[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006104214A1 - 表示装置および電子機器 - Google Patents

表示装置および電子機器 Download PDF

Info

Publication number
WO2006104214A1
WO2006104214A1 PCT/JP2006/306551 JP2006306551W WO2006104214A1 WO 2006104214 A1 WO2006104214 A1 WO 2006104214A1 JP 2006306551 W JP2006306551 W JP 2006306551W WO 2006104214 A1 WO2006104214 A1 WO 2006104214A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
display
optical sensor
color filter
region
Prior art date
Application number
PCT/JP2006/306551
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Izumi
Kazuhiro Uehara
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/887,397 priority Critical patent/US20090128529A1/en
Publication of WO2006104214A1 publication Critical patent/WO2006104214A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/13Active-matrix OLED [AMOLED] displays comprising photosensors that control luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to a display device such as a liquid crystal display device and an EL (Electronic Luminescent) display device. Further, the present invention relates to an electronic device provided with these display devices.
  • a display device such as a liquid crystal display device and an EL (Electronic Luminescent) display device. Further, the present invention relates to an electronic device provided with these display devices.
  • Flat panel display devices typified by liquid crystal display devices have features such as thin and light weight and low power consumption, and are aimed at improving display performance such as colorization, high definition, and video compatibility. Due to advanced technology development, mobile phones, PDAs (Personal Digital Assistants), DVD players, mopile game devices, notebook PCs, PC monitors, TVs, and other information devices, TV devices, amusement devices, etc. Built into electronic equipment.
  • a display system including such an optical sensor is disclosed in, for example, Japanese Patent Laid-Open Nos. 4-174819 and 5-241512.
  • an optical sensor which is a discrete component, is provided in the vicinity of the display device, and based on the use environment illuminance detected by the optical sensor, A method for automatically controlling brightness is disclosed.
  • the brightness is automatically adjusted according to the brightness of the surrounding environment, such as increasing the display brightness in a bright environment such as daytime or outdoors, and decreasing the display brightness in a relatively dark environment such as nighttime or indoors. Light).
  • the viewer of the display device does not feel the screen dazzling in a dark environment, and visibility can be improved.
  • a display system equipped with an automatic light control function can achieve both good visibility and low power consumption against changes in the brightness of the usage environment. It is particularly useful for mopile devices (cell phones, PDAs, mono-game devices, etc.) that have many opportunities to use and require battery operation.
  • Japanese Patent Application Laid-Open No. 2002-62856 discloses a structure in which an optical sensor, which is a discrete component, is incorporated in a display device as an example of a structure in which an environmental sensor is incorporated in the display device.
  • FIG. 9 is a schematic configuration diagram excluding the casing of the liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856
  • FIG. 10 is a cross-sectional view of the optical sensor mounting portion.
  • a substrate (active matrix substrate) 901 on which an active element such as a thin film transistor (TFT) is formed and an opposite substrate 902 are bonded together, and a frame-shaped sealing material 925 is formed in the gap therebetween.
  • a liquid crystal layer 903 is sandwiched between the enclosed regions.
  • the liquid crystal display device is roughly divided into a display area H and a peripheral area (frame area) S as shown in FIG.
  • an optical sensor 907 that is a discrete component is disposed in a peripheral portion of the active matrix substrate 901, that is, in a peripheral region S (frame region) where no counter substrate exists.
  • a backlight system 914 is provided on the side of the active matrix substrate 901 opposite to the side on which the counter substrate 902 is disposed.
  • the casing 915 is arranged so as to cover the side of the backlight system 914 opposite to the active matrix substrate 901 arrangement side and the periphery of the peripheral region S.
  • An opening 916 is provided at a position facing the optical sensor 907 of the housing 915, and the light to the optical sensor 907 enters from the opening 916.
  • the structure in which the optical sensor 907 is disposed in the peripheral region S has the following characteristics. That is, when the display mode of the liquid crystal display device is a transmissive type or a transflective type, it is necessary to provide the backlight system 914 on the back surface of the active matrix substrate 901, but the optical sensor 907 is arranged in the peripheral region S described above. Therefore, the knock light system 9 prevents the light emitted from the backlight system 914 from directly reaching the light sensor 907. It is possible to minimize the malfunction of the optical sensor 907 caused by the light emitted from 14.
  • a force light sensor 907 having a polarizing plate (not shown) attached to the front side of the counter substrate 902 is disposed in the peripheral region S. Incident external light is not blocked by the polarizing plate on the counter substrate 902. A sufficient amount of external light can be guided to the optical sensor 907. As a result, the optical sensor 907 can obtain a high SZN.
  • Japanese Patent Application Laid-Open No. 2002-175026 when a display area portion is formed on a substrate, a vertical drive circuit, a horizontal drive circuit, a voltage conversion circuit, and a timing generation circuit are formed around the display area portion.
  • An example in which an optical sensor circuit and the like are formed monolithically by the same process is disclosed.
  • Such monolithic formation of discrete components in a display device enables reduction of the number of components and component mounting process, and can achieve downsizing and cost reduction of an electronic device incorporating the display device.
  • Japanese Laid-Open Patent Publication No. 2002-62856 also describes a technique for forming a peripheral circuit and an optical sensor monolithically on the substrate in the same process, instead of the discrete part optical sensor.
  • a thin film transistor (TFT) using an amorphous Si film or a polycrystalline Si film is generally used as an active element used in an active matrix display device.
  • TFT thin film transistor
  • a polycrystalline Si film is mainly used.
  • TFT 500 is formed on semiconductor film (polycrystalline Si film) 511 formed on glass substrate 510, gate insulating film 512 formed to cover semiconductor film 511, and gate insulating film 512. And a first interlayer insulating film 514 formed so as to cover the gate electrode 513 and the gate insulating film 512.
  • the source electrode 517 formed on the first interlayer insulating film 514 is electrically connected to the source region 511c of the semiconductor film 511 through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. ing.
  • the drain electrode 515 formed on the first interlayer insulating film 514 is connected to the drain region 51 lb of the semiconductor film 511 through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. Is electrically connected.
  • a second interlayer insulating film 518 is formed so as to cover them.
  • the region of the semiconductor film 511 facing the gate electrode 513 functions as the channel region 511a. Further, a region other than the channel region 511 a of the semiconductor film 511 is doped with a high concentration of impurities, and functions as the source region 511 c and the drain region 5 l ib.
  • a pixel electrode 519 for supplying an electric signal to the driven display medium is formed on the second interlayer insulating film 518.
  • the pixel electrode 519 is electrically connected to the drain electrode 515 through a contact hole provided in the second interlayer insulating film 518.
  • the pixel electrode 519 generally requires flatness, and the second interlayer insulating film 518 existing below the pixel electrode 519 is required to function as a flat film. Therefore, it is preferable to use an organic film (thickness: 2 to 3 m) such as acrylic resin for the second interlayer insulating film.
  • an organic film having photosensitivity is often used since the second interlayer insulating film 518 is required to have a patterning performance in order to form a contact hole in the TFT 500 and to take out an electrode in a peripheral region.
  • an optical sensor for detecting the brightness of outside light is monolithically formed in the peripheral region of the display device. In this case, if the increase in the manufacturing process is to be minimized, the element structure of the optical sensor is limited.
  • FIG. 12 is a schematic cross-sectional view showing a cross-section of the element structure of the optical sensor 400 that satisfies these conditions.
  • a semiconductor film 411 constituting an optical sensor is formed on a glass substrate 410, and a doping region (p region 41 lc or n region 41 lb) force of the semiconductor film 411 is applied to a non-doping region (i region 41 la). It is formed in the horizontal direction (plane direction) instead of the vertical direction (stacking direction).
  • a structure having a PIN junction in the lateral direction (plane direction) parallel to the forming surface is called a lateral type PIN photodiode!
  • Each member constituting the optical sensor 400 is formed by the same process as each member constituting the TFT of FIG.
  • an insulating film 412 made of the same material as the gate insulating film 512 is formed on the upper layer of the semiconductor film 411, and the same material as that of the source electrode 517 is formed on the upper layer of the first interlayer insulating film 414.
  • the p-side electrode 417 formed by the same process and the drain electrode 515 are made of the same material.
  • the n-side electrode 415 formed by the same process is formed.
  • a surface protective film 418 formed of the same material as that of the second interlayer insulating film 518 and the same process is formed as an upper layer.
  • the second interlayer insulating film 518 electrically insulates the interlayer between the TFT 500 formation layer and the pixel electrode 519 formation layer, and improves the flatness of the formation surface of the pixel electrode 519.
  • the surface protective film 418 of the active matrix substrate is used as the surface sensor film 418 and the electrodes connected to the optical sensor 400 It plays a protective role.
