[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006115266A1 - X線造影糸、x線造影被覆糸、前記x線造影糸および、またはx線造影被覆糸を用いた繊維構造体 - Google Patents

X線造影糸、x線造影被覆糸、前記x線造影糸および、またはx線造影被覆糸を用いた繊維構造体 Download PDF

Info

Publication number
WO2006115266A1
WO2006115266A1 PCT/JP2006/308717 JP2006308717W WO2006115266A1 WO 2006115266 A1 WO2006115266 A1 WO 2006115266A1 JP 2006308717 W JP2006308717 W JP 2006308717W WO 2006115266 A1 WO2006115266 A1 WO 2006115266A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray contrast
yarn
fiber
coated
ray
Prior art date
Application number
PCT/JP2006/308717
Other languages
English (en)
French (fr)
Inventor
Seiji Abe
Koji Kakumoto
Takenori Domon
Kazutoyo Horimoto
Kenji Chizuka
Takeru Shimonomura
Original Assignee
Unitika Fibers Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Fibers Ltd. filed Critical Unitika Fibers Ltd.
Priority to JP2007514765A priority Critical patent/JP5030773B2/ja
Priority to EP06745695A priority patent/EP1876271B1/en
Priority to DE602006014675T priority patent/DE602006014675D1/de
Priority to US11/919,205 priority patent/US20090302241A1/en
Publication of WO2006115266A1 publication Critical patent/WO2006115266A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/18Materials at least partially X-ray or laser opaque
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties

