invention can be produced from, for example, the above aluminum nitride slurry.
- the aluminum nitride green body of the present invention has an average particle size in the range of 1.0 zm to 3. O zm. And including a surrounding aluminum nitride powder and a binder, the density in water being from 2.25 g / cm 3 to 2.45 g / cm 3 .
- Such an aluminum nitride green body has a small warp at the end even if the shape is a sheet. In addition, because of its excellent mechanical strength, it is easy to make fine shapes and thin films.
- an aluminum nitride sintered body obtained using this aluminum nitride green body as a raw material has both excellent fracture toughness and mechanical strength, and has reduced variations in physical properties such as mechanical strength. Further, the dimensional accuracy of the obtained sintered body can be improved and the end warp can be reduced.
- the aluminum nitride sintered body of the present invention in which the grain boundary phase has a predetermined structure can be easily obtained.
- Such an aluminum nitride green body can be produced, for example, by the following method. First, with respect to the above-described aluminum nitride slurry of the present invention, operations such as filter filtration, defoaming, and solvent removal are performed as necessary to adjust the viscosity of the slurry. Thereafter, a sheet-like molded product is obtained by a doctor blade method or the like using a sheet molding machine. The aluminum nitride green body of the present invention can be obtained by drying the sheet-like molded product and removing at least a part of the organic solvent contained in the sheet-like molded product.
- the aluminum nitride degreased body of the present invention can be obtained, for example, by degreasing the above-described aluminum nitride green body of the present invention.
- the maximum peak position of the pore distribution is in the range of 0.18 ⁇ to 0.28 ⁇ .
- the pores of the aluminum nitride degreased body are in the above range, the aluminum nitride sintered body obtained from this degreased body is excellent in both fracture toughness and mechanical strength, and variation in physical properties such as mechanical strength is reduced. ing. Furthermore, the dimensional accuracy of the obtained sintered body can be improved and the end warp can be reduced.
- the aluminum nitride sintered body of the present invention having a grain boundary phase having a predetermined structure can be easily obtained.
- Degreasing is usually performed in an oxidizing gas such as oxygen or air, a reducing gas such as hydrogen, an inert gas such as argon or nitrogen, carbon dioxide, or a mixed gas atmosphere thereof, or with these gases. It is carried out in a humidified gas atmosphere mixed with water vapor.
- the degreasing temperature can be appropriately selected depending on the type of binder and the degreasing atmosphere, but is usually 300 ° C to: 1200 ° C, preferably It can be selected from a temperature range of 400 ° C to 1000 ° C.
- the degreasing time is a force that can be appropriately selected according to the type of binder and the degreasing atmosphere.
- the degreasing time can be selected from the range of 30 minutes to 10 hours, preferably 2 hours to 8 hours.
- the oxygen concentration of the degreased body should be adjusted to 3.0% by weight or less by adjusting the degreasing atmosphere, temperature and degreasing time. It is preferred to be in the range of 0.9% to 2.5% by weight.
- the aluminum nitride sintered body of the present invention can be obtained by firing the aluminum nitride degreased body.
- the degreased body is usually fired in a non-oxidizing gas atmosphere, under vacuum, or under reduced pressure.
- a non-oxidizing gas for example, a reducing gas such as hydrogen, an inert gas such as argon, helium, nitrogen, or a mixed gas thereof is used.
- the firing temperature is usually 1650. C to 1900. C, preferably 1750. C to 1800. C, more preferably 1760. C to 1 790 ° C.
- the firing temperature is in the above range, the sintered body becomes dense and the crystal grain growth can be in an appropriate range.
- the sintered body of the present invention can be obtained by heat-treating the aluminum nitride degreased body in a non-oxidizing atmosphere at a temperature higher by 10 ° C to 40 ° C than the optimum densification temperature. It can be easily obtained.
- the optimum densification temperature refers to a firing temperature at which a sintered body having a relative density of 99% or more with respect to the theoretical density is obtained.
- a sintered body obtained under such firing conditions has a high fracture toughness value, and the fracture toughness value, thermal conductivity, and mechanical strength are improved in a well-balanced manner. Reduced. Further, the dimensional accuracy of the obtained sintered body is improved and the end warp is also reduced.
- the firing time is not particularly limited, but is usually in the range of 2 hours to 20 hours, preferably 5 hours to 15 hours.
- the firing time is in the above range, the sintered body becomes dense and the crystal grain growth can be in an appropriate range, and the fracture toughness value, thermal conductivity, and Mechanical strength can be improved in a well-balanced manner.
- any firing container that is normally used for firing aluminum nitride can be used without any problem.
- a sealed container made of aluminum nitride or nitride shelf can be used.
- the aluminum nitride sintered body of the present invention can be used as it is as a structural material for electronic parts and the like. It can also be used as a metal bonding substrate such as a power module, a circuit substrate having a metallized surface such as a fine pattern, and the like.
- the metal of the metal bonded substrate copper, aluminum or the like can be preferably used. Further, the thickness of the metal layer in the metal bonded substrate is usually in the range of 0.1 mm to 1 mm. These metal layers are bonded to the surface of the aluminum nitride sintered body by the active metal brazing method or other known methods.
- Measurement was performed by laser diffraction using a LEED & NORTHRP “MICR ⁇ TRAC II”.
- the particle size distribution of the starting aluminum nitride powder was measured by dispersing aluminum nitride in water.
- the particle size distribution of the aluminum nitride slurry was measured by dispersing the aluminum nitride slurry in ethanol.
- the pore distribution of the aluminum nitride degreased body was measured using “Poremaster 60” (mercury porosimeter) manufactured by Cantachrome.
- Vickers hardness was measured using a Vickers hardness tester AVK-CO manufactured by Akaashi Co., Ltd. From this Vickers hardness, the fracture toughness value was calculated by the IF method. The indentation load is 49N and the holding time is 15 seconds. The average value of 5 sumnoires was taken as the measured value.
- the three-point bending strength was measured at a crosshead speed of 0.5 mm / min and a span of 30 mm.
- the width of the test piece was 4mm and was prepared by surface grinding. The average value of 5 samples was taken as the measured value.
- the obtained rectangular parallelepiped sintered body sample was broken in a direction substantially perpendicular to the surface of the sintered body.
- the fracture surface including a region within 100 ⁇ m from the outer surface of the sintered body was polished to a mirror surface and heat-treated at 1600 ° C to 1650 ° C, a temperature at which no aluminum nitride grain growth occurred, for several minutes.
- the surface to be observed can be etched to obtain a surface in which aluminum nitride crystal particles and grain boundary phases derived from the sintering aid can be identified one by one.
- the cross section of the sample was observed using a scanning electron microscope (SEM) (manufactured by Hitachi, Ltd .; Model S-2150) so as to include a region within 100 ⁇ m from the surface of the sintered body.
- SEM scanning electron microscope
- the magnification was set so that 200 to 300 crystal particles were included in one observation screen. Observations were made at multiple magnifications at the above set magnification, and photographs were taken.
- the photograph contains 1000 to 2000 crystal grains.
- the phase of the aluminum nitride crystal particles is gray
- the grain boundary phase derived from the sintering agent is white. You can.
- the ratio (%) of the area of the grain boundary phase having a circumscribed circle diameter of 1 ⁇ m or less to the total area of the grain boundary phase is
- the average particle size of the aluminum nitride crystal particles in the aluminum nitride sintered body was also calculated.
- the aluminum nitride sintered body is ground and powdered, it is alkali-melted, neutralized with acid, and the metal of the sintering aid is analyzed by ICP emission analysis of the solution using “ICP-1000” manufactured by Shimadzu Corporation.
- the element concentration was quantified, converted into the amount of sintering aid in the aluminum nitride sintered body, and the residual ratio of the sintering aid was determined from the sintering aid blending ratio when preparing the aluminum nitride slurry.
- An apparently 40% aluminum ball with a Vickers hardness of 1200 and a ball diameter of 10 mm was placed in a nylon pot with an internal volume of 10 L.
- 100 parts by weight of aluminum nitride powder having an average particle size of 1 H grade made by Tokuma Corporation
- 5 parts by weight of yttrium oxide, 2 parts by weight of sorbitan triolate, 21 parts by weight of toluene, 12 parts by weight of ethanol, and butanol 2 parts by weight were added and the first stage ball mill was mixed for 16 hours.
- the obtained aluminum nitride solution was subjected to high-pressure dispersion once at a pressure of 200 MPa using a collision-type high-pressure dispersion apparatus (HJ P-2505 manufactured by Sugino Machine Co., Ltd.) to obtain an aluminum nitride slurry.
- the obtained aluminum nitride slurry had a D50 of 1.0 zm and a D90 / D10 of 6.2 in the particle size distribution curve.
- the obtained aluminum nitride slurry was desolvated, and the viscosity was adjusted to 20000 cP. Thereafter, a sheet was formed by the doctor blade method to produce an aluminum nitride green sheet having a width of 20 cm and a thickness of 0.75 mm.
- This aluminum nitride green sheet was punched out with a press machine to obtain an aluminum nitride green body having a width of 68 mm, a length of 68 mm and a thickness of 0.75 mm.
- the resulting aluminum nitride green body has a density of 2.35 g / cm in water.
- the green body thus obtained was degreased in dry air at a temperature of 580 ° C for 4 hours to obtain an aluminum nitride degreased body having an oxygen concentration of 2.1 wt%.
- the pore distribution of the obtained aluminum nitride degreased body was measured with a mercury porosimeter.
- the maximum peak position of the pore distribution was 0.22 / im.
- Figure 3 shows the pore distribution measured with a mercury porosimeter.
- this aluminum nitride degreased body was put in a firing container and was heated to 1780 ° C in a nitrogen atmosphere.
- Firing was carried out at (optimal densification temperature + 30 ° C) for 5 hours to obtain an aluminum nitride sintered body.
- the obtained aluminum nitride sintered body has a density, thermal conductivity, mechanical strength, fracture toughness value, average particle diameter of aluminum nitride crystal, circumscribed circle diameter for the entire area of the grain boundary phase is 1 ⁇ m or less.
- the area percentage (%) of the phase was measured. Further, the residual ratio of the sintering aid was also determined. The results are shown in Table 1.
- Example 1 an aluminum nitride sintered body was obtained in the same manner as in Example 1 except that the aluminum nitride degreased body was fired at 1780 ° C for 10 hours in a nitrogen atmosphere, and the sintered body was evaluated. did.