  • the surface protective film 418 is formed by the same process as the second interlayer insulating film 518 and is formed on the substantially entire surface from the display region to the peripheral region.
  • Such an optical sensor 400 shown in FIG. 12 is an optical sensor of the conventional display device shown in FIG.
  • JP-A-6-188400 as another example of the structure of the optical sensor 400, a monolithic TFT is formed on the same substrate as a TFT having a bottom gate structure (inverted stagger structure) using an amorphous silicon film.
  • MIS Metal-Insulator-Semiconductor
  • other element structures such as an optical conductor or an optical transistor in which two terminals are formed in the lateral direction (plane direction) can be used.
  • the optical sensor 400 formed by the same process as the TFT 500 in the display region H sufficiently optimizes the performance as the optical sensor. I can't plan.
  • the semiconductor film 411 of the optical sensor 400 in the peripheral region S is formed to be very thin, for example, 0.05 m thick to match the thickness of the semiconductor film 511 (polycrystalline Si film) of the TFT 500 in the display region H. It is necessary to do.
  • the optical sensor 400 in which the semiconductor film 411 is thinly formed is more sensitive to light in a shorter wavelength region such as red ⁇ green ⁇ blue ⁇ near ultraviolet light, where sensitivity to red light is relatively weak.
  • High sensitivity This is because the wavelength dependence of the absorption coefficient due to the optical band gap of the semiconductor film 411 (small absorption coefficient for light on the long wavelength side) and the sufficient absorption thickness (thickness at the visible light wavelength level). ), And light on the long wavelength side is not absorbed and easily transmitted. For this reason, when the display device is used outdoors, the optical sensor 400 has high sensitivity to near ultraviolet rays in the sunlight spectrum.
  • one of the purposes of providing the optical sensor 400 in a display device is to obtain good visibility in response to a drastic change in illuminance in the usage environment.
  • the optical sensor 400 detects a change in illuminance of near ultraviolet rays with high sensitivity. For this reason, there arises a problem that the change in illuminance of visible light (in particular, green light, which is a peak in visibility) that affects visibility cannot be detected accurately.
  • visible light in particular, green light, which is a peak in visibility
  • the light sensor has a high illuminance in the near ultraviolet region even though it does not feel dazzling to human eyes. By detecting this, the brightness control of the display device may be performed excessively.
  • the present invention provides a display device including an optical sensor that detects the brightness of external light as described above. It is an object of the present invention to provide a display device that can accurately detect illuminance changes in the visible light region.
  • the display device of the present invention is a display device including an active matrix substrate having a pixel array region in which a plurality of pixels are arrayed on a base substrate.
  • a plurality of active elements arranged in the arrangement area and driving a display medium; photosensors arranged in a peripheral area around the pixel arrangement area in the active matrix substrate; and an arrangement position of the active elements
  • a display color filter disposed on a side opposite to the base substrate; and a photosensor color filter disposed on a side opposite to the base substrate with respect to the position of the optical sensor.
  • the display device of the present invention includes an active matrix substrate for driving a display medium, and includes a display region and a peripheral region other than the display region.
  • the active matrix substrate in the display region A plurality of active elements for driving the display medium are arranged above, and a display color filter is disposed on a surface closer to the viewer than the active element forming layer.
  • a photosensor is disposed on the active matrix substrate in the peripheral region, and a color filter for the photosensor is disposed on a surface closer to the observer than the formation layer of the photosensor.
  • the display color filter and the optical sensor color filter are formed of the same material.
  • an electronic apparatus includes the display device according to the present invention.
  • the display device of the present invention includes the color filter for the optical sensor on the optical sensor provided in the display device, the optical sensor is not affected by ultraviolet rays or near infrared rays. It is possible to accurately detect illuminance change of visible light that gives light.
  • FIG. 1 (a) is an overall configuration diagram showing an outline of a display device according to a first embodiment.
  • Figure 1 ( b) is a schematic partial cross-sectional view schematically showing a cross-sectional structure of a pixel portion of a display area and a cross-sectional structure of a photosensor portion in the display device according to Embodiment 1.
  • FIG. 1 (b) is an overall configuration diagram showing an outline of a display device according to a first embodiment.
  • Figure 1 ( b) is a schematic partial cross-sectional view schematically showing a cross-sectional structure of a pixel portion of a display area and a cross-sectional structure of a photosensor portion in the display device according to Embodiment 1.
  • FIG. 1 (b) is an overall configuration diagram showing an outline of a display device according to a first embodiment.
  • Figure 1 ( b) is a schematic partial cross-sectional view schematically showing a cross-sectional structure of a pixel portion of a display area and a cross-
  • FIG. 2 (a) is an overall configuration diagram showing an outline of a display device according to a second embodiment.
  • FIG. 2B is a schematic partial cross-sectional view schematically showing the cross-sectional structure of the pixel portion of the display area and the cross-sectional structure of the photosensor portion in the display device according to the second embodiment.
  • FIG. 3 is an overall configuration diagram showing an outline of a display device according to a third embodiment.
  • FIG. 4 is a modification of the display device according to Embodiment 3, and is a schematic configuration of a display device having a function of correcting the color balance of the backlight system based on detection values of a plurality of photosensors.
  • FIG. 4 is a modification of the display device according to Embodiment 3, and is a schematic configuration of a display device having a function of correcting the color balance of the backlight system based on detection values of a plurality of photosensors.
  • FIG. 5 is an overall configuration diagram showing an outline of a display device according to a fourth embodiment.
  • FIG. 6 is a cross-sectional view schematically showing a state where the display device according to Embodiment 1 is incorporated in a housing.
  • FIG. 7 is a diagram showing the spectral sensitivity characteristics of a PIN photodiode.
  • FIG. 8 is a block diagram showing a schematic configuration of an electronic device according to an embodiment of the present invention.
  • FIG. 9 is an overall configuration diagram of a conventional liquid crystal display device.
  • FIG. 10 is a schematic sectional view of a photosensor mounting portion of a conventional liquid crystal display device.
  • FIG. 11 is a schematic cross-sectional view of a conventional TFT formed in a pixel array region of an active matrix substrate.
  • FIG. 12 is a schematic cross-sectional view of a conventional photosensor formed in the peripheral region of the active matrix substrate.
  • Embodiment 1 of the present invention will be described with reference to the drawings, taking a liquid crystal display device as an example.
  • FIG. 1 (a) is an overall configuration diagram of the display device 1 according to the present invention.
  • the display device 1 includes an active matrix substrate 2 in which a large number of pixels 5 are arranged in a matrix, and a counter substrate 3 disposed so as to face the active matrix substrate 2.
  • the display device 1 is a table in which pixels 5 are arranged. It has a display area (pixel array area) 8 and a peripheral area 9 close to the display area 8.
  • the counter substrate 3 covers the display region 8 in the active matrix substrate 2 and is disposed so as to expose at least a part of the peripheral region 9.
  • the active matrix substrate 2 and the counter substrate 3 are bonded together by a frame-shaped sealing material (not shown) provided along the outer periphery of the counter substrate 3. In the gap between the active matrix substrate 2 and the counter substrate 3, the liquid crystal that is the display medium 4 is sandwiched.
  • a thin film transistor (TFT) 6 and a pixel electrode 7 for driving the display medium 4 are formed.
  • a counter electrode 32 described later is formed so as to cover at least the display area 8.
  • an FPC Flexible Circuit
  • an optical sensor 11 is provided for detecting.
  • the peripheral area 9 is connected to a peripheral circuit (not shown) (a driving circuit for driving the TFT 6 in the display area 8 based on an input signal of an external driving circuit force, an optical sensor 11 and a driving circuit). Wiring, lead-out wiring from the display area 8, etc.) are appropriately arranged.
  • the TFT 6 formed in the display region 8 and the optical sensor 11 formed in the peripheral region 9 are monolithically formed on the same substrate by substantially the same process. That is, some constituent members of the optical sensor 11 are formed simultaneously with some constituent members of the TFT 6.
  • the display device 1 uses a transmissive mode using transmitted light as its display mode. Therefore, a backlight system 12 is provided on the side (back side) of the active matrix substrate 2 opposite to the side on which the counter substrate 3 is arranged. Note that the knock light system 12 is not necessary when a reflective display mode using reflection of external light is used as the display mode, or when a self-luminous element such as an EL is used as the display medium.