Definitions

  • the present invention relates to an X-ray contrast yarn, an X-ray contrast-coated yarn, the X-ray contrast yarn, and / or a fiber structure using the X-ray contrast-coated yarn, and in particular, a heat containing an X-ray impermeable agent.
  • X-ray contrast yarns and X-ray contrasts which are fibers made of plastic resin, can be contrasted by X-rays, and can be suitably used for various medical applications as fabrics such as woven and knitted fabrics and non-woven fabrics.
  • the present invention relates to a fiber structure such as a coated yarn, the above-mentioned X-ray contrast yarn, and / or a woven or knitted fabric using the X-ray contrast coated yarn.
  • JP- A- 2000- 336521 proposes a hollow fiber that encloses a contrast medium in the hollow portion!
  • a powdered contrast component such as barium sulfate
  • Proposals have been made for fibers and monofilaments that have been encapsulated by later injecting a contrast medium into the hollow part of the hollow monofilament.
  • various medical members such as pins for bone fixing materials can be obtained by knitting these hollow fibers and hollow monofilaments into braided shapes or cutting them into short fibers. Is described.
  • JP-A-2-118131 a polypropylene core yarn containing a radiopaque filler is coated with a sheath yarn for coating that is thinner than the core yarn.
  • This fiber is formed by corrugating the core yarn by covering with a sheath yarn.
  • JP-A-2-118131 does not take into account post-processability, which does not describe what products can be used.
  • the present invention solves the above-mentioned problems, is excellent in X-ray contrast performance and excellent in post-addition properties, and is used by being mixed in a woven fabric or non-woven fabric. Contain X-ray contrast yarns, X-ray contrast-covered yarns, these X-ray contrast yarns and / or X-ray contrast-coated yarns, in which the resulting product does not wrinkle or shed fibers from the product.
  • the technical challenge is to provide a fiber structure.
  • the X-ray contrast yarn of the present invention is a fiber made of a thermoplastic resin containing an X-ray impermeable agent, and has a dry heat shrinkage rate at 130 ° C of 3. It is characterized by being 5 to 0%.
  • the X-ray contrast yarn of the present invention is a fiber made of thermoplastic rosin containing an X-ray impermeable agent, and an oil agent in which the proportion of the ionic surfactant component is 0 to 10% by mass. It is characterized by being granted.
  • thermoplastic resin is nylon 12.
  • thermoplastic resin containing an X-ray impermeable agent is used in the X-ray contrast yarn.
  • the X-ray contrast yarn is preferably a monofilament wrinkle having a fineness of 1000 to 20000 dtex.
  • the X-ray contrast yarn is preferably a multifilament having a single yarn fineness of 20 to 400 dtex and a total fineness force of Sl000 to 20000 dtex.
  • the X-ray contrast-coated yarn of the present invention is coated with a coated fiber around the X-ray contrast yarn, which is a fiber made of thermoplastic resin containing an X-ray impermeable agent, and dry heat shrinks at 130 ° C. Rate is 3.5
  • the coated fiber is a finer yarn than the X-ray contrast yarn.
  • Another X-ray contrast-coated yarn of the present invention uses the above-mentioned X-ray contrast yarn, and at least a part of the coated fiber is more than the first thermoplastic resin forming the X-ray contrast yarn. It is composed of a second thermoplastic resin having a low melting point.
  • the melting point of the second thermoplastic resin is
  • the temperature is preferably 100 ° C. or higher and 20 ° C. or lower than the melting point of the first thermoplastic resin.
  • the coated fiber is a core-sheath type composite fiber
  • the second thermoplastic resin absorbs the sheath part of the composite fiber. It is preferable to configure.
  • a fiber structure of the present invention includes the above-described X-ray contrast yarn and / or X-ray contrast-coated yarn. It is characterized by the following.
  • the X-ray contrast yarn and the X-ray contrast-coated yarn of the present invention are formed of fibers containing a thermoplastic coagulant containing an X-ray impermeable agent and have a dry heat shrinkage rate at 130 ° C of 3. Since it is 5 to 0%, it can prevent the product from wrinkling or deforming due to large shrinkage when it is used for various materials such as woven and knitted fabrics and especially medical gauze. High product can be obtained.
  • the X-ray contrast yarn of the present invention is twisted, the X-ray contrast yarn is used to form an X-ray contrast-coated yarn, or the X-ray contrast-coated yarn is twisted.
  • the X-ray contrast thread it is possible to prevent the X-ray contrast thread from coming off from the product, and the cross-sectional shape of the thread becomes a round cross-sectional shape, so that the contrast performance is excellent. For this reason, it can be suitably used particularly for medical materials such as surgical gauze.
  • the X-ray contrast yarn and the X-ray contrast-coated yarn of the present invention are composed of fibers containing a thermoplastic resin containing an X-ray impermeable agent, and the proportion of the ionic surfactant component is 0. Since an oil agent of ⁇ 10% by mass is applied, foaming due to the oil agent hardly occurs even when shaken in water. Therefore, when obtaining products such as woven and knitted fabrics and non-woven fabrics, it is not necessary to perform processing such as washing to remove the spinning oil. Moreover, since it can be adapted to the foaming test required for medical gauze and the like, it is suitable for various medical uses.
  • the periphery of the contrast yarn composed of fibers made of the first thermoplastic resin containing an X-ray impermeable agent is coated with the coated fibers. At least a part of the covered fiber is composed of the second thermoplastic resin having a melting point lower than that of the first thermoplastic resin.
  • the fiber structure is formed by applying heat treatment to the part, at least a part of the coated fiber covering the periphery of the X-ray contrast yarn is melted and solidified and bonded to the fiber constituting the fiber structure. Therefore, the X-ray contrast yarn can be removed from the fiber structure, and the cross-sectional shape of the X-ray contrast yarn does not deform, so that the fiber structure has excellent contrast.
  • the fiber structure of the present invention (products such as woven and knitted fabrics, nonwoven fabrics, fiber balls, and fiber laminates) Since it contains the X-ray contrast yarn and / or X-ray contrast-coated yarn of the present invention, it has excellent X-ray contrast properties and prevents the product from wrinkling or deforming. it can. In addition, it is difficult for the X-ray contrast yarn to fall out of the product, so that the product is of high quality and can be suitably used for various medical applications.
  • FIG. 1 is a diagram showing a schematic configuration of an apparatus for producing an X-ray contrast yarn of the present invention.
  • the X-ray contrast yarn used in the X-ray contrast yarn and the X-ray contrast-coated yarn of the present invention is made of a thermoplastic resin containing an X-ray impermeable agent.
  • Any thermoplastic resin can be used as long as it can obtain synthetic fibers, and examples thereof include polyamide, polyester, and polyolefin.
  • polyamides preferred by polyamide include nylon 6, nylon 66, nylon 69, nylon 46, nylon 610, nylon 12, and polymetaxylene adipamide.
  • the thermoplastic resin may be a copolymer or a mixture of these components.
  • nylon 6 and nylon 12 are particularly preferred.
  • Polyamide is preferred as the thermoplastic resin, because the polyamide fiber has an excellent feeling of softness and moist feeling due to polymer characteristics, and thus affected areas such as surgical gauze. This is because it is suitable for medical use such as touching the surface.
  • polyamides Nylon 12, in addition to the above characteristics, can be melt-spun and drawn and can be made into a fiber even if it contains a high concentration of X-ray opaquer as described later. It is preferable.
  • polyester when polyester is used as the thermoplastic resin, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, or the like can be used.
  • polyolefin, polypropylene, polyethylene or the like When using polyolefin, polypropylene, polyethylene or the like can be used. These components may be a copolymer or a mixture.
  • thermoplastic resin only one type or a plurality of types may be used in combination.
  • examples of the X-ray opaquer to be contained in the thermoplastic resin include barium sulfate, bismuth subnitrate, tungsten oxide, sodium citrate, and sodium cesium. Of these, barium sulfate is preferred. . Barium sulfate has excellent radiopacity, heat resistance, and crystal stability. In addition, since particles with a small primary particle size that are difficult to agglomerate easily can be produced, kneading barium sulfate into a thermoplastic resin and melt spinning does not cause an increase in filtration pressure, thread breakage, etc. You can get the fiber well.
  • the primary particle diameter of the X-ray impermeable agent is preferably 0.5 to 10 m force S, more preferably 0.8 to 8 111, and particularly preferably 1.0 to 5 m. preferable.
  • the X-ray contrast yarn of the present invention is a fiber made of a thermoplastic coagulant containing an X-ray opaque agent.
  • an X-ray opaque agent is added at the same fineness.
  • a core-sheath type composite yarn containing an X-ray opaque agent only in the core portion has only a contrast property in the core portion, so that even if it has the same fineness as a single-component yarn, the contrast is increased. It becomes inferior.
  • the X-ray impermeable agent is dispersed almost uniformly in the thermoplastic resin.
  • the X-ray impermeable agent and the thermoplastic resin are directly used by using an extruder or the like during melt spinning. It can be used by kneading, but it is preferable to prepare a master chip containing a high concentration of an X-ray impermeable agent, and to knead it with sufficient force, since more uniform kneading is possible.
  • the X-ray contrast yarn of the present invention can be used together with other fibers to obtain various fiber structures such as woven and knitted fabrics, non-woven fabrics, and fiber ball and fiber laminates. Among them, it is preferable to use the X-ray contrast yarn of the present invention together with other fibers constituting a woven or knitted fabric as a fabric, and use this fabric as a surgical gauze.
  • a woven or knitted fabric it is used together with other fibers at the time of weaving or knitting to form a woven or knitted fabric containing the X-ray contrast yarn of the present invention as part of the woven or knitted fabric structure
  • the X-ray contrast yarn of the present invention is included in a part of the tissue after a knitted or knitted fabric made only of other fibers is knitted and woven.
  • a non-woven fabric it is preferable to prepare a web having other fiber strength, and then arrange the X-ray contrast yarns of the present invention on the web to form a non-woven fabric by hydroentanglement treatment or the like.
  • the woven or knitted fabric is usually used for improving the strength and integrity of the nonwoven fabric or water.
  • a heat setting step is required for drying after the entangling process or the like.
  • the yarn of the present invention is used for a spunlace nonwoven fabric, it is preferable to perform heat setting in a dry heat state of 130 ° C. For this reason, in the present invention, the dry heat shrinkage rate under a strong condition is a very important value.
  • the X-ray contrast yarn of the present invention preferably has a dry heat shrinkage rate at 130 ° C of 3.5 to 0%, more preferably 2.0 to 0%. 1. It is more preferable that it is 2 to 0%. It is more preferable that it is 0.6 to 0%.
  • the dry heat shrinkage at 130 ° C is measured as follows. That is, use an lm length measuring machine to spin the X-ray contrast yarn 10 times, remove the waste, and adjust the humidity at 25 ° C and 65% RH for 24 hours. Next, measure the length (LO) when a load of (lZl50) g per ldtex is applied to the casserole ring. Furthermore, after applying dry heat shrinkage at 130 ° C for 30 minutes under no load, humidity is adjusted for 24 hours at 25 ° C and 65% RH. Similarly, measure the length (L1) when a load of (lZl50) g per ldtex is applied. The dry heat contraction rate is calculated by applying each value to the following equation.
  • thermoplastic resin is nylon 6, nylon 12, or polypropylene
  • heat stretching and relaxation heat treatment it is particularly preferable to perform heat stretching and relaxation heat treatment as shown below.
  • the X-ray contrast yarn of the present invention may be a monofilament or a multifilament. Moreover, you may use as a long fiber, and you may cut
  • the X-ray contrast yarn of the present invention is used for a fabric such as a surgical gauze as described later, higher contrast performance is required as the X-ray contrast yarn. In order to improve the contrast performance, it is preferable to increase the content of the radiopaque agent in the yarn.
  • the content of the X-ray impermeable agent in the X-ray contrast yarn is better in terms of improving the contrast performance. However, if it is too much, the spinning may be hindered, or the fiber may be used as a fiber. In some cases, the mechanical properties of the material deteriorate too much. Considering such points, the content of the X-ray opaquer in the fiber is preferably 30 to 85% by mass, more preferably 40 to 80% by mass, and particularly preferably 60 to 78% by mass. Furthermore, 65 to 75% by mass is preferable.
  • thermoplastic resin When nylon 12 is used as the thermoplastic resin, melt spinning and drawing are possible even when a large amount of X-ray impermeable agent is contained in the thermoplastic resin, and a yarn is obtained with good operability. be able to.
  • the single yarn fineness of the X-ray contrast yarn is also a factor affecting the contrast. For this reason, in the case of monofilament, it is preferable to set the fineness to 20 to 400 dtex and the total fineness to 1000 to 20000 dtex in the case of multifilaments where it is preferable to set the fineness to 1000 to 20000 dtex.
  • both monofilament and multifilament have a substantially circular cross-sectional shape. Even in a substantially circular shape, a shape closer to a perfect circle than an ellipse is preferable. In the case of an elliptical shape, there is a portion where the distance through which X-rays pass becomes shorter, so the contrast performance may be inferior. On the other hand, when it is a perfect circle, there is no part where the distance through which X-rays pass is shortened, so that it has excellent contrast performance. It becomes.
  • a force that reduces the single yarn fineness compared to a monofilament If the multifilament has a substantially circular cross-sectional shape, the same contrast as a monofilament that exhibits a substantially circular cross-sectional shape. Performance can be obtained.
  • the multifilament as a whole has a substantially circular cross-sectional shape, which is similar to the cross-sectional shape of the monofilament and increases the distance through which X-rays pass. Therefore, good contrast performance can be obtained.
  • a twisting force S is applied to the entire multifilament.
  • the twist number is preferably 20 TZm or more, more preferably 50 T / m or more, and more preferably 60 to 120 TZm.
  • the integrity of the filament can be maintained, so that the single yarn of the X-ray contrast yarn does not easily fall out of the product.
  • Examples of the X-ray contrast yarn of the present invention include those provided with an oil agent. It is not different from a known X-ray contrast yarn simply by applying an oil agent, but in the present invention, the content of the applied oil agent is significantly different from that of a known X-ray contrast yarn. It is important in the invention. That is, the oil agent applied to the X-ray contrast yarn of the present invention has a small proportion of the ionic surfactant component.
  • the ionic surfactant component refers to a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • the cationic surfactant include quaternary ammonium salts.
  • the anionic surfactant include fatty acid salts, organic sulfonates, organic sulfates, and organic phosphate esters.
  • amphoteric surfactants include organic pedine and organic amine oxides.
  • the proportion of the ionic surfactant in the oil agent is preferably 0 to 6% by mass, and preferably 0 to 3% by mass, even though it is preferably 0 to 10% by mass. Particularly preferred.
  • an oil agent with a ratio of the ionic surfactant exceeding 10% by mass is applied, the X-ray contrast yarn and the product using the same are likely to foam when shaken in water.
  • the proportion of the ionic surfactant in the applied oil agent does not exceed 10% by mass.
  • nonionic surfactants include higher alcohols and alkylphenols, and more specifically, polyoxyethylene sorbitan fatty acid esters, fatty acid alcohol amides, polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, and the like. And oxyethylene alkyl phenyl ether.
  • the amount of oil which is applied to the X-ray opaque filament forces S preferably 0.1 to 2.0 mass 0/0 of the mass of X-ray opaque filament, 0.2 to 1. more preferably 0 mass 0/0 power S, 0. 3 ⁇ 0. 7% by weight is particularly preferred. If it is less than 1% by mass, spinning tends to be difficult because the yarn cannot be sufficiently converged. On the other hand, if it exceeds 2.0% by mass, the roller tends to be contaminated with an oil during spinning, which tends to adversely affect the operation.
  • the X-ray contrast-coated yarn of the present invention is coated with a coated fiber around the X-ray contrast yarn, which is a fiber made of a thermoplastic resin containing an X-ray impermeable agent, and dry heat shrinks at 130 ° C. The rate is 3.5 to 0%.
  • the X-ray contrast yarn used for the X-ray contrast-coated yarn has a dry heat shrinkage rate at 130 ° C of 3.
  • the proportion power of the ionic surfactant component that is preferably 5 to 0% ⁇ to 10% by mass
  • the thermoplastic resin preferably provided with an oil agent is nylon 12. It is preferable that only the thermoplastic resin containing an X-ray contrast agent is used.
  • the X-ray contrast yarn used for the X-ray contrast coated yarn is preferably a monofilament with a fineness of 1000-20000 dtex, or a multifilament with a single yarn fineness of 20-400 dtex and a total fineness of 000-20000 dtex. I prefer to be there!
  • the coated fiber used for the X-ray contrast-coated yarn is preferably a finer yarn than the X-ray contrast yarn.
  • the material of the covering fiber may be any of natural fiber, synthetic fiber, and the like that are not particularly limited. Examples of natural fibers include cotton, hemp and silk thread. Synthetic fibers include fibers that have a strength such as polyamide, polyester, and polyolefin.
  • the presence of the coated fiber covering the periphery of the X-ray contrast yarn makes it easy to entangle with other fibers constituting the product as a fiber structure. It is possible to prevent the X-ray contrast yarn from falling off. In other words, it is possible to prevent both the X-ray contrast thread from falling off in the process until the product is obtained and the X-ray contrast thread from falling off during the use of the product, so that it can be used for various products. It is possible to obtain high quality products.
  • the X-ray contrast yarn may be either monofilament or multifilament.
  • the X-ray contrast yarn is coated with the coated fiber so that the cross-sectional shape is substantially circular.
  • the covering fiber that covers the X-ray contrast yarn In order to obtain such an X-ray contrast-coated yarn, it is preferable to use a finer yarn than the X-ray contrast yarn as described above as the covering fiber that covers the X-ray contrast yarn.
  • the covering yarn As the form of the covering, it is preferable that the covering yarn is covered with a covering twist number of 200 to 2000 TZm. It is more preferable that the covering twist number is 500 TZm or more. It ’s more than m.
  • the number of covering twists, the single yarn fineness and the total fineness of the coated fiber can be appropriately selected so that the cross-sectional shape of the coated X-ray contrast yarn is substantially circular.
  • the X-ray contrast yarn itself is preferably twisted.
  • the twist number of the X-ray contrast yarn is preferably 2 TZm or more, more preferably 10T Zm or more, and further preferably 20 to 50 TZm.
  • the X-ray contrast yarn since the X-ray contrast yarn itself is twisted in this way, the X-ray contrast yarn is removed from the X-ray contrast-covered yarn, and the X-ray contrast yarn is removed from the product ⁇ Become. Furthermore, when the X-ray contrast yarn is a multifilament, the integrity of the multifilament can be maintained. In this case as well, the single yarn of the X-ray contrast yarn falls out of the product.
  • the dry heat shrinkage rate of the coated fiber is not particularly limited.
  • the X-ray contrast-coated yarn needs to have a dry heat shrinkage of 3.5 to 0% at 130 ° C, and preferably 2.0 to 0%. It is more preferably 0% and even more preferably 0.6 to 0%.
  • the dry heat shrinkage rate of the X-ray contrast-coated yarn is measured in the same manner as described above in place of the X-ray contrast yarn by the X-ray contrast-coated yarn in the method for measuring the dry heat shrinkage rate of the X-ray contrast yarn.
  • the X-ray contrast-coated yarn of the present invention it is preferable to use the X-ray contrast yarn to which the above-described oil is applied.
  • the same oil agent is applied to both the X-ray contrast yarn and the coated fiber. More preferably. In addition, those in which the oil agent is applied only to the coated fibers are also preferable.
  • This X-ray contrast coated yarn uses the X-ray contrast yarn of the present invention. At least a part of the coated fiber forms the first thermoplastic wrinkle forming the X-ray contrast yarn. It is composed of a second thermoplastic resin having a melting point lower than that of fat.
  • the melting point of the second thermoplastic resin constituting at least a part of the coated fiber is 100 ° C or higher, and the first thermoplastic resin constituting the X-ray contrast yarn
  • the melting point is preferably 20 ° C or more lower than the melting point. If the melting point difference is less than 20 ° C, the X-ray contrast yarn itself may melt depending on the heat treatment temperature when heat-bonding to obtain a fiber structure. is there. Further, if the melting point of the second thermoplastic resin is less than 100 ° C, the X-ray contrast-coated yarn or the fiber structure containing the same may be melted when heat sterilized, for example. is there.
  • thermoplastic resin 2 can be melted and bonded to other fibers constituting the fiber structure. As a result, it is possible to satisfactorily prevent the X-ray contrast yarn from coming off from the fiber structure. Since the second thermoplastic resin of the covered fiber has a lower melting point than the first thermoplastic resin constituting the X-ray contrast yarn, only the second thermoplastic resin of the coated fiber is treated during the heat treatment. It can be melted or softened so that the thermoplastic resin constituting the X-ray contrast yarn does not melt. For this reason, the cross-sectional shape of the X-ray contrast yarn can be prevented from being deformed, and thus a fiber structure excellent in contrast can be obtained.
  • the coated fiber is at least partially made of the second thermoplastic resin, but may be a composite fiber composed of the second thermoplastic resin and another thermoplastic resin. Alternatively, it may be a single component type fiber consisting of only the second thermoplastic resin. However, it is preferable that at least the surface of the coated fiber is composed of the second thermoplastic resin.
  • the second thermoplastic resin include polyolefins, nylon copolymers, and polyester copolymers. In order to firmly bond the other fibers constituting the fiber structure and the X-ray contrast yarn, those having good adhesion to both fibers are preferable. For example, when the X-ray contrast yarn is made of nylon 12, a nylon copolymer is suitable as a low melting thermoplastic resin.
  • polystyrene resin examples include polyethylene, polypropylene, and the like.
  • polyethylene polypropylene, and the like.
  • low-density polyethylene polymerized using a meta-octane catalyst has a narrow molecular weight distribution and thermal decomposition. It is suitable because it is resistant to the like.
  • the nylon-based copolymer that can be used as the second thermoplastic resin is composed of yarns of arbitrary components among nylon 6, nylon 12, nylon 66, nylon 610, and the like. Examples include binary copolymers and ternary copolymers.
  • the polyester copolymer that can be used as the second thermoplastic resin includes one or more dibasic acids or derivatives thereof and one or more glycols.
  • Examples include polyester polymers obtained by copolymerizing the above.
  • Dibasic acids that can be used in this case include terephthalic acid, isophthalic acid, phthalic acid, p-oxybenzoic acid, 5-sodium sulfoisophthalic acid, naphthalenedicarboxylic acid and other aromatic dibasic acids, oxalic acid, and adipic acid.
  • glycols include ethylene glycol, diethylene glycol, triethylene glycol, propane diol, butane diol, pentane diol, hexane diol, neopentane diol, p-xylene glycol and the like, and polyethylene glycol, polytetramethylene glycol and the like.
  • alkylene glycols include alkylene glycols.
  • Aromatic polyesters include polymers of ethylene terephthalate units and / or butylene terephthalate units, or further, isophthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, ethylene glycol, 1,6-hexane. Examples include those obtained by copolymerizing diols.
  • aliphatic ratatones those having 4 to 11 carbon atoms may be used alone, or two or more may be used in combination. Examples of particularly suitable ratatones include ⁇ -force prolatata and ⁇ -valerolatatanes. It is done.
  • the coated fiber is a composite fiber
  • the sheath fiber By making the sheath fiber a core-sheath type composite fiber, even when the sheath part is melted and bonded to the X-ray contrast yarn and / or the fiber constituting the fiber structure, the core resin does not melt. As a result, the strength of the coated fiber can be maintained, so that the effect of binding the X-ray contrast yarns to prevent the single yarn from falling off is enhanced.
  • thermoplastic resin described above examples include polyamide, polyester, and polyolefin.
  • polyamides examples include nylon 6, nylon 66, nylon 69, nylon 46, nylon 610, nylon 12, and polymetaxylene adipamide.
  • polyester polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, or the like can be used.
  • polypropylene, polyethylene, or the like can be used.
  • Ma It may also be a copolymer or a mixture comprising these components.
  • the ratio (% by mass) of the second thermoplastic resin to the entire coated fiber is preferably 10% or more, more preferably 20% or more. If the ratio of the second thermoplastic resin is too small, the number of bonded portions due to heat treatment decreases, so that the X-ray contrast yarn can be easily removed from the fiber structure as the final product.
  • the stage after the X-ray contrast-coated thread is made into a fiber structure such as a fabric. May be applied. Considering the processability when making a fiber structure such as a fabric, it is preferable to heat-treat after forming the fiber structure.
  • a general heat treatment apparatus can be used as the heat treatment means for melting the second thermoplastic resin constituting the coated fiber at the stage of the X-ray contrast coated yarn.
  • a non-contact dry heat treatment apparatus such as a slit heater.
  • an X-ray contrast-coated yarn in which at least a part of the coated fiber is melt-bonded to the X-ray contrast yarn can be obtained.
  • the X-ray contrast-coated yarn is obtained by once melting the second thermoplastic resin at the stage of the X-ray contrast-coated yarn, and this X-ray contrast-coated yarn is used to fabricate a fibrous structure such as a woven fabric or a nonwoven fabric.
  • the second melted and solidified thermoplastic resin is further melted and melt-bonded to the fiber structure. Can be prevented from coming off.
  • the fiber structure of the present invention contains the X-ray contrast yarn and / or X-ray contrast-coated yarn of the present invention, and at least partially contains the X-ray contrast yarn and / or the X-ray contrast coating of the present invention. It is constructed using yarn.
  • Specific examples of the fiber structure include fabrics such as woven and knitted fabrics and nonwoven fabrics, fiber laminates, fiber balls, and the like. Of these, fabrics that are preferred are fabrics and nonwoven fabrics are more preferable.
  • These woven fabrics and nonwoven fabrics contain other fibers constituting the woven fabric and nonwoven fabric, and the X-ray imaging yarn and / or X-ray contrast coated yarn of the present invention. Appearance is excellent, and X-ray contrast yarns are difficult to fall off from woven fabric and nonwoven fabric.
  • gauze used during surgery may be stained red by blood, making it difficult to distinguish it from the patient's organ at the patient's incision, leaving gauze in the patient's body. If gauze continues to remain in the body, the patient may experience fever as well as feel pain in the body, or the gauze may adhere to the organ and cause other illnesses.
  • a method of confirming the number of gauze used after surgery may be used, but it is not easy to confirm the number of gauze with blood attached. However, this method alone is not sufficient.
  • fabrics such as the above-mentioned woven fabric and non-woven fabric contain fibers having X-ray contrast properties, so that they can be used for X-ray photography when left in the body. Therefore, all the fabrics used in the surgery can be removed.
  • the X-ray contrast yarn having a low dry heat shrinkage rate is used, a high quality product that does not cause wrinkles in the product obtained even if heat treatment is performed in the heat treatment process during fabric manufacture. Can be obtained and is suitable as a medical gauze.
  • the X-ray contrast yarn can be removed from the fabric, and the cross-sectional shape of the yarn Since it has a substantially round cross-sectional shape, it can be excellent in contrast performance.
  • any fiber having a fiber form such as synthetic fiber, natural fiber, and regenerated fiber can be used.
  • a spun yarn composed of short fibers or one or more long yarns can be used. Any configuration such as a fiber bundle made of fibers or a combination of these may be used.
  • natural fibers such as cotton, solvent-spun cellulose fibers, recycled fibers such as viscose rayon and copper ammonia rayon (cupra rayon)
  • the fibers constituting the woven fabric may be composed of one type of fiber, but two or more types of fibers may be mixed within a range without impairing the object of the present invention.
  • the warp and weft constituting the woven fabric are not particularly limited in fineness as long as they can be used for plain weaving.
  • 40th pure cotton yarn is used. Can do.
  • the yarn density can be in a range generally used as a medical gauze, for example, but in terms of absorption and handling of blood, both warp density and weft density are used. About 5 to 20 Zcm is preferable.
  • the X-ray contrast yarn and / or the X-ray contrast-coated yarn needs to be contained in a woven fabric having a plain structure, and at the time of plain weaving, at least one of the weft and the warp is used as X It is only necessary to weave the X-ray contrast yarn and / or X-ray contrast-coated yarn, or insert the X-ray contrast yarn and / or X-ray contrast-coated yarn after making the fabric.
  • the X-ray contrast yarn obtained as described above and / or the woven fabric containing the X-ray contrast-coated yarn is laminated with other woven fabric or non-woven fabric, and the laminate is integrated by hydroentanglement treatment or the like. Can be used.
  • the main fibers constituting the nonwoven fabric are preferably non-thermoplastic fibers. This is because many thermoplastic fibers are not suitable for wiping or absorbing blood or body fluids that are poorly water-absorbing.
  • non-thermoplastic fibers natural fibers such as cotton having relatively good water absorption, solvent-spun cellulose fibers, and regenerated fibers such as viscose rayon and copper ammonia rayon (cupra rayon) are preferable.
  • solvent-spun cellulose fibers are suitable because of their high crystallinity and high orientation, and high initial Young's modulus and strength when wet.
  • This solvent-spun cellulose fiber is obtained by spinning a stock solution in which cellulose is dissolved in a special organic solvent without changing it chemically, or a chip obtained by drying this stock solution. It is sold under the name “Lenzing 'Lyocell” by Lenzing.