- the evaluation results are shown in Table 1. [Example 3]
- the aluminum nitride solution obtained in Example 1 was subjected to high-pressure dispersion twice at a pressure of 200 MPa using a collision-type high-pressure dispersion device (HJP-2505, manufactured by Suginomashin Co., Ltd.) to obtain an aluminum nitride slurry. It was D50f to 1.0 x m and D90 / D10f to 6.6 in the particle size distribution curve of the obtained aluminum nitride slurry.
- HJP-2505 collision-type high-pressure dispersion device
- the solvent was removed from the obtained aluminum nitride slurry, and the viscosity was adjusted to 20000 cP. Thereafter, a sheet was formed by the doctor blade method to produce an aluminum nitride green sheet having a width of 20 cm and a thickness of 0.75 mm.
- This aluminum nitride green sheet was punched out with a press machine to obtain an aluminum nitride green body having a width of 68 mm, a length of 68 mm and a thickness of 0.75 mm.
- the resulting aluminum nitride green body had a density in water of 2.37 g / cm 3 .
- the green body thus obtained was degreased in dry air at a temperature of 580 ° C for 4 hours to obtain an aluminum nitride degreased body having an oxygen concentration of 2.1 wt%.
- the pore distribution of the obtained defatted body was measured with a mercury porosimeter. The maximum peak position of the pore distribution is 0.20 / im.
- the aluminum nitride solution obtained in Example 1 was subjected to high-pressure dispersion treatment 5 times at a pressure of 200 MPa using a collision-type high-pressure dispersion device (HJP-2505, manufactured by Suginomashin Co., Ltd.) to obtain an aluminum nitride slurry.
- the obtained aluminum nitride slurry had a particle size distribution curve of D50f to 0.8 x m and D90 / D10f to 6.6.
- the obtained aluminum nitride slurry was desolvated to adjust the viscosity to 20000 cP. Thereafter, a sheet was formed by the doctor blade method to produce an aluminum nitride green sheet having a width of 20 cm and a thickness of 0.75 mm. This aluminum nitride green sheet was punched out with a press machine to obtain an aluminum nitride green body having a width of 68 mm, a length of 68 mm and a thickness of 0.75 mm. The resulting aluminum nitride green body had an underwater density of 2.43 g / cm 3 .
- the green body thus obtained was degreased in dry air at a temperature of 580 ° C for 4 hours to obtain an aluminum nitride degreased body having an oxygen concentration of 2.1 wt%.
- the pore distribution of the obtained defatted body was measured with a mercury porosimeter. The maximum peak position of the pore distribution was 0.19 / im.
- Example 1 an aluminum nitride solution was obtained in the same manner as in Example 1 except that the first-stage ball mill mixing was performed for 2 hours and then the second-stage Bonore mill mixing was further performed for 4 hours.
- the obtained aluminum nitride solution was subjected to high-pressure dispersion treatment once at a pressure of 200 MPa using a collision type high-pressure dispersion device (HJP-2505 manufactured by Sugino Machine Co., Ltd.) to obtain an aluminum nitride slurry.
- HJP-2505 collision type high-pressure dispersion device manufactured by Sugino Machine Co., Ltd.
- the solvent was removed from the obtained aluminum nitride slurry, and the viscosity was adjusted to 20000 cP. Thereafter, a sheet was formed by the doctor blade method to produce an aluminum nitride green sheet having a width of 20 cm and a thickness of 0.75 mm.
- This aluminum nitride green sheet was punched out with a press machine to obtain an aluminum nitride green body having a width of 68 mm, a length of 68 mm and a thickness of 0.75 mm.
- the resulting aluminum nitride green body had a density of 2.32 cm 3 in water.
- the green body thus obtained was degreased in dry air at a temperature of 580 ° C for 4 hours to obtain an aluminum nitride degreased body having an oxygen concentration of 2.0% by mass.
- the pore distribution of the obtained aluminum nitride degreased body was measured with a mercury porosimeter. The maximum peak position of the pore distribution was 0.24 zm.
- Example 5 an aluminum nitride slurry was obtained in the same manner as in Example 5 except that the aluminum nitride solution was subjected to high-pressure dispersion once at a pressure of lOOMPa. Obtained nitriding D50 in the particle size distribution curve of aluminum slurry is 1 ⁇ 2 / im, D90 / D10 is 6 ⁇
- the solvent was removed from the obtained aluminum nitride slurry, and the viscosity was adjusted to 20000 cP. Thereafter, a sheet was formed by the doctor blade method to produce an aluminum nitride green sheet having a width of 20 cm and a thickness of 0.75 mm.
- This aluminum nitride green sheet was punched out with a press machine to obtain an aluminum nitride green body having a width of 68 mm, a length of 68 mm and a thickness of 0.75 mm.
- the resulting aluminum nitride green body had a density of 2.27 cm 3 in water.
- the green body thus obtained was degreased in dry air at a temperature of 580 ° C for 4 hours to obtain an aluminum nitride degreased body having an oxygen concentration of 2.0% by mass.
- the pore distribution of the obtained aluminum nitride degreased body was measured with a mercury porosimeter. The maximum peak position of the pore distribution was 0.26 zm.
- Example 2 In the same manner as in Example 1, an aluminum nitride solution was obtained.