  • the optical sensor 11 is intended to detect outside light, if the light of the knocklight system 12 is incident on the optical sensor 11, the optical sensor 11 malfunctions! / The title arises. Therefore, the force that prevents the backlight system 12 from being disposed below the portion where the optical sensor 11 is disposed on the active matrix substrate 2 (the side opposite to the side where the optical sensor 11 is disposed on the active matrix substrate 2) or the active matrix Optical sensor 11 on board 2
  • a light shielding member (such as an aluminum tape) is provided on the back surface of the light sensor so that the light from the knock light system 12 does not enter the optical sensor 11.
  • the display device 1 of the present invention described above is applied to a display system with an automatic dimming function that detects the illuminance of external light using the optical sensor 11 and automatically controls the display luminance in accordance with the detected illuminance. be able to. That is, the control for controlling the brightness of the knock light system 12 or the brightness signal of the display signal based on the brightness information of the external light output from the optical sensor 11 provided in the peripheral region 9 of the active matrix substrate 2. By providing the circuit, the display brightness of the display device 1 can be automatically controlled.
  • This control circuit may be formed integrally with the display device 1 or may be formed separately from the display device 1.
  • Examples of the case where the display device 1 is integrally formed include a case where the active matrix substrate 2 is formed monolithically, or a control circuit formed separately from the active matrix substrate 2 to form a COG (Chip On Grass ) Method, etc., when mounted on the active matrix substrate 2.
  • a control circuit is formed separately from the active matrix substrate 2 and connected to the active matrix substrate 2 via an FPC or the like.
  • a control circuit is arranged in an electronic device including the device 1 and a control circuit force signal is transmitted to the active matrix substrate 2.
  • brightness adjustment is automatically performed so that the display brightness is increased in bright environments such as outdoors, and the display brightness is decreased relatively in night and indoor environments. When controlled to do so, it is possible to achieve low power consumption and long life of the display device.
  • FIG. 6 is a cross-sectional view showing a state in which the above-described display device 1 is incorporated in the housing 35.
  • the opening 37 of the housing 35 is disposed so as to face the position where the optical sensor 11 is disposed, and external light reaches the optical sensor 11 through the opening 37.
  • 39 is a circuit board.
  • a peripheral circuit (a drive circuit (not shown) for driving the TFT 6 in the display region 8 based on an input signal from the circuit board 39) Wiring (not shown) connected to the optical sensor 11 and the drive circuit, drawing from the display area 8 Wiring 36 etc. is also formed!
  • FIG. 1 (b) is a schematic part schematically showing the cross-sectional structure of the pixel 5 portion of the display region 8 and the cross-sectional structure of the photosensor 11 portion of the peripheral region 9 in the display device 1 of FIG. 1 (a). It is sectional drawing. The left side shows the cross-sectional structure of the pixel 5 portion, and the right side shows the cross-sectional structure of the photosensor 11 portion. Note that although the pixel 5 portion and the photosensor 11 portion are connected by a broken line, the portion connected by the broken line in FIG. 1B is the same height from the surface of the substrate 14.
  • a display medium (liquid crystal in this embodiment) 4 is sandwiched between the active matrix substrate 2 and the counter substrate 3.
  • a thin film transistor (TFT) 6 and a pixel electrode 7 for driving the display medium 4 are formed on the active matrix substrate 2.
  • the common electrode 32 is formed on the entire surface of the transparent substrate 41.
  • the structure of the TFT 6 used here is called a “top gate structure” or “positive stagger structure”, and includes a gate electrode 16 in an upper layer of a semiconductor film (polycrystalline Si film) 13 to be a channel. Is.
  • the substrate side is described as the lower side, and the direction in which the distance to the substrate force layer is increased is described as the upper side.
  • a glass substrate can be mainly used.
  • non-alkali barium borosilicate glass or alumino borosilicate glass is used.
  • the TFT 6 includes a semiconductor film 13 formed on the substrate 14, a gate insulating film 15 formed so as to cover the semiconductor film 13 (for example, an oxide silicon film or a silicon nitride film can be used), a gate A gate electrode 16 formed on the insulating film 15 (for example, Al, Mo, T, or an alloy thereof can be used), and a first interlayer insulating film 17 formed so as to cover the gate electrode 16 (for example, In addition, a silicon oxide film or a silicon nitride film can be used.
  • the region of the semiconductor film facing the gate electrode 16 through the gate insulating film 15 is a channel. Function as a remote area 13a.
  • the region other than the channel region of the semiconductor film is an n + layer doped with impurities at a high concentration, and functions as a source region 13b and a drain region 13c.
  • LDD impurity-doped LDD (on the channel region 13a side of the source region 13b) and the channel region 13a side of the drain region 13c ( Lightly Doped Drain) area is formed.
  • a base coat film for example, a silicon oxide film or a silicon nitride film can be used
  • the polycrystalline Si film used as the semiconductor film 13 is obtained by crystallizing a semiconductor film (amorphous Si film) having an amorphous structure by a heat treatment such as a laser beam RTA (Rapid Thermal Annealing). You can get it.
  • a source electrode 18 (for example, Al, Mo, T, or an alloy thereof can be used) is formed on the first interlayer insulating film 17, and the first interlayer insulating film 17 and the gate insulating film 15 are formed. It is electrically connected to the source region 13b of the semiconductor film through a contact hole penetrating the semiconductor layer.
  • the drain electrode 19 formed on the first interlayer insulating film 17 (for example, Al, Mo, T, or an alloy thereof can be used) is connected to the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the drain region 13c of the semiconductor film through a penetrating contact hole.
  • the display color filter 22 is a filter having colors such as blue, green, red, cyan, magenta, and yellow, and a color filter for each color is provided for each pixel.
  • the three primary colors, blue, green, and red are used.
  • the second interlayer insulating film 20 is required to have a role of flattening the unevenness of the lower layer in addition to the insulation between the layers, and therefore, an organic film that can be formed by coating or printing is mainly used.
  • a pixel electrode 7 (for example, ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), Al, etc. can be used) is formed on the second interlayer insulating film 20.
  • the Pixel electrode 7 It is electrically connected to the drain electrode 19 through a contact hole formed in the second interlayer insulating film 20.
  • the second interlayer insulating film 20 it is preferable to use an organic insulating film having photosensitivity, whereby a contact hole is easily formed in the second interlayer insulating film 20 by mask exposure and development processing. be able to.
  • Examples of such an organic insulating film having photosensitivity include acrylic, polyimide, and BCB (Benzo-Cyclo-Butene).
  • the structure of the optical sensor 11 used here is called a “lateral structure photodiode”, and includes a diode in which a PIN junction of a semiconductor is formed in the surface direction (lateral direction) of the substrate.
  • a PIN diode made of a semiconductor film (polycrystalline Si film) 21 is formed on a substrate 14 (substrate common to the substrate on which the TFT is formed) serving as a base substrate.
  • the polycrystalline Si film 21 of the optical sensor 11 is formed simultaneously by the same process as the polycrystalline Si film 13 of the TFT 6 in the display region 8. Therefore, the polycrystalline Si film 21 and the polycrystalline Si film 13 have the same film thickness.
  • the PIN junction is formed by a p + layer (region 21b) and an n + layer (region 21c) doped with impurities at a high concentration, and an i layer (region 21a) not doped with impurities. Instead of the i layer, a lightly doped P-layer or n layer can be used alone or in combination.
  • a common gate insulating film 15 for example, an oxide silicon film or a silicon nitride film can be used
  • a first member that covers the constituent member of the display region 8 so as to cover the semiconductor film 21 having the PIN junction.
  • An interlayer insulating film 17 (for example, a silicon nitride film or a silicon nitride film can be used) is formed.
  • the gate insulating film 15 and the first interlayer insulating film 17 of the optical sensor 11 are obtained by extending the gate insulating film 15 and the first interlayer insulating film 17 of the TFT 6 in the pixel array region 8 to the peripheral region 9.
  • the p-side electrode 33 (for example, ⁇ 1, ⁇ , ⁇ or an alloy thereof can be used) formed on the first interlayer insulating film 17, the first interlayer insulating film 17 and the gate insulating film 15 It is electrically connected to the ⁇ + region 21b of the polycrystalline Si film 21 through a contact hole penetrating through.
  • the n-side electrode 34 (for example, Al, Mo, T, etc.) formed on the first interlayer insulating film 17 is used. Or an alloy thereof can be used) and is electrically connected to the n + region 21c of the polycrystalline Si film 21 through a contact hole penetrating the first interlayer insulating film 17 and the gate insulating film 15.
  • the optical sensor 11 has been described above.
  • a color filter 23 for the optical sensor and, if necessary, a second interlayer insulating film 20 are sequentially formed so as to cover the optical sensor 11.
  • the optical sensor color filter 23 is a filter having transparency with respect to light in the visible light region such as blue, green, red, cyan, magenta, and yellow, and is the same as the display color filter 22 described above. Made of material and Z or the same process.