  • the non-thermoplastic fiber constituting the nonwoven fabric may be composed of one type of fiber, or may be a mixture of two or more types of fibers within a range not impairing the object of the present invention.
  • the main fiber constituting the nonwoven fabric preferably has a single yarn fineness of 0.8 to 3.5 dtex, more preferably 1.0 to 3. Odtex. If it is less than 8 dtex, the passability in the card process when producing a non-woven fabric is deteriorated. Conversely, if it exceeds 3.5 dtex, the entanglement between the fibers becomes weak and the degree of entanglement at the entanglement point decreases. Further, short fibers having a fiber length of 20 to 85 mm are preferable. When the fiber length is outside this range, The passability will be worse.
  • the nonwoven fabric of basis weight is a fiber structure of the present invention, 25 ⁇ 150gZm 2 is preferred. Absorption of blood or the like is less than 25 g Zm 2 is not sufficient, when conversely exceeds 150GZm 2, removals becomes "handling in a force at the time of operation or the like to increase.
  • the X-ray contrast yarn and / or the X-ray contrast-coated yarn in the nonwoven fabric must be contained in an appropriate amount in the nonwoven fabric.
  • an X-ray contrast yarn and / or an X-ray contrast-coated yarn may be arranged between the two layers of the web to form a nonwoven fabric by hydroentanglement treatment or the like. it can.
  • hydroentanglement treatment is performed on a single-layer web to form a nonwoven fabric, and then X-ray contrast yarns and / or X-ray contrast-coated yarns are arranged on the surface of the obtained nonwoven fabric, and then hydroentanglement treatment is performed. You can go.
  • a heat setting step is usually required for improving the strength and integrity of the nonwoven fabric or for drying after hydroentanglement treatment or the like.
  • the coated fiber is composed of a second thermoplastic resin having a melting point lower than that of the first thermoplastic resin constituting the X-ray contrast yarn.
  • the second thermoplastic resin constituting at least a part of the coated fiber melts and adheres to the fiber constituting the fiber structure! ,.
  • thermoplastic resin constituting the coated fiber of the X-ray contrast-coated yarn at the stage of the fiber structure a heat treatment apparatus in which the X-ray contrast-coated yarn is contained is used. And a method of melting the second thermoplastic resin and bonding it to the fibers constituting the fiber structure.
  • the heat treatment method include a method of passing through a non-contact dry heat treatment apparatus such as a slit heater, and a method such as a heat press treatment using a heat roller such as an embossing roller. From the viewpoint of contrast and flexibility, It is preferable to use non-contact dry heat treatment equipment.
  • the melting point of the second thermoplastic resin constituting the coated fiber is 130 ° C or lower, it melts when heat-set in a dry state of 130 ° C when producing a nonwoven fabric, At the time of this heat setting, it can be bonded to the main fiber constituting the nonwoven fabric.
  • a predetermined amount of X-ray impermeable agent can be added directly to the thermoplastic resin and kneaded with an etatruder, etc., but the X-ray opaque agent is added to the thermoplastic resin at a high concentration.
  • a method of kneading the prepared master chip in advance with a conventional thermoplastic resin chip is preferable because the radiopaque agent can be more uniformly dispersed.
  • a master chip containing an X-ray impermeable agent and a thermoplastic resin are kneaded and melted with an etastruder by a known method, and extruded from a spinneret to perform melt spinning.
  • the spinning temperature is preferably in the range of (Tm + 10) ° C. to (Tm + 80) ° C. with respect to the melting point Tm of the thermoplastic resin containing the X-ray opaquer. If the spinning temperature is too high, the thermoplastic resin undergoes thermal decomposition, which makes smooth spinning difficult and tends to result in poor physical properties of the filaments obtained. On the other hand, if the spinning temperature is too low, undissolved materials are likely to remain.
  • the spun filament is cooled and solidified by cooling air of 15 to 40 ° C, and is wound up at 200 to 1500 m / min without substantial stretching! /.
  • the heat treatment time during stretching is preferably 0.02 seconds or more as described above, more preferably 0.05 seconds or more, and still more preferably 0.07 seconds or more.
  • the stretching tension is preferably 1. OgZdtex or less, more preferably 0.8 gZdtex or less, and still more preferably 0.6 gZdtex or less.
  • the stretching speed is not particularly limited, but is preferably 500 mZ minutes or less, more preferably 200 mZ minutes or less in order to make the heat treatment time 0.02 seconds or more as described above. Lower, more preferably less than lOOmZ minutes. However, considering productivity, it is preferable to set it to 50 mZ or more.
  • the stretching temperature will be described. Stretching is usually performed between rollers, and when stretching between heated rollers, it is preferable to set the roller temperature between (Tm-150) ° C and (Tm-50) ° C. When stretching with a heater, set the heater temperature to (Tm—150) ° C ⁇ (Tm—50
  • the heat treatment time refers to the total time for the multifilament yarn to pass through the heating zone in the above temperature range during drawing. In other words, when preheating is performed, it means the passage time including the preheating zone.
  • the draw ratio is preferably 20 to 60% of the maximum draw ratio (the ratio at which the undrawn multifilament yarn is cut by drawing). If the draw ratio is outside this range, the elongation will be too low or too high.
  • Relaxation heat treatment is performed at a tension of 0.5 gZdtex or less for 0.5 seconds or more, and the temperature (Tm—100)
  • the multifilament can be sufficiently stretched and contracted by performing the thermal stretching as described above, followed by a relaxation heat treatment, and therefore the X-ray contrast yarn of the present invention at 130 ° C. Dry heat shrinkage can be 3.5% or less.
  • the X-ray contrast yarn (multifilament yarn) of the present invention can be obtained by twisting by a known method as necessary.
  • an X-ray contrast-coated yarn By covering the periphery of the X-ray contrast yarn obtained as described above with a covering fiber, an X-ray contrast-coated yarn can be obtained.
  • the covering twist number is 200 to 2000 TZm.
  • the number of ring burns is more preferably 500 to 2000 T / m force, and particularly preferably 1000 to 2000 T Zm.
  • the covering twist number and other conditions may be appropriately selected so that the cross-sectional shape of the X-ray contrast yarn after cannulation is substantially circular.
  • An X-ray contrast-coated yarn coated with a coated fiber containing at least a part of fat as a constituent component can also be obtained by canring the coated fiber as described above.
  • This coated fiber has a second thermoplastic resin and
  • thermoplastic resin constituting the coated fiber so as to have a core-sheath shape or the like using an ordinary composite spinning apparatus, and drawing and heat-treating by a conventional method.
  • the X-ray contrast yarn of the present invention to which an oil agent is applied will be described.
  • the X-ray contrast yarn can be manufactured by the same method as described above, and after cooling and solidifying the melt-spun filament with cooling air, an oil agent is applied by a known method.
  • the X-ray contrast-coated yarn of the present invention to which an oil agent is applied, is preferably used as an X-ray contrast yarn to which an oil agent is applied as described above. It ’s good. In the case of an X-ray contrast-coated yarn in which an oil agent is also applied to the coated fiber, it is sufficient to prepare a coated fiber to which an oil agent has been applied in a separate process in advance.
  • the woven fabric of the present invention for example, 40th pure cotton yarn is used for warp and weft, and weaving is performed using a normal gauze loom.
  • an X-ray contrast yarn and / or an X-ray contrast-coated yarn are used, and the X-ray contrast yarn and / or the X-ray contrast-coated yarn are woven into the fabric. Fix it.
  • the periphery of the X-ray contrast yarn is covered with a coated fiber containing at least a part of the second thermoplastic resin having a melting point lower than that of the first thermoplastic resin constituting the X-ray contrast yarn.
  • the X-ray image-coated yarn and the cotton yarn can be melt-bonded by heat treatment after obtaining the fabric. Furthermore, if the X-ray contrast yarn and / or the X-ray contrast-coated yarn are melt-bonded to the cotton yarn by heat treatment using a hot embossing roller or an ultrasonic fusing device, it can be fixed more firmly. Alternatively, an X-ray contrast yarn is placed on a fabric made only from cotton yarn, a heat embossing roller, an ultrasonic fusing device, etc. The X-ray contrast yarn may be melt-bonded to the cotton yarn and fixed by heat treatment.
  • the obtained woven fabric can be made suitable for gauze prescribed in the Japanese Pharmacopoeia by degreasing, bleaching, sterilizing, etc. as appropriate.
  • the X-ray contrast yarns and / or X-ray contrast-coated yarns arranged on the fabric are preferably arranged at appropriate intervals in the flow direction (longitudinal direction) in the production of the fabric. Specifically, for example, an interval of about 10 to 300 mm is preferable. Further, the arrangement may be meandering in a wavy pattern instead of being linear.
  • a fiber web is prepared, for example, in which mainly solvent-spun cellulose fibers are deposited.
  • this fiber web for example, a card web obtained by supplying solvent-spun cellulose fibers to a card machine is used.
  • a mesh-like support body having a coarse fabric power having a predetermined opening.
  • X-ray contrast yarns and / or X-ray contrast-coated yarns are arranged on the fiber web at appropriate intervals, and further, a fiber web in which mainly solvent-spun cellulose fibers are similarly deposited thereon is deposited. To make a laminate.
  • the fiber webs positioned above and below the X-ray contrast yarn and / or the X-ray contrast-coated yarn may be the same or different in basis weight.
  • Basis weight of the textiles web is positioned vertically, yo be appropriately selected in consideration of the weight of the finally obtained non-woven fabric Iga, each 10: is preferably about 2 LOOgZm.
  • the X-ray contrast yarns and / or X-ray contrast-coated yarns arranged on the fiber web are preferably arranged at an appropriate interval in the flow direction (longitudinal direction) in the production of the product. Specifically, for example, about 10 to 300 mm is preferable. Also, when arranging, even if it is not linear, meander in a wavy pattern.
  • a high-pressure liquid flow such as a high-pressure water flow is applied to the laminate in which the fiber web ZX-ray contrast yarn and / or the X-ray contrast-coated yarn Z fiber web are laminated in this order, so that the solvent-spun cell port is formed. Interlace treatment between fibers.
  • the fibers By applying a high-pressure liquid flow, the fibers can be entangled and integrated as a whole to form a fiber sheet, and solvent-spun cellulose fibers can be formed on the X-ray contrast yarn and / or the X-ray contrast-coated yarn. Fiber tangles by tangling X-ray contrast yarns and / or X-ray contrast-coated yarns can be fixed in the eye.
  • the above-mentioned high-pressure water flow is, for example, a hole diameter 0.05 to 2.
  • Omm injection hole gap injection hole interval 0.05 to: LOmm in a direction (lateral direction) perpendicular to the flow direction in product manufacture It is obtained by spraying water from the spray hole at a pressure of 1.5 to 40 MPa using a spray device arranged in one or more rows.
  • LOmm injection hole gap injection hole interval
  • it moves to the opening portion of the mesh-like support while confounding the constituent fiber force, and there is no fiber at the location corresponding to the knuckle part of the support.
  • a hole is formed.
  • the nonwoven fabric which consists of a fiber sheet which has an opening can be obtained.
  • the mesh support can be determined based on the surface form of the nonwoven fabric to be obtained, the presence or absence of pores, and the like. For example, when the mesh support is a woven fabric of about 16 to 25 mesh, it is possible to obtain a nonwoven fabric provided with pores while the surface of the resulting nonwoven fabric is smooth. If the mesh support is a woven fabric exceeding 25 mesh, a nonwoven fabric having a very smooth surface and excellent drape can be obtained if the mesh support is difficult to be provided with pores, particularly a woven fabric exceeding 40 mesh. What level of mesh should be used may be appropriately selected according to the required performance of the obtained nonwoven fabric.
  • the mesh refers to the number of lines per inch. For example, a 25-mesh coarse fabric has 25 lines per inch.
  • the nonwoven fabric of the present invention is used, for example, as a medical gauze by cutting the X-ray contrast yarn obtained by hydroentanglement treatment and / or the nonwoven fabric containing the X-ray contrast-coated yarn into an appropriate size. can do.
  • the periphery of the X-ray contrast yarn is coated with a coated fiber containing at least a part of the second thermoplastic resin having a melting point lower than that of the first thermoplastic resin constituting the X-ray contrast yarn.
  • the coated fiber is melt-bonded to the main fiber constituting the nonwoven fabric in the heat setting process for drying after hydroentanglement treatment etc. This comes out.
  • the dry heat shrinkage rate of the obtained X-ray contrast yarn was measured by the method described above.
  • the load the load applied to the casserole ring
  • the load was set to 507 g.
  • the obtained woven fabric and non-woven fabric were evaluated for contrast, wrinkle generation, and thread dropout as follows.
  • the resulting woven and non-woven fabrics were visually evaluated for wrinkles on the following five levels.
  • the resulting woven fabric and non-woven fabric were cut, and the cut-off state when the cut end face and the X-ray contrast yarn and / or the X-ray contrast-coated yarn (both multifilament and single yarn) were pulled out by hand was as follows. Rated by stage. [0138] 1: The multifilament and its single yarn cannot be slipped out even when pulled out strongly.
  • Nylon 6 Measured by a conventional method using 96% sulfuric acid as a solvent, with a concentration of lgZ deciliters and a temperature of 25 ° C.
  • Nylon 12 Measured by a conventional method under the conditions of a concentration of 0.5 gZ deciliters and a temperature of 25 ° C. using methatalesol as a solvent.
  • Polyethylene terephthalate Measured under the conditions of a sample concentration of 0.5 g / 100 cc and a temperature of 20 ° C. using an Ubbelohde viscometer using a mixture of equal mass of phenol and tetrasalt ethane as a solvent.
  • OPU (%) (A2-A0) / (A1 -A0) X 100
  • a nylon 12 chip with a relative viscosity of 1.90 (Daicel Degussa, VESTAMIDL190 0) was fed to an extruder-type melt extruder with a chip adjusted so that the barium sulfate content in the yarn was 60% by mass, The melt was melted at a spinning temperature of 250 ° C and discharged from a spinneret having 28 spinning holes with a hole meter of 0.50 mm, and the undrawn yarn was wound at a take-up speed of 400 mZ.
  • the obtained undrawn yarn was subjected to stretching and relaxation heat treatment according to the process diagram shown in Fig. 1 so as to satisfy the thermal drawing and relaxation heat treatment conditions shown in Table 1. That is, as shown in FIG. 1, first, the undrawn yarn 1 was drawn downward by the pulling roller 5 through the guide roller 2. Then, heat treatment was performed by a box heater 4 provided below the guide roller 2. At this time, the temperature of the box heater 4 (heat treatment temperature) was set to 150 ° C., and the heat treatment time was set to 0.09 seconds. Stretching was performed between the guide roller 2 and the tension roller 5 (stretching ratio 1.2 times), and the tension (stretching tension) applied to the undrawn yarn during stretching was 0.42 gZdtex.
  • relaxation heat treatment was performed using a heat treatment apparatus 6 having a saddle type heater 8 and a heating roller 9.
  • the heat treatment temperature is 150 ° C and the heat treatment time is 3.8 seconds with a tension of 0.04 gZdtex. It was.
  • the yarn that passed through the heat treatment apparatus 6 was wound up to obtain an X-ray contrast yarn of 3800 dtex Z28f.
  • the barium sulfate content in the yarn was changed as shown in Table 1, and the hot drawing and relaxation heat treatment conditions were changed to the values shown in Table 1. Otherwise, spinning / drawing / relaxation heat treatment was carried out in the same manner as in Example 1 to obtain a 3800 dtex Z28f X-ray contrast yarn.
  • the X-ray contrast yarns obtained in Examples 1 to 5 and Comparative Examples 1 and 2 and a polyester multifilament made of 84 dtex Z3 6f polyethylene terephthalate as a coated fiber were used. Then, using a canoring twisting machine, the coated fibers were swirled around the X-ray contrast yarn by the S twist at the number of twists shown in Table 1 to obtain an X-ray contrast coated yarn. Other manufacturing conditions were as shown in Table 1.
  • the barium sulfate content in the yarn was changed as shown in Table 1, and the conditions of hot drawing and relaxation heat treatment were changed to the values shown in Table 1. Otherwise, in the same manner as in Example 1, spinning / drawing / relaxation heat treatment was performed, and the yarn was wound up. Next, the actual twist shown in Table 1 was covered with a ring twisting machine to obtain an X-ray contrast yarn of 3800dtex / 28f.
  • the barium sulfate content in the yarn was changed as shown in Table 1, and the conditions of hot drawing and relaxation heat treatment were changed to the values shown in Table 1. Otherwise, in the same manner as in Example 1, spinning / drawing / relaxation heat treatment was performed, and the yarn was wound up. Next, a 3800dtex / 28f X-ray contrast yarn was obtained using a ring twisting machine, covering the actual twists shown in Table 1.
  • the X-ray opaquer was changed to bismuth nitrate (Example 16) and tungsten oxide (Example 17), and the X-ray opaquer content in the yarn was changed as shown in Table 1. . Otherwise, in the same manner as in Example 3, spinning / drawing / relaxation heat treatment was performed to obtain an X-ray contrast yarn of 3800 dtex Z28f. [0160] Subsequently, an X-ray contrast-coated yarn was obtained in the same manner as in Example 6 using a canoring twisting machine.
  • Nylon with 6 40 master chips adjusted to a barium sulfate content of 55% by mass are fed to an Etrustruder type melt extruder at a spinning temperature of 255 ° C. It was melted and discharged from a spinneret having 28 spinning holes with a diameter of 0.50 mm, and the undrawn yarn was wound up at a take-up speed of 400 mZ.
  • the obtained undrawn yarn was supplied to the same heat drawing / relaxation heat treatment machine as in Example 1, and subjected to drawing and heat treatment so as to satisfy the conditions of heat drawing / relaxation heat treatment shown in Table 1, and 3800dtexZ28f X-ray contrast yarn was obtained.
  • the barium sulfate content in the yarn was changed to be as shown in Table 1, and the heat drawing and relaxation heat treatment conditions were changed to the values shown in Table 1. Otherwise, spinning / drawing / relaxation heat treatment was carried out in the same manner as in Example 18 to obtain a 3800 dtex Z28f X-ray contrast yarn.
  • the barium sulfate content in the yarn was changed as shown in Table 1, and the hot drawing and relaxation heat treatment conditions were changed to the values shown in Table 1. Otherwise, spinning-drawing / relaxation heat treatment was carried out in the same manner as in Example 18 to obtain an X-ray contrast yarn of 3800 dtex Z28f.
  • the barium sulfate content in the yarn was changed as shown in Table 1, and the hot drawing and relaxation heat treatment conditions were changed to the values shown in Table 1. Otherwise, the spinning-drawing'relaxation heat treatment was carried out in the same manner as in Example 18 to perform winding. Next, an actual twist as shown in Table 1 was collected with a ring twisting machine to obtain a 3800 dtex / 28f X-ray contrast yarn.
  • the barium sulfate content in the yarn was changed as shown in Table 1, and the hot drawing and relaxation heat treatment conditions were changed to the values shown in Table 1. Then, in the same manner as in Example 18, spinning / drawing / relaxation heat treatment was carried out and wound up. Next, an actual twist as shown in Table 1 was collected by a ring twisting machine to obtain a 3800 dtex / 28f X-ray contrast yarn. [0168] Subsequently, an X-ray contrast-coated yarn was obtained in the same manner as in Example 6 using a canoring twisting machine.
  • the obtained undrawn yarn was supplied to the same hot drawing / relaxation heat treatment machine as in Example 1, and was subjected to drawing and heat treatment so as to satisfy the heat drawing / relaxation heat treatment conditions shown in Table 1, and 3800 dtex / A 28 f X-ray contrast yarn was obtained.
  • Example 24 Spinning was carried out in the same manner as in Example 24, and the unstretched wound yarn was not drawn and the force-balancing twist number was changed to the values shown in Table 1. Otherwise, an X-ray contrast-coated yarn was obtained in the same manner as in Example 6 using a covering twisting machine.
  • the obtained undrawn yarn was subjected to the steps shown in Fig. 1 in the same manner as in Example 1.
  • Thermal stretching and relaxation heat treatment were performed so as to satisfy the thermal stretching conditions and relaxation heat treatment conditions described in Table 2.
  • the yarn subjected to the heat drawing and relaxation heat treatment was also wound up with the outlet force of the heat treatment apparatus 6 to obtain an X-ray contrast yarn (not twisted), which is a 3800 dtex / 28f multifilament yarn.
  • solvent-spun cellulose fiber (single yarn fineness 1.7 decitex, fiber length 38mm, trademark "trade name” lenting 'Lyocell “” manufactured by Lenting Co., Ltd.) was opened with a random card, and about 15 gZm 2 A fiber web was obtained.
  • the obtained X-ray contrast yarn is linearly arranged on the fiber web in the flow direction (longitudinal direction) at intervals of 100 mm, and the fiber web of about 15 g / m 2 is obtained on the same.
  • the obtained laminate was placed on a 100-mesh mesh-like support, and using an injection device in which injection holes with a nozzle hole diameter of 0.1 mm were arranged in a row in a horizontal direction with a hole interval of 0.6 mm, Injection pressure 6. Processed twice at 9MPa, then inverted and processed from the opposite side twice with injection pressure 9.8MPa, then inverted and placed on a 25 mesh mesh support. 9. Treated twice with 8 MPa to obtain a nonwoven fabric with a basis weight of 33 gZm 2 .
  • the polyester multifilament of 84dtexZ36f which is made of polyethylene terephthalate and applied with an oil agent having the composition shown in the column of ⁇ Example 32 '' in Table 2, was used as the coated fiber, and the X-ray contrast yarn obtained in Example 31 was used to Using a ring twisting machine, the X-ray contrast-coated yarn was obtained by rotating the covered fiber around the X-ray contrast yarn with S twist and a twist number of 500 TZm.
  • a 40th cotton yarn was used for the warp and weft, and a plain weave was obtained with a width of 30 cm and lcm 2 of warp and weft yarns each having 12 strands.
  • one X-ray contrast yarn obtained in Example 5 is placed so as to be parallel to the warp, and heat treated with an embossing device, and the X-ray contrast yarn is fused and fixed to the fabric. did.
  • the embossing device is provided with a concavo-convex roll.
  • this concavo-convex roll the total area of the convex portions arranged in the form of dots occupies 15% of the area of the entire roll, The convex part was heated to a temperature of 235 ° C.
  • Example 4 Instead of placing one X-ray contrast yarn on the fabric and fusing and fixing it to the fabric by heat treatment, replace one of the warp yarns with the X-ray contrast yarn obtained in Example 4. A plain weave was obtained in the same manner as in 33 to obtain a woven fabric.
  • Example 3 Instead of placing one X-ray contrast yarn on the fabric and fusing and fixing it to the fabric by heat treatment, one of the warps was replaced with the X-ray contrast yarn obtained in Example 3.
  • a plain weave was obtained in the same manner as in 33 to obtain a woven fabric.
  • the fabric was heat-treated with an embossing device in the same manner as in Example 33, and the X-ray contrast yarn was fused and fixed to the fabric.
  • Example 34 X-ray contrast yarn or X-ray contrast-coated yarn shown in Table 3 (obtained in each example) Stuff). Otherwise, plain weaving was performed in the same manner as in Example 34 to obtain a woven fabric.
  • Table 3 shows the characteristic values and evaluations of the fabrics of Examples 33 to 60 and Comparative Examples 15 to 24 obtained as described above.
  • Example 9 Weaving 1 2 ⁇ Actual 46
  • Example 10 Weaving 1 2 Application ⁇
  • Example 47 Example 11 Weaving 1 2 ⁇
  • Example 20 Comparative Example 6 Weaving 5 2 ⁇
  • Solvent-spun cellulose fibers A (single yarn fineness of 1.7 dtex and a fiber length of 38mm, Renchin grayed Co., Ltd. trademark 'trade name "Lenzing'lyocell") was opened at random card, to obtain the about 15gZ m 2 fiber web .
  • the X-ray contrast yarn obtained in Example 5 was linearly arranged on the fiber web in the flow direction (longitudinal direction) at intervals of 100 mm, and on that, about 15 gZm 2 as obtained above. A fibrous web was deposited to obtain a laminate.
  • the resulting laminate is placed on a 100-mesh mesh-like support, and high-pressure water jetting apparatus in which nozzle holes with a nozzle hole diameter of 0.1 mm are arranged in a row in the horizontal direction with a hole interval of 0.6 mm , Treated twice at an injection pressure of 6.9 MPa, then inverted and treated twice at an injection pressure of 9.8 MPa from the opposite side, and further inverted and placed on a 25 mesh mesh support, injection pressure 9. treated twice with 8 MPa, to obtain a nonwoven fabric having a basis weight 33GZm 2.
  • the X-ray contrast yarn was changed to the X-ray contrast yarn shown in Table 4 or the X-ray contrast-coated yarn (for each example and comparative example). Otherwise, in the same manner as in Example 61, a nonwoven fabric having a basis weight of 33 gZm 2 was obtained.
  • Example 62 In the same manner as above, a nonwoven fabric was obtained.
  • Table 4 shows the characteristic values and evaluations of the nonwoven fabrics of Examples 61 to 92 and Comparative Examples 25 to 34 obtained as described above.
  • Example 8 A 1.7 38 33 1 2 ⁇
  • Example 77 Example 9 A 1.7 38 33 1 2 ⁇
  • Non-woven fabric ⁇ Main fibers constituting non-woven fabric> A: Solvent-spun cellulose fiber, B: Viscose rayon, C: Cotton [0202] As apparent from Table 4, the X-ray contrast yarn or the X-ray contrast-coated yarn in Examples 61 to 92 was obtained because the dry heat shrinkage rate of the X-ray contrast yarn was 3.5% or less. The non-woven fabric also had good contrast properties with no wrinkling and no thread dropping.
  • the X-ray contrast-coated yarns in Examples 74 to 79, 82 to 85, 88 to 89, and 91 to 92 are covered, so that the X-ray contrast yarns fall out little and the cross-sectional shape of the multifilament Since these were integrally formed so as to have a substantially circular shape, the nonwoven fabric obtained using these had superior X-ray contrast properties.
  • Nylon 6 Nylon 66: Nylon 12 Copolymer Nylon (Arkema Corp., melting point 118 ° C) chip consisting of 42:18:40 was supplied to Etastruder type melt spinning machine with a caliber of 0. Spinning was carried out at a spinning temperature of 185 ° C. through a spinneret having twelve 35 mm spinning holes, and the first and second roller speeds were 560 mZ and the final take-up speed was 1400 mZ, and the film was drawn at a draw ratio of 2.5. As shown in Table 5, the obtained coated fiber a had a fineness of 110 dtexZl2f.
  • Polyethylene terephthalate with a relative viscosity of 0.70 is used as the core component, and polyethylene terephthalate with a relative viscosity of 0.68 (melting point 135 ° C) copolymerized with 33.0 mol% of isophthalic acid is used as the sheath component.
  • the first godet roller speed was 3000 mZ (roller temperature 90 ° C)
  • the second godet roller speed was 4500 mZ (roller temperature 110 ° C)
  • the scraping speed was 4500 mZ.
  • the obtained coated fiber had a fineness of 84 dtexZ24f.
  • Polyethylene terephthalate with a relative viscosity of 0.70 (melting point 260 ° C) is used as the core component, and polyethylene with a melt flow rate of 20gZlO polymerized using a meta-octacene polymerization catalyst (melting point 102 ° C) is used as the sheath component.
  • the composite ratio (core Z sheath) is 50Z50 (mass ratio), the spinning temperature is 280 ° C, and it is discharged from a core-sheath type composite spinneret with 24 spin holes with a diameter of 0.2 mm. I took it. As shown in Table 5, the obtained coated fiber had a fineness of 84 dtex Z24f.
  • nylon 12 (melting point 178 ° C) with a relative viscosity of 1.90 used for coated fiber b, spinning temperature 2 50 ° C, discharge from core-sheath type composite spinneret with 24 spin holes with a diameter of 0.35mm I let you. Then, the first and second roller speeds were set to 560 mZ and the final cutting speed was set to 1400 mZ, and the film was drawn at a draw ratio of 2.5 times. As shown in Table 5, the obtained coated fiber had a fineness of 90 dtex Z24f.
  • Polyethylene terephthalate (melting point 260 ° C) having a relative viscosity of 0.70 was used and discharged from a core-sheath compound spinneret having 36 spinning holes with a diameter of 0.2 mm at a spinning temperature of 280 ° C. Then, the first godet roller speed was 3000mZ (roller temperature 95.C), the second godet roller speed was 4500mZ (roller temperature 130 ° C), and the cutting speed was 4500mZ. table As shown in 5, the obtained coated fiber had a fineness of 84 dtex Z36f.
  • the coated fiber c was swirled around the X-ray contrast yarn of Example 5 by S twist at a twist number of 5 OOTZm to obtain an X-ray contrast coated yarn.
  • the X-ray contrast-coated yarn was obtained by coating the periphery of the X-ray-constructed yarn with the coated fiber under the conditions and combinations of the X-ray contrast yarns (each example) and the coating fibers shown in Table 6.
  • Example 96 and Example 97 the X-ray contrast yarn in the previous stage, which was used as the X-ray contrast-coated yarn in Example 16 and Example 24, was used.
  • Example 95 after coating the coated fiber on the X-ray contrast yarn, heat treatment was performed for 30 seconds using a slit heater heated to 130 ° C., and a part of the coated fiber was melted and solidified. The line contrast yarn and the coated fiber were heat-sealed.
  • Example 61 Using the solvent-spun cellulose fiber A used in Example 61 as the main fiber constituting the nonwoven fabric, a fiber web was obtained in the same manner as in Example 61. Then, the X-ray contrast coated yarn of Example 93 was arranged on this fiber web in the flow direction (longitudinal direction) so as to be linearly arranged at intervals of 100 mm, and further obtained above. A similar fibrous web was deposited to obtain a laminate.
  • the obtained laminate was subjected to the same high-pressure water jet treatment as in Example 61, and the fiber sheet obtained by this jet treatment was passed through a non-contact dry heat treatment apparatus, and heat-set at 130 ° C for 30 seconds. At the same time, a part of the coated fiber was melted and adhered to the main fiber constituting the nonwoven fabric to obtain a nonwoven fabric having a basis weight of 33 g / m 2 . Table 7 shows the physical properties of this nonwoven fabric.
  • Example 101 72 viscose rayon fibers B (Example 101) were used.
  • the type of X-ray contrast coated yarn was changed to that shown in Table 7. Otherwise, a nonwoven fabric was obtained in the same manner as in Example 104.
  • Table 7 shows the physical properties of the obtained nonwoven fabric.
  • the nonwoven fabrics obtained in Examples 104 to 114 were free from wrinkles and had good quality and excellent X-ray contrast properties.
  • part of the coated fiber is melt bonded to the main fiber gauze constituting the X-ray contrast yarn and the nonwoven fabric.
  • the X-ray contrast yarn was not pulled out from the non-woven fabric sheet, and the evaluation of thread omission was particularly good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Artificial Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Abstract