- the obtained aluminum nitride solution had a D50 of 1.3 ⁇ and a D90 / D10 of 7.1 in the particle size distribution curve.
- the solvent was removed from the obtained aluminum nitride solution, and the viscosity was adjusted to 20000 cP.
- a sheet was formed by a doctor blade method to produce an aluminum nitride green sheet having a width of 20 cm and a thickness of 0.75 mm.
- This aluminum nitride green sheet was punched out by a press machine to obtain an aluminum nitride green body having a width of 68 mm, a length of 68 mm, and a thickness of 0 ⁇ 75 mm.
- the obtained aluminum nitride green body had a density in water of 2.22 cm 3 .
- the green body thus obtained was degreased in dry air at a temperature of 580 ° C for 4 hours to obtain an aluminum nitride degreased body having an oxygen concentration of 2.1% by mass.
- the pore distribution of the obtained aluminum nitride degreased body was measured with a mercury porosimeter. The maximum peak position of the pore distribution was 0.29 zm.
- the aluminum nitride solution obtained in Example 1 was subjected to high-pressure dispersion treatment 10 times at a pressure of 200 MPa using a collision type high-pressure dispersion device (HJP-2505, manufactured by Suginomashin Co., Ltd.) to obtain an aluminum nitride slurry.
- the obtained aluminum nitride slurry had a particle size distribution curve of D50i to 0.7 zm and D90 / D10i to 6.9.
- the obtained aluminum nitride slurry was desolvated, and the viscosity was adjusted to 20000 cP. Thereafter, a sheet was formed by the doctor blade method to produce an aluminum nitride green sheet having a width of 20 cm and a thickness of 0.75 mm.
- This aluminum nitride green sheet was punched out with a press machine to obtain an aluminum nitride green body having a width of 68 mm, a length of 68 mm and a thickness of 0.75 mm.
- the obtained aluminum nitride green body had an underwater density of 2.46 g / cm 3 .
- the green body thus obtained was degreased in dry air at a temperature of 580 ° C for 4 hours to obtain an aluminum nitride degreased body having an oxygen concentration of 2.1 wt%.
- the pore distribution of the obtained defatted body was measured with a mercury porosimeter. The maximum peak position of the pore distribution is 0.17 / im.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Products (AREA)
Abstract
破壊靭性値が高く、機械的強度、熱伝導率にも優れる窒化アルミニウム焼結体およびその原料を提供する。
窒化アルミニウム結晶粒子と、焼結助剤に由来する粒界相とを含む窒化アルミニウム焼結体であり、上記焼結体表面から100μm以内の領域の任意の断面において、上記粒界相の全面積に対し、外接円直径が1μm以下である粒界相の面積が50%以上で、かつ窒化アルミニウム結晶粒子の平均粒子径が3.0μm~7.0μmの範囲である窒化アルミニウム焼結体を製造する。この窒化アルミニウム焼結体は、特定の粒度分布を有する窒化アルミニウムスラリー、特定の水中密度である窒化アルミニウムグリーン体、特定の細孔径を有する窒化アルミニウム脱脂体によって製造することができる。
Description
明 細 書
窒化アルミニウム焼結体、スラリー、グリーン体、および脱脂体
技術分野
[0001] 本発明は、窒化アルミニウム焼結体、ならびにこの窒化アルミニウム焼結体の製造 に用いる窒化アルミニウムスラリー、窒化アルミニウムグリーン体、および窒化アルミ二 ゥム脱脂体に関する。
背景技術
[0002] 窒化アルミニウムは熱伝導率が高く絶縁性にも優れるため、その焼結体は半導体 実装用基板をはじめとする基板、半導体製造装置の部材など様々な用途に用いられ ている。
[0003] 中でも半導体実装用基板においては、実装する半導体素子の高出力化に伴い半 導体素子駆動時の発熱が大きくなつており、その発熱対策のために、銅等の薄膜を 基板に接合したり、金属製放熱フィン等のヒートシンク部材を基板に接合して使用す ることが多くなつてきている。そのため、半導体実装基板用途では、従来と比較して基 板材料がさらに種々の応力が掛かりうる環境下で使用されるようになってきており、さ らに高い破壊靭性を有する基板材料が求められている。
[0004] 破壊靭性を向上した窒化アルミニウム焼結体としては、例えば、粒度分布の異なる 二種類の窒化アルミニウム粉末を原料とし、粒度分布を広げた窒化アルミニウム焼結 体が知られている(例えば、特許文献 1および 2)。また、 YAG (3Y O - 5A1 O )相の 不均一歪を特定値以上とする窒化アルミニウム焼結体も知られている(例えば、特許 文献 3)。
[0005] 特許文献 1および 2の方法では、平均粒子径が 0. 5 μ m〜3 μ mの窒化アルミユウ ム粉末と平均粒子径が 3 a m〜15 a mの窒化アルミニウム粉末とを原料として用いて いる。しかしこれら 2種の窒化アルミニウム粉末のうち、平均粒子径が 3 μ ΐη〜15 μ ΐη の窒化アルミニウム粉末は、一般に焼結性が劣る直接窒化法により製造されるので、 均一に焼成するためには、複雑なプロセスや精密な焼成温度の制御が必要であった 。また、これら方法により得られる窒化アルミニウム焼結体の破壊靭性値、機械的強
度にっレ、ては、さらにバランスよく向上させる余地があった。
[0006] また特許文献 3の焼結体は強度が高レ、ものの、破壊靭性値、熱伝導率、機械的強 度をバランスよく向上するためにはレ、まだ改善の余地があった。
特許文献 1:特開 2001— 2474号公報
特許文献 2 :特開 2002— 220283号公報
特許文献 3:特開平 10— 203873号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、破壊靭性値が高ぐしかも破壊靭性値、熱伝導率、機械的強度 をバランスよく向上した窒化アルミニウム焼結体を提供することにある。また、本発明 の他の目的は上記窒化アルミニウム焼結体の原料となる窒化アルミニウムスラリー、 グリーン体、および脱脂体を提供することにある。
課題を解決するための手段
[0008] 本発明者らは、焼結体表面から 100 μ ΐη以内の領域において、焼結助剤に由来す る粒界相が特定の構造を有し、かつ、窒化アルミニウム粒子の平均粒子径が特定の 範囲にあることで、破壊靭性値が高ぐしかも破壊靭性値、熱伝導率、機械的強度を バランスよく向上した窒化アルミニウム焼結体が得られること、この焼結体は特定の窒 化アルミニウムスラリー、グリーン体、および脱脂体によって製造できることを見出し、 本発明を提案するに至った。
[0009] すなわち本発明は、窒化アルミニウム結晶粒子と、焼結助剤に由来する粒界相とを 含む窒化アルミニウム焼結体であり、上記焼結体表面から 100 μ m以内の領域の任 意の断面において、上記粒界相の全面積に対し、外接円直径が 1 z m以下である粒 界相の面積が 50%以上で、かつ、窒化アルミニウム粒子の平均粒子径が 3. O x m 〜7. 0 μ mの範囲である窒化アルミニウム焼結体である。
[0010] そして本発明によれば、このような焼結体は、平均粒子径が 1. 0 z m〜3. O z mの 範囲の窒化アルミニウム粉末、焼結助剤、結合剤、および有機溶剤を含み、 粒度分布曲線における累積 50%値(D50)が、 0. 8 x m〜l . の範囲であり、 粒度分布曲線における累積 90%値と累積 10%値の比(D90/D10)が 6. 0〜6. 8
の範囲である窒化アルミニウムスラリーを原料とすることによって得られる。
[0011] また本発明によれば、このような焼結体は、平均粒子径が 1 · 0 μ m〜3. 0 μ mの範 囲の窒化アルミニウム粉末、および結合剤を含み、水中密度が 2. 25g/cm3〜2. 4 5g/cm3の範囲である窒化アルミニウムグリーン体により得られる。
[0012] さらに本発明によれば、このような焼結体は、水銀ポロシメーターで測定した細孔分 布の最大ピーク位置が 0. 18 x m〜0. 28 x mの範囲である窒化アルミニウム脱脂体 により得られる。
発明の効果
[0013] 本発明の窒化アルミニウム焼結体は、破壊靭性値が高ぐしかも破壊靭性値、熱伝 導率、機械的強度をバランスよく向上する。この窒化アルミニウム焼結体は、本発明 の窒化アルミニウムスラリー、窒化アルミニウムグリーン体、窒化アルミニウム脱脂体か ら容易に製造できる。
図面の簡単な説明
[0014] [図 1]図 1は、焼結体サンプノレの形状が直方体であった場合の、焼結体表面から 100 z mの領域を図示したものである。断面図の表面から点線までの部分が、焼結体表 面力、ら 100 μ mの領域である。
[図 2]図 2は、焼結体サンプノレの形状が円柱であった場合の、焼結体表面から 100 μ mの領域を図示したものである。断面図の表面から点線までの部分が、焼結体表面 力ら 100 μ mの領域である。
[図 3]図 3は、実施例 1で得られた窒化アルミニウム脱脂体の細孔分布を示したもので ある。
発明を実施するための最良の形態
[0015] 〔 窒化アルミニウム焼結体 〕
まず、本発明により得られる窒化アルミニウム焼結体の構造について説明をする。
[0016] 〈焼結体の粒界相〉