  • the constituent members of the optical sensor 11 in the peripheral region 9 are basically the same as the constituent members of the TFT 6 in the display region 8. Therefore, at least a part of both manufacturing processes can be made common. In this way, the TFT 6 in the display area 8 and the photosensor 11 in the peripheral area 9 are monolithically formed on the active matrix substrate 2. Thus, since the TFT 6 in the display area 8 and the photosensor 11 in the peripheral area 9 are monolithically formed, there is an advantage that an additional process for forming the photosensor 11 is unnecessary. In addition, since the TFT 6 is a thin film element, the optical sensor 11 is also formed as a thin film element.
  • the height of the TFT 6 and the optical sensor 11 from the surface of the base substrate of the matrix substrate 2 (surface of the substrate 14) can be made substantially the same. This makes it easy to form the color filter 22 for display and the color filter 23 for the optical sensor, which will be formed in the process after the process of forming the TFT 6 and the optical sensor 11, under the same conditions. Has the following advantages.
  • the display color filter 22 and the photosensor color filter 23 can also be formed monolithically on the active matrix substrate 2 by forming both with the same material and Z or the same process. Is possible.
  • the color filter for display 22 and the color filter for optical sensor 23 with the same material and Z or the same process, the optical sensor without increasing the number of components, increasing the number of components, and increasing the costs associated therewith 11
  • the color filter 23 for the optical sensor can be easily formed on the top.
  • the display color filter 22 and the optical sensor color filter 23 are coated with a resin material in which a pigment is dispersed in the resin by a known method (spin coating, transfer, printing, inkjet, etc.) ( Alternatively, it can be formed by laminating.
  • the structural feature of the display device 1 of the present embodiment is that the display device 1 includes a display region 8 and a peripheral region 9, and light that detects the brightness of external light in the peripheral region 9
  • the sensor 11 is formed, and the optical sensor color filter 23 is formed on the optical sensor 11 in the peripheral region 9.
  • the optical sensor color filter 23 is limited to the location and layer of the photosensor color filter 23 as long as the photosensor color filter 23 is provided above the formation layer of the photosensor 11 (in other words, the observer side). It ’s not something.
  • the display device 1 of the present invention includes the color filter 23 for the optical sensor on the optical sensor 11, the optical sensor 11 is not affected by the illuminance of near ultraviolet rays or near infrared rays. . As a result, the optical sensor 11 can more accurately detect a change in the illuminance of visible light that affects visibility.
  • the semiconductor film (polycrystalline Si film) 13 of TFT6 is formed in the same layer as the semiconductor film (polycrystalline Si film) 21 of the optical sensor 11, the semiconductor film 21 of the optical sensor 11 is active. Since it has substantially the same thickness as the semiconductor film 13 of the element 6, the sensitivity of the optical sensor 11 to infrared light is relatively weak. However, disposing the color filter 23 for the optical sensor on the upper side of the optical sensor 11 makes it possible to change the wavelength characteristics and obtain the desired performance.
  • the light sensor 11 monolithically formed with the TFT 6 has a light-receiving portion of the semiconductor film 21 that is a thin film, so that light in the long wavelength region (red light) in the visible light region is It becomes easier to transmit and the sensitivity to red is relatively poor.
  • Figure 7 shows the spectral sensitivity characteristics (relative value of photoelectric flow rate) of a PIN photodiode with a polycrystalline Si film consisting of a thin film with a thickness of 0.05 nm. In this way, it can be confirmed that the sensitivity of the photodiode improves in the order of red ⁇ green ⁇ blue.
  • the light sensor The sensor 11 can be designed to be small in size, and the layout of the optical sensor 11 can be improved and the peripheral area 9 (frame area) can be reduced.
  • a transparent (white) color filter when used in combination with red, blue, and green as the display area 8 display color filter (for example, when an RGBW four-color filter is used)
  • a transparent (white) color filter When the transparent (white) color filter has a near-ultraviolet or near-infrared transmittance of 50% or less, a transparent (white) color can be used as the color filter 23 for the optical sensor.
  • FIG. 2 (a) is an overall configuration diagram of the display device 24 according to Embodiment 2 of the present invention.
  • the display device 24 includes an active matrix substrate 2 in which a large number of pixels 5 are arranged in a matrix, and a counter substrate 3 disposed so as to face the active matrix substrate 2. Further, the display device 24 has a display area 8 in which the pixels 5 are arranged and a peripheral area 9 adjacent to the display area 8, and the counter substrate 3 covers the display area 8 in the active matrix substrate 2. At the same time, the peripheral region 9 is disposed so as to be exposed.
  • the active matrix substrate 2 and the counter substrate 3 are bonded together by a frame-shaped sealing material (not shown) provided along the outer periphery of the counter substrate 3. In the gap between the active matrix substrate 2 and the counter substrate 3, liquid crystal as the display medium 4 is sandwiched.
  • Each pixel 5 of the active matrix substrate 2 is formed with a thin film transistor (TFT) 6 and a pixel electrode 7 for driving the display medium 4, and the counter substrate 3 has a display power error described later.
  • TFT thin film transistor
  • the filter 22A, the black matrix 26, and the counter electrode 32 are formed so as to cover at least the display region 8.
  • an external drive circuit (not shown) is connected to the display device 24.
  • FPC Flexible Circuit
  • an optical sensor 25 for detecting the brightness of external light is provided.
  • the peripheral area is connected to a peripheral circuit (not shown) (a driving circuit for driving the TFT 6 in the display area 8 based on an input signal of an external driving circuit force, an optical sensor 25 and a driving circuit). Wiring, lead-out wiring from the display area 8, etc.) are appropriately arranged.
  • the TFT 6 formed in the display region 8 and the optical sensor 25 formed in the peripheral region 9 are monolithically formed on the same substrate by substantially the same process. That is, some constituent members of the optical sensor 25 are formed simultaneously with some constituent members of the TFT 6.
  • the basic operation and display mechanism of the above-described display device 24 are the same as those of the display device 1 of the first embodiment, and can be used by being incorporated in the casing 35 as described in FIG. It is.
  • FIG. 2 (b) is a schematic part schematically showing the cross-sectional structure of the pixel 5 portion of the display region 8 and the cross-sectional structure of the photosensor 25 portion of the peripheral region 9 in the display device 24 of FIG. 2 (a). It is sectional drawing. The left side shows the cross-sectional structure of the pixel 5 portion, and the right side shows the cross-sectional structure of the photosensor 25 portion. Note that the pixel 5 portion and the photosensor 25 portion are connected by a broken line, but the portion connected by the broken line in FIG. 2B is the same height from the surface of the substrate 14.
  • the display device 24 differs from the display device 1 of the first embodiment in that the display color filter 22A in the display region 8 and the color filter for photosensors in the peripheral region 9 23A force active matrix substrate 2 side
  • the counter substrate 3 is provided on the counter substrate 3 side, and the counter substrate 3 is extended to a region covering the upper side of the optical sensor 25 in the peripheral region 9.
  • the display device 24 includes the photosensor color filter 23A at a position corresponding to the upper side of the photosensor 25 on the counter substrate 3 as in the display device 1 (Embodiment 1). Therefore, the optical sensor 25 is not affected by near-ultraviolet or near-infrared illuminance. As a result, the optical sensor 25 more accurately detects changes in the illuminance of visible light that affect visibility. Can.
  • the optical sensor color filter 23A on the optical sensor 25 is formed of the same material and Z or the same process as the color display filter 22A, so the optical sensor 25 does not involve an increase in man-hours or an increase in members.
  • the color filter 23A for an optical sensor can be easily formed on the top.
  • the semiconductor film 21 of the optical sensor 25 is substantially the same as the semiconductor film 13 of the active element 6. Since the optical sensor 25 has a thickness, the sensitivity to the infrared light of the optical sensor 25 is relatively weak. However, by arranging the optical sensor color filter 23A on the upper side of the optical sensor 25, the wavelength characteristics can be changed and desired. You will be able to get the performance of
  • the size of the photosensor 25 can be designed smaller than when the color filter 23A for red photosensors is used, and the layout flexibility of the photosensor 25 is improved and the peripheral region 9 ( The frame area) can be reduced.
  • the green color filter as the color filter 23A for the optical sensor.
  • FIG. 3 is an overall configuration diagram of the display device 27 according to Embodiment 3 of the present invention.
  • the difference from the display device 1 (Embodiment 1) is that a plurality (three in the figure) of optical sensors 11 are formed in the peripheral region 9 of the active matrix substrate 2. Further, color filters 23 for photosensors of different colors (three colors of red, blue, and green in the figure) are formed on the upper layers of the plurality of photosensors 11, respectively.