 X線造影糸であって、X線不透過剤を含有する熱可塑性樹脂からなる繊維にて構成され、130°Cにおける乾熱収縮率が3.5~0%である。X線造影被覆糸であって、上記のX線造影糸の周囲が被覆繊維で被覆されている。またX線造影糸であって、X線不透過剤を含有する熱可塑性樹脂からなる繊維にて構成され、イオン系界面活性剤成分の割合が0~10質量%である油剤が付与されている。X線造影被覆糸であって、被覆繊維が、X線造影糸を構成する熱可塑性樹脂よりも融点の低い熱可塑性樹脂にて構成されている。繊維構造体であって、上記X線造影糸および、またはX線造影被覆糸を含んでいる。

Description

明 細 書
X線造影糸、 X線造影被覆糸、前記 X線造影糸および、または X線造影 被覆糸を用レヽた繊維構造体
技術分野
[0001] 本発明は、 X線造影糸、 X線造影被覆糸、前記 X線造影糸および、または X線造影 被覆糸を用いた繊維構造体に関し、特に、 X線不透過剤を含有する熱可塑性榭脂 カゝらなる繊維であって、 X線による造影が可能であり、織編物ゃ不織布等の布帛とし て各種の医療用途に好適に使用することができる X線造影糸、 X線造影被覆糸、前 記 X線造影糸および、または X線造影被覆糸を用いた織編物ゃ不織布等の繊維構 造体に関するものである。 背景技術
[0002] 近年、 X線による造影が可能な医療用高分子材料の開発が求められている。例え «JP— A— 2000— 336521では、中空部に造影剤を内包する中空繊維な!/ヽしは中 空モノフィラメントが提案されている。すなわち、公知の技術においては硫酸バリウム のような粉末状の造影成分を高分子素材とブレンドして溶融紡糸および延伸を行うこ とができなかったため、 JP— A— 2000— 336521では、中空繊維や中空モノフィラメ ントの中空部に後から造影剤を注入して内包させた繊維やモノフィラメントを提案して いる。そして JP— A— 2000— 336521には、この中空繊維や中空モノフィラメントを 組紐形状に編んで使用したり、短繊維に切断したりして、骨固定材のピン等の種々 の医療部材を得ることが記載されて 、る。
[0003] JP— A— 2002— 266157【こ ίま、 JP— A— 2000— 336521【こお!ヽて ίま溶融糸方糸 および延伸ができなカゝつた、 X線不透過剤を含有する熱可塑性榭脂からなる X線感 応繊維が記載されている。この JP— Α— 2002— 266157〖こは、この X線感応繊維を 手術用ガーゼ等の一部に織り込んで使用することが記載されている。
[0004] このような手術用ガーゼにおいては、布帛を構成する繊維の一部に X線造影糸を 混入させることによって、体内に放置されていた手術用ガーゼ等を識別することがで きるものである。このような体内に放置された手術用ガーゼは、体内の各種臓器や体 液等により X線で造影されに《なっている場合が多ぐこのため、 X線造影糸にはよ り高 、造影性が求められて 、る。
[0005] しかしながら、 JP—A— 2000— 336521に記載の繊維では、上記のように繊維の 中空部にのみ造影剤が注入されているだけであるため、造影性能が不十分である。 J P— A— 2002— 266157に記載の繊維においても、 X線不透過剤の含有量があまり 多くないため、十分な X線造影性能を得ることができない。また、両繊維ともに、後加 工性を考慮していないことから、手術用ガーゼ等を得る際にガーゼ中に織り込む等 の後加工を施すと、しわが生じたり、 X線感応繊維のみが抜け落ちたりする等の問題 が生じる。
[0006] JP— A— 2— 118131では、 X線不透過性の充填剤を含有したポリプロピレン製の 芯糸の周囲を、この芯糸よりも細い被覆用の鞘糸で被覆した X線不透過性被覆糸が 提案されている。この繊維は、鞘糸で被覆することにより、芯糸を波型形状とするもの である。このような特殊な形状とすることによって、 X線で観察した際に真っ直ぐな糸と 異なる映像となり、判別力を持つことになる。
[0007] しかし、 JP—A— 2— 118131の X線不透過性被覆糸にお 、ても X線造影性能が不 十分である。しかも、 JP—A— 2— 118131では、どのような製品に使用できるか等の 記載もなぐ後加工性も考慮されていない。
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、上記のような問題点を解決して、 X線造影性能に優れており、かつ後加 ェ性にも優れており、また織物ゃ不織布等に混入させて使用しても、得られる製品に しわが生じたり製品から繊維が抜け落ちたりすることがない、 X線造影糸、 X線造影被 覆糸、これらの X線造影糸および、または X線造影被覆糸を含有する繊維構造体を 提供することを技術的な課題とする。
課題を解決するための手段
[0009] 上記課題を解決するため、本発明の X線造影糸は、 X線不透過剤を含有する熱可 塑性榭脂からなる繊維であって、 130°Cにおける乾熱収縮率が 3. 5〜0%であること を特徴とするものである。 [0010] また本発明の X線造影糸は、 X線不透過剤を含有する熱可塑性榭脂からなる繊維 であって、イオン系界面活性剤成分の割合が 0〜 10質量%である油剤が付与されて いることを特徴とする。
[0011] 本発明によれば、上記 X線造影糸において、熱可塑性榭脂がナイロン 12であること が好適である。
[0012] 本発明によれば、上記 X線造影糸にお ヽて、 X線不透過剤を含有する熱可塑性榭 脂のみ力 なることが好適である。
[0013] 本発明によれば、上記 X線造影糸において、繊度が 1000〜20000dtexのモノフ イラメン卜であることが好適である。
[0014] 本発明によれば、上記 X線造影糸にお 、て、単糸繊度が 20〜400dtex、総繊度 力 Sl000〜20000dtexのマルチフィラメントであることが好適である。
[0015] 本発明の X線造影被覆糸は、 X線不透過剤を含有する熱可塑性榭脂からなる繊維 である X線造影糸の周囲が被覆繊維で被覆され、 130°Cにおける乾熱収縮率が 3. 5
〜0%であることを特徴とする。
[0016] 本発明によれば、上記 X線造影被覆糸にお ヽて、上記の X線造影糸を用いることが 好適である。
[0017] 本発明によれば、上記 X線造影被覆糸にお 、て、被覆繊維は X線造影糸よりも細 繊度の糸であることが好適である。
[0018] 本発明の別の X線造影被覆糸は、上記 X線造影糸を用い、被覆繊維は、少なくとも その一部が、前記 X線造影糸を形成する第 1の熱可塑性榭脂よりも低融点の第 2の 熱可塑性榭脂にて構成されていることを特徴とする。
[0019] 本発明によれば、上記の X線造影被覆糸にお ヽて、第 2の熱可塑性榭脂の融点は
、 100°C以上であり、かつ、第 1の熱可塑性榭脂の融点より 20°C以上低いことが好適 である。
[0020] 本発明によれば、上記の X線造影被覆糸にお ヽて、被覆繊維が芯鞘型の複合繊 維であって、第 2の熱可塑性榭脂が前記複合繊維の鞘部を構成して 、ることが好適 である。
[0021] 本発明の繊維構造体は、上記の X線造影糸および、または X線造影被覆糸を含ん でなることを特徴とする。
発明の効果
[0022] 本発明の X線造影糸および X線造影被覆糸は、 X線不透過剤を含有する熱可塑性 榭脂を含んだ繊維にて形成され、 130°Cにおける乾熱収縮率が 3. 5〜0%であるた め、織編物ゃ不織布や特に医療用ガーゼなどの各種材料等に使用した際に収縮が 大きくなつて製品にしわが生じたり変形が生じたりすることを防止できるとともに、品位 の高い製品を得ることが可能となる。
[0023] さらに、本発明の X線造影糸に撚りをかけたり、 X線造影糸を用いて X線造影被覆 糸としたり、この X線造影被覆糸の X線造影糸に撚りをかけたりすることにより、製品か ら X線造影糸が抜け落ちにくいようにすることができ、かつ、糸の断面形状が丸断面 形状となるため、造影性能にも優れたものとなる。このため、特に手術用ガーゼ等のメ ディカル材に好適に使用することが可能となる。
[0024] また本発明の X線造影糸および X線造影被覆糸は、 X線不透過剤を含有する熱可 塑性榭脂を含んだ繊維より構成され、イオン系界面活性剤成分の割合が 0〜10質量 %である油剤が付与されているため、水中で振り混ぜても油剤に起因する泡立ちが 生じにくいものである。したがって、織編物ゃ不織布等の製品を得る際に、紡糸油剤 を除去するための洗浄等の処理を必要としない。また医療用ガーゼ等に要求される 泡立ち試験に適合させることができるので、各種の医療用途に好適なものである。
[0025] 本発明の上記の別の X線造影被覆糸は、 X線不透過剤を含有する第 1の熱可塑性 榭脂からなる繊維より構成されている造影糸の周囲が被覆繊維で被覆され、前記被 覆繊維は、少なくともその一部が、前記第 1の熱可塑性榭脂よりも低融点の第 2の熱 可塑性榭脂にて構成されて 、るため、この X線造影被覆糸を一部に用 、て熱処理を 行うことで繊維構造体を形成した場合は、 X線造影糸の周囲を被覆する被覆繊維の 少なくとも一部が溶融固化して、繊維構造体を構成する繊維と接着することが可能で あるため、繊維構造体から X線造影糸が抜け落ちに《することができ、かつ、 X線造 影糸の断面形状が変形しないため、造影性に優れた繊維構造体とすることができる
[0026] 本発明の繊維構造体 (織編物、不織布、ファイバーボール、繊維積層体等の製品) は、本発明の X線造影糸および、または X線造影被覆糸を含有してなるものであるた め、 X線造影性に優れるとともに、製品にしわが生じたり変形が生じたりすることを防 止できる。また、製品から X線造影糸が抜け落ちにくぐこのため、品位の高い製品と なり、各種の医療用途等に好適に用いることが可能である。
図面の簡単な説明
[0027] [図 1]本発明の X線造影糸を製造するための装置の概略構成を示す図である。
発明を実施するための最良の形態
[0028] 以下、本発明について詳細に説明する。
[0029] 本発明の、 X線造影糸、および X線造影被覆糸に用いられる X線造影糸は、 X線不 透過剤を含有する熱可塑性榭脂からなるものである。熱可塑性榭脂としては、合成 繊維を得ることができるものであれば用いることができ、例えば、ポリアミド、ポリエステ ル、ポリオレフイン等が挙げられる。中でも、ポリアミドが好ましぐポリアミドとしては、 ナイロン 6、ナイロン 66、ナイロン 69、ナイロン 46、ナイロン 610、ナイロン 12、ポリメタ キシレンアジパミド等が挙げられる。熱可塑性榭脂は、これらの成分からなる共重合 体や混合物等であってもよい。ポリアミドの中でもナイロン 6やナイロン 12が特に好ま しい。
[0030] 熱可塑性榭脂としてポリアミドが好ま 、理由は、ポリアミド繊維は、ポリマー特性に 起因するソフト感やしつとり感等に優れた風合を有しているので、手術用ガーゼ等の 患部に触れるようなメディカル用途に好適なためである。さらにポリアミドの中でもナイ ロン 12は、上記特性に加え、後述するように X線不透過剤を高濃度に含有させても、 溶融紡糸、延伸が可能で繊維化することが可能であることから特に好ましいものであ る。
[0031] 熱可塑性榭脂としてポリエステルを用いる際には、ポリエチレンテレフタレート、ポリ トリメチレンテレフタレート、ポリブチレンテレフタレート等を用いることができる。ポリオ レフインを用いる際には、ポリプロピレンやポリエチレン等を用いることができる。これ らの成分にっ 、ても、共重合体や混合物等であってもよ 、。
[0032] 熱可塑性榭脂は、一種類のみを用いてもよぐ複数の種類のものを併用してもよい [0033] 熱可塑性榭脂中に含有させる X線不透過剤としては、硫酸バリウム、次硝酸ビスマ ス、酸化タングステン、酸ィ匕トリウム、酸ィ匕セシウム等があり、中でも硫酸バリウムが好 ましい。硫酸バリウムは X線不透過性に優れ、かつ耐熱性、結晶安定性が高い。さら に、一次粒子径が小さく二次凝集しにくい粒子を容易に生産可能なことから、硫酸バ リウムを熱可塑性榭脂に練り込み溶融紡糸すると、濾過圧の上昇、糸切れ等がなぐ 操業性よく繊維を得ることができる。
[0034] X線不透過剤の粒子径については、造影性を向上させるという点からは、ある程度 大きいほうがよぐ繊維中への均一な分散という点からは、大きすぎると不都合であり 、逆に小さすぎても二次凝集の問題が生じる。以上のような点を考慮すれば、 X線不 透過剤の一次粒子径は、 0. 5〜10 m力 S好ましく、 0. 8〜8 111がより好ましぐ 1. 0〜5 mが特に好ましい。
[0035] 本発明の X線造影糸は、 X線不透過剤を含有する熱可塑性榭脂からなる繊維であ る力 造影性能を向上させるには、同一繊度では、 X線不透過剤が添加されている 榭脂部分が多くなるようにするために、 X線不透過剤を含有する熱可塑性榭脂のみ 力もなる単一成分型の糸とすることが好ましい。つまり、例えば芯部にのみ X線不透 過剤を含有する芯鞘型の複合糸であると、芯部しか造影性がないため、単一成分型 の糸と同一繊度であったとしても造影性に劣るものとなる。
[0036] 単一成分型の糸とする際には、 X線不透過剤は、熱可塑性榭脂中にほぼ均一に分 散されて!ヽることが好ま ヽ。 X線不透過剤が熱可塑性榭脂中にほぼ均一に分散さ れるようにするためには、溶融紡糸時に X線不透過剤と熱可塑性榭脂とをェクストル ーダ一等を用 、て直接混練して用 、ることもできるが、 X線不透過剤を高濃度に含有 したマスターチップを!、つたん作製して力も混練すると、より均一な混練ができるので 好ましい。
[0037] 本発明の X線造影糸は、他の繊維とともに用いて織編物ゃ不織布、ファイバーボー ルゃ繊維積層体等の各種の繊維構造体を得ることができる。中でも、織編物ゃ不織 布等を構成する他の繊維とともに本発明の X線造影糸を用 ヽて布帛とし、この布帛を 手術用ガーゼとして使用することが好ましい。織編物とする場合は、製編織時に他の 繊維とともに用いて織編物の組織の一部に本発明の X線造影糸を含む織編物とした り、他の繊維のみカゝらなる織編物を製編織した後に本発明の X線造影糸を組織の一 部に含ませたりすることが好ましい。不織布とする場合は、他の繊維力もなるウェブを 作成した後、本発明の X線造影糸をウェブ上に配列させて、水流交絡処理等により 不織布とすることが好まし 、。
[0038] 上記のように本発明の X線造影糸を他の繊維とともに用いて織編物ゃ不織布等を 得る場合は、通常、織編物ゃ不織布の強度や一体性を向上させるために、または水 流交絡処理等後の乾燥のために、熱セットの工程が必要である。例えば、スパンレー ス不織布に本発明の糸を用いる場合は、 130°Cの乾熱状態で熱セットを行うことが好 適である。このため、本発明においては力かる条件での乾熱収縮率が非常に重要な 値となる。
[0039] したがって、本発明の X線造影糸は、 130°Cにおける乾熱収縮率が 3. 5〜0%であ ることが好ましぐ 2. 0〜0%であることがより好ましぐ 1. 2〜0%であることがいっそう 好ましぐ 0. 6〜0%であることがよりいつそう好ましい。
[0040] 乾熱収縮率が 3. 5%よりも高いと、本発明の糸を他の繊維とともに用いて織編物や 不織布や各種材料等に使用した際に、熱セット加工により収縮が大きくなり、製品に しわが生じたり、変形が生じたりしゃすくなる。
[0041] 一方、乾熱収縮率が 0%未満であると、伸張する糸となるため、本発明の糸を他の 繊維とともに用いて織編物ゃ不織布等に用いると、製品内で本発明の糸が緩み、製 品から抜け落ちることがある。
[0042] 本発明において、 130°Cにおける乾熱収縮率は、次のようにして測定するものであ る。すなわち、 lm長の検尺機で X線造影糸を 10回捲いてカセを取り、 25°C、 65%R Hで 24時間調湿する。次にカセの輪に ldtexあたり(lZl50) gの荷重をかけた時の 長さ (LO)を測定する。さらに無荷重下 130°C X 30分で乾熱収縮処理を施した後、 2 5°C、 65%RHで 24時間調湿する。次に同様に ldtexあたり(lZl50) gの荷重をか けた時の長さ (L1)を測定する。そして次式に各数値を当てはめることにより、乾熱収 縮率を計算する。
[0043] 乾熱収縮率 (130°C) (%) = [l - (Ll/LO) ] X 100
乾熱収縮率を 3. 5%以下とするためには、熱可塑性榭脂の種類にもよる力 この熱 可塑性榭脂がナイロン 6、ナイロン 12またはポリプロピレンの場合には、特に下記に 示すような熱延伸、弛緩熱処理を施すことが好ましい。このような方法により、 3. 5% 以下の乾熱収縮率を達成することができる。
[0044] 本発明の X線造影糸は、モノフィラメントであってもマルチフィラメントであってもよい 。また長繊維として用いてもよいし、切断して短繊維として用いてもよい。なお、造影 性のみを考慮すると、モノフィラメントとすることが好ましい。しかし、 X線不透過剤を高 濃度添加した場合には、モノフィラメントでは柔軟性に劣るようになるため、柔軟性が 要求される用途にぉ 、ては、マルチフィラメントとすることが好ま 、。
[0045] 本発明の X線造影糸を後述するような手術用ガーゼ等の布帛に使用する際には、 X線造影糸としてより高い造影性能が求められる。造影性能を向上させるには、糸中 における X線不透過剤の含有量を多くすることが好ましい。
[0046] X線造影糸中の X線不透過剤の含有量につ!、ては、造影性能を向上させる点では 多いほうが良いが、多すぎると、紡糸に支障をきたし、あるいは、繊維としての機械的 物性が低下しすぎる場合がある。そのような点を考慮すれば、繊維における X線不透 過剤の含有量は、 30〜85質量%が好ましぐ 40〜80質量%がより好ましぐ 60〜7 8質量%が特に好ましぐさらには 65〜75質量%が好ましい。
[0047] そして、熱可塑性榭脂としてナイロン 12を用いると、熱可塑性榭脂中に多量の X線 不透過剤を含有しても、溶融紡糸、延伸が可能であり、操業性よく糸を得ることができ る。
[0048] X線造影糸の単糸繊度も、造影性に影響を与える要因である。このため、モノフイラ メントの場合は繊度を 1000〜20000dtexとすることが好ましぐマルチフィラメントの 場合は、単糸繊度を 20〜400dtex、総繊度を 1000〜20000dtexとすることが好ま しい。
[0049] 造影性を向上させるためには、モノフィラメント、マルチフィラメント (マルチフィラメン トを構成する単糸)ともに断面形状を略円形の糸とすることが好ましい。略円形の中で も、楕円よりも真円に近い形状とすることが好ましい。楕円形状であると、 X線が通過 する距離が短くなる部分があるため、造影性能に劣る場合がある。これに対し真円で あると、 X線が通過する距離が短くなる部分がないため、造影性能に特に優れたもの となる。
[0050] マルチフィラメントの場合は、モノフィラメントに比べて単糸繊度が小さくなる力 マ ルチフィラメントの断面形状として略円形断面形状を呈していると、略円形断面形状 を呈しているモノフィラメントと同様の造影性能を得ることができる。つまり、単糸が集 合して密な充填構造をとつていると、マルチフィラメント全体として略円形断面形状と なるので、モノフィラメントの断面形状と同様のものとなり、 X線が通過する距離を大き くすることができるため、良好な造影性能が得られる。マルチフィラメントの糸長方向 に沿ってこのような略円形断面形状を呈するためには、マルチフィラメント全体に撚り 力 Sかかっていることが好ましい。撚り数は 20TZm以上とすることが好ましぐ 50T/ m以上とすることがより好ましく、 60〜 120TZmとすることカ^、つそう好まし 、。
[0051] X線造影糸がマルチフィラメントであり、そのマルチフィラメント全体に撚りがかかつ ている場合、フィラメントの一体性が保持できるので、製品中から X線造影糸の単糸 が抜け落ちにくくなる。
[0052] 本発明の X線造影糸として、油剤が付与されたものを挙げることができる。単に油剤 が付与されているというだけでは、公知の X線造影糸と相違しないが、本発明におい ては、付与されている油剤の内容が公知の X線造影糸と大きく異なり、この点が本発 明において重要なことである。すなわち、本発明の X線造影糸に付与されている油剤 は、イオン系界面活性剤成分の割合が少な 、ものである。
[0053] イオン系界面活性剤成分とは、陽イオン界面活性剤、陰イオン界面活性剤、および 両性界面活性剤のことである。陽イオン界面活性剤としては、例えば、第四級アンモ -ゥム塩が挙げられる。陰イオン界面活性剤としては、例えば、脂肪酸塩、有機スル ホン酸塩、有機硫酸塩、有機リン酸エステル塩が挙げられる。両性界面活性剤として は、例えば、有機ぺダインや有機アミンオキサイドが挙げられる。
[0054] 油剤中のイオン系界面活性剤の割合は、 0〜10質量%であることが好ましぐ中で も 0〜6質量であることが好ましぐ 0〜3質量%であることが特に好ましい。イオン系界 面活性剤の割合が 10質量%を超えるような油剤が付与された場合には、 X線造影糸 およびそれを用いてなる製品は、水中で振り混ぜられた際に泡立ちやすいものとなる [0055] つまり、本発明の X線造影糸においては、付与された油剤におけるイオン系界面活 性剤の割合が 10質量%を超えないことにより、日本国における 2000年 3月 30日厚 生省告示第 133号『医用不織布ガーゼ基準の解説について』別添 4に記載の泡立ち 試験に適合するものとなり、各種の医療用途に使用する際にも精練等の油剤除去ェ 程が不要となる。一方、イオン系界面活性剤の割合が 10質量%を超える油剤が付与 された X線造影糸では、イオン系界面活性剤の界面活性作用により、上記の泡立ち 試験に適合し得ないものとなり、このため各種の医療用途に使用する際には、精練 等の油剤除去工程が必要となる。
[0056] なお、公知の油剤が本発明にもとづく油剤に比較してイオン系界面活性剤を多く含 んでいるのは、イオン系界面活性剤による帯電防止効果を強めるためであると思わ れる。この点に関し、本発明において、イオン系界面活性剤成分の割合が少ないた めに、油剤の帯電防止効果が不足して、製造時における糸の収束性の低下や工程 通過性の悪ィ匕などが懸念される場合には、非イオン性界面活性剤を添加すること〖こ より、油剤の帯電防止効果を向上させることができる。そのような非イオン性界面活性 剤としては、高級アルコール類やアルキルフ ノール類等が挙げられ、さらに具体的 には、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アル力ノールアミド、ポリ ォキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフエニルエーテル等 が挙げられる。