本発明の窒化アルミニウム焼結体は、少なくとも窒化アルミニウム粉末と焼結助剤と を原料として製造されている。この窒化アルミニウム焼結体の粒界の少なくとも一部に は、焼結助剤に由来する粒界相が形成されてレ、る。
[0017] 上記粒界相を形成し得る焼結助剤としては、窒化アルミニウム焼結体の焼結助剤と して一般的に用いられる化合物が挙げられ、例えば、酸化イットリウム (Y O )、酸化 ランタン (LaO )、酸化セリウム(CeO )、酸化ホルミウム(HoO )、酸化イツテリビゥム(
Yb〇)、酸化ガドリニウム(Gd〇)、酸化ネオジゥム(Nd〇 )、酸化サマリウム(Sm
O )、酸化ジスプロシウム(Dy O )などの希土類化合物;酸化カルシウム(CaO)、酸 ィ匕マグネシウム(Mg〇)、酸化ストロンチウム(Sr〇)などのアルカリ土類金属化合物; またはこれら化合物の混合物が挙げられる。これら焼結助剤の中でも、得られる焼結 体が緻密で熱伝導率が高いという点で、酸化イットリウム (Y〇)が好ましい。
[0018] また、焼結助剤としては、焼結体中の残存率が 40%以上の焼結助剤が好ましぐ 50%以上の焼結助剤がより好ましい。ここで、焼結体中の焼結助剤の残存率とは、 ( 焼結後の焼結体中に含まれる焼結助剤由来成分) Z (焼結前のグリーン体に含まれ る焼結助剤)の値力 求めた。上述のような残存率となる焼結助剤を用いると、得られ る焼結体は、焼結体表面から 100 μ ΐη以内の領域において、焼結助剤に由来する 粒界相が特定の構造を有し、かつ、窒化アルミニウム粒子の平均粒子径が特定の範 囲にあることで、破壊靭性値が高ぐしかも破壊靭性値、熱伝導率、機械的強度をバ ランスよく向上した窒化アルミニウム焼結体が得られる。
[0019] 焼結体中の残存率が 40%以上となる焼結助剤としては、酸化イットリウム (Y〇)、 酸化ランタン (LaO )、酸化セリウム(CeO )、酸化ホルミウム(HoO )、酸化イツテリビ ゥム (Yb O )、酸化ガドリニウム(Gd〇)、酸化ネオジゥム(Nd〇 )、酸化サマリウム(
Sm〇)、酸化ジスプロシウム(Dy O )などの希土類化合物;酸化カルシウム(CaO)
、酸化マグネシウム(MgO)、酸化ストロンチウム(SrO)などのアルカリ土類金属化合 物、またはこれらの混合物が挙げられる。
[0020] 本発明において、焼結助剤に由来する粒界相とは、窒化アルミニウムの結晶粒子 の粒界において、焼結助剤単独で形成された相、複数の焼結助剤が反応して形成 された相、および焼結助剤と窒化アルミニウムの不純物とが反応して形成された相の ことをいう。
[0021] 例えば、焼結助剤として酸化イットリウムを用いた場合には、酸化イットリウムと窒化 アルミニウム原料粉末中に含まれる不純物酸素とが反応して、 3Y O - 5A1 0 (以下
、「YAG」ともいう。)、 Y〇 ·Α1 O (以下、「YAL」ともいう。)、 2Y〇 ·Α1 O (以下、「
YAM」ともいう。 )などの組成の粒界相が形成される。
[0022] 特に窒化アルミニウム粉末として還元窒化法で製造した窒化アルミニウム粉末を用 いた場合には、 YAMリッチな組成の粒界相が形成され易ぐ良好な熱伝導率を発現 できる。
[0023] 本発明の窒化アルミニウム焼結体では、焼結体表面から 100 x m以内の領域にお いて、焼結助剤に由来する粒界相が特定の構造を有している。すなわち本発明の焼 結体では、焼結体表面から 100 z m以内の領域の任意の断面において、上記粒界 相の全面積に対して、外接円直径が l x m以下である粒界相の面積が 50%以上で ある。
[0024] 焼結体表面から 100 x m以内の領域とは、焼結体表面を含む任意の断面を選択し 、その断面に含まれる焼結体表面の任意の点において、焼結体表面曲線に対して 外接する接線を引き、この接線に対して垂直な直線 Aを引いたときに、焼結体表面の 点から焼結体内部に向かって 100 /i m以内となる直線 Aの領域を意味している。
[0025] 焼結体の形状が直方体の場合、円柱の場合を、それぞれ図 1、図 2に例示する。
[0026] 粒界相の外接円直径は、以下のようにして求められる。本発明で得られる焼結体サ ンプルを破断する。焼結体表面近傍の構造はほぼ等価であるので、破断面の方向 は特に制限されず任意でよいが、通常、破断を開始しょうとする焼結体表面部分に 接する平面に対してほぼ垂直となる平面で破断する。例えば、焼結体サンプルの形 状が直方体である場合には、焼結体表面に対してほぼ垂直となる破断面が形成され るように破断をする。この破断面を鏡面研磨し、窒化アルミニウムの粒成長が起こらな い条件で熱処理する。この熱処理したサンプル破断面のうち、焼結体表面から 100 z m以内の領域を含む部分を、走査型電子顕微鏡 (SEM)で観察する。焼結体表 面から 100 μ m以内の領域の中でも特に平均的な組織である部分を選択し、得られ る SEM写真 1枚中に窒化アルミニウム結晶粒子が 1000個〜 2000個含まれる倍率 に設定し、 SEM写真を撮影する。このような SEM写真を 5枚用意する。これら写真の 画像データを画像解析システムに取り込み、画像データ中の粒界相に接するように 外接円を描いて、外接円直径を求める。
[0027] なお SEM写真中、窒化アルミニウム結晶粒子はグレー〜黒色であり、粒界相結晶 粒子は白色であるので、これらの相違は容易に識別できる。
[0028] また焼結体断面中の、粒界相全面積に対する、外接円直径が 1 μ m以下である粒 界相の面積の割合(%)は、上述した SEM写真の画像解析の結果から、
{ (外接円直径が 1 μ m以下である粒界相の全面積) Ζ (粒界相の全面積) } X 100 の値を計算して求めたものである。
[0029] 焼結体表面から 100 x m以内の領域の任意の断面中の粒界相のうち、外接円直 径が l x m以下である粒界相の面積の割合力 S、粒界相全面積に対して上記範囲内 にある場合には、焼結体に加わった応力を、焼結助剤に由来をしている上記粒界相 に有効に分散することができると考えられるので、焼結体の靭性値を高めることがで きる。粒界相の面積の割合が上記範囲内に無い場合は、窒化アルミニウム結晶粒子 が直接接触する部分が多くなるため応力を有効に分散できなくなる傾向になる場合 力 Sある。また、粒界相の面積の割合が上記範囲内に無い場合は、窒化アルミニウム 結晶粒子全体を焼結助剤に由来をしている粒界相が覆ってしまう傾向にあるため、 焼結体全体の強度が低下してしまう場合がある。
[0030] これらの中でも、焼結体表面から 100 μ m以内の領域の任意の断面において、上 記粒界相の全面積に対して、外接円直径が 1 μ m以下である粒界相の面積の割合 、 60%以上であることが好ましぐ 70%以上であることがより好ましい。
[0031] 外接円直径が 1 μ m以下である粒界相の面積の割合が上記範囲内にある場合に は、高熱伝導率で、し力も破壊靭性値の高い窒化アルミニウム焼結体を得ることがで きる。
[0032] 本発明において、焼結体表面から 100 z m以内の領域外の焼結助剤に由来をし ている粒界相の構造は特に制限されなレ、が、焼結体表面から 100 μ mを超えた領域 の断面においても、粒界相の全面積に対して、外接円直径が 1 z m以下である粒界 相の面積の割合力 50%以上であることが好ましぐ 60%以上であることがより好ま しぐ 70%以上であることが特に好ましい。焼結体表面から 100 z mを超えた領域の 任意の断面においても、粒界相の構造が上記構造である場合には、窒化アルミニゥ ム焼結体の破壊靭性値を著しく改良できるとともに、機械的強度を向上させることが
でき、より信頼性の高い焼結体基板が得られる。
[0033] 〈窒化アルミニウム結晶粒子〉
本発明の窒化アルミニウム焼結体には窒化アルミニウム結晶粒子が含まれており、 この窒化アルミニウム結晶粒子の平均粒子径は 3. 0 x m〜7. O x mの範囲、好まし くは 3. 0 μ πι〜6. O z mの範囲、より好ましくは 3. 5 x m〜5. 0 μ mの範囲である。
[0034] 上述した窒化アルミニウム結晶粒子の平均粒子径は、以下のようにして求められる 。粒界相の外接円直径を求めた場合と同様に、本発明で得られる焼結体サンプルを 破断し、この破断面を鏡面研磨した後、窒化アルミニウムの粒成長が起こらない条件 で熱処理する。この熱処理したサンプルの焼結体表面から 100 μ m以内の領域を含 む部分を SEM観察する。焼結体表面から 100 x m以内の領域の中でも特に平均的 な組織である部分を選択し、得られる SEM写真 1枚中に窒化アルミニウム結晶粒子 が 1000個〜 2000個含まれる倍率に設定し、 SEM写真を撮影する。このような SE Μ写真を 5枚用意する。これら写真の画像データを画像解析システムに取り込み、画 像データ中の窒化アルミニウム結晶粒子各々の粒子径を計測する。この粒子径の積 算値を粒子個数で除した値を平均粒子径とした。
[0035] 窒化アルミニウム結晶粒子の平均粒子径が上記範囲である場合は、得られる窒化 アルミニウム焼結体の破壊靭性値が高ぐしかも、破壊靭性値、熱伝導率、機械的強 度がバランスよく向上した窒化アルミニウム焼結体が得られる。窒化アルミニウム結晶 粒子の平均粒子径が上記範囲を超えると、熱伝導率は向上するものの、機械的強度 や破壊靭性値が低下してしまう場合がある。また、窒化アルミニウム結晶粒子の平均 粒子径が上記範囲未満であると、機械的強度は向上するものの、破壊靭性値が低下 する場合がある。
[0036] 本発明の窒化アルミニウム焼結体の原料となる窒化アルミニウム粉末としては、窒 化アルミニウム焼結体中に含まれる窒化アルミニウム結晶粒子の平均粒子径が上記 範囲となる限り、特に制限無く使用できる。例えば、後述する窒化アルミニウムスラリ 一に含まれる窒化アルミニウム粉末を使用できる。
[0037] 〔 窒化アルミニウムスラリー 〕
上述した本発明の窒化アルミニウム焼結体は、例えば、下記窒化アルミニウムスラリ
一を原料として製造できる。すなわち、本発明の窒化アルミニウム焼結体は、平均粒 子径が 1. 0 μ ΐη〜3. 0 μ ΐηの範囲の窒化アルミニウム粉末、焼結助剤、結合剤、お よび有機溶剤を含み、粒度分布曲線における累積 50%値 (D50)が、 0. 8 μ ΐη〜1 · の範囲であり、累積 90%値と累積 10%値の比(D90/D10)が 6. 0〜6. 8の 範囲である窒化アルミニウムスラリーから製造することができる。
[0038] 〈窒化アルミニウム粉末〉
本発明の窒化アルミニウムスラリーに用レ、られる窒化アルミニウム粉末の平均粒子 径は 1. 0 x m〜3. O x mの範囲である。本発明において窒化アルミニウム粉末の平 均粒子径とは、レーザー回折式粒度分布測定装置で測定した、窒化アルミニウムの 凝集粒子の粒子個数平均で求めた平均粒子径をレ、う。平均粒子径が上記範囲の窒 化アルミニウム粉末である場合には、得られる窒化アルミニウムスラリーの固形分濃 度を高くでき、しかも均一に分散し易ぐ流動性、乾燥効率が良好である。また、窒化 アルミニウム結晶粒子が所定の構造である本発明の窒化アルミニウム焼結体を容易 に得ることができる。
[0039] このような窒化アルミニウム粉末の中でも、平均粒子径が 1. 0 /i m〜2. 5 /i mの範 囲である粉末が好ましぐ 1. 0 /i m〜2. 0 /i mの範囲である粉末がより好ましい。窒 化アルミニウム粉末の平均粒子径が上記範囲内にある場合には、より均一に分散し やすぐ流動性、乾燥効率が良好となる。
[0040] 本発明の窒化アルミニウムスラリーに用いる窒化アルミニウム粉末は、平均粒子径 が上記範囲である窒化アルミニウム粉末を一種単独で使用してもよレ、し、平均粒子 径の異なる二種以上の窒化アルミニウム粉末を、平均粒子径が上記範囲となるように 混合して使用してもよい。
[0041] 本発明の窒化アルミニウムスラリーにおいて使用される窒化アルミニウム粉末は、平 均粒子径以外は特に制限はない。
[0042] 例えば窒化アルミニウム粉末の製造方法について特に制限はなぐ還元窒化法得 られた窒化アルミニウム粉末、直接窒化法で得られた窒化アルミニウム粉末、または これら混合物を使用してもよいが、最終的に得られる窒化アルミニウム焼結体が良好 な熱伝導率を有する点で、還元窒化法で得られた窒化アルミニウム粉末が好ましレ、