  • the display device 27 can detect the brightness information of outside light for each color (wavelength) (for example, red light of sunrise or sunset). In addition, it becomes possible to detect the color (color balance). And the knocklight system 12 color balun Or a control circuit (not shown) for controlling the color signal of the display signal of the display device 27, and further adjusting the display color balance of the display device 27 based on the detected value of the color balance. It is possible to realize a display device with excellent performance. In this case, if the LED backlight using red, blue and green LEDs is used as the knock light system 12, it is useful because each color can be easily controlled.
  • the configuration shown in FIG. 4 includes three photosensors 11 each provided with color filters 23 (not shown in FIG. 4) for photosensors of three colors, red, blue, and green. That is, these three optical sensors 11 detect and output a red wavelength component, a blue wavelength component, and a green wavelength component in the external light, respectively.
  • the knock light system 12 includes red, blue, and green LEDs 121 as light sources. These LEDs 121 are regularly arranged on the side and bottom surfaces of the light guide plate of the backlight system 12.
  • the display device 27 includes a color controller 271, a set value memory 2 72, and LED drivers 273R, 273G, and 273B that drive the three colors of LEDs 121 of red, blue, and green. It has.
  • the setting value memory 272 stores setting values for luminance and color coordinates in advance.
  • the color controller 271 receives an output signal from the light sensor 11 and compares the value stored in the set value memory 272 with the output value of the light sensor 11, and compares the result of the comparison with the LED driver 273R, 273G, Output to 273B.
  • the LED drivers 273R, 273G, and 273B control the driving currents of the three LEDs 121 of red, blue, and green for each color according to the above comparison result.
  • the LEDs are arranged in the order of RGB in the backlight system 12! /, And the arrangement order of the force LEDs shown in the example is not limited to this! /.
  • the display device 27 When the display device 27 is in a reflective display mode that does not use the backlight system 12 (a display mode in which display is performed using reflected light of external light), the color depends on the color of external light (environment light). Since the display color is greatly affected, the display performance can be remarkably improved by correcting the color signal of the display signal based on the detection values of the plurality of optical sensors 11. Further, as a configuration for correcting the color signal of the display signal, the configuration including the color controller 271 and the set value memory 272 shown in FIG. 4 can be used. [0090] When a plurality of colors are used as the color filter 23 for the optical sensor, it is preferable to use the color filters of the three primary colors of red, blue, and green, but the present invention is not limited to this.
  • color filters 23 for each color may be formed with the same material as the display power color filter 22 in the same process, light that does not increase man-hours or components.
  • the color filter 23 for the optical sensor can be easily formed on the sensor 11.
  • FIG. 5 is an overall configuration diagram of display device 28 according to Embodiment 4 of the present invention.
  • the difference from the display device 24 (Embodiment 2) is that a plurality (three in the figure) of optical sensors 25 are formed in the peripheral region 9 of the active matrix substrate 2.
  • the color filters 23A for photosensors of different colors are formed at positions facing each of the plurality of photosensors 25! .
  • the display device 28 can detect the brightness information of the external light (for example, red light of sunrise or sunset) for each color (wavelength). In addition, it becomes possible to detect the color (color balance).
  • the external light for example, red light of sunrise or sunset
  • the color color balance
  • a control circuit for controlling the color balance of the knocklight system 12 or the color signal of the display signal of the display device 28 is further provided, and the above color balance is controlled.
  • the display color balance of the display device based on the detected value, it becomes possible to realize a display device with further excellent visibility.
  • the use of an LED backlight using red, blue, and green LEDs as the knocklight system 12 is useful because each color can be easily controlled.
  • the color filter 23A for the optical sensor When a plurality of colors are used as the color filter 23A for the optical sensor, it is preferable to use a color filter of the three primary colors of red, blue, and green, but the present invention is not limited to this. Other colors such as cyan, magenta and yellow may be used together.
  • the display devices described in Embodiments 1 to 4 described above can be widely applied to display devices including active elements and color filters, and include liquid crystal display devices, EL display devices, and electrophoresis.
  • the present invention can be applied to various color display devices such as display devices.
  • a TFT and an optical sensor are formed using a polycrystalline Si film.
  • both may be formed using an amorphous Si film.
  • a TFT with a top gate structure forward stagger structure
  • a TFT with a bottom gate structure reverse stagger structure
  • a photodiode having a Schottky junction or an MIS junction that uses only a PIN junction can be used as an optical sensor.
  • 6-18 8400 for a method for monolithically forming a TFT with a bottom gate structure (reverse stagger structure) using an amorphous Si film and a photodiode having an MIS junction on the same substrate. can do.
  • other element structures such as an optical conductor or an optical transistor in which two terminals are formed in a lateral direction (plane direction) can be used.
  • the optical sensor shown on the active matrix substrate is monolithically formed on the active matrix substrate by substantially the same process as the optical sensor 11, 25 force TFT6.
  • a COG-mounted configuration may be used.
  • the display device described in Embodiments 1 to 4 can be applied to a wide variety of information devices such as mobile phones, PDAs, DV D players, mopile game devices, notebook PCs, PC monitors, TVs, and TVs.
  • information devices such as mobile phones, PDAs, DV D players, mopile game devices, notebook PCs, PC monitors, TVs, and TVs.
  • an electronic device such as a device or an amusement device, it is possible to realize an electronic device equipped with a display device that makes full use of the above features.
  • FIG. 8 shows a schematic configuration of an electronic device according to an embodiment of the present invention.
  • the electronic device 60 according to the present embodiment corresponds to the brightness information of the external light detected by the display device 1 according to the first embodiment and the optical sensor 11 of the display device 1.
  • the functional blocks in the display device 1 and the electronic device 60 are simply illustrated.
  • the control circuit 61 may have a function of controlling an arbitrary operation of the electronic device 60 in addition to the control of the display luminance.
  • the electronic device 60 can be used with any function program other than that shown in FIG. You can have a
  • the control circuit 61 controls the display brightness of the display device 1 by adjusting the brightness of the backlight system 12 according to the brightness information (sensor output) of the external light detected by the light sensor 11. Since display device 1 is a liquid crystal display device, the display luminance can be adjusted by controlling the luminance of the backlight. However, when a self-luminous element such as an EL element is used as the display device, the control circuit 61 is configured to control the light emission luminance of the self-light-emitting element.
  • the power using the display device 1 according to the first embodiment is exemplified.
  • the electronic devices using the display devices according to the second to fourth embodiments and these modifications are also provided. It is within the scope of the present invention.
  • control circuit 61 uses the optical sensor 11, which corresponds to the color filter 23 or 23A for each color optical sensor. Depending on the output of 25, the color balance of the knocklight system 12 or the color signal of the display signal of the display device may be controlled.
  • the electronic device of the present embodiment can achieve both good visibility and low power consumption in response to changes in the brightness of the usage environment, so it is often used as a mopile device that needs to be taken outside and needs battery drive. It is particularly useful.
  • the application of the present invention is not limited to these.
  • information terminals such as mobile phones, PDAs, mopile game equipment, portable music players, digital cameras, video There are cameras.
  • control circuit 61 for controlling the display luminance of the display device is provided outside the display device, but the control circuit is provided as a part of the display device. It is good also as the structure comprised.