[0057] 本発明において、 X線造影糸に付与されている油剤の量は、 X線造影糸の質量中 の 0. 1〜2. 0質量0 /0であること力 S好ましく、 0. 2〜1. 0質量0 /0力 Sより好ましく、 0. 3〜 0. 7質量%が特に好ましい。 0. 1質量%未満では、糸を十分に収束することができ ない等、紡糸が困難になる傾向にある。一方、 2. 0質量%を超えると、紡糸時にロー ラが油剤で汚れる等して、操業に悪影響を及ぼす傾向にある。
[0058] 本発明の X線造影被覆糸は、 X線不透過剤を含有する熱可塑性榭脂からなる繊維 である X線造影糸の周囲が被覆繊維で被覆され、 130°Cにおける乾熱収縮率が 3. 5 〜0%である。
[0059] この X線造影被覆糸に用いられる X線造影糸は、 130°Cにおける乾熱収縮率が 3.
5〜0%であることが好ましぐイオン系界面活性剤成分の割合力^〜 10質量%であ る油剤が付与されていることが好ましぐ熱可塑性榭脂がナイロン 12であることが好ま しぐ X線造影剤を含有する熱可塑性榭脂のみカゝらなることが好ましい。また X線造影 被覆糸に用いられる X線造影糸は、繊度が 1000〜20000dtexのモノフィラメントで あることが好ましぐあるいは、単糸繊度が 20〜400dtex、総繊度力 000〜20000 dtexのマルチフィラメントであることが好まし!/、。
[0060] X線造影被覆糸に用いられる被覆繊維は、 X線造影糸よりも細繊度の糸とすること が好ましい。被覆繊維の素材は、特に限定されるものではなぐ天然繊維、合成繊維 等のいずれであってもよい。天然繊維としては、綿、麻、絹糸等が挙げられる。合成 繊維としては、ポリアミド、ポリエステル、ポリオレフイン等力もなる繊維が挙げられる。
[0061] X線造影被覆糸とすることによって、 X線造影糸の周囲を被覆する被覆繊維の存在 により、繊維構造体としての製品を構成する他の繊維と絡みやすくなることから、製品 中から X線造影糸が抜け落ちることを防ぐことが可能となる。つまり、製品を得るまで の工程での X線造影糸の抜け落ちや、製品の使用途中での X線造影糸の抜け落ち を、ともに防ぐことができるので、種々の製品に使用することが可能となり、品質の高 い製品を得ることが可能となる。
[0062] 上記のように製品中から X線造影糸が抜け落ちることを防ぐためには、前述のように 、マルチフィラメントの場合は、マルチフィラメント全体に撚りがかかったものとすること が好ましい。マルチフィラメントの表面に撚りがあることにより、製品を構成する他の繊 維と絡みやすくなるからである。
[0063] しカゝしながら、本発明の X線造影被覆糸においては、 X線造影糸は、モノフィラメン ト、マルチフィラメントのいずれであってもよい。ただし、いずれの場合においても、 X 線造影糸の断面形状が略円形となるように被覆繊維で被覆することが好ましい。これ により、マルチフィラメントの場合でも略円形断面形状となるため、略円形断面形状を 呈しているモノフィラメントと同様の造影性能を得ることが可能となる。
[0064] このような X線造影被覆糸とするためには、 X線造影糸を被覆する被覆繊維として、 上記のように X線造影糸よりも細繊度の糸を用いることが好ましぐその被覆の形態と しては、カバリング撚り数 200〜2000TZmでカバリングされている被覆糸とすること が好ましい。カバリング撚り数は、 500TZm以上であることがより好ましぐ 1000T/ m以上であることカ^、つそう好まし 、。
[0065] このカバリング撚り数や、被覆繊維の単糸繊度および総繊度は、被覆後の X線造影 糸の断面形状が略円形となるように、適宜選択することができる。
[0066] 本発明の X線造影被覆糸においては、 X線造影糸自体に撚りがかかっていることが 好ましい。この場合、 X線造影糸の撚り数は、 2TZm以上とすることが好ましぐ 10T Zm以上とすることがより好ましぐ 20〜50TZmとすることがいっそう好ましい。
[0067] そして、このように X線造影糸自体に撚りがかかっていることによって、 X線造影被 覆糸から X線造影糸が抜けに《なり、製品中から X線造影糸が抜け落ちに《なる。 さら〖こは、 X線造影糸がマルチフィラメントである場合は、マルチフィラメントの一体性 が保持できるので、この場合も製品中から X線造影糸の単糸が抜け落ちに《なる。
[0068] 本発明の X線造影被覆糸にお ヽて、被覆繊維の乾熱収縮率は、特に限定するもの ではない。これに対し、 X線造影被覆糸は、 130°Cにおける乾熱収縮率が 3. 5〜0% であることが必要で、 2. 0〜0%であることが好ましぐ 1. 2〜0%であることがより好ま しく、 0. 6〜0%であることがいっそう好ましい。
[0069] X線造影被覆糸の乾熱収縮率は、上記した X線造影糸における乾熱収縮率の測 定方法において、 X線造影糸を X線造影被覆糸に代えて同様に測定することにより 計算される。
[0070] 本発明の X線造影被覆糸にお ヽては、上述の油剤を付与した X線造影糸を用いる ことが好ましぐ同油剤が X線造影糸と被覆繊維との両方に付与されていることがより 好ましい。なお、被覆繊維にのみ油剤が付与されているものも好ましい。
[0071] 次に、上述した本発明の別の X線造影被覆糸について詳細に説明する。
[0072] この X線造影被覆糸は、本発明の X線造影糸を用いたものであるが、その被覆繊維 は、少なくともその一部が、 X線造影糸を形成する第 1の熱可塑性榭脂よりも低融点 の第 2の熱可塑性榭脂にて構成されているものである。
[0073] この場合に、被覆繊維の少なくとも一部を構成する第 2の熱可塑性榭脂の融点は、 100°C以上であり、かつ、 X線造影糸を構成する第 1の熱可塑性榭脂の融点よりも 20 °C以上低いことが好ましい。融点差が 20°Cに満たないと、繊維構造体を得るために 熱融着処理した際に、熱処理温度によっては X線造影糸自身が溶融する可能性が ある。また、第 2の熱可塑性榭脂の融点が 100°Cに満たないと、 X線造影被覆糸やこ れを含有する繊維構造体としてのたとえばガーゼを加熱滅菌する際に溶融してしまう 可能性がある。
[0074] このような X線造影被覆糸であると、この X線造影被覆糸を用いて繊維構造体を構 成し、熱処理を施すことで、 X線造影被覆糸の被覆繊維を構成する第 2の熱可塑性 榭脂を溶融させて、繊維構造体を構成する他の繊維と接着させることができる。これ により、繊維構造体からの X線造影糸の抜け落ちを良好に防止することができる。被 覆繊維の第 2の熱可塑性榭脂が X線造影糸を構成する第 1の熱可塑性榭脂よりも融 点が低いため、熱処理の際に被覆繊維の第 2の熱可塑性榭脂のみが溶融または軟 化し、 X線造影糸を構成する熱可塑性榭脂は溶融しないようにすることができる。この ため、 X線造影糸の断面形状は変形しないようにすることができ、このため造影性に 優れた繊維構造体を得ることができる。
[0075] 被覆繊維は、少なくとも一部が第 2の熱可塑性榭脂からなるものであるが、第 2の熱 可塑性榭脂と他の熱可塑性榭脂から構成される複合繊維等であっても、第 2の熱可 塑性榭脂のみカゝらなる単一成分型の繊維であってもよい。しかし、少なくとも被覆繊 維の表面が、第 2の熱可塑性榭脂で構成されていることが好ましい。第 2の熱可塑性 榭脂としては、ポリオレフイン、ナイロン系共重合体、ポリエステル系共重合体が挙げ られる。繊維構造体を構成する他の繊維と X線造影糸とを強固に接着するためには 、両方の繊維との接着性の良いものが好ましい。例えば、 X線造影糸がナイロン 12か らなる場合には、低融点の熱可塑性榭脂として、ナイロン系共重合体が好適である。
[0076] 第 2の熱可塑性榭脂として使用することのできるポリオレフインとしては、ポリエチレ ン、ポリプロピレンなどが挙げられる力 特にメタ口セン触媒を用いて重合した低密度 ポリエチレンが分子量分布が狭ぐ熱分解等に強いため、好適である。
[0077] 第 2の熱可塑性榭脂として使用することのできるナイロン系共重合体としては、ナイ ロン 6、ナイロン 12、ナイロン 66、ナイロン 610などのうち、任意の成分の糸且み合わせ からなる 2元共重合体及び 3元共重合体などが挙げられる。
[0078] 第 2の熱可塑性榭脂として使用することのできるポリエステル系共重合体としては、 2塩基酸もしくはその誘導体の 1種または 2種以上とグリコール類の 1種または 2種以 上とを共重合して得られるポリエステル系重合体が挙げられる。この場合に用いること のできる 2塩基酸としては、テレフタル酸、イソフタル酸、フタル酸、 p—ォキシ安息香 酸、 5—ナトリウムスルホイソフタル酸、ナフタレンジカルボン酸等の芳香族 2塩基酸、 蓚酸、アジピン酸、セバシン酸、ァゼライン酸、ドデカンジカルボン酸等の脂肪族 2塩 基酸、 1, 2—シクロブタンカルボン酸等の脂環族 2塩基酸等が挙げられる。グリコー ル類としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プ 口パンジオール、ブタンジオール、ペンタンジオール、へキサンジオール、ネオペンタ ンジオール、 p—キシレングリコール等やポリエチレングリコール、ポリテトラメチレング リコール等のポリアルキレングリコール類が挙げられる。また、芳香族ポリエステルと 脂肪族ラタトンとを共重合した共重合ポリエステルを用いるのも好ま 、。芳香族ポリ エステルとしては、エチレンテレフタレート単位および、またはブチレンテレフタレート 単位の重合体、あるいはこれにさらにイソフタル酸、 2, 6—ナフタレンジカルボン酸、 アジピン酸、セバシン酸、エチレングリコール、 1, 6—へキサンジオール等を共重合 したものが挙げられる。脂肪族ラタトンとしては、炭素数 4〜11のラタトンを単独で用 いても、 2種以上を混合して用いても良ぐ特に好適なラタトンとしては、 ε—力プロラ タトンや δ —バレロラタトンが挙げられる。
[0079] 被覆繊維を複合繊維とする場合は、上記した第 2の熱可塑性榭脂を鞘部、他の熱 可塑性榭脂を芯部に配した芯鞘型複合繊維とすることが好ましい。被覆繊維を芯鞘 型複合繊維とすることで、鞘部を溶融させて X線造影糸および、または繊維構造体を 構成する繊維に接着した際でも、芯部の榭脂は溶融せず、これによつて被覆繊維の 強度を保持することができるため、 X線造影糸を結束して単糸脱落を防ぐ効果が高く なる。
[0080] 被覆繊維が複合繊維であるの場合に用いることができる上述の他の熱可塑性榭脂 としては、ポリアミド、ポリエステル、ポリオレフイン等が挙げられる。ポリアミドとしては、 ナイロン 6、ナイロン 66、ナイロン 69、ナイロン 46、ナイロン 610、ナイロン 12、ポリメタ キシレンアジパミド等が挙げられる。ポリエステルとしては、ポリエチレンテレフタレート 、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等を用いることができ、ポ リオレフインを用いる際には、ポリプロピレンやポリエチレン等を用いることができる。ま た、これらの成分からなる共重合体や混合物等であってもよ ヽ。
[0081] 被覆繊維が複合繊維である場合は、被覆繊維全体に対する第 2の熱可塑性榭脂 の割合 (質量%)は 10%以上が好ましぐより好ましくは 20%以上である。第 2の熱可 塑性榭脂の比率が少なすぎると、熱処理による接着部が少なくなるため、最終製品と しての繊維構造体から X線造影糸が抜けやすくなる。
[0082] 被覆繊維を構成する第 2の熱可塑性榭脂を溶融させる熱処理は、 X線造影被覆糸 の段階で施しても、 X線造影被覆糸を布帛などの繊維構造体とした後の段階で施し てもよい。布帛などの繊維構造体とする際の加工性を考慮すると、繊維構造体とした 後で熱処理を施すことが好ま ヽ。
[0083] X線造影被覆糸の段階で被覆繊維を構成する第 2の熱可塑性榭脂を溶融させる熱 処理手段としては、一般的な熱処理装置を用いることができるが、 X線造影被覆糸の 繊維断面形状を保っためには、スリット型ヒータなどの非接触乾熱処理装置を用いる ことが好ましい。これにより、被覆繊維の少なくとも一部が X線造影糸に溶融接着した X線造影被覆糸を得ることができる。このように X線造影被覆糸の段階で一旦第 2の 熱可塑性榭脂を溶融させた X線造影被覆糸とし、この X線造影被覆糸を用いて、織 物ゃ不織布等の繊維構造体とした場合、繊維構造体の段階で熱処理を施すと、一 且溶融固化した第 2の熱可塑性榭脂がさらに溶融して繊維構造物と溶融接着するた め、繊維構造体からの X線造影糸の抜けを防ぐことができる。
[0084] 本発明の繊維構造体につ!、て説明する。本発明の繊維構造体は、本発明の X線 造影糸および、または X線造影被覆糸を含有してなるものであり、少なくとも一部に本 発明の X線造影糸および、または X線造影被覆糸を用いて構成したものである。繊維 構造体としては、具体的には、織編物、不織布等の布帛ゃ繊維積層体やファイバー ボール等が挙げられ、中でも布帛が好ましぐ織物、不織布であることがより好ましい
。これらの織物ゃ不織布は、織物ゃ不織布を構成する他の繊維と、本発明の X線造 影糸および、または X線造影被覆糸とを含んでいるものであるため、 X線による造影 性や外観品位に優れ、かつ織物ゃ不織布から X線造影糸が抜け落ちにくい。
[0085] 外科手術等を行う場合、患者からの出血や体液などの拭き取りや吸収を行うために 多数枚のガーゼが使用されており、手術終了後にはすべてのガーゼを患者の体内 力 取り出す必要がある。しかし、手術中に使用されたガーゼは血液によって赤く染 まり、患者の切開部において患者の臓器との区別が困難となることがあり、ガーゼを 患者の体内に残してしまうことがある。ガーゼが体内に残存しつづけると、患者は、身 体に痛みを感じるだけでなぐ発熱したり、ガーゼが臓器に癒着して他の病気を引き 起こしたりする可能性がある。このような事故を防止するために、手術後、使用したガ ーゼの枚数を確認する方法が採られて ヽるが、血液の付着したガーゼの枚数を確認 するのは容易ではなぐ確認に時間が力かるうえ、数え間違いなども起こる可能性が あり、この方法だけでは不十分である。
[0086] 本発明の繊維構造体のうち、上記したような織物ゃ不織布などの布帛は、 X線造影 性を有する繊維を含有しているため、体内に放置された場合に X線写真撮影によつ て発見することができ、手術に使用した全ての布帛を除去することができる。のみなら ず、本発明によれば、乾熱収縮率が低い X線造影糸を用いているため、布帛製造時 の熱処理工程で熱処理を施しても得られる製品にしわが生じることがなぐ品位の高 い製品を得ることができ、医療用ガーゼとして好適である。また、 X線造影糸の周囲を 別の繊維 (被覆繊維)で被覆した X線造影被覆糸を用いることによって、布帛から X線 造影糸が抜け落ちに《することができ、かつ、糸の断面形状が略丸断面形状となる ため、造影性能にも優れたものとすることができる。
[0087] まず、本発明の繊維構造体のうち、織物(平織物)について説明する。
[0088] 本発明の織物を構成する経糸および緯糸には、合成繊維や天然繊維、再生繊維 など繊維形態を有するものであれば用いることができ、短繊維からなる紡績糸や 1本 以上の長繊維からなる繊維束、あるいはこれらを組み合わせたものなど、どのような 構成であっても良い。これらの中で、綿などの天然繊維や、溶剤紡糸セルロース繊維 や、ビスコースレーヨン、銅アンモニアレーヨン(キュプラレーヨン)などの再生繊維は
、比較的吸水性が良ぐ血液や体液を拭き取ったり、吸収させたりするのに適してい る。この織物を構成する繊維は、 1種類の繊維で構成されていても良いが、本発明の 目的が損なわれな 、範囲で 2種類以上の繊維が混合されて 、ても良 、。
[0089] 織物を構成する経糸および緯糸は、平織り加工に用いることができるものであれば 特に繊度が限定されるものではなぐ例えば、 40番手の純良な綿糸などを用いること ができる。織物を医療用ガーゼとして用いる場合において、その糸密度は、たとえば 一般に医療用ガーゼとして用いられる範囲のものとすることができるが、血液等の吸 収量や取り扱いの点から、経密度、緯密度共に 5〜20本 Zcm程度が好ましい。
[0090] X線造影糸および、または X線造影被覆糸は、平組織を有する織物に含有されて いる必要があり、平織りする際に、緯糸あるいは経糸の少なくともいずれかのうち 1本 以上を X線造影糸および、または X線造影被覆糸として織り込んだり、織物を作製し た後に X線造影糸および、または X線造影被覆糸を挿入したりすればょ ヽ。
[0091] このようにして得られた X線造影糸および、または X線造影被覆糸の入った織物を 他の織布ゃ不織布と積層し、その積層体を水流交絡処理等により一体化させて使用 することができる。
[0092] 次に、本発明の繊維構造体のうち、不織布について説明する。
[0093] この不織布を構成する主体繊維は、非熱可塑性繊維であることが好ましい。これは 、多くの熱可塑性繊維は吸水性に乏しぐ血液や体液を拭き取ったり、吸収させたり するのに適していないためである。非熱可塑性繊維としては、比較的吸水性の良い 綿などの天然繊維や、溶剤紡糸セルロース繊維や、ビスコースレーヨン、銅アンモ- アレーヨン (キュプラレーヨン)などの再生繊維などが好ましい。中でも、溶剤紡糸セル ロース繊維は、高結晶性で高配向性であり、湿潤時における初期ヤング率、強度が 高ぐ好適である。この溶剤紡糸セルロース繊維とは、セルロースをィ匕学的に変化さ せずに特殊な有機溶媒に溶解させた原液或いはこの原液を乾燥させたチップを紡 糸して得られるものであり、例えば、レンチング社から「レンチング 'リヨセル」との名称 •商標で販売されている。不織布を構成する非熱可塑性繊維は、 1種類の繊維で構 成されていても良いし、本発明の目的が損なわれない範囲で 2種類以上の繊維が混 合されたものでも良い。
[0094] 不織布を構成する主体繊維は、単糸繊度が 0. 8〜3. 5dtexであることが好ましぐ より好ましくは 1. 0〜3. Odtexである。 0. 8dtex未満であると、不織布を製造する際 のカード工程での通過性が悪くなる。逆に 3. 5dtexを超えると、繊維同士の交絡が 弱くなり、交絡点での交絡度合いが低下する。また、繊維長 20〜85mmの短繊維で あることが好ましい。繊維長がこの範囲を外れると、不織布を製造する際のカードエ 程での通過性が悪くなる。
[0095] 本発明の繊維構造体である不織布の目付けは、 25〜150gZm2が好ましい。 25g Zm2未満であると血液等の吸収量が十分でなくなり、逆に 150gZm2を超えると、吸 収量は増える力 手術時等において取り扱いに《なる。
[0096] 不織布における X線造影糸および、または X線造影被覆糸は、不織布中に適当量 含有されている必要がある。例えば、不織布を構成する主体繊維からなるウェブを作 成した後、 2層のウェブの間に X線造影糸および、または X線造影被覆糸を配列させ て水流交絡処理等により不織布とすることができる。あるいは、単層のウェブに水流 交絡処理を行って不織布とした後、得られた不織布の表面に X線造影糸および、ま たは X線造影被覆糸を配列させてからさらに水流交絡処理等を行っても良い。
[0097] 上記のようにして不織布を得る場合には、通常、不織布の強度や一体性を向上さ せるために、または水流交絡処理等後の乾燥のために、熱セットの工程が必要であ る。例えば、スパンレース不織布に本発明の糸を用いる場合は、 130°Cの乾熱状態 で熱セットを行う。このため、上述のように、本発明においては、かかる条件での乾熱 収縮率が非常に重要な値となる。
[0098] 本発明の繊維構造体であって、被覆繊維が、 X線造影糸を構成する第 1の熱可塑 性榭脂よりも融点の低い第 2の熱可塑性榭脂にて構成されている X線造影被覆糸を 含むものにおいては、被覆繊維の少なくとも一部を構成する第 2の熱可塑性榭脂が 溶融して、繊維構造体を構成する繊維と接着して!/ヽることが好ま 、。
[0099] 繊維構造体の段階で、 X線造影被覆糸の被覆繊維を構成する第 2の熱可塑性榭 脂を溶融させる手段としては、 X線造影被覆糸が含有された状態で、熱処理装置を 用いて第 2の熱可塑性榭脂を溶融し、繊維構造体を構成する繊維と接着する方法が 挙げられる。熱処理方法としては、スリット型ヒータなどの非接触乾熱処理装置を通過 させる方法や、エンボスローラ等の熱ローラによる熱圧接処理などの方法等が挙げら れるが、造影性や柔軟性の観点から、非接触乾熱処理装置を使用することが好まし い。特に、被覆繊維を構成する第 2の熱可塑性榭脂の融点が 130°C以下の場合は、 不織布を製造する際の 130°Cの乾燥状態での熱セットを行った際に溶融するので、 この熱セット時に不織布を構成する主体繊維と接着させることができる。 [0100] 本発明の X線造影糸(マルチフィラメント)の製造方法について説明する。
[0101] 本発明において、 X線不透過剤を熱可塑性榭脂に含有させるための方法としては
、溶融紡糸の際に、熱可塑性榭脂に所定量の X線不透過剤を直接添加してエタスト ルーダー等により混練することもできるが、熱可塑性榭脂に X線不透過剤を高濃度に 含有させたマスターチップを予め作製してぉ 、てから、これを通常の熱可塑性榭脂 のチップと共に用いて混練する方法力 X線不透過剤をより均一に分散させることが できる点で好ましい。
[0102] すなわち、公知の方法で、 X線不透過剤を含むマスターチップと熱可塑性榭脂とを エタストルーダーで混練 '溶融し、紡糸口金より押し出して溶融紡糸を行う。紡糸温度 は、 X線不透過剤を含有する熱可塑性榭脂の融点 Tmに対して、 (Tm+ 10) °C〜 (T m+ 80) °Cの範囲とすることが好ましい。紡糸温度が高すぎると、熱可塑性榭脂が熱 分解を起こし、円滑な紡糸が困難になるとともに得られるフィラメントの物性が劣った ものとなりやすい。また紡糸温度が低すぎると、未溶解物等が残りやすい。