[0043] また、上記窒化アルミニウム粉末の不純物については特に制限はないが、酸素、陽 イオン等の不純物が少ないものが好ましぐ例えば、酸素含有量が好ましくは 1. 5重 量%以下、より好ましくは 0. 4重量%〜: 1. 3重量%の範囲であり、陽イオン不純物の 含有量が好ましくは 0. 3重量%以下、より好ましくは 0. 2重量%以下である窒化アル ミニゥム粉末が好ましい。このような窒化アルミニウム粉末を原料とした場合には、熱 伝導性に優れた窒化アルミニウム焼結体を得ることができる。
[0044] なお、純粋な窒化アルミニウムはアルミニウムと窒素とのモル比が 1: 1の化合物であ るので、原料である窒化アルミニウム粉末中に含まれる、この量比の範囲をはずれる 元素に由来をする成分を陽イオン不純物として取り扱う。例えば、窒化アルミニウム中 に不純物として金属アルミニウムが含まれている場合には、陽イオン不純物として取 り扱う。ただし、窒化アルミニウム粉末の表面は空気中で不可避的に酸化されて、 A1 —N結合の少なくとも一部が Al—〇結合に置き換えられている場合がある力 S、このよ うな Al—〇結合に由来する成分については、窒化アルミニウム粉末中の陽イオン不 純物としては取り扱わずに、酸素分として取り扱う。
[0045] 〈焼結助剤〉
本発明の窒化アルミニウムスラリーに用いる焼結助剤としては、上述の窒化アルミ二 ゥム焼結体の項で説明した焼結助剤を用いることができる。好適な焼結助剤につい ても同様である。
[0046] これら焼結助剤は、窒化アルミニウム粉末 100重量部に対して、通常 2重量部〜 6 重量部、好ましくは 3重量部〜 5重量部の範囲の量で使用することができる。
[0047] 焼結助剤を上記範囲の量使用することで、本発明の窒化アルミニウムスラリーから 得られる焼結体の破壊靭性値を高くすることができ、また、焼結助剤に由来する粒界 相が所定の構造である本発明の窒化アルミニウム焼結体を容易に製造することがで きる。
[0048] 〈結合剤〉
本発明の窒化アルミニウムスラリーに用レ、る結合剤としては特に制限は無く、一般 的なセラミック粉末成形用の結合剤を使用できる。
[0049] 例えば、ポリビニルブチラール、ポリメチルメタタリレート、ポリェチルメタタリレート、 ポリ 2—ェチルへキシルメタタリレート、ポリブチルメタタリレート、ポリアタリレート、セル ロースアセテートブチレート、ニトロセノレロース、メチ/レセノレロース、ヒドロキシメチノレセ ノレロース、ポリビュルアルコール、ポリオキシエチレンオキサイド、およびポリプロピレ ンオキサイド等の酸素含有有機高分子;
石油レジン、ポリエチレン、ポリプロピレン、ポリスチレン等の炭化水素系有機高分子 ポリ塩ィ匕ビュル等その他の有機高分子;ワックス等;またはこれら 2つ以上を混合して 用いることができる。
[0050] これら結合剤のうち、酸素含有有機高分子は、窒化アルミニウム粉末と優れた化学 親和性を有し、強固に窒化アルミニウム粉末と結合できるという点で好ましい。
[0051] また、結合剤として有機高分子を用いる場合には、数平均分子量は特に制限され ないが、ポリスチレン換算の数平均分子量で、通常 3000〜: 1000000の範囲、好ま しくは 5000〜300000の範囲である。有機高分子の数平均分子量が上記範囲にあ る場合には、高強度で柔軟性に優れるグリーン体を得られる場合がある。
[0052] これら結合剤の使用形態は特に制限はなぐ例えば、そのまま使用してもよいし、ェ マルジヨンとして使用してもよい。
[0053] これら結合剤は、窒化アルミニウム粉末 100重量部に対して、通常 4重量部〜 30重 量部、好ましくは 5重量部〜 20重量部の範囲の量で使用することができる。
[0054] 〈有機溶媒〉
本発明の窒化アルミニウムスラリーに用いる有機溶媒としては特に制限は無ぐ一 般的な有機溶媒を用いることができる。
[0055] 例えば、アセトン、メチルェチルケトン、およびメチルイソプロピルケトンなどのケトン 類;
エタノール、プロパノール、およびブタノールなどのアルコール類;
ベンゼン、トルエン、およびキシレンなどの芳香族炭化水素類;
トリクロロエチレン、テトラクロロエチレン、およびブロモクロロメタンなどのハロゲン化炭 化水素類;またはこれら有機溶媒の混合物を用いることができる。
[0056] これら有機溶媒は、窒化アルミニウム粉末 100重量部に対して、通常 20重量部〜 2 00重量部、好ましくは 40重量部〜 150重量部の範囲の量で使用することができる。
[0057] 〈その他成分〉
本発明の窒化アルミニウムでは、その他成分として、界面活性剤、可塑剤等の添加 剤を用いることができる。
[0058] 界面活性剤は特に制限無く用いることができるが、ノニオン系界面活性剤が好まし レ、。
[0059] このノニオン系界面活性剤としては、例えば、カルボキシルイ匕トリオキシエチレントリ デシルエーテノレ、ジグリセリンモノォレート、ジグリセリンモノステアレート、力ノレボキシ ル化へプタオキシエチレントリデシルエーテル、テトラグリセリンモノォレート、ポリオキ シエチレンソノレビタンモノォレート、プロピレングリコーノレモノステアレート、グリセリン モノステアレート、グリセリントリステアレート、グリセリンモノォレート、グリセリントリオレ ート、ソルビタントリオレート、およびソルビタンモノォレートなど、またはこれら 2つ以上 の混合物を挙げることができる。
[0060] これら界面活性剤は、窒化アルミニウム粉末 100重量部に対して、通常 0. 01重量 部〜 10重量部、好ましくは 0. 02重量部〜 3. 0重量部の範囲の量で使用することが できる。
[0061] 界面活性剤を上記範囲内で使用した場合には、結合剤と窒化アルミニウムとの分 散が良好になり、この窒化アルミニウムスラリーから得られる窒化アルミニウムグリーン 体の強度を高くすることができる。
[0062] 可塑剤は特に制限無く用いることができ、例えば、ポリエチレングリコール、および その誘導体;ジメチルフタレート、ジブチルフタレート、ベンジルブチルフタレート、お よびジォクチルフタレートなどのフタル酸エステル類;ブチルステアレートなどのステ アリン酸エステル類;トリタレゾールフォスフェート;トリ一 N _ブチルフォスフェート;お よびグリセリンなど、またはこれら 2つ以上の混合物を挙げることができる。
[0063] これら可塑剤は、窒化アルミニウム粉末 100重量部に対して、通常 0. 1重量部〜 2 0重量部、好ましくは 0. 4重量部〜 15重量部の範囲の量で使用することができる。
[0064] 〈窒化アルミニウムスラリーの粒度分布〉
本発明の窒化アルミニウムスラリーは、上述の窒化アルミニウム粉末、焼結助剤、結 合剤、有機溶媒等の原料を混合したものであって、特定の粒度分布を有するもので ある。
[0065] すなわち本発明の窒化アルミニウムスラリーは、粒度分布曲線における累積 50% 値(D50)力 0. 8 x m〜l. の範囲であり、累積 90%値と累積 10%値との比(
D90ZD10)力 ¾. 0〜6. 8である。
[0066] 本発明において窒化アルミニウムスラリーの粒度分布は、レーザー回折法によって 求めたものである。なお、窒化アルミニウムスラリーの粒度分布測定における粒子とは 、レーザー回折法で粒子として測定できるものを全て含んでおり、窒化アルミニウムそ のものだけでなぐ結合剤、焼結助剤、添加剤等が含まれている場合もある。
[0067] そしてこの測定結果を粒度分布曲線として表し、窒化アルミニウムスラリー中に含ま れるレーザー回折法で測定可能な全粒子に対して、粒子径の小さい方から累積して 、累積 10%値となったときの粒子の粒子径を D10、累積 50%値となったときの粒子 を D50、累積 90%値となったときの粒子の粒子径を D90として求めた。そしてこれら 値からさらに累積 90%値と累積 10%値との比(D90/D10)の値を求めた。
[0068] 本発明の窒化アルミニウムスラリーの粒度分布が上記範囲内にある場合には、窒 化アルミニウムスラリーの固形分濃度が高い場合でも、一般的なスラリーと比較して粘 度を小さくすることができ、スラリーの取扱い性に優れる。また、窒化アルミニウムスラ リーに含まれる有機溶剤の量も少ない。
[0069] さらに、この窒化アルミニウムスラリーからシート状の窒化アルミニウムグリーン体を 製造する場合、シート上のシヮ、クラック、厚みムラの発生を低減できる。
[0070] カロえて、この窒化アルミニウムスラリーを原料として得られる窒化アルミニウム焼結体 は、破壊靭性値、機械的強度がともに優れ、機械的強度等の物性のばらつきが低減 されている。また、得られる焼結体の寸法精度を向上し、端部そりを小さくすることが できる。さらに、焼結助剤に由来する粒界相が所定の構造を有する本発明の窒化ァ ルミ二ゥム焼結体を容易に得ることができる。
[0071] 本発明の窒化アルミニウムスラリーでは粒度分布が上記範囲内にある力 D50が、 0. 9 μ πι〜1. 1 z mの範囲であり、 D90ZD10力 6. 2 μ π!〜 6. 6 μ mの範囲である
ことが好ましい。
[0072] 窒化アルミニウムスラリーの粒度分布が上記範囲内にある場合には、この窒化アル ミニゥムスラリーを原料として得られる窒化アルミニウム焼結体は、より高い破壊靭性 値を有する。
[0073] 〈窒化アルミニウムスラリーの製造方法〉
上記粒子径を有する窒化アルミニウムスラリーの製造方法は特に制限はされないが 、例えば、窒化アルミニウム粉末、焼結助剤、結合剤、有機溶剤等をモーター攪拌機 やボールミル等により溶解'混合させ、窒化アルミニウム溶液を得た後、公知の分散 装置に導入して、窒化アルミニウム、焼結助剤等の固形成分を有機溶媒中に分散す ることで製造することができる。公知の分散装置としては、例えば、超音波分散装置、 ビーズミル、ローノレミノレ、ホモミキサー、ウルトラミキサー、デイスパーミキサー、ホモミ キサ一、貫通型高圧分散装置、衝突型高圧分散装置、多孔型高圧分散装置、だま とり型高圧分散装置、(衝突 +貫通)型高圧分散装置、超高圧ホモジナイザー等を挙 げること力 Sできる。
[0074] これら分散装置の中でも、貫通型高圧分散装置、衝突型高圧分散装置、多孔型高 圧分散装置、だまとり型高圧分散装置、(衝突 +貫通)型高圧分散装置、超高圧ホモ ジナイザー等で高圧分散処理することが本願の粒度分布の要件を満たす窒化アルミ ニゥムスラリーが容易に得られる点で好ましレ、。
[0075] これら分散装置によって、上記粒度分布の要件を満たすように粒子を分散できれば 、装置の形状、大きさ、処理圧力、処理回数等は特に制限はないが、例えば、衝突 型高圧分散装置を用いた場合には、原料混合物を 100MPa〜200MPaの圧力で、 通常 1回〜 9回、好ましくは 1回〜 3回、より好ましくは 1回〜 2回、高圧分散装置内を 通過させることにより、上記粒度分布の要件を満たすような窒化アルミニウムスラリー を製造すること力 Sできる。
[0076] 〔 窒化アルミニウムグリーン体 〕
本発明の窒化アルミニウムグリーン体は、例えば、上記窒化アルミニウムスラリーか ら製造することができる。
[0077] 本発明の窒化アルミニウムグリーン体は、平均粒子径が 1. 0 z m〜3. O z mの範
囲の窒化アルミニウム粉末、および結合剤を含み、水中密度が 2. 25g/cm3〜2. 4 5g/cm3である。このような窒化アルミニウムグリーン体は、形状がシート状の場合で あっても、端部の反りも小さい。さらに、機械的強度が優れることから、微細な形状や 薄膜化も容易である。また、この窒化アルミニウムグリーン体を原料として得られる窒 化アルミニウム焼結体は、破壊靭性値、機械的強度がともに優れ、機械的強度等の 物性のばらつきが低減されている。さらに、得られる焼結体の寸法精度を向上し、端 部そりを小さくすることができる。カロえて、粒界相が所定の構造を有する本発明の窒 化アルミニウム焼結体を容易に得ることができる。
[0078] このような窒化アルミニウムグリーン体は、例えば以下の方法によって製造すること ができる。まず、上述の本発明の窒化アルミニウムスラリーについて、必要に応じて、 フィルターろ過、脱泡、脱溶剤等の操作を行って、スラリーの粘度調製等を行う。その 後、シート成形機を用いて、ドクターブレード法等によりシート状成形物を得る。この シート状成形物を乾燥して、シート状成形物に含まれる有機溶媒の少なくとも一部を 除去することにより、本発明の窒化アルミニウムグリーン体を得ることができる。