  • the present invention can be widely applied to display devices provided with photosensors, and can be applied to various display devices such as EL display devices and electrophoretic display devices in addition to liquid crystal display devices. Can do. As a result, electronic devices that use display devices (for example, but not limited to)

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 表示装置の周辺領域に形成された光センサを備えた表示装置において、光センサが近紫外線に反応することによる誤動作を防ぎ、可視光に対して効率よく反応するようにする。このため、ベース基板(14)上に複数の画素が配列された画素配列領域(8)を有するアクティブマトリクス基板(2)を備えた表示装置において、前記画素配列領域(8)の周囲に存在する周辺領域(9)に配置された光センサ(11)と、TFT(6)の配置位置に対してベース基板(14)とは相対する側に配置された表示用カラーフィルタ(22)と、光センサ(11)の配置位置に対してベース基板(14)とは相対する側に配置された光センサ用カラーフィルタ(23)とを備えた構成とする。  

Description

明 細 書
表示装置および電子機器
技術分野
[0001] 本発明は、液晶表示装置、 EL (Electronic Luminescent)表示装置などの表示装置 に関する。また、これら表示装置を備えた電子機器に関する。
背景技術
[0002] 液晶表示装置に代表されるフラットパネル型の表示装置は、薄型軽量、低消費電 力といった特徴を有し、さらに、カラー化、高精細化、動画対応といった表示性能の 向上に向けた技術開発が進んでいることから、現在では、携帯電話、 PDA (Personal Digital Assistants)、 DVDプレイヤー、モパイルゲーム機器、ノート PC、 PCモニター 、 TV等、幅広い情報機器、 TV機器、アミューズメント機器などの電子機器に組み込 まれている。
[0003] このような背景の中、表示装置に周辺環境を検知する環境センサを取り付ける技術 が用いられ始めている。この環境センサの代表例として、周辺環境の明るさを検知す る光センサがある。近年、表示装置の更なる視認性向上や低消費電力化を目的とし て、使用環境の明るさに応じて表示装置の輝度を自動的に制御する自動調光機能 付きの表示システムが提案されて 、る。
[0004] このような光センサを備える表示システムは、例えば、特開平 4— 174819号公報 ゃ特開平 5— 241512号公報に開示されている。特開平 4— 174819号公報ゃ特開 平 5— 241512号公報では、表示装置の近傍にディスクリート部品である光センサを 配設し、該光センサで検知した使用環境照度を基に、表示装置の輝度を自動的に 制御する方法が開示されている。この結果、昼間や屋外など明るい環境下では表示 輝度を高くし、夜間や室内など比較的暗い環境下では表示輝度を下げるといったよ うに、周囲環境の明るさに応じて自動的に輝度調整 (調光)を行うことができる。この 場合、表示装置の観察者が、暗い環境下で画面をまぶしく感じることがなくなり、視認 性の向上を図ることができる。また、使用環境の明 Z暗にかかわらず、表示輝度を常 に高く保つ使用方法に比べると、表示装置の低消費電力化や長寿命化を実現する ことができる。さらに、光センサの検知情報を基に自動的に輝度調整 (調光)を行うた めに、使用者の手を煩わせることもない。
[0005] このように、自動調光機能を備えた表示システムは、使用環境の明るさの変化に対 して良好な視認性と低消費電力化を両立することができることから、屋外に持ち出し て使用する機会が多くバッテリー駆動を必要とするモパイル機器 (携帯電話、 PDA、 モノくィルゲーム機器等)に対して特に有用である。
[0006] 一方、特開 2002— 62856号公報には、環境センサを表示装置内に組み込んだ構 造の一例として、ディスクリート部品である光センサを、表示装置内に組み込む構造 が開示されている。図 9は、特開 2002— 62856号公報に開示されている液晶表示 装置の筐体を除く概略構成図であり、図 10は、その光センサ実装部の断面図である
[0007] この液晶表示装置は、薄膜トランジスタ (TFT)などのアクティブ素子が形成される 基板 (アクティブマトリクス基板) 901と対向基板 902が貼り合わされ、両者の間隙に おいて、枠状のシール材 925に囲まれた領域に、液晶層 903が挟持された構造とな つている。なお、液晶表示装置は、図 10に示すように、表示領域 Hと周辺領域 (額縁 領域) Sに大別される。
[0008] ここで、アクティブマトリクス基板 901の周辺部、すなわち対向基板が存在しない周 辺領域 S (額縁領域)に、ディスクリート部品である光センサ 907が配設されている。ま た、アクティブマトリクス基板 901の対向基板 902配置側とは相対する側にはバックラ イトシステム 914が設けられる。そして、バックライトシステム 914のアクティブマトリクス 基板 901配置側とは相対する側と、周辺領域 Sの周囲とを覆うように、筐体 915が配 置される。筐体 915の光センサ 907と対向する位置には、開孔部 916が設けられ、光 センサ 907への光は開孔部 916から入射する仕組みになっている。
[0009] このように、光センサ 907を上記周辺領域 Sに配設する構造は、以下の特徴を備え ている。すなわち、液晶表示装置の表示モードが透過型や半透過型の場合には、ァ クティブマトリクス基板 901の裏面にバックライトシステム 914を備える必要があるが、 光センサ 907が上記の周辺領域 Sに配設されているので、該バックライトシステム 91 4から発せられる光が直接光センサ 907に到達することがなぐノ ックライトシステム 9 14から発せられる光に起因する光センサ 907の誤動作を最小限に留めることが可能 である。また、通常の液晶表示装置では、対向基板 902の表側には偏光板(図示せ ず)が貼られている力 光センサ 907が上記の周辺領域 Sに配設されているので、光 センサ 907に入射する外光が対向基板 902上の偏光板によって遮られることが無ぐ 十分な光量の外光を光センサ 907に導くことが可能である。この結果、光センサ 907 は、高い SZNを得ることが可能である。
[0010] 一方、近年、表示装置の製造技術が急速に進展し、従来はディスクリート部品とし て表示装置の周辺部に実装していた ICチップや各種回路素子を、表示装置の構成 回路 '素子の形成時に、表示装置内(具体的には表示装置を構成するガラス基板上 )に同一プロセスでモノリシックに形成する技術が確立されてきている。
[0011] 例えば、特開 2002— 175026号公報では、基板上に表示領域部を形成する際、 表示領域部の周辺の領域に、垂直駆動回路、水平駆動回路、電圧変換回路、タイミ ング発生回路、光センサ回路などを、同一プロセスでモノリシックに形成する例が開 示されている。このようなディスクリート部品の表示装置内へのモノリシック形成は、部 品点数や部品実装プロセスの削減を可能にし、表示装置を組み込んだ電子機器の 小型化とコストダウンを実現することができる。もちろん、上述した表示装置の輝度調 節 (調光)に用いる光センサや、光センサ用の専用回路 (光量検出回路)などを、表 示装置内にモノリシックに形成することも可能である。なお、特開 2002— 62856号 公報にも、ディスクリート部品の光センサの代わりに、基板上に周辺回路と光センサを 同一プロセスでモノリシックに形成する技術が記載されている。
[0012] ところで、アクティブマトリクス型の表示装置に使用されるアクティブ素子としては、 非晶質 Si膜や多結晶 Si膜を用いた薄膜トランジスタ (TFT)が一般的である。上述の ようにアクティブ素子と各種回路素子を同一基板上にモノリシックに形成する場合は 、主として多結晶 Si膜を利用した TFTが用いられる。
[0013] そこで、図 11を参照しながら、画素配列領域 (表示領域)の各画素に形成される多 結晶 Si膜を半導体層として備える TFTの構造を説明する。ここで説明する TFTの構 造は、「トップゲート構造」、または「正スタガ構造」と呼ばれるもので、チャネルとなる 半導体膜 (多結晶 Si膜)の上層にゲート電極を備えるものである。 [0014] TFT500は、ガラス基板 510上に形成された半導体膜 (多結晶 Si膜) 511と、半導 体膜 511を覆うように形成されたゲート絶縁膜 512と、ゲート絶縁膜 512上に形成さ れたゲート電極 513と、ゲート電極 513及びゲート絶縁膜 512を覆うように形成された 第 1層間絶縁膜 514とを有している。第 1層間絶縁膜 514上に形成されているソース 電極 517は、第 1層間絶縁膜 514およびゲート絶縁膜 512を貫通するコンタクトホー ルを介して半導体膜 511のソース領域 511cに電気的に接続されている。同様に、第 1層間絶縁膜 514上に形成されているドレイン電極 515は、第 1層間絶縁膜 514およ びゲート絶縁膜 512を貫通するコンタクトホールを介して半導体膜 511のドレイン領 域 51 lbに電気的に接続されている。さらに、これらを覆うように第 2層間絶縁膜 518 が形成されている。