[0103] 紡出されたフィラメントを、 15〜40°Cの冷却風により冷却固化し、実質的に延伸す ることなく、 200〜 1500m/分で!/、つたん巻き取る。
[0104] 次に、上記の巻き取りによって得られた未延伸マルチフィラメント糸に、熱延伸を施 す。その際には、熱処理温度 (Tm— 150) °C〜(Tm— 50) °C、熱処理時間 0. 02秒 以上となるように熱処理しながら、延伸張力が 1. OgZdtex以下となるようにして、熱 延伸を行うことが好ましい。
[0105] このように延伸時の熱処理時間を 0. 02秒以上とすることにより、十分な熱量を与え ることができ、また延伸張力を 1. OgZdtex以下とすることにより、均一に延伸すること ができる。
[0106] 延伸時の熱処理時間は、上記のように 0. 02秒以上とすることが好ましいが、より好 ましくは 0. 05秒以上、さらに好ましくは 0. 07秒以上である。延伸張力は、上記のよう に 1. OgZdtex以下とすることが好ましいが、より好ましくは 0. 8gZdtex以下であり、 いっそう好ましくは 0. 6gZdtex以下である。
[0107] 延伸速度は、特に限定するものではないが、上述のように熱処理時間を 0. 02秒以 上とするために、 500mZ分以下とすることが好ましぐさらに好ましくは 200mZ分以 下、いっそう好ましくは lOOmZ分以下である。ただし、生産性を考慮して 50mZ分 以上とすることが好ましい。
[0108] 延伸温度について説明する。通常、延伸はローラ間で行われ、加熱ローラ間で延 伸を行う場合はローラ温度を (Tm— 150) °C〜 (Tm— 50) °Cとすることが好ましぐ口 ーラ間にヒータを設けて延伸する場合はヒータの温度を (Tm— 150) °C〜 (Tm— 50
) °Cとすることが好ましい。
[0109] 上記の熱処理時間とは、延伸時にマルチフィラメント糸が上記の温度範囲の加熱ゾ ーンを通過する時間の合計をいう。つまり、予備加熱を行う場合は予備加熱ゾーンも 含めた通過時間をいう。
[0110] 延伸倍率は、最大延伸倍率 (未延伸マルチフィラメント糸が延伸により切断する倍 率のこと)の 20〜60%とすることが好ましい。延伸倍率がこの範囲を外れた場合は、 伸度が低すぎたりまたは高すぎたりすることとなる。
[0111] 熱延伸の後に時間をおいて、または延伸後に連続して、弛緩熱処理を行うことが好 ましい。弛緩熱処理は、 0. 5gZdtex以下の張力で 0. 5秒以上、温度 (Tm— 100)
°C〜(Tm— 30) °Cの範囲で行うことが好まし!/、。
[0112] 前記したような熱延伸を行い、続いて弛緩熱処理を行うことにより、マルチフィラメン トを十分に延伸し、かつ収縮させることができるため、本発明の X線造影糸の 130°C における乾熱収縮率を 3. 5%以下とすることができる。
[0113] 以上のようにして、また、必要に応じて公知の方法で撚りを加えることにより、本発明 の X線造影糸(マルチフィラメント糸)が得られる。
[0114] 本発明の X線造影被覆糸の製造方法について説明する。
[0115] 上記のようにして得られた X線造影糸の周囲を被覆繊維で被覆することにより、 X線 造影被覆糸を得ることができる。このように X線造影糸の周囲を被覆繊維で被覆する 際には、カバリング撚り数が 200〜2000TZmとなるようにカバリングすることが好ま し ヽ。カノくリング燃り数としては、 500〜2000T/m力より好ましく、 1000〜2000T Zmが特に好ましい。カバリングの際には、カノリング後における X線造影糸の横断 面の形状が略円形となるように、カバリング撚り数その他の条件を適宜選択すればよ い。 [0116] 本発明の別の X線造影被覆糸である、 X線造影糸の周囲が、 X線造影糸を構成す る第 1の熱可塑性榭脂よりも低融点の第 2の熱可塑性榭脂を少なくとも一部の構成成 分とする被覆繊維で被覆されて!ヽる X線造影被覆糸も、上記のようにして被覆繊維を カノリングすることにより、得ることができる。この被覆繊維は、第 2の熱可塑性榭脂と
、この被覆繊維を構成する他の熱可塑性榭脂とを通常の複合紡糸装置を用いて芯 鞘形状等になるように溶融紡糸し、常法にて延伸、熱処理することにより得ることがで きる。
[0117] 本発明の X線造影糸であって、油剤が付与されたものについての好ましい製造方 法について説明する。この場合は、上述と同様の方法で X線造影糸を製造すること ができ、溶融紡出されたフィラメントを冷却風により冷却固化した後、公知の方法によ つて油剤を付与すればょ 、。
[0118] 本発明の X線造影被覆糸であって、油剤が付与されたものについての、好ましい製 造方法にぉ 、ては、例えば上記のように油剤が付与された X線造影糸を用いればよ い。被覆繊維にも油剤が付与されている X線造影被覆糸とする場合は、予め別工程 で公知の方法により油剤を付与した被覆繊維を用意しておけばよ ヽ。
[0119] 本発明の繊維構造物のうち、織物(平織物)の好ましい製造方法について説明する
[0120] 本発明の織物の製造にあたっては、例えば 40番手の純良な綿糸を経糸と緯糸に 使用し、通常のガーゼ用織機などを用いて製織する。このとき、一本以上の経糸ある いは緯糸の代わりに X線造影糸および、または X線造影被覆糸を使用して、 X線造影 糸および、または X線造影被覆糸を織物中に織り込んで固定すればよい。このとき、 X線造影糸の周囲が、 X線造影糸を構成する第 1の熱可塑性榭脂よりも低融点の第 2の熱可塑性榭脂を少なくとも一部の構成成分とする被覆繊維で被覆されている X線 造影被覆糸を使用している場合は、織物を得た後に熱処理を行うことにより、 X線造 影被覆糸と綿糸とを溶融接着させることができる。さらに、熱エンボスローラや超音波 融着装置などによる熱処理を行って X線造影糸および、または X線造影被覆糸を綿 糸に溶融接着させれば、より強固に固定することができる。あるいは、綿糸のみから 作製された織物上に X線造影糸を配置し、熱エンボスローラや超音波融着装置など によって熱処理を行って X線造影糸を綿糸に溶融接着させて固定しても良い。得ら れた織物は、たとえば適宜脱脂、漂白、滅菌等することで、日本薬局方などに規定す るガーゼに適合したものとすることができる。
[0121] 織物上に配列させる X線造影糸および、または X線造影被覆糸は、織物の製造に おける流れ方向(縦方向)に適宜の間隔で配列していることが好ましい。具体的には 、例えば、 10〜300mm程度の間隔がよい。また、配列の形態は、直線状でなくとも 、波状に蛇行して配列させてもよい。
[0122] 本発明の繊維構造物のうち、不織布の好ましい製造方法について説明する。
[0123] まず、例えば主として溶剤紡糸セルロース繊維などが堆積してなる繊維ウェブを準 備する。この繊維ウェブとしては、例えば、溶剤紡糸セルロース繊維をカード機に供 給することにより得られるカードウェブを用いる。繊維ウェブに開孔を付与する場合は 、所定の目開きを持った粗目織物力もなるメッシュ状支持体を用いるとよい。次いで、 繊維ウェブ上に X線造影糸および、または X線造影被覆糸を適宜の間隔で配列させ 、さらにその上に、同様に主として溶剤紡糸セルロース繊維が堆積してなる繊維ゥェ ブを堆積させて積層物とする。
[0124] X線造影糸および、または X線造影被覆糸の上下に位置させる繊維ウェブは、同 一のものであっても、目付等が異なるようなものであってもよい。上下に位置させる繊 維ウェブの目付は、最終的に得られる不織布の目付を考慮して適宜選択すればよ いが、各々 10〜: LOOgZm2程度であることが好ましい。
[0125] 繊維ウェブ上に配列させる X線造影糸および、または X線造影被覆糸は、製品の 製造における流れ方向(縦方向)に適宜の間隔で配列させることが好ましい。具体的 には、例えば、 10〜300mm程度がよい。また、配列の際には、直線状でなくとも、波 状に蛇行して配列させてもょ 、。
[0126] 次 、で、繊維ウェブ ZX線造影糸および、または X線造影被覆糸 Z繊維ウェブの 順に積層した積層物に、高圧水流などの高圧液体流を作用させて、溶剤紡糸セル口 ース繊維同士の交絡処理を行う。高圧液体流を施すことにより、繊維相互を交絡させ て全体として一体化させて繊維シートを形成させることができ、かつ、 X線造影糸およ び、または X線造影被覆糸に溶剤紡糸セルロース繊維が絡み付くことにより繊維シー ト中に X線造影糸および、または X線造影被覆糸を固定させることができる。
[0127] 上記の高圧水流は、例えば、孔径 0. 05〜2. Ommの噴射孔カ 噴射孔間隔 0. 0 5〜: LOmmで、製品の製造における流れ方向と直交する方向(横方向)に一列または 複数列配置されている噴射装置を用い、噴射孔から水を 1. 5〜40MPaの圧力で噴 射して得られる。上述の粗目織物からなるメッシュ状支持体を用いた場合は、構成繊 維力 交絡しながらメッシュ状支持体の開孔部分へ移動し、支持体のナックル部に対 応した箇所には繊維が存在せず開孔が形成される。これにより、開孔を有する繊維 シートからなる不織布を得ることができる。
[0128] メッシュ状支持体の目開きは、得ようとする不織布の表面形態や、開孔の有無など に基づいて決定することができる。例えば、メッシュ状支持体が 16〜25メッシュ程度 の織物であると、得られる不織布の表面が平滑でありながら、開孔が付与されてなる 不織布を得ることができる。また、メッシュ状支持体が 25メッシュを超える織物であると 、開孔が付与されにくぐ特に 40メッシュを超える織物であると、表面が極めて平滑で ドレープ性に優れる不織布を得ることができる。どの程度のメッシュとするかについて は、得られる不織布の要求性能等に応じて、適宜選択すればよい。なお、メッシュと は、 1インチ当たりの線の数を指し、例えば 25メッシュの粗目織物は、 1インチ当たり 2 5本の線が存在するものを指す。
[0129] 水流交絡処理により得られた X線造影糸および、または X線造影被覆糸が存在して なる不織布を適宜の大きさに裁断することにより、本発明の不織布をたとえば医療用 ガーゼとして使用することができる。
[0130] X線造影糸の周囲が、 X線造影糸を構成する第 1の熱可塑性榭脂よりも低融点の 第 2の熱可塑性榭脂を少なくとも一部の構成成分とする被覆繊維で被覆されている X 線造影被覆糸を使用した場合は、水流交絡処理等を行った後の乾燥のために行う 熱セット工程にお!、て、被覆繊維を不織布を構成する主体繊維に溶融接着させるこ とがでさる。
実施例
[0131] 次に、本発明を実施例によって具体的に説明する。なお、以下の実施例'比較例 における特性値の測定、評価は、次のとおりに行った。 [0132] (a)乾熱収縮率(130°Cにおける乾熱収縮率)
得られた X線造影糸の乾熱収縮率を前述の方法で測定した。なお、以下の実施例 '比較例において、得られた X線造影糸の繊度が 3800dtex (28フィラメント)であつ た場合は、荷重 (カセの輪にかける荷重)は 507gとした。
[0133] (b)繊維構造体 (織物 ·不織布)の評価
得られた織物と不織布についての、造影性、しわの発生、糸の抜けの評価を、それ ぞれ以下のようにして行った。
[0134] (造影性)
X線照射距離を lmとし、管電圧 80kV、管電流 400mAの X線発生装置(陽極:タ ングステン)、照射時間 0. 063秒の撮影条件にて得られた織物、不織布の X線写真 を撮影し、目視による X線造影糸または X線造影被覆糸の見え具合を以下の 4段階 で評価した。
[0135] ◎:非常に明瞭に見える
〇:明瞭に見える
△:やや明瞭に見える
X:ほとんど見えない。
[0136] (しわの発生)
得られた織物および不織布のしわの発生状態は、目視にて以下の 5段階で評価し た。
[0137] 1 :しわの発生が全くなく品位が非常に良好
2:しわの発生が一部でわずかに認められるが品位は良好
3:しわの発生が全体的にわずかに認められるが品位は良好
4:全体的に少量のしわが発生して 、るが品位は実用上問題のな!、レベル
5:しわが多く発生しており品位が悪 ヽ
(糸の抜け)
得られた織物、不織布をカットし、カットした端面カゝら X線造影糸および、または X線 造影被覆糸(マルチフィラメントと単糸ともに)を手により引き抜いた際の抜け具合を、 以下の 4段階で評価した。 [0138] 1:強く引き抜 ヽてもマルチフィラメントおよびその単糸の 、ずれも抜けがな!、。
[0139] 2:マルチフィラメントおよびその単糸の!/、ずれも抜けがな!、。
[0140] 3:マルチフィラメントは抜けな 、がその単糸はやや抜ける。
[0141] 4:マルチフィラメントおよびその単糸ともにやや抜ける。
[0142] (c)相対粘度
ナイロン 6 : 96%硫酸を溶媒とし、濃度 lgZデシリットル、温度 25°Cの条件で常法 により測定した。
[0143] ナイロン 12 :メタタレゾールを溶媒とし、濃度 0. 5gZデシリットル、温度 25°Cの条件 で常法により測定した。
[0144] ポリエチレンテレフタレート:フエノールと四塩ィ匕ェタンの等質量混合物を溶媒とし、 ウベローデ粘度計を使用して、試料濃度 0. 5g/100cc,温度 20°Cの条件で測定し た。
[0145] (d)泡立ち試験
X線造影糸または X線造影被覆糸 10gを、 25°Cの水 1. 5リットル中で撹拌しながら 、各 5分間、計 3回洗浄した(1. 5リットル X 3)後、室温で乾燥した。これを内容量約 3 00ミリリットルの硬質ガラス製容器に入れ、水 200ミリリットルを正確にカ卩え、栓で密封 した後、高圧蒸気滅菌器を用いて 121°Cで 1時間加熱した。その後、高圧蒸気滅菌 器力 硬質ガラス製容器を取り出して室温になるまで放置し、それによつて得られた 液を試験液とした。この試験液約 5ミリリットルを、内径 15mm、長さ約 200mmの共栓 試験管中に入れ、 3分間激しく振り混ぜたうえで静置し、液の表面を目視により観察 した。このとき、泡が 10分以内に消えたものは〇(合格)、消えな力つたものは X (不 合格)とした。
[0146] (e)油剤の付与量 (OPU)
(i) 105°Cで乾燥した三角フラスコの質量 (AO)を秤量した。
[0147] (ii)試料 (得られた X線造影糸または X線造影被覆糸)を 10g採取して三角フラス コに入れ、 65°Cの熱風循環式乾燥機で 1. 5時間乾燥させた後、デシケーター内で 室温まで放冷した。放冷後の三角フラスコの質量 (A1)を秤量し、試料質量を A1— AOにて算出した。 [0148] (iii)試料の入った (ii)の三角フラスコに試料が十分に浸漬するまで n—へキサン( 60〜70ミリリットル)を加え、密栓して 40°Cで 6分間振とうして油剤を抽出した。
[0149] (iv)三角フラスコ力も試料を取り出し、 15〜20ミリリットルの n—へキサンで洗浄し た後、さらに試料を絞って n—へキサンを除去した。 n—へキサンは洗浄分も含めて 回収し、先の三角フラスコに合わせた。
[0150] (v) n—へキサンの入った三角フラスコを 96〜100°Cのウォーターバスに浸漬させ て、三角フラスコ内の n—へキサンを全量蒸発留出させた。その後、三角フラスコを 1 05°Cの熱風循環式乾燥機で 2時間乾燥させ、デシケーター内で室温まで放冷した。 そして、放冷後の三角フラスコの質量 (A2)を秤量し、以下の式を用いて OPUを算 出した。
[0151] OPU (%) = (A2-A0) / (A1 -A0) X 100
(f)不織布の目付: JIS L 1906の記載に準じて測定した。
[0152] [X線造影糸、 X線造影被覆糸の実施例'比較例]
(実施例 1)
相対粘度 1. 90のナイロン 12のチップ(ダイセルデグサ社製、 VESTAMIDL190 0)に糸中の硫酸バリウム含有量が 60質量%となるように調整したチップをェクストル 一ダー型溶融押出機に供給し、紡糸温度 250°Cで溶融し、孔計 0. 50mmの紡糸孔 を 28個有する紡糸口金より吐出させて、未延伸糸を捲取速度 400mZ分で巻き取つ た。
[0153] 次いで、得られた未延伸糸を、図 1に示した工程図に従い、表 1に示す熱延伸、弛 緩熱処理条件となるように、延伸、弛緩熱処理を行った。すなわち、図 1に示すよう〖こ 、まず、未延伸糸 1を、案内ローラ 2を通して、引張ローラ 5にて下向きに引き取った。 そして、案内ローラ 2の下方に設けられた箱型ヒータ 4によって熱処理を行った。この とき、箱型ヒータ 4の温度 (熱処理温度)を 150°Cとし、熱処理時間を 0. 09秒とした。 延伸は、案内ローラ 2と引張ローラ 5との間で施し (延伸倍率 1. 2倍)、延伸時に未延 伸糸に負荷される張力(延伸張力)を 0. 42gZdtexとした。続いて、サドル型ヒータ 8 と加熱ローラ 9とを有する熱処理装置 6を用いて弛緩熱処理を行った。この弛緩熱処 理に際しては、 0. 04gZdtexの張力で、熱処理温度 150°C、熱処理時間 3. 8秒とし た。そして、熱処理装置 6を通過した糸を巻き取り、 3800dtexZ28fの X線造影糸を 得た。
[0154] (実施例 2〜5、 25〜28、比較例 1〜2)
糸中の硫酸バリウムの含有量を表 1に示すように変更し、熱延伸'弛緩熱処理条件 を表 1に示す値となるように変更した。そして、それ以外は実施例 1と同様にして紡糸 •延伸 ·弛緩熱処理を行 ヽ、 3800dtexZ28fの X線造影糸を得た。
[0155] (実施例 6〜: L 1、比較例 3〜4)
実施例 1〜5、比較例 1〜2で得られた X線造影糸と、被覆繊維としての 84dtexZ3 6fのポリエチレンテレフタレートからなるポリエステルマルチフィラメントとを用いた。そ して、カノリング撚糸機を用いて、 X線造影糸の周囲に被覆繊維を表 1に示す撚数で S撚りで旋回させて X線造影被覆糸を得た。その他の製造条件は、表 1に示すとおり とした。
[0156] (実施例 12〜13、比較例 5)
糸中の硫酸バリウムの含有量を表 1のとおりに変更し、熱延伸'弛緩熱処理の条件 を表 1に示す値となるように変更した。そして、それ以外は実施例 1と同様にして、紡 糸 ·延伸'弛緩熱処理を行い、糸を巻き取った。次に、リング撚糸機により表 1に示す 実撚をカ卩えて、 3800dtex/28fの X線造影糸を得た。
[0157] (実施例 14〜15、比較例 6〜7)
糸中の硫酸バリウムの含有量を表 1のとおりに変更し、熱延伸'弛緩熱処理の条件 を表 1に示す値となるように変更した。そして、それ以外は実施例 1と同様にして、紡 糸 ·延伸 '弛緩熱処理を行い、糸を巻き取った。次に、リング撚糸機により、表 1に示 す実撚をカ卩えて 3800dtex/28fの X線造影糸を得た。
[0158] 続いて、実施例 6と同様にしてカノリング撚糸機を用いて X線造影被覆糸を得た。
[0159] (実施例 16〜17)
X線不透過剤を次硝酸ビスマス(実施例 16)、酸ィ匕タングステン (実施例 17)に変更 し、糸中の X線不透過剤の含有量を表 1のとおりとなるように変更した。そして、それ 以外は実施例 3と同様にして、紡糸 ·延伸 '弛緩熱処理を行って 3800dtexZ28fの X線造影糸を得た。 [0160] 続いて、実施例 6と同様にしてカノリング撚糸機を用いて X線造影被覆糸を得た。
[0161] (実施例 18)
相対粘度 2. 40のナイロン 6チップに糸中の硫酸バリウムの含有量が 55質量%とな るように調整したマスターチップをエタストルーダー型溶融押出機に供給し、紡糸温 度 255°Cで溶融し、孔径 0. 50mmの紡糸孔を 28個有する紡糸口金より吐出させて 、捲取速度 400mZ分で未延伸糸を巻き取った。
[0162] 次いで、得られた未延伸糸を実施例 1と同様の熱延伸 ·弛緩熱処理機に供給し、表 1の熱延伸,弛緩熱処理条件となるように、延伸、熱処理を行い、 3800dtexZ28fの X線造影糸を得た。
[0163] (実施例 19、比較例 8)
糸中の硫酸バリウムの含有量を表 1のとおりとなるように変更し、熱延伸'弛緩熱処 理条件を表 1に示す値となるように変更した。そして、それ以外は実施例 18と同様に して紡糸 ·延伸 ·弛緩熱処理を行 ヽ、 3800dtexZ28fの X線造影糸を得た。
[0164] (実施例 20〜21、比較例 9)
糸中の硫酸バリウムの含有量を表 1のとおりに変更し、熱延伸'弛緩熱処理条件を 表 1に示す値となるように変更した。そして、それ以外は実施例 18と同様にして紡糸- 延伸 ·弛緩熱処理を行 ヽ、 3800dtexZ28fの X線造影糸を得た。
[0165] 続いて、実施例 6と同様にしてカノリング撚糸機を用いて X線造影被覆糸を得た。
[0166] (実施例 22)
糸中の硫酸バリウムの含有量を表 1のとおりに変更し、熱延伸'弛緩熱処理条件を 表 1に示す値となるように変更した。そして、それ以外は実施例 18と同様にして紡糸- 延伸'弛緩熱処理を行い、巻き取りを行った。次に、リング撚糸機により、表 1に示す とおりの実撚をカ卩えて、 3800dtex/28fの X線造影糸を得た。
[0167] (実施例 23)
糸中の硫酸バリウムの含有量を表 1のとおりに変更し、熱延伸'弛緩熱処理条件を 表 1に示す値となるように変更した。そして、それ以外は実施例 18と同様にして、紡 糸 ·延伸'弛緩熱処理を行い巻き取った。次に、リング撚糸機により、表 1に示すとおり の実撚をカ卩えて、 3800dtex/28fの X線造影糸を得た。 [0168] 続いて、実施例 6と同様にしてカノリング撚糸機を用いて X線造影被覆糸を得た。
[0169] (実施例 24)
JIS K7210に規定されるメルトフローレート値が 7g/10分であるポリプロピレンチ ップ (三井ィ匕学社製、 J107G)に糸中の硫酸バリウム含有量が 60質量%となるように 調整したマスターチップをエタストルーダー型溶融押出機に供給し、紡糸温度 230°C で溶融し、孔径 0. 50mmの紡糸孔を 28個有する紡糸口金より吐出させて、捲取速 度 400mZ分で巻き取った。
[0170] 次いで、得られた未延伸糸を実施例 1と同様の熱延伸'弛緩熱処理機に供給し、表 1に示す熱延伸 ·弛緩熱処理条件となるように延伸、熱処理を行い、 3800dtex/28 fの X線造影糸を得た。
[0171] 続いて、実施例 6と同様にしてカノリング撚糸機を用いて X線造影被覆糸を得た。