[0079] 〔 窒化アルミニウム脱脂体 〕
本発明の窒化アルミニウム脱脂体は、例えば、上述の本発明の窒化アルミニウムグ リーン体を脱脂することにより得ることができる。
[0080] 本発明の窒化アルミニウム脱脂体は、水銀ポロシメーターで測定した際に、その細 孔分布の最大ピーク位置が 0. 18 μ ΐη〜0· 28 μ ΐηの範囲にある。窒化アルミニウム 脱脂体の細孔が上記範囲にある場合、この脱脂体より得られる窒化アルミニウム焼結 体は、破壊靭性値、機械的強度がともに優れ、機械的強度等の物性のばらつきが低 減されている。さらに、得られる焼結体の寸法精度を向上し、端部そりを小さくするこ とができる。カロえて、粒界相が所定の構造を有する本発明の窒化アルミニウム焼結体 を容易に得ることができる。
[0081] 脱脂は、通常、酸素や空気などの酸化性ガス、水素などの還元性ガス、アルゴンや 窒素などの不活性ガス、二酸化炭素、またはこれらの混合ガス雰囲気下、あるいはこ れらガスと水蒸気とを混合した加湿ガス雰囲気下で行われる。脱脂温度は、結合剤 の種類や脱脂雰囲気によって適宜選択できるが、通常 300°C〜: 1200°C、好ましくは
400°C〜1000°Cの温度範囲から選択できる。また、脱脂時間は結合剤の種類や脱 脂雰囲気に応じて適宜選択できる力 通常 30分〜 10時間、好ましくは 2時間〜 8時 間の範囲から選択することができる。本発明で得られる窒化アルミニウム焼結体の熱 伝導率を良好とする観点からは、脱脂雰囲気、温度、脱脂時間を調節して脱脂体の 酸素濃度を 3. 0重量%以下の範囲とすることが好ましぐ 0. 9重量%〜2. 5重量% の範囲とすることが好ましレ、。
[0082] 〔 窒化アルミニウム焼結体の焼成 〕
本発明の窒化アルミニウム焼結体は、上記窒化アルミニウム脱脂体を焼成すること によって得ることができる。
[0083] 上記脱脂体の焼成は、通常、非酸化性ガス雰囲気下、真空下、または減圧下で行 われる。なお、非酸化性ガスとしては例えば、水素などの還元性ガス、アルゴン、ヘリ ゥム、窒素などの不活性ガス、またはこれらの混合ガスが使用される。焼成温度は、 通常 1650。C〜1900。C、好ましくは 1750。C〜1800。C、より好ましくは、 1760。C〜1 790°Cの範囲である。
[0084] 焼成温度が上記範囲にある場合には、焼結体が緻密になるとともに、結晶の粒成 長を適切な範囲とすることができる。
[0085] またこれら条件に加えて、非酸化性雰囲気中で、最適緻密化温度より 10°C〜40°C 高い温度で、窒化アルミニウム脱脂体を加熱処理することにより本発明の焼結体を容 易に得ることができる。
[0086] 上記最適緻密化温度とは、理論密度に対する相対密度が 99%以上の焼結体が得 られる焼成温度をいう。
[0087] このような焼成条件でられた焼結体は、破壊靭性値が高ぐしかも破壊靭性値、熱 伝導率、機械的強度がバランスよく向上し、し力、も機械的強度のばらつきが低減して いる。また、得られる焼結体の寸法精度が向上し、端部そりも小さくなる。
[0088] 焼成時間は特に限定されないが、通常 2時間〜 20時間、好ましくは 5時間〜 15時 間の範囲である。焼成時間が上記範囲にある場合には、焼結体が緻密になるととも に、結晶の粒成長を適切な範囲とすることができ、得られる焼結体の破壊靭性値、熱 伝導率、および機械的強度をバランスよく向上することができる。
[0089] 上述の焼成を行う際には、通常窒化アルミニウムの焼成に使用する焼成容器をな んら支障なく使用できる。例えば、窒化アルミニウム製、あるいは窒化棚素製の密閉 容器を使用できる。
[0090] 本発明の窒化アルミニウム焼結体は、そのままで、電子部品等の構造材料として使 用すること力 Sできる。また、パワーモジュール等の金属接合基板、ファインパターン等 のメタライズ面を有する回路基板等として使用することも可能である。
[0091] 上記金属接合基板の金属としては、銅、アルミニウム等を好適に使用できる。また、 金属接合基板における金属層の厚みは、通常 0. lmm〜lmmの範囲である。これ ら金属層は、上記金属を活性金属ろう材法、その他公知の方法により、窒化アルミ二 ゥム焼結体表面に接合をする。
[0092] 〔実施例〕
本発明をさらに具体的に説明するために、以下実施例および比較例を挙げるが、 本発明はこれら実施例に限定されるものではない。
[0093] 以下実施例および比較例において、各種物性は次の方法により測定した。
[0094] (1)窒化アルミニウム粉末および窒化アルミニウムスラリーの粒度分布
LEED&NORTHRP製「MICR〇TRAC II」を使用して、レーザー回折法により 測定した。原料の窒化アルミニウム粉末の粒度分布は、窒化アルミニウムを水に分散 させて測定した。窒化アルミ二ウスラリーの粒度分布は、窒化アルミニウムスラリーを エタノールに分散させて測定した。
[0095] (2)窒化アルミニウムグリーン体の水中密度
東洋精機製「高精度比重計 D— H」を使用して、アルキメデス法により求めた。
[0096] (3)窒化アルミニウム脱脂体の細孔径
カンタクローム社製「ポアマスタ 60」(水銀ポロシメーター)を使用して、窒化アルミ二 ゥム脱脂体の細孔分布を測定した。 Washburnの関係式に接触角 Θ = 140° 、水 銀の表面張 σ =480ergsZcm2を採用した。 60, OOOPSIAまで加圧するので、測 定範囲は細孔径 35オングストローム〜約 100000オングストロームであった。
[0097] (3)焼結体密度
東洋精機製「高精度比重計 D_H」を使用して、アルキメデス法により求めた。
[0098] (4)破壊靭性値
JIS R1607に準拠して、(株)ァカシ製ビッカース硬さ試験機 AVK— COを使用し てビッカース硬さを測定した。このビッカース硬さから、 I. F.法により破壊靭性値を算 出した。押し込み荷重は 49N、保持時間は 15秒である。 5サンプノレの平均値を測定 値とした。
[0099] (5)機械的強度
JIS R1601に準拠して、クロスヘッド速度 0. 5mm/分、スパン 30mmで 3点曲げ 強度を測定した。試験片の幅は 4mmで平面研削して作製した。 5サンプルの平均値 を測定値とした。
[0100] (6)熱伝導率
理学電気 (株)製の熱定数測定装置 PS - 7を使用して、レーザーフラッシュ法によ り測定した。厚み補正は検量線により行った。
[0101] (7)窒化アルミニウム焼結体の粒界相の外接円直径および面積
焼結体微構造の SEM写真から、画像解析システム(IP— 1000PC ;旭化成工業製 )を使用して以下の方法により各粒界相の外接円直径を求めた。
[0102] まず、得られた直方体形状の焼結体サンプルを、焼結体表面に対してほぼ垂直と なる方向に破断した。焼結体の外表面から 100 μ m以内の領域を含む破断面を鏡 面に研磨し、窒化アルミニウムの粒成長が起こらない温度である 1600°C〜1650°C で数分間熱処理した。この処理により観察表面をエッチングして、窒化アルミニウム 結晶粒子、および焼結助剤に由来する粒界相を 1つ 1つ識別できる表面を得ることが できる。
[0103] ついで、焼結体表面から 100 μ m以内の領域を含むようにサンプルの断面を走查 型電子顕微鏡 (SEM) (日立製作所社製; S— 2150型)を使用して観察した。倍率は 、結晶粒子 200個〜 300個が一観察画面に含まれる大きさとなるように設定した。上 記設定倍率での観察を複数の部分で行い、写真の撮影を行った。写真中には結晶 粒子が 1000個〜 2000個含まれている。撮影場所を変えたこのような SEM写真を 5 枚用意した。焼結体の微構造の白黒写真では、窒化アルミニウム結晶粒子の相は灰 色、焼結剤に由来をしている粒界相は白色となるので、これらの識別は容易に行うこ
とができる。
[0104] 上述の画像解析システムを使用して、このようにして得られた焼結体の微構造の S EM写真を画像解析し、焼結体表面から 100 /i m以内の領域における、粒界相の外 接円直径、粒界相の全面積、および外接円直径が 1 μ m以下である粒界相の面積を 求めた。
[0105] なお、上述のように粒界相の全面積に対する、外接円直径が 1 μ m以下である粒界 相の面積の割合(%)は、
{ (外接円直径が 1 μ m以下である粒界相の全面積) Ζ (粒界相の全面積) } X 100 の値を計算して求めた。
[0106] (8)窒化アルミニウム焼結体中の窒化アルミニウム結晶粒子の平均粒子径
上述した(7)の画像解析と同時に、窒化アルミニウム焼結体中の窒化アルミニウム 結晶粒子の平均粒子径も計算した。
[0107] すなわち、窒化アルミニウム結晶粒子と同定した粒子の最大粒子径を画像解析か ら求め、
(窒化アルミニウム結晶粒子の最大粒子径の積算値) / (窒化アルミニウム結晶粒 子の数)
の値を計算して求めた。
[0108] (9)焼結助剤の残存率の測定方法
窒化アルミニウム焼結体を粉碎し粉末状にした後、アルカリ溶融後、酸で中和し、 島津製作所製「ICP— 1000」を使用して溶液の ICP発光分析により、焼結助剤の金 属元素濃度を定量し、窒化アルミニウム焼結体中の焼結助剤量に換算し、窒化アル ミニゥムスラリー調整時の焼結助剤配合比から焼結助剤の残存率を求めた。
[0109] 〔実施例 1〕
内容積が 10Lのナイロン製ポットに、ビッカース硬さ 1200でボール径 10mmのアル ミナ製ボールを見掛け充填率で 40%入れた。ついで、平均粒子径 1. の窒化 アルミニウム粉末 (株式会社トクャマ製 Hグレード) 100重量部、酸化イットリウム 5重 量部、ソルビタントリオレート 2重量部、トルエン 21重量部、エタノール 12重量部、お よびブタノール 2重量部を添カ卩して、 1段目のボールミル混合を 16時間行った。その
後、この混合物に、ポリビニルブチラール 8重量部、ジブチルフタレート 3. 5重量部、 トルエン 27重量部、エタノール 16重量部、およびブタノール 2重量部を入れて、 2段 目のボールミル混合を 18時間行い、窒化アルミニウム溶液を得た。
[0110] 得られた窒化アルミニウム溶液を、衝突型高圧分散装置( (株)スギノマシン製、 HJ P— 25005)により、 200MPaの圧力で 1回高圧分散処理し、窒化アルミニウムスラリ 一を得た。得られた窒化アルミニウムスラリーの、粒度分布曲線における D50は 1. 0 z m、 D90/D10は 6. 2であった。
[0111] 次に、得られた窒化アルミニウムスラリーから脱溶媒し、粘度を 20000cPに調整し た。その後、ドクターブレード法によりシート成形を行レ、、幅 20cm、厚さ 0. 75mmの 窒化アルミニウムグリーンシートを作製した。この窒化アルミニウムグリーンシートをプ レス加工機により打ち抜き、幅 68mm、長さ 68mm、厚さ 0. 75mmの窒化アルミユウ ムグリーン体を得た。得られた窒化アルミニウムグリーン体の水中密度は 2. 35g/c mでめつに。
[0112] このようにして得られたグリーン体を、乾燥空気中で 580°Cの温度で 4時間脱脂処 理し、酸素濃度が 2. 1重量%の窒化アルミニウム脱脂体を得た。得られた窒化アルミ ニゥム脱脂体の細孔分布を水銀ポロシメーターで測定した。細孔分布の最大ピーク 位置は、 0. 22 /i mであった。図 3に水銀ポロシメーターで測定した細孔分布を示し た。
[0113] その後、この窒化アルミニウム脱脂体を焼成容器に入れて、窒素雰囲気中 1780°C
(最適緻密化温度 + 30°C)で 5時間焼成し、窒化アルミニウム焼結体を得た。得られ た窒化アルミニウム焼結体の密度、熱伝導率、機械的強度、破壊靭性値、窒化アル ミニゥム結晶の平均粒子径、粒界相全面積に対する外接円直径が 1 μ m以下である 粒界相の面積の割合(%)を測定した。また、焼結助剤の残存率についても求めた。 その結果を表 1に示した。
[0114] 〔実施例 2〕
実施例 1において、窒化アルミニウム脱脂体の焼成条件を窒素雰囲気中 1780°C で 10時間焼成した以外は、実施例 1と同様にして窒化アルミニウム焼結体を得て、こ の焼結体を評価した。評価結果を表 1に示した。