[0015] このような構造において、ゲート電極 513と対向する半導体膜 511の領域がチヤネ ル領域 511aとして機能する。また、半導体膜 511のチャネル領域 511 a以外の領域 は、不純物が高濃度にドープされており、ソース領域 511cおよびドレイン領域 5 l ib として機能する。
[0016] なお、ここでは図示しないが、ホットキャリアによる電気特性の劣化を防ぐために、ソ ース領域 51 lcのチャネル領域側およびドレイン領域 51 lbのチャネル領域側に、不 純物が低濃度にドープされた LDD (Lightly Doped Drain)領域が形成されている。
[0017] さらに、第 2層間絶縁膜 518の上層には、駆動される表示媒体に電気信号を供給 するための画素電極 519が形成される。画素電極 519は、第 2層間絶縁膜 518に設 けられたコンタクトホールを介して、ドレイン電極 515に電気的に接続される。この画 素電極 519は、一般に平坦性が求められることが多ぐ画素電極 519の下層に存在 する第 2層間絶縁膜 518は平坦ィ匕膜としての機能が要求される。このため第 2層間絶 縁膜には、アクリル榭脂などの有機膜 (厚み 2〜3 m)を用いることが好ましい。また 、 TFT500におけるコンタクトホールの形成や、周辺領域での電極取り出しのために 、第 2層間絶縁膜 518はパターユング性能が求められるため、通常、感光性を有する 有機膜を用いることが多い。
[0018] 一方、表示領域に上述の構造を有する TFTを備えた表示装置にお 、て、外光の 明るさを検知するための光センサを、表示装置の周辺領域にモノリシック形成しようと した場合、製造プロセスの増加を最小限に抑えようとすると、光センサの素子構造が 限定されること〖こなる。
[0019] 図 12は、これら条件を満たす光センサ 400の素子構造断面を示す断面模式図で ある。ガラス基板 410上に、光センサを構成する半導体膜 411が形成され、該半導体 膜 411のドーピング領域 (p領域 41 lc又は n領域 41 lb)力 ノンドーピング領域 (i領 域 41 la)に対して縦方向(積層方向)ではなく横方向(面方向)に形成される。一般 に、形成面に対して平行な横方向(面方向)に PIN接合を有する構造は、ラテラル構 造の PIN型光ダイオードと呼ばれて!/、る。
[0020] また、光センサ 400を構成する各部材は、図 11の TFTを構成する各部材と、同じ プロセスで形成されている。例えば、半導体膜 411の上層には、ゲート絶縁膜 512と 同材料'同プロセスで形成される絶縁膜 412が形成され、第 1層間絶縁膜 414の上 層には、ソース電極 517と同材料 '同プロセスで形成される p側電極 417と、ドレイン 電極 515と同材料 .同プロセスで形成される n側電極 415が形成される。
[0021] さらにその上層には、第 2層間絶縁膜 518と同材料 '同プロセスで形成される表面 保護膜 418が形成される。この場合、第 2層間絶縁膜 518は、画素配列領域 (表示 領域)においては、 TFT500形成層と画素電極 519形成層の層間を電気的に絶縁 するとともに、画素電極 519の形成面の平坦性を向上させる役割を果たし、画素配列 領域外 (表示領域外)の周辺領域 (額縁領域)では、アクティブマトリクス基板の表面 保護膜 418として光センサ 400や光センサ 400に接続される電極を外気カゝら保護す る役割を果たす。このように、表面保護膜 418は、第 2層間絶縁膜 518と同プロセス で形成され、また、表示領域から周辺領域に渡って略全面に形成されることが望まし い。
[0022] このような図 12に示した光センサ 400は、図 9に示した従来の表示装置の光センサ
(周辺領域に設けられたディスクリート部品)の代わりに使用することができ、かつ、図 9に示した表示装置を電子機器に組み込む際に、部品点数の削減や部品実装プロ セスの削減を可能にする。
[0023] なお、特開平 6— 188400号公報には、光センサ 400の構造の他の例として、非結 晶 Si膜を用いたボトムゲート構造 (逆スタガ構造)の TFTと同一基板上にモノリシック に形成することが可能な、 MIS (Met - Insulator- Semiconductor)型接合を有する光 ダイオードが記載されており、このような MIS型の光ダイオードを採用することも可能 である。また、光センサの構造としては、 2つの端子が横方向(面方向)に形成された 光コンダクタや光トランジスタなど、他の素子構造を用いることも可能である。
発明の開示
発明が解決しょうとする課題
[0024] しかしながら、上述した図 12に示す光センサ 400に代表されるように、表示領域 H の TFT500と同一プロセスで形成される光センサ 400は、光センサとしての性能の最 適化を十分に図ることができない。その理由は、周辺領域 Sの光センサ 400の半導体 膜 411を、表示領域 Hの TFT500の半導体膜 511 (多結晶 Si膜)の厚みに合わせて 非常に薄ぐ例えば 0. 05 m厚で、形成する必要があるためである。
[0025] このように半導体膜 411が薄く形成された光センサ 400は、赤色光に対する感度が 相対的に弱ぐ赤色→緑色→青色→近紫外線と、より短い波長領域の光に対して、 より高い感度を持つ。これは、半導体膜 411の光学バンドギャップに起因する吸収係 数の波長依存性 (長波長側の光に対する吸収係数が小さい)と、半導体膜 411が十 分な吸収厚み(可視光波長レベルの厚み)を有しておらず、長波長側の光が吸収さ れずに透過しやすいことの両者に起因している。このため、表示装置を屋外で使用 する場合、光センサ 400は、太陽光のスペクトルの中の近紫外線に対して高い感度 を有することになる。
[0026] ところが、光センサ 400を表示装置に備える目的の一つは、使用環境における照度 の激しい変化に対応して、良好な視認性を得ることにある。これに対して、上記の場 合、光センサ 400は近紫外線の照度変化を高感度に検出することになる。このため、 視認性に影響を与える可視光 (特に、視感度のピークである緑色の光)の照度変化 を正確に検出することができない、といった問題が発生する。例えば、可視光領域の 照度に対して、近紫外域の照度が相対的に高い環境下の場合、人間の目にはまぶ しいと感じなくても、光センサが近紫外域の照度が高いことを検知することにより、表 示装置の輝度制御を過度に行ってしまう場合がある。
[0027] そこで本発明は、上述したような外光の明るさを検知する光センサを備えた表示装 置において、可視光領域の照度変化を正確に検出することができる表示装置を提供 することを目的とする。
課題を解決するための手段
[0028] 上記の目的を達成するために、本発明の表示装置は、ベース基板上に複数の画 素が配列された画素配列領域を有するアクティブマトリクス基板を備えた表示装置に おいて、前記画素配列領域に配列され、表示媒体を駆動する複数のアクティブ素子 と、前記アクティブマトリクス基板において前記画素配列領域の周囲に存在する周辺 領域に配置された光センサと、前記アクティブ素子の配置位置に対して前記ベース 基板とは相対する側に配置された表示用カラーフィルタと、前記光センサの配置位 置に対して前記ベース基板とは相対する側に配置された光センサ用カラーフィルタと を備えたことを特徴として!/ヽる。
[0029] また、本発明の表示装置は、表示媒体を駆動するためのアクティブマトリクス基板を 備え、表示領域と該表示領域以外の周辺領域とを有する表示装置において、前記 表示領域における前記アクティブマトリクス基板上には、前記表示媒体を駆動するた めの複数のアクティブ素子が配列されているとともに、前記アクティブ素子の形成層 よりも観察者側の面に表示用カラーフィルタが配設されており、前記周辺領域におけ る前記アクティブマトリクス基板上には、光センサが配設されているとともに、前記光 センサの形成層よりも観察者側の面に光センサ用カラーフィルタが配設されており、 さらに、前記表示用カラーフィルタと前記光センサ用カラーフィルタが、同一材料で 形成されて 、ることを特徴として 、る。
[0030] また、本発明に係る電子機器は、本発明に係る表示装置を備えたことを特徴とする 発明の効果
[0031] 本発明の表示装置は、表示装置内に備えている光センサ上に光センサ用カラーフ ィルタを備えているので、光センサが紫外線や近赤外線の影響を受けることがなぐ 視認性に影響を与える可視光の照度変化を正確に検出することができる。
図面の簡単な説明
[0032] [図 1]図 1 (a)は実施の形態 1に係る表示装置の概略を示す全体構成図である。図 1 ( b)は実施の形態 1に係る表示装置における表示領域の画素部分の断面構造及び光 センサ部分の断面構造を概略的に示す略部分断面図である。
[図 2]図 2 (a)は実施の形態 2に係る表示装置の概略を示す全体構成図である。図 2 ( b)は実施の形態 2に係る表示装置における表示領域の画素部分の断面構造及び光 センサ部分の断面構造を概略的に示す略部分断面図である。
[図 3]図 3は、実施の形態 3に係る表示装置の概略を示す全体構成図である。
[図 4]図 4は、実施の形態 3に係る表示装置の変形例であって、複数の光センサの検 出値に基づきバックライトシステムの色バランスを補正する機能を有する表示装置の 概略構成を示すブロック図である。