[0172] (比較例 10)
実施例 24と同様にして紡糸し、巻き取った未延伸糸を延伸することなぐまた力バリ ング撚数を表 1に示す値に変更した。そして、それ以外は実施例 6と同様にしてカバ リング撚糸機を用いて X線造影被覆糸を得た。
[0173] 以上のようにして得られた実施例 1〜28、比較例 1〜: LOの X線造影糸、 X線造影被 覆糸の特性値を表 1に示す。
[0174] [表 1]
Figure imgf000032_0001
[0175] [油剤を付与した X線造影糸、 X線造影被覆糸の実施例'比較例]
(実施例 29)
相対粘度 1. 90のナイロン 12のチップ(ダイセルデグサ社製、 ESTAMIDL1900) と、同じナイロン 12に硫酸バリウムを高濃度で含有させたチップとを用い、全体の硫 酸バリウム含有率が 60質量%となるように調整してェクストルーダー型溶融押出機に 供給し、温度 250°Cで溶融し、孔径 0. 50mmの紡糸孔を 28個有する紡糸口金より 吐出させ、表 2に記載した組成 (質量%)の油剤を付与し、捲取速度 400mZ分で卷 き取ることにより、未延伸糸を得た。
[0176] 次いで、得られた未延伸糸を、実施例 1の場合と同様に図 1に示す工程に従って、 表 2に記載の熱延伸条件、弛緩熱処理条件となるようにして、熱延伸および弛緩熱 処理を行った。そして、熱延伸および弛緩熱処理を施した糸を、熱処理装置 6の出口 力も巻き取って、 3800dtex/28fのマルチフィラメント糸である X線造影糸(撚りはか けず)を得た。
[0177] 次に、溶剤紡糸セルロース繊維(単糸繊度 1. 7デシテックス 繊維長 38mm、レン チング社製 商標'商品名「レンチング 'リヨセル」)をランダムカードにて開繊し、約 15 gZm2の繊維ウェブを得た。得られた X線造影糸をこの繊維ウェブの上に流れ方向( 縦方向)に 100mm間隔で直線状に配置させ、その上に上記で得たのと同様の約 15 g/m2の繊維ウェブを堆積して、積層物を得た。
[0178] 得られた積層物を 100メッシュのメッシュ状支持体上に載置し、ノズル孔径 0. lmm の噴射孔が孔間隔 0. 6mmで横方向に一列に配置された噴射装置を用い、噴射圧 力 6. 9MPaで 2回処理し、次に反転させて反対面より噴射圧力 9. 8MPaで 2回処理 し、さらに反転して 25メッシュのメッシュ状支持体に載置して、噴射圧力 9. 8MPaで 2 回処理し、 目付 33gZm2の不織布を得た。
[0179] (実施例 30〜31、比較例 11〜14)
油剤の組成、硫酸バリウムの含有量、熱延伸および弛緩熱処理の条件を、表 2に 示すように変更した。そして、それ以外は実施例 29と同様にして、 X線造影糸を得た 。ただし、比較例 13および 14については、カノ リング撚糸機を用いて、得られた X線 造影糸の周囲に被覆繊維を表 2に示す撚数 (S撚り)で旋回させることで、 X線造影被 覆糸を得た。
[0180] 次に、得られた X線造影糸を用いて、実施例 29と同様にして不織布を得た。
[0181] (実施例 32)
ポリエチレンテレフタレートからなり、表 2の「実施例 32」の欄に示す組成の油剤が 付与された 84dtexZ36fのポリエステルマルチフィラメントを被覆繊維とし、実施例 3 1で得られた X線造影糸を用い、カノ リング撚糸機を用いて、 X線造影糸の周囲に被 覆繊維を S撚りで 500TZmの撚数で旋回させることで、 X線造影被覆糸を得た。
[0182] 次に、得られた X線造影被覆糸を用いて、実施例 29と同様にして不織布を得た。
[0183] 上記の実施例 29〜32および比較例 11〜14で得られた X線造影糸、 X線造影被 覆糸及び不織布の評価結果を表 2に示す。
[表 2]
Figure imgf000035_0001
POE:ポリオキシエチレン
[0185] 表 2から明らかなように、実施例 29〜32では、付与された油剤におけるイオン性界 面活性剤の割合が 10%以下であったため、 X線造影糸や X線造影被覆糸は、泡立 ち試験において 10分以内に泡が消失し、本発明の目的に適うものであった。そして 、得られた不織布は、しわの発生、糸の抜け落ちがなぐ造影性も良好であった 一方、比較例 11〜14の X線造影糸は、付与された油剤におけるイオン性界面活 性剤の割合がいずれも 10%を超えていたため、泡立ち試験において 10分以内に泡 が消失しな力つた。そして、得られた不織布は、しわの発生が多ぐ製品として品位の 劣るものであった。
[0186] [織物の実施例'比較例]
(実施例 33)
40番手の綿糸を経糸および緯糸に用いて、幅 30cmで lcm2にっき経糸および緯 糸がそれぞれ 12本の条数となるようにして平織りし、織物を得た。この織物上に、経 糸と平行になるように実施例 5で得られた X線造影糸 1本を配置し、エンボス装置にて 熱処理を行い、 X線造影糸を織物に融着させて固定した。
[0187] なお、このエンボス装置は凹凸ロールを備えたものであり、この凹凸ロールは、散点 状に配置された凸部の総面積がロール全体の面積に対して 15%を占めており、力 っ凸部が温度 235°Cに加熱されたものであった。
[0188] (実施例 34)
織物上に X線造影糸 1本を配置して熱処理により織物に融着させて固定することに 代えて、経糸のうち 1本を実施例 4で得られた X線造影糸に置き換えて実施例 33と同 様にして平織りし、織物を得た。
[0189] (実施例 35)
織物上に X線造影糸 1本を配置して熱処理により織物に融着させて固定することに 代えて、経糸のうち 1本を実施例 3で得られた X線造影糸に置き換えて実施例 33と同 様にして平織りし、織物を得た。この織物に実施例 33と同様にエンボス装置にて熱 処理を行い、 X線造影糸を織物に融着させて固定した。
[0190] (実施例 36〜60、比較例 15〜24)
経糸のうち 1本を表3に示す X線造影糸又は X線造影被覆糸(各実施例で得られた もの)に置き換えた。そして、それ以外は実施例 34と同様にして平織りし、織物を得 た。
[0191] 以上のようにして得られた実施例 33〜60、比較例 15〜24の織物の特性値および 評価を表 3に示す。
[0192] [表 3]
布帛 (織物)
X線 tejni糸
又は 造影糸の固定方法 しわの
X線造影被覆糸 糸の抜け 造影性 発生
33 実施例 5 エンボス 1 3 〇
34 実施例 4 織込 1 4 〇
35 実施例 3 織込 +エンボス 1 2 〇
36 実施例 2 織込 2 4 △
37 実施例 1 織込 2 4 △
38 実施例 25 織込 3 4 Δ
39 実施例 26 織込 3 4 △
40 実施例 27 織込 4 4 △
41 実施例 28 織込 4 4 △
42 実施例 6 織込 2 2 〇
43 実施例 7 織込 2 2 O
44 実施例 8 織込 1 2 ◎
45 実施例 9 織込 1 2 ◎ 実 46 実施例 10 織込 1 2 施 ◎ 例 47 実施例 11 織込 1 2 ◎
48 実施例 12 織込 1 3 ◎
49 実施例 13 織込 1 3 ◎
50 実施例 14 織込 1 2 ◎
51 実施例 15 織込 1 2 ◎
52 実施例 16 織込 2 2 △
53 実施例 17 織:^ 2 2 △
54 実施例 18 織込 2 4 △
55 実施例 19 織込 2 4 △
56 実施例 20 織込 2 2 〇
57 実施例 21 織込 1 2 〇
58 実施例 22 織込 1 3 ◎
59 実施例 23 織込 1 2 ◎
60 実施例 24 織込 3 2 〇
15 比較例 1 織込 5 4 △
16 比較例 2 織込 5 4 △
17 比較例 3 織込 5 3 △
18 比較例 4 織込 5 2 △ 比 19 比較例 5 織込 5 3 Δ 較
例 20 比較例 6 織込 5 2 △
21 比較例 7 織込 5 2 Δ
22 比較例 8 織込 5 4 Δ
23 比較例 9 織込 5 2 Δ
24 比較例 10 織込 5 2 △ [0193] 表 3から明らかなように、実施例 33〜60における X線造影糸又は X線造影被覆糸 は、 X線造影糸の乾熱収縮率が 3. 5%以下であり、このため、これらを用いて得られ た織物は、しわの発生、糸の抜け落ちがなぐ造影性も良好であった。特に、実施例 42〜47、 50〜53、 56〜57、 59〜60における X線造景被覆糸は、カノリングされて いることにより、 X線造影糸の抜け落ちが少なぐかつ、マルチフィラメントの断面形状 が略円形となるように一体ィ匕されていたため、これらを用いて得られた織物は、より優 れた X線造影性を有して 、た。
[0194] 一方、比較例 15〜24における X線造影糸又は X線造影被覆糸は、いずれも X線造 影糸の 130°Cにおける乾熱収縮率が 3. 5%を超えていたため、これらを用いて得ら れた織物は、しわの発生が多ぐ製品として品位の劣るものであった。
[0195] [不織布の実施例'比較例]
(実施例 61)
溶剤紡糸セルロース繊維 A (単糸繊度 1. 7デシテックス 繊維長 38mm、レンチン グ社製 商標'商品名「レンチング 'リヨセル」)をランダムカードにて開繊し、約 15gZ m2の繊維ウェブを得た。実施例 5で得られた X線造影糸をこの繊維ウェブの上に流 れ方向(縦方向)に 100mm間隔で直線状に配置させ、その上に上記で得たのと同 様の約 15gZm2の繊維ウェブを堆積して、積層物を得た。
[0196] 得られた積層物を 100メッシュのメッシュ状支持体上に載置し、ノズル孔径 0. lmm の噴射孔が孔間隔 0. 6mmで横方向に一列に配置された高圧水の噴射装置を用い 、噴射圧力 6. 9MPaで 2回処理し、次に反転させて反対面より噴射圧力 9. 8MPaで 2回処理し、さらに反転して 25メッシュのメッシュ状支持体に載置して、噴射圧力 9. 8 MPaで 2回処理し、目付 33gZm2の不織布を得た。
[0197] (実施例 62〜69、 74〜92、比較例 25〜34)
X線造影糸を表 4に示す X線造影糸又は X線造影被覆糸(各実施例、比較例のも の)に変更した。そして、それ以外は実施例 61と同様にして、目付 33gZm2の不織 布を得た。
[0198] (実施例 70〜71)
不織布の目付を表 4に示す値となるように変更した。そして、それ以外は実施例 62 と同様にして、不織布を得た。
[0199] (実施例 72〜73)
溶剤紡糸セルロース繊維に代えて、ビスコースレーヨン繊維 B (単糸繊度 2. 2dtex 、繊維長 38mm:実施例 72)あるいは綿 C (単糸繊度 1. 7dtex、繊維長 24mm:実施 例 73)を用いた。そして、それ以外は実施例 62と同様にして、不織布を得た。
[0200] 以上のようにして得られた実施例 61〜92、比較例 25〜34の不織布の特性値およ び評価を表 4に示す。
[0201] [表 4]
不織布を構成する主体繊維 布帛(不織布) 影
又は 種類 単糸繊度 繊維長 目付 しわの X線造影被覆糸 糸の抜け 造影性 発生
dtex mm g/m
61 実施例 5 A 1.7 38 33 1 4 O
62 実施例 4 A 1.7 38 33 1 4 O
63 実施例 3 A 1.7 38 33 1 4 〇
64 実施例 2 A 1.7 38 33 2 4 Δ
65 実施例 1 A 1.7 38 33 2 4 △
66 実施例 25 A 1.7 38 33 3 4 △
67 実施例 26 A 1.7 38 33 3 4 △
68 実施例 27 A 1.7 38 33 4 4 Δ
69 実施例 28 A 1.7 38 33 4 4 △
70 実施例 4 A 1.7 38 50 1 4 O
71 実施例 4 A 1.7 38 100 1 4 △
72 実施例 4 B 2.2 38 33 1 4 〇
73 実施例 4 C 1.7 24 33 1 4 〇
74 実施例 6 A 1.7 38 33 2 2 〇
75 実施例 7 A 1.7 38 33 2 2 〇
76 実施例 8 A 1.7 38 33 1 2 施 ◎ 例 77 実施例 9 A 1.7 38 33 1 2 ◎
78 実施例 10 A 1.7 38 33 1 2 ◎
79 実施例 11 A 1.7 38 33 1 2 ◎
80 実施例 12 A 1.7 38 33 1 3 ◎
81 実施例 13 A 1.7 38 33 1 3 ◎
82 実施例 14 A 1.7 38 33 1 2 ◎
83 実施例 15 A 1.7 38 33 1 2 ◎
84 実施例 16 A 1.7 38 33 2 2 △
85 実施例 17 A 1.7 38 33 2 2 Δ
86 実施例 18 A 1.7 38 33 2 4 △
87 実施例 19 A 1.7 38 33 2 4 △
88 実施例 20 A 1.7 38 33 2 2 〇
89 実施例 21 A 1.7 38 33 1 2 〇
90 実施例 22 A 1.7 38 33 1 3 ◎
91 実施例 23 A 1.7 38 33 1 2 ◎
92 実施例 24 A 1.7 38 33 3 2 〇
25 比較例 1 A 1.7 38 33 5 4 Δ
26 比較例 2 A 1.7 38 33 5 4 厶
27 比較例 3 A 1.7 38 33 5 3 △
28 比較例 4 A 1.7 38 33 5 2 △ 比 29 比較例 5 A 1.7 38 33 5 3 較 △ 例 30 比較例 6 A 1.7 38 33 5 2 Δ
31 比較例 7 A 1.7 38 33 5 2 △
32 比較例 8 A 1.7 38 33 5 4 △
33 比較例 9 A 1.7 38 33 5 2 △
34 比較例 10 A 1.7 38 33 5 2 △
<不織布を構成する主体繊維 >A:溶剤紡糸セルロース繊維、 B :ビスコースレーヨン、 C :綿 [0202] 表 4から明らかなように、実施例 61〜92における X線造影糸又は X線造影被覆糸 は、 X線造影糸の乾熱収縮率が 3. 5%以下であったため、得られた不織布は、しわ の発生、糸の抜け落ちがなぐ造影性も良好であった。特に、実施例 74〜79、 82〜 85、 88〜89、 91〜92における X線造影被覆糸は、カバリングされていることにより、 X線造影糸の抜け落ちが少なぐかつ、マルチフィラメントの断面形状が略円形となる ように一体ィ匕されていたため、これらを用いて得られた不織布は、より優れた X線造影 '性を有していた。
[0203] 一方、比較例 25〜34における X線造影糸又は X線造影被覆糸は、いずれも X線造 影糸の 130°Cにおける乾熱収縮率が 3. 5%を超えていたため、これらを用いて得ら れた不織布は、しわの発生が多ぐ製品として品位の劣るものであった。
[0204] [被覆繊維の少なくとも一部が、 X線造影糸の第 1の熱可塑性榭脂よりも低融点の 第 2の熱可塑性榭脂にて構成されている X線造影被覆糸の実施例]
(被覆繊維 a)
ナイロン 6:ナイロン 66:ナイロン 12の組成質量比が 42 : 18 : 40から成る共重合ナイ ロン (アルケマ社製、融点 118°C)チップをエタストルーダー型溶融紡糸機に供給し、 口径 0. 35mmの紡糸孔を 12個有する紡糸口金を通して紡糸温度 185°Cで紡出し、 第 1、第 2ローラ速度を 560mZ分、最終捲取速度を 1400mZ分として延伸倍率 2. 5倍で延伸した。表 5に示すように、得られた被覆繊維 aは繊度 110dtexZl2fであつ た。
[0205] (被覆繊維 b)
相対粘度 1. 90のナイロン 12 (ダイセルデグサ社製 VESTAMIDL1900、融点 17 8°C)を芯成分、ナイロン 6:ナイロン 66:ナイロン 12の糸且成質量比力 2 : 18 : 40力ら 成る共重合ナイロン (アルケマ社製、融点 118°C)を鞘成分として用い、複合比率が( 芯 Z鞘) = 90ZlO (質量比)、紡糸温度 250°Cで、口径 0. 35mmの紡糸孔を 12個 有する芯鞘型複合紡糸口金より吐出させた。そして第 1ローラ速度を 3000mZ分、 第 2ローラ速度を 3200mZ分、最終捲取速度を 3500mZ分として、卷取った。表 5 に示すように、得られた被覆繊維は、繊度 90dtexZ24fであった。
[0206] (被覆繊維 c、 d) 芯鞘複合比率を表 2に示した値とした。そして、それ以外は被覆繊維 bと同様にして 、溶融紡糸を行い、被覆繊維を得た。その結果を表 2に示す。
[0207] (被覆繊維 e)
相対粘度 0. 70のポリエチレンテレフタレートを芯成分、イソフタル酸を 33. 0モル %共重合した相対粘度 0. 68のポリエチレンテレフタレート (融点 135°C)を鞘成分と して用い、複合比率が(芯 Z鞘) 50Z50 (質量比)、紡糸温度 280°Cで、口径 0. 2m mの紡糸孔を 24個有する芯鞘型複合紡糸口金より吐出させた。そして、第 1ゴデット ローラ速度を 3000mZ分(ローラ温度 90°C)、第 2ゴデットローラ速度を 4500mZ分 (ローラ温度 110°C)として、捲取速度 4500mZ分で卷取った。表 5に示すように、得 られた被覆繊維は繊度 84dtexZ24fであった。
[0208] (被覆繊維 f)
相対粘度 0. 70のポリエチレンテレフタレート(融点 260°C)を芯成分、メタ口セン系 重合触媒を用いて重合されたメルトフローレート 20gZlO分のポリエチレン (融点 10 2°C)を鞘成分として用い、複合比率が(芯 Z鞘) 50Z50 (質量比)、紡糸温度 280°C で、口径 0. 2mmの紡糸孔を 24個有する芯鞘型複合紡糸口金より吐出させて、捲取 速度 4000mZ分で卷取った。表 5に示すように、得られた被覆繊維は、繊度 84dtex Z24fであった。
[0209] (被覆繊維 g)
被覆繊維 bで用いた相対粘度 1. 90のナイロン 12(融点 178°C)を用い、紡糸温度 2 50°Cで、口径 0. 35mmの紡糸孔を 24個有する芯鞘型複合紡糸口金より吐出させ た。そして、第 1、第 2ローラ速度を 560mZ分、最終捲取速度を 1400mZ分として、 延伸倍率 2. 5倍で延伸した。表 5に示すように、得られた被覆繊維は、繊度 90dtex Z24fであった。
[0210] (被覆繊維 h)
相対粘度 0. 70のポリエチレンテレフタレート(融点 260°C)を用い、紡糸温度 280 °Cで、口径 0. 2mmの紡糸孔を 36個有する芯鞘型複合紡糸口金より吐出させた。そ して、第 1ゴデットローラ速度を 3000mZ分 (ローラ温度 95。C)、第 2ゴデットローラ速 度を 4500mZ分(ローラ温度 130°C)として、捲取速度 4500mZ分で卷取った。表 5に示すように、得られた被覆繊維は繊度 84dtexZ36fであった。
[0211] [表 5]
Figure imgf000044_0001
IP :イリフタル酸
[0212] (実施例 93)
カノリング撚糸機を用いて、実施例 5の X線造影糸の周囲に、被覆繊維 cを、撚数 5 OOTZmで S撚りで旋回させて、 X線造影被覆糸を得た。
[0213] (実施例 94〜103)
表 6に示した X線造影糸(各実施例のもの)と被覆繊維との組合せ、条件で X線造 影糸の周囲を被覆繊維で被覆して、 X線造影被覆糸を得た。ただし、実施例 96及び 実施例 97では、それぞれ実施例 16及び実施例 24で X線造影被覆糸とする前段階 の X線造影糸を用いた。実施例 95では、 X線造影糸に被覆繊維を被覆した後、 130 °Cに加熱したスリット型ヒータを用いて 30秒間熱処理を行 、、被覆繊維の一部を溶 融、固化させて、 X線造影糸と被覆繊維とを熱融着させた。
[0214] [表 6] X線造影
カハ'リンダ 被覆糸の X線造影被覆糸の
乾熱
X線造影糸 被覆繊維 撚数 収縮率 熱融着処理
(130°C)
T/m % 温度 (°C) 処理時間 (sec)
93 実施例 5 c 500 0.5 ― -
94 実施例 1 500 1.2 -
95 実施例 2 500 1.0 130 30
96 実施例 16 500 0.9 - -
97 実施例 24 f 500 1.9 - - 施
98 実施例 5 a 600 0.4 一
99 実施例 5 b 500 0.4 - -
100 実施例 5 d 1200 0.5 ― -
101 実施例 5 e 500 0.5 ―
102 実施例 5 g 500 0.4 - 一
103 実施例 5 h 500 0.5 ―
[0215] [X線造影被覆糸を含有した不織布の実施例]
(実施例 104)
不織布を構成する主体繊維として、実施例 61で用いた溶剤紡糸セルロース繊維 A を用い、実施例 61と同様にして繊維ウェブを得た。そして、この繊維ウェブの上に実 施例 93の X線造影被覆糸を 100mm間隔で直線状に配列するように流れ方向(縦方 向)に配置させ、さらにその上に上記で得たのと同様の繊維ウェブを堆積して、積層 物を得た。
[0216] 得られた積層物に実施例 61と同じ高圧水噴射処理を施し、この噴射処理によって 得られた繊維シートを、非接触乾熱処理装置に通過させて、 130°Cで 30秒間熱セッ ト処理すると同時に、被覆繊維の一部を溶融させて不織布を構成する主体繊維と接 着させて、目付 33g/m2の不織布を得た。この不織布の物性を表 7に示す。
[0217] (実施例 105〜109、 112〜114)
X線造影被覆糸の種類、目付、熱セット処理温度を表 7に示すものに変更した。そ して、それ以外は実施例 104と同様にして不織布を得た。得られた不織布の物性を 表 7に示す。
[0218] (実施例 110、 111)
不織布を構成する主体繊維として、実施例 73の綿 C (実施例 100)あるいは実施例
72のビスコースレーヨン繊維 B (実施例 101)を用いた。また X線造影被覆糸の種類 を表 7に示すものに変更した。そして、それ以外は実施例 104と同様にして不織布を 得た。得られた不織布の物性を表 7に示す。
[0219] [表 7]
Figure imgf000046_0001
[0220] 実施例 104〜114で得られた不織布は、 、ずれもしわの発生は見られず、品位は 良好であり、 X線造影性に優れていた。また、不織布からの X線造影糸の抜けについ ては、実施例 104〜112は 、ずれも被覆繊維の一部が X線造影糸及び不織布を構 成する主体繊維ガーゼと溶融接着されているため、 X線造影糸が不織布カゝら引き抜 かれず、糸の抜け評価が特に良好であった。