[0115] 〔実施例 3〕
実施例 1で得られた窒化アルミニウム溶液を、衝突型高圧分散装置( (株)スギノマ シン製、 HJP— 25005)により、 200MPaの圧力で 2回高圧分散処理し、窒化アルミ ユウムスラリーを得た。得られた窒化アルミニウムスラリーの、粒度分布曲線における D50fま 1. 0 x m、 D90/D10fま 6. 6であった。
[0116] 次に、得られた窒化アルミニウムスラリーから脱溶媒し、粘度を 20000cPに調整し た。その後、ドクターブレード法によりシート成形を行レ、、幅 20cm、厚さ 0. 75mmの 窒化アルミニウムグリーンシートを作製した。この窒化アルミニウムグリーンシートをプ レス加工機により打ち抜き、幅 68mm、長さ 68mm、厚さ 0. 75mmの窒化アルミユウ ムグリーン体を得た。得られた窒化アルミニウムグリーン体の水中密度は 2. 37g/c m3であった。
[0117] このようにして得られたグリーン体を、乾燥空気中で 580°Cの温度で 4時間脱脂処 理し、酸素濃度が 2. 1重量%の窒化アルミニウム脱脂体を得た。得られた脱脂体の 細孔分布を水銀ポロシメーターで測定した。細孔分布の最大ピーク位置は、 0. 20 /i mであつに。
[0118] その後、実施例 1と同様にして窒化アルミニウム焼結体を得て、この焼結体を評価し た。評価結果を表 1に示した。
[0119] 〔実施例 4〕
実施例 1で得られた窒化アルミニウム溶液を、衝突型高圧分散装置( (株)スギノマ シン製、 HJP— 25005)により、 200MPaの圧力で 5回高圧分散処理し、窒化アルミ ニゥムスラリーを得た。得られた窒化アルミニウムスラリーの、粒度分布曲線における D50fま 0. 8 x m、 D90/D10fま 6. 6であった。
[0120] 次に、得られた窒化アルミニウムスラリーから脱溶媒し、粘度を 20000cPに調整し た。その後、ドクターブレード法によりシート成形を行レ、、幅 20cm、厚さ 0. 75mmの 窒化アルミニウムグリーンシートを作製した。この窒化アルミニウムグリーンシートをプ レス加工機により打ち抜き、幅 68mm、長さ 68mm、厚さ 0. 75mmの窒化アルミユウ ムグリーン体を得た。得られた窒化アルミニウムグリーン体の水中密度は 2. 43g/c m3であった。
[0121] このようにして得られたグリーン体を、乾燥空気中で 580°Cの温度で 4時間脱脂処 理し、酸素濃度が 2. 1重量%の窒化アルミニウム脱脂体を得た。得られた脱脂体の 細孔分布を水銀ポロシメーターで測定した。細孔分布の最大ピーク位置は、 0. 19 /i mであった。
[0122] その後、実施例 1と同様にして窒化アルミニウム焼結体を得て、この焼結体を評価し た。評価結果を表 1に示した。
[0123] 〔実施例 5〕
実施例 1において 1段目のボールミル混合を 2時間行った後、さらに 2段目のボー ノレミル混合を 4時間行った以外は、実施例 1と同様にして、窒化アルミニウム溶液を 得た。得られた窒化アルミニウム溶液を、衝突型高圧分散装置((株)スギノマシン製 、 HJP— 25005)により、 200MPaの圧力で 1回高圧分散処理し、窒化アルミニウム スラリーを得た。得られた窒化アルミニウムスラリーの、粒度分布曲線における D50は 1. 0 /i m、 D90/D10iま 6. 2であった。
[0124] 次に、得られた窒化アルミニウムスラリーから脱溶媒し、粘度を 20000cPに調整し た。その後、ドクターブレード法によりシート成形を行レ、、幅 20cm、厚さ 0. 75mmの 窒化アルミニウムグリーンシートを作製した。この窒化アルミニウムグリーンシートをプ レス加工機により打ち抜き、幅 68mm、長さ 68mm、厚さ 0. 75mmの窒化アルミニゥ ムグリーン体を得た。得られた窒化アルミニウムグリーン体の水中密度は 2. 32cm3で あった。
[0125] このようにして得られたグリーン体を、乾燥空気中で 580°Cの温度で 4時間脱脂処 理し、酸素濃度が 2. 0量%の窒化アルミニウム脱脂体を得た。得られた窒化アルミ二 ゥム脱脂体の細孔分布を水銀ポロシメーターで測定した。細孔分布の最大ピーク位 置は、 0. 24 z mであった。
[0126] その後、実施例 1と同様にして窒化アルミニウム焼結体を得て、この焼結体を評価し た。評価結果を表 1に示した。
[0127] 〔実施例 6〕
実施例 5において、窒化アルミニウム溶液を、 lOOMPaの圧力で 1回高圧分散処理 した以外は、実施例 5と同様にして、窒化アルミニウムスラリーを得た。得られた窒化
アルミニウムスラリーの、粒度分布曲線における D50は 1 · 2 /i m、 D90/D10は 6·
4であった。
[0128] 次に、得られた窒化アルミニウムスラリーから脱溶媒し、粘度を 20000cPに調整し た。その後、ドクターブレード法によりシート成形を行レ、、幅 20cm、厚さ 0. 75mmの 窒化アルミニウムグリーンシートを作製した。この窒化アルミニウムグリーンシートをプ レス加工機により打ち抜き、幅 68mm、長さ 68mm、厚さ 0. 75mmの窒化アルミユウ ムグリーン体を得た。得られた窒化アルミニウムグリーン体の水中密度は 2. 27cm3で あった。
[0129] このようにして得られたグリーン体を、乾燥空気中で 580°Cの温度で 4時間脱脂処 理し、酸素濃度が 2. 0量%の窒化アルミニウム脱脂体を得た。得られた窒化アルミ二 ゥム脱脂体の細孔分布を水銀ポロシメーターで測定した。細孔分布の最大ピーク位 置は、 0. 26 z mであった。
[0130] その後、実施例 1と同様にして窒化アルミニウム焼結体を得て、この焼結体を評価し た。評価結果を表 1に示した。
[0131] 〔比較例 1〕
実施例 1と同様にして窒化アルミニウム溶液を得た。得られた窒化アルミニウム溶液 の、粒度分布曲線における D50は 1 · 3 μ ΐη、 D90/D10は 7· 1であった。
[0132] 次に、得られた窒化アルミニウム溶液から脱溶媒し、粘度を 20000cPに調整した。
その後、ドクターブレード法によりシート成形を行い、幅 20cm、厚さ 0. 75mmの窒化 アルミニウムグリーンシートを作製した。この窒化アルミニウムグリーンシートをプレス 加工機により打ち抜き、幅 68mm、長さ 68mm、厚さ 0· 75mmの窒化アルミニウムグ リーン体を得た。得られた窒化アルミニウムグリーン体の水中密度は 2. 22cm3であつ た。
[0133] このようにして得られたグリーン体を、乾燥空気中で 580°Cの温度で 4時間脱脂処 理し、酸素濃度が 2. 1量%の窒化アルミニウム脱脂体を得た。得られた窒化アルミ二 ゥム脱脂体の細孔分布を水銀ポロシメーターで測定した。細孔分布の最大ピーク位 置は、 0. 29 z mであった。
[0134] その後、実施例 1と同様にして窒化アルミニウム焼結体を得て、この焼結体を評価し
た。評価結果を表 1に示した。
[0135] 〔比較例 2〕
実施例 1で得られた窒化アルミニウム溶液を、衝突型高圧分散装置( (株)スギノマ シン製、 HJP— 25005)により、 200MPaの圧力で 10回高圧分散処理し、窒化アル ミニゥムスラリーを得た。得られた窒化アルミニウムスラリーの、粒度分布曲線におけ る D50iま 0. 7 z m、 D90/D10iま 6. 9であった。
[0136] 次に、得られた窒化アルミニウムスラリーから脱溶媒し、粘度を 20000cPに調整し た。その後、ドクターブレード法によりシート成形を行レ、、幅 20cm、厚さ 0. 75mmの 窒化アルミニウムグリーンシートを作製した。この窒化アルミニウムグリーンシートをプ レス加工機により打ち抜き、幅 68mm、長さ 68mm、厚さ 0. 75mmの窒化アルミユウ ムグリーン体を得た。得られた窒化アルミニウムグリーン体の水中密度は 2. 46g/c m3であった。
[0137] このようにして得られたグリーン体を、乾燥空気中で 580°Cの温度で 4時間脱脂処 理し、酸素濃度が 2. 1重量%の窒化アルミニウム脱脂体を得た。得られた脱脂体の 細孔分布を水銀ポロシメーターで測定した。細孔分布の最大ピーク位置は、 0. 17 /i mであつに。
[0138] その後、実施例 1と同様にして窒化アルミニウム焼結体を得て、この焼結体を評価し た。評価結果を表 1に示した。
[0139] [表 1]
表 1
Claims
[1] 窒化アルミニウム結晶粒子と、焼結助剤に由来する粒界相とを含む窒化アルミニゥ ム焼結体であり、
上記焼結体表面から 100 μ m以内の領域の任意の断面において、
上記粒界相の全面積に対し、外接円直径が l x m以下である粒界相の面積が 50 %以上で、かつ
窒化アルミニウム結晶粒子の平均粒子径が 3. 0 /i m〜7. 0 /i mの範囲である窒化 アルミニウム焼結体。
[2] 平均粒子径が 1. 0 μ m〜3. 0 μ mの範囲の窒化アルミニウム粉末、焼結助剤、結 合剤、および有機溶剤を含み、
粒度分布曲線における累積 50%値(D50)が、 0· 8 μ ΐη〜1. 2 μ ΐηの範囲であり、 累積 90%値と累積 10%値との比(D90/D10)が 6. 0〜6. 8の範囲である、 請求項 1に記載の窒化アルミニウム焼結体の製造に用いる窒化アルミニウムスラリ
[3] 平均粒子径が 1. 0 μ m〜3. 0 μ mの範囲の窒化アルミニウム粉末、および結合剤 を含み、
水中密度が 2. 25g/cm3〜2. 45g/cm3の範囲である、
請求項 1に記載の窒化アルミニウム焼結体の製造に用いる窒化アルミニウムダリー ン体。
[4] 水銀ポロシメーターで測定した細孔分布の最大ピーク位置力 0. 18 μ m〜0. 28 μ mの範囲である
請求項 1に記載の窒化アルミニウム焼結体の製造に用レ、る窒化アルミニウム脱脂体
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06757349A EP1914214A1 (en) | 2005-06-15 | 2006-06-15 | Aluminum nitride sinter, slurry, green object, and degreased object |
JP2007521344A JPWO2006135016A1 (ja) | 2005-06-15 | 2006-06-15 | 窒化アルミニウム焼結体、スラリー、グリーン体、および脱脂体 |
US11/917,725 US20090088312A1 (en) | 2005-06-15 | 2006-06-15 | Aluminum Nitride Sinter, Slurry, Green Object, and Degreased Object |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-175586 | 2005-06-15 | ||
JP2005175586 | 2005-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006135016A1 true WO2006135016A1 (ja) | 2006-12-21 |
Family
ID=37532370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/312051 WO2006135016A1 (ja) | 2005-06-15 | 2006-06-15 | 窒化アルミニウム焼結体、スラリー、グリーン体、および脱脂体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090088312A1 (ja) |
EP (1) | EP1914214A1 (ja) |
JP (1) | JPWO2006135016A1 (ja) |
CN (1) | CN101198566A (ja) |