[図 5]図 5は、実施の形態 4に係る表示装置の概略を示す全体構成図である。
[図 6]図 6は、実施の形態 1に係る表示装置を筐体に組み込んだ状態を概略的に示 す断面図である。
[図 7]図 7は、 PIN型光ダイオードの分光感度特性を示す図である。
[図 8]図 8は、本発明の一実施形態にカゝかる電子機器の概略構成を示すブロック図で ある。
[図 9]図 9は、従来の液晶表示装置の全体構成図である。
[図 10]図 10は、従来の液晶表示装置の光センサ実装部の断面摸式図である。
[図 11]図 11は、アクティブマトリクス基板の画素配列領域に形成される従来の TFTの 断面摸式図である。
[図 12]図 12は、アクティブマトリクス基板の周辺領域に形成される従来の光センサの 断面摸式図である。
発明を実施するための最良の形態
[0033] [実施の形態 1]
以下、図面を参照しながら、本発明の実施の形態 1に係る表示装置について、液 晶表示装置を例に概略を説明する。
[0034] 図 1 (a)は、本発明に係る表示装置 1の全体構成図である。この表示装置 1は、多 数の画素 5がマトリクス状に配列されたアクティブマトリクス基板 2と、これに対向するよ うに配置された対向基板 3を備えている。また、表示装置 1は、画素 5が配列された表 示領域 (画素配列領域) 8と、表示領域 8に近接する周辺領域 9を有している。対向基 板 3は、アクティブマトリクス基板 2における表示領域 8を覆うとともに、周辺領域 9の少 なくとも一部を露出するように配設されている。
[0035] アクティブマトリクス基板 2と対向基板 3は、対向基板 3の外周に沿って設けられた枠 状のシール材(図示せず)によって接着されている。アクティブマトリクス基板 2と対向 基板 3との間隙には、表示媒体 4である液晶が挟持されて ヽる。
[0036] アクティブマトリクス基板 2の各画素 5には、表示媒体 4を駆動するための薄膜トラン ジスタ (TFT) 6や画素電極 7が形成されている。対向基板 3には、後述する対向電極 32が、少なくとも表示領域 8をカバーするように形成されて!、る。
[0037] アクティブマトリクス基板 2の周辺領域 9には、表示装置 1に外部の駆動回路(図示 せず)を接続するための FPC (Flex¾le Printed Circuit) 10が実装され、さらに、外光 の明るさを検出するための光センサ 11が配設されている。またその他にも、周辺領域 9には、図示しない周辺回路 (外部の駆動回路力 の入力信号に基づいて表示領域 8の TFT6を駆動するための駆動回路、光センサ 11や駆動回路に接続される配線、 表示領域 8からの引き出し配線など)が適宜配設されている。
[0038] 表示領域 8に形成される TFT6と、周辺領域 9に形成される光センサ 11とは、同一 基板上に、ほぼ同一のプロセスによってモノリシックに形成されている。つまり、光セ ンサ 11の一部の構成部材は、 TFT6の一部の構成部材と同時に形成される。
[0039] また、表示装置 1は、その表示モードとして、透過光を利用する透過型モードを用 いている。従って、アクティブマトリクス基板 2の対向基板 3配置側とは相対する側 (裏 面側)にはバックライトシステム 12が備えられている。なお、表示モードとして外光の 反射を利用する反射表示モードを用いる場合や、表示媒体として ELなどの自発光 素子を用いる場合には、ノ ックライトシステム 12は不要である。
[0040] また、上述の光センサ 11は、外光を検知することを目的としているため、ノ ックライト システム 12の光が該光センサ 11に入射すると、光センサ 11が誤動作すると!/、つた問 題が生じる。したがって、アクティブマトリクス基板 2の光センサ 11配設部の下側(ァク ティブマトリクス基板 2の光センサ 11配置側とは反対側)にバックライトシステム 12が 配置されないようにする力 或いは、アクティブマトリクス基板 2の光センサ 11配設部 の裏面に遮光部材 (アルミテープなど)を具備して、ノ ックライトシステム 12の光が光 センサ 11に入射しな 、ように配慮が必要である。
[0041] 上述した本発明の表示装置 1は、光センサ 11を用いて外光の照度を検出し、それ に合わせて表示輝度を自動的に制御する自動調光機能付きの表示システムに適用 することができる。つまり、上記アクティブマトリクス基板 2の周辺領域 9に設けられた 光センサ 11が出力する外光の明るさ情報を基に、ノ ックライトシステム 12の輝度、又 は表示信号の輝度信号を制御する制御回路を備えておくことで、表示装置 1の表示 輝度を自動的に制御することが可能になる。
[0042] この制御回路は、表示装置 1と一体的に形成されていても、表示装置 1と別体に形 成されていても良い。表示装置 1と一体的に形成されている場合の例としては、ァク ティブマトリクス基板 2内にモノリシックに形成する場合や、アクティブマトリクス基板 2 とは別に制御回路を形成して COG (Chip On Grass)方式等によりアクティブマトリクス 基板 2上に搭載する場合が挙げられる。また、表示装置 1と別体に形成されている場 合の例としては、アクティブマトリクス基板 2とは別に制御回路を形成して FPC等を介 してアクティブマトリクス基板 2に接続する場合や、表示装置 1を備える電子機器に制 御回路を配置してアクティブマトリクス基板 2に制御回路力 信号を送信する場合が 挙げられる。
[0043] この制御回路を用いて、屋外など明るい環境下では表示輝度を高くし、夜間や室 内など比較的喑 、環境下では表示輝度を下げるように輝度調整 (調光)を自動的に 行うように制御させると、表示装置の低消費電力化や長寿命化を実現することができ る。
[0044] なお、図 6は、上述の表示装置 1を筐体 35に組み込んだ状態を示す断面図である 。筐体 35の開孔部 37は光センサ 11の配置位置に対向するように配置されており、そ の開孔部 37を介して外光が光センサ 11に到達する仕組みになっている。なお、図 6 における 39は回路基板である。
[0045] 表示装置 1の周辺領域 9には、光センサ 11の他に、周辺回路(回路基板 39からの 入力信号に基づいて表示領域 8の TFT6を駆動するための駆動回路(図示せず)、 光センサ 11や駆動回路に接続される配線(図示せず)、表示領域 8からの引き出し 配線 36など)も形成されて!、る。
[0046] 次に、本実施形態の表示装置 1の詳細な構造について、図 1 (b)を用いて説明する
[0047] 図 1 (b)は、図 1 (a)の表示装置 1における表示領域 8の画素 5部分の断面構造及 び周辺領域 9の光センサ 11部分の断面構造を概略的に示す略部分断面図である。 紙面に向力つて左側が画素 5部分の断面構造を示しており、紙面に向かって右側が 光センサ 11部分の断面構造を示している。なお、画素 5部分と、光センサ 11部分と を破線で接続しているが、図 1 (b)において破線で接続されている箇所は、基板 14 の表面から同じ高さである。
[0048] 以下、図 1 (b)を参照しながら、本実施の形態で用いる多結晶 Si膜を用いた TFT6 と、この TFT6を含む画素 5の構造について説明する。アクティブマトリクス基板 2と対 向基板 3の間隙に表示媒体 (本実施の形態では液晶) 4が挟持されて ヽる。ァクティ ブマトリクス基板 2には、表示媒体 4を駆動するための薄膜トランジスタ (TFT) 6や画 素電極 7が形成されている。また、対向基板 3には、透明基板 41に共通電極 32が略 全面に形成されている。
[0049] ここで使用する TFT6の構造は、「トップゲート構造」または「正スタガ構造」と呼ばれ るもので、チャネルとなる半導体膜 (多結晶 Si膜) 13の上層にゲート電極 16を備える ものである。なお、このように、基板に対して複数の層が積層されている場合に、本明 細書では、基板側を下側とし、基板力 層までの距離が離れる方向を上側として記載 している。
[0050] ベース基材となる基板 14には、主にガラス基板が使用でき、例えば無アルカリのバ リウムホウケィ酸ガラス、またはアルミノホウケィ酸ガラスなどが使用される。 TFT6は、 基板 14上に形成された半導体膜 13と、半導体膜 13を覆うように形成されたゲート絶 縁膜 15 (例えば、酸ィ匕シリコン膜ゃ窒化シリコン膜などが使用できる)と、ゲート絶縁 膜 15上に形成されたゲート電極 16 (例えば、 Al、 Mo、 Tほたはそれらの合金などが 使用できる)と、ゲート電極 16を覆うように形成された第 1層間絶縁膜 17 (例えば、酸 化シリコン膜ゃ窒化シリコン膜が使用できる)とを有している。
[0051] ここで、ゲート絶縁膜 15を介してゲート電極 16と対向する半導体膜の領域はチヤネ ル領域 13aとして機能する。また、半導体膜のチャネル領域以外の領域は、不純物 が高濃度にドープされた n+層であり、ソース領域 13bおよびドレイン領域 13cとして機 能する。また、ここでは図示しないが、ホットキャリアによる電気特性の劣化を防ぐため に、ソース領域 13bのチャネル領域 13a側およびドレイン領域 13cのチャネル領域 13 a側に、不純物が低濃度にドープされた LDD (Lightly Doped Drain)領域が形成され ている。
[0052] なお、基板 14の表面(半導体膜 13の下)に、ベースコート膜 (例えば、酸化シリコン 膜