Claims

請求の範囲
[I] X線不透過剤を含有する熱可塑性榭脂からなる繊維であって、 130°Cにおける乾 熱収縮率が 3. 5〜0%であることを特徴とする X線造影糸。
[2] 熱可塑性榭脂がナイロン 12であることを特徴とする請求項 1記載の X線造影糸。
[3] X線不透過剤を含有する熱可塑性榭脂のみからなることを特徴とする請求項 1記載 の X線造影糸。
[4] 繊度が 1000〜20000dtexのモノフィラメントであることを特徴とする請求項 1記載 の X線造影糸。
[5] 単糸繊度が 20〜400dtex、総繊度が 1000〜20000dtexのマルチフィラメントで あることを特徴とする請求項 1記載の X線造影糸。
[6] X線不透過剤を含有する熱可塑性榭脂からなる繊維であって、イオン系界面活性 剤成分の割合力^〜 10質量%である油剤が付与されていることを特徴とする X線造 影糸。
[7] 熱可塑性榭脂がナイロン 12であることを特徴とする請求項 6記載の X線造影糸。
[8] X線不透過剤を含有する熱可塑性榭脂のみからなることを特徴とする請求項 6項記 載の X線造影糸。
[9] 繊度が 1000〜20000dtexのモノフィラメントであることを特徴とする請求項 6記載 の X線造影糸。
[10] 単糸繊度が 20〜400dtex、総繊度が 1000〜20000dtexのマルチフィラメントで あることを特徴とする請求項 6記載の X線造影糸。
[II] X線不透過剤を含有する熱可塑性榭脂からなる繊維である X線造影糸の周囲が被 覆繊維で被覆され、 130°Cにおける乾熱収縮率が 3. 5〜0%であることを特徴とする X線造影被覆糸。
[12] X線造影糸が請求項 1から 10までのいずれか 1項記載のものであることを特徴とす る請求項 11記載の X線造影被覆糸。
[13] 被覆繊維は X線造影糸よりも細繊度の糸であることを特徴とする請求項 11記載の X 線造影被覆糸。
[14] X線造影糸が請求項 1から 10までのいずれか 1項記載のものであり、被覆繊維は、 少なくともその一部が、前記 X線造影糸を形成する第 1の熱可塑性榭脂よりも低融点 の第 2の熱可塑性榭脂にて構成されていることを特徴とする X線造影被覆糸。
[15] 第 2の熱可塑性榭脂の融点は、 100°C以上であり、かつ、第 1の熱可塑性榭脂の融 点より 20°C以上低いことを特徴とする請求項 14記載の X線造影被覆糸。
[16] 被覆繊維が芯鞘型の複合繊維であって、第 2の熱可塑性榭脂が前記複合繊維の 鞘部を構成していることを特徴とする請求項 14記載の X線造影被覆糸。
[17] 請求項 1から 10までのいずれか 1項記載の X線造影糸および、または請求項 11か ら 16までのいずれか 1項記載の X線造影被覆糸を含んでなることを特徴とする繊維 構造体。
PCT/JP2006/308717 2005-04-26 2006-04-26 X線造影糸、x線造影被覆糸、前記x線造影糸および、またはx線造影被覆糸を用いた繊維構造体 WO2006115266A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007514765A JP5030773B2 (ja) 2005-04-26 2006-04-26 X線造影糸、x線造影被覆糸、前記x線造影糸および、またはx線造影被覆糸を用いた繊維構造体
EP06745695A EP1876271B1 (en) 2005-04-26 2006-04-26 X-ray contrast filament, x-ray contrast covered filament, and fiber structure using said x-ray contrast filament and/or x-ray contrast covered filament
DE602006014675T DE602006014675D1 (de) 2005-04-26 2006-04-26 Röntgenkontrastfilament, röntgenkontrastbeschichtetes filament sowie fasergebilde mit dem röntgenkontrastfilament und/oder dem röntgenkontrastbeschichteten filament
US11/919,205 US20090302241A1 (en) 2005-04-26 2006-04-26 X-ray opaque filament, x-ray opaque covered filament and fiber structure using said x-ray opaque filament and/or x-ray opaque covered filament

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-128510 2005-04-26
JP2005128510 2005-04-26
JP2006-018314 2006-01-27
JP2006018314 2006-01-27

Publications (1)

Publication Number Publication Date
WO2006115266A1 true WO2006115266A1 (ja) 2006-11-02

Family

ID=37214879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308717 WO2006115266A1 (ja) 2005-04-26 2006-04-26 X線造影糸、x線造影被覆糸、前記x線造影糸および、またはx線造影被覆糸を用いた繊維構造体

Country Status (5)

Country Link
US (1) US20090302241A1 (ja)
EP (1) EP1876271B1 (ja)
JP (1) JP5030773B2 (ja)
DE (1) DE602006014675D1 (ja)
WO (1) WO2006115266A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110195A (ja) * 2006-10-04 2008-05-15 Unitica Fibers Ltd X線造影性複合糸及びx線造影性繊維構造体
JP2008278929A (ja) * 2007-05-08 2008-11-20 Asahi Kasei Fibers Corp 手術用ガーゼ
WO2008146529A1 (ja) * 2007-05-30 2008-12-04 Piac Co., Ltd. X線検知材料含有布帛、x線検知用絆創膏およびx線検知用絆創膏の製造方法
JP2008303525A (ja) * 2007-05-08 2008-12-18 Unitica Fibers Ltd X線造影性モノフィラメント
WO2009101661A1 (ja) * 2008-02-15 2009-08-20 Unitika Fibers Ltd. X線造影性モノフィラメント
JP2010216030A (ja) * 2009-03-16 2010-09-30 Unitika Ltd X線造影性複合糸
WO2014132776A1 (ja) * 2013-03-01 2014-09-04 三菱瓦斯化学株式会社 複合繊維、織物、編み物および複合材料
JPWO2013129370A1 (ja) * 2012-02-29 2015-07-30 東レ株式会社 ポリアミド繊維およびその製造方法
JP6270954B1 (ja) * 2016-10-05 2018-01-31 スズラン株式会社 医療用ガーゼの製織方法
JPWO2020054434A1 (ja) * 2018-09-14 2021-10-14 白十字株式会社 医療用ガーゼ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165949A (ja) * 2011-02-16 2012-09-06 Dainippon Printing Co Ltd 吸収性物品
US10619268B2 (en) * 2013-11-13 2020-04-14 Illinois Tool Works, Inc. Metal detectable fiber and articles formed from the same
US10753022B2 (en) * 2014-07-25 2020-08-25 Illinois Tool Works, Inc. Particle-filled fiber and articles formed from the same
US11542634B2 (en) 2014-07-25 2023-01-03 Illinois Tool Works Inc. Particle-filled fiber and articles formed from the same
US20180280206A1 (en) * 2017-03-31 2018-10-04 Integra Lifesciences Corporation X-ray detectable fabric and its use in surgical patties and sponges
CN107854216A (zh) * 2017-11-07 2018-03-30 佛山市博然机械有限公司 医用复合提带生产线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118131A (ja) * 1988-09-27 1990-05-02 Courtaulds Plc 放射線不透過性糸
JP2002325775A (ja) * 2001-05-02 2002-11-12 Kawamoto Sangyo Kk 内視鏡用布帛
JP2004162239A (ja) * 2002-11-12 2004-06-10 Beltec:Kk 造影剤を含有するx線造影樹脂糸
JP2006051209A (ja) * 2004-08-12 2006-02-23 Kawamoto Sangyo Kk X線造影ガーゼ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3369164D1 (en) * 1982-08-20 1987-02-19 Vernon Carus Ltd Radio opaque fibres
JP3173911B2 (ja) * 1993-03-12 2001-06-04 ユニチカ株式会社 長繊維不織布の製造方法
JP4065592B2 (ja) * 1997-02-20 2008-03-26 帝人ファイバー株式会社 高中空ポリエステル繊維、これを用いてなる織編物、パイル繊維製品及び不織布構造体並びに中空ポリエステル繊維の製造方法
US6229096B1 (en) * 1997-10-07 2001-05-08 Mitsubishi Gas Chemical Company, Inc. Nonwoven reinforcement for printed wiring base board and process for producing the same
ATE257722T1 (de) * 1999-07-16 2004-01-15 Terumo Corp Katheter und verfahren zu seiner herstellung
WO2001075200A1 (fr) * 2000-03-30 2001-10-11 Asahi Kasei Kabushiki Kaisha Fil monofilament et son procede de fabrication
JP2002266157A (ja) * 2001-03-13 2002-09-18 Unitica Fibers Ltd X線感応繊維
JP2003250901A (ja) * 2002-02-28 2003-09-09 Toray Ind Inc X線造影性に優れた医療用チューブ
DE10336509A1 (de) * 2003-08-08 2005-03-03 Ledertech Gmbh Verbundmaterial für thermisch formbare Schuhkomponenten auf organischer Faserbasis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118131A (ja) * 1988-09-27 1990-05-02 Courtaulds Plc 放射線不透過性糸
JP2002325775A (ja) * 2001-05-02 2002-11-12 Kawamoto Sangyo Kk 内視鏡用布帛
JP2004162239A (ja) * 2002-11-12 2004-06-10 Beltec:Kk 造影剤を含有するx線造影樹脂糸
JP2006051209A (ja) * 2004-08-12 2006-02-23 Kawamoto Sangyo Kk X線造影ガーゼ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1876271A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110195A (ja) * 2006-10-04 2008-05-15 Unitica Fibers Ltd X線造影性複合糸及びx線造影性繊維構造体
JP2008278929A (ja) * 2007-05-08 2008-11-20 Asahi Kasei Fibers Corp 手術用ガーゼ
JP2008303525A (ja) * 2007-05-08 2008-12-18 Unitica Fibers Ltd X線造影性モノフィラメント
JP5271263B2 (ja) * 2007-05-30 2013-08-21 ピアック株式会社 X線検知材料含有布帛、x線検知用絆創膏およびx線検知用絆創膏の製造方法
WO2008146529A1 (ja) * 2007-05-30 2008-12-04 Piac Co., Ltd. X線検知材料含有布帛、x線検知用絆創膏およびx線検知用絆創膏の製造方法
WO2009101661A1 (ja) * 2008-02-15 2009-08-20 Unitika Fibers Ltd. X線造影性モノフィラメント
US7998576B2 (en) 2008-02-15 2011-08-16 Unitika Ltd. Radiopaque monofilament for contrast X-ray radiography
JP2009215692A (ja) * 2008-02-15 2009-09-24 Unitica Fibers Ltd X線造影性複合モノフィラメント
JP2010216030A (ja) * 2009-03-16 2010-09-30 Unitika Ltd X線造影性複合糸
JPWO2013129370A1 (ja) * 2012-02-29 2015-07-30 東レ株式会社 ポリアミド繊維およびその製造方法
TWI626343B (zh) * 2013-03-01 2018-06-11 Mitsubishi Gas Chemical Co 複合纖維、織物、編織物及複合材料
JPWO2014132776A1 (ja) * 2013-03-01 2017-02-02 三菱瓦斯化学株式会社 複合繊維、織物、編み物および複合材料
RU2654418C2 (ru) * 2013-03-01 2018-05-17 Мицубиси Гэс Кемикал Компани, Инк. Композитные волокна, тканые полотна, трикотажные полотна и композитные материалы
WO2014132776A1 (ja) * 2013-03-01 2014-09-04 三菱瓦斯化学株式会社 複合繊維、織物、編み物および複合材料
JP6270954B1 (ja) * 2016-10-05 2018-01-31 スズラン株式会社 医療用ガーゼの製織方法
JP2018057587A (ja) * 2016-10-05 2018-04-12 スズラン株式会社 医療用ガーゼの製織方法
JPWO2020054434A1 (ja) * 2018-09-14 2021-10-14 白十字株式会社 医療用ガーゼ
EP3851083A4 (en) * 2018-09-14 2022-06-15 Hakujuji Kabushiki Kaisha MEDICAL WASTE
JP7341416B2 (ja) 2018-09-14 2023-09-11 白十字株式会社 医療用ガーゼ

Also Published As

Publication number Publication date
EP1876271B1 (en) 2010-06-02
US20090302241A1 (en) 2009-12-10
JP5030773B2 (ja) 2012-09-19
EP1876271A1 (en) 2008-01-09
JPWO2006115266A1 (ja) 2008-12-18
EP1876271A4 (en) 2009-01-14
DE602006014675D1 (de) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5030773B2 (ja) X線造影糸、x線造影被覆糸、前記x線造影糸および、またはx線造影被覆糸を用いた繊維構造体
JP5294578B2 (ja) X線造影性複合糸及びx線造影性繊維構造体
TWI321171B (en) Synthetic staple fibers for an air-laid nonwoven fabric
JP5363025B2 (ja) X線造影性モノフィラメント
WO2006090808A1 (ja) 吸水により立体的に構造変化する複合布帛材料および繊維製品
WO2004013388A1 (ja) 多孔繊維
US7998576B2 (en) Radiopaque monofilament for contrast X-ray radiography
JP2009024272A (ja) 冷感に優れた編地および繊維製品
JP5584297B2 (ja) 多層構造布帛および繊維製品
JP5884733B2 (ja) 積層不織布とその製品
JPH11107155A (ja) 積層不織布及びそれを用いた吸収性物品
JP5229890B2 (ja) 多層構造織編物および繊維製品
JP2008297657A (ja) キルテイング生地および寝具およびダウンジャケット
JP2009074187A (ja) 多層構造織編物および繊維製品
JP4507389B2 (ja) ポリオレフィン系繊維とこれを用いた不織布及び吸収性物品
JP6484948B2 (ja) 海島複合繊維
JP5495286B2 (ja) 有毛編物の製造方法および有毛編物および繊維製品
JP2007327156A (ja) 織編物およびその製造方法および繊維製品
JP4567500B2 (ja) 吸水により立体的に構造変化する布帛および繊維製品
JP5420879B2 (ja) 靴材
JP2005344225A (ja) 立体編物
JP2024009477A (ja) 詰め物および繊維製品
JP2018135622A (ja) 熱接着性複合繊維およびその製造方法
JP5260192B2 (ja) 繊維構造体および繊維製品
JP2018159151A (ja) 熱接着性複合繊維

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514765

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11919205

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006745695

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745695

Country of ref document: EP