WO (1) | WO2006135016A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010109960A1 (ja) * | 2009-03-26 | 2010-09-30 | 株式会社東芝 | 窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法 |
EP3659991A4 (en) * | 2017-07-24 | 2020-10-21 | Showa Denko K.K. | COMPACT SINTERED PIECE OF ALUMINUM NITRIDE AND ITS PRODUCTION PROCESS |
WO2021261453A1 (ja) * | 2020-06-22 | 2021-12-30 | デンカ株式会社 | セラミック焼結体、基板、及び、セラミック焼結体の電気絶縁性を高くする方法 |
JPWO2022210518A1 (ja) * | 2021-03-31 | 2022-10-06 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101570437B (zh) * | 2009-04-30 | 2013-01-09 | 潮州三环(集团)股份有限公司 | 一种连续式低温烧结高导热率AlN陶瓷的方法及其产品 |
WO2014063491A1 (zh) * | 2012-10-25 | 2014-05-01 | 北京航空航天大学 | 一种氧化钙基陶瓷型芯及其制备方法 |
CN103121848B (zh) * | 2013-02-25 | 2015-08-19 | 潮州三环(集团)股份有限公司 | 一种氮化铝陶瓷基板烧结工艺 |
WO2018164123A1 (ja) * | 2017-03-07 | 2018-09-13 | 株式会社トクヤマ | 粗大粒子を含まない窒化アルミニウム粉末 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0524930A (ja) * | 1991-07-16 | 1993-02-02 | Showa Denko Kk | AlN焼結体およびその製造方法 |
JP2002220283A (ja) * | 2001-01-24 | 2002-08-09 | Denki Kagaku Kogyo Kk | 窒化アルミニウム焼結体及びその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3472585B2 (ja) * | 1992-02-21 | 2003-12-02 | 株式会社東芝 | 窒化アルミニウム焼結体 |
EP1036779B1 (en) * | 1999-03-17 | 2003-09-17 | Asahi Techno Glass Corporation | Aluminium nitride sintered product and process for its production |
JP4447750B2 (ja) * | 1999-09-30 | 2010-04-07 | 日本碍子株式会社 | 窒化アルミニウム焼結体および半導体製造用部材 |
TWI243158B (en) * | 2000-12-21 | 2005-11-11 | Ngk Insulators Ltd | Aluminum nitride sintered bodies |
EP1518843A3 (en) * | 2003-09-25 | 2007-05-23 | Tokuyama Corporation | Aluminum nitride sintered body and method of producing the same |
TW200521103A (en) * | 2003-11-21 | 2005-07-01 | Toshiba Kk | High thermally conductive aluminum nitride sintered product |
CN100545082C (zh) * | 2004-03-29 | 2009-09-30 | 电气化学工业株式会社 | 氮化铝粉末及氮化铝烧结体 |
US7211216B2 (en) * | 2004-06-18 | 2007-05-01 | Ngk Insulators, Ltd. | Aluminum nitride ceramic, semiconductor manufacturing member, and manufacturing method for aluminum nitride ceramic |
-
2006
- 2006-06-15 EP EP06757349A patent/EP1914214A1/en not_active Withdrawn
- 2006-06-15 JP JP2007521344A patent/JPWO2006135016A1/ja active Pending
- 2006-06-15 US US11/917,725 patent/US20090088312A1/en not_active Abandoned
- 2006-06-15 WO PCT/JP2006/312051 patent/WO2006135016A1/ja active Application Filing
- 2006-06-15 CN CNA2006800218039A patent/CN101198566A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0524930A (ja) * | 1991-07-16 | 1993-02-02 | Showa Denko Kk | AlN焼結体およびその製造方法 |
JP2002220283A (ja) * | 2001-01-24 | 2002-08-09 | Denki Kagaku Kogyo Kk | 窒化アルミニウム焼結体及びその製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010109960A1 (ja) * | 2009-03-26 | 2010-09-30 | 株式会社東芝 | 窒化アルミニウム基板、窒化アルミニウム回路基板、半導体装置および窒化アルミニウム基板の製造方法 |
US8791566B2 (en) | 2009-03-26 | 2014-07-29 | Kabushiki Kaisha Toshiba | Aluminum nitride substrate, aluminum nitride circuit board, semiconductor apparatus, and method for manufacturing aluminum nitride substrate |
JP5667045B2 (ja) * | 2009-03-26 | 2015-02-12 | 株式会社東芝 | 窒化アルミニウム基板、窒化アルミニウム回路基板および半導体装置 |
EP3659991A4 (en) * | 2017-07-24 | 2020-10-21 | Showa Denko K.K. | COMPACT SINTERED PIECE OF ALUMINUM NITRIDE AND ITS PRODUCTION PROCESS |
WO2021261453A1 (ja) * | 2020-06-22 | 2021-12-30 | デンカ株式会社 | セラミック焼結体、基板、及び、セラミック焼結体の電気絶縁性を高くする方法 |
JP7064065B1 (ja) * | 2020-06-22 | 2022-05-09 | デンカ株式会社 | セラミック焼結体、基板、及び、セラミック焼結体の電気絶縁性を高くする方法 |
JPWO2022210518A1 (ja) * | 2021-03-31 | 2022-10-06 | ||
WO2022210518A1 (ja) * | 2021-03-31 | 2022-10-06 | デンカ株式会社 | 窒化アルミニウム焼結体、及びその製造方法、回路基板、並びに、積層基板 |
JP7429825B2 (ja) | 2021-03-31 | 2024-02-08 | デンカ株式会社 | 窒化アルミニウム焼結体、及びその製造方法、回路基板、並びに、積層基板 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006135016A1 (ja) | 2009-01-08 |
EP1914214A1 (en) | 2008-04-23 |
US20090088312A1 (en) | 2009-04-02 |
CN101198566A (zh) | 2008-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6942929B2 (ja) | 窒化ケイ素焼結体製造のためのテープキャスティング用スラリー組成物 | |
WO2006135016A1 (ja) | 窒化アルミニウム焼結体、スラリー、グリーン体、および脱脂体 | |
KR101400598B1 (ko) | 반도체 제조 장치용 내식성 부재 및 그 제법 | |
KR101751531B1 (ko) | 질화 규소 기판 제조방법 | |
JP2007106621A (ja) | 窒化アルミニウムグリーン体の製造方法 | |
JP4615873B2 (ja) | 窒化アルミニウム焼結体及びその製造方法 | |
JP6720053B2 (ja) | 窒化ケイ素焼結体の製造方法 | |
JP4859267B2 (ja) | 窒化アルミニウム焼結体とその製造方法 | |
WO2019059641A2 (ko) | 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물 | |
JP5611554B2 (ja) | 高熱伝導性窒化アルミニウム焼結体、これを用いた基板、回路基板、および半導体装置、ならびに高熱伝導性窒化アルミニウム焼結体の製造方法 | |
KR102139189B1 (ko) | 180 W/mk 내지 230 W/mk의 열전도성을 갖는 질화알루미늄 기판의 제조방법 | |
JP2021172556A (ja) | 窒化アルミニウム焼結体及びその製造方法 | |
JP2006024595A (ja) | 発光素子収納用パッケージ | |
WO2022075156A1 (ja) | グリーンシートの製造方法 | |
EP4397642A1 (en) | Highly thermally conductive silicon nitride sintered compact, silicon nitride substrate, silicon nitride circuit board, and semiconductor device | |
JP3707866B2 (ja) | 窒化アルミニウムグリーン体の製造方法 | |
KR102141812B1 (ko) | 질화알루미늄 소결체 및 그 제조 방법 | |
KR20240098457A (ko) | 질화규소 반응소결법을 이용한 질화규소 세라믹스 기판의 제조방법 | |
JPH0920564A (ja) | 窒化アルミニウムグリーンシート | |
JP2021178756A (ja) | 窒化アルミニウム焼結体およびその製造方法 | |
JP2004155627A (ja) | 窒化アルミニウム焼結体およびその製造方法 | |
JP2005255430A (ja) | 窒化珪素焼結体およびその製造方法 | |
JP2000264736A (ja) | 窒化アルミニウムグリーンシートの製造方法 | |
JPH07309663A (ja) | 窒化アルミニウム焼結体およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680021803.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007521344 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11917725 Country of ref document: US Ref document number: 2006757349 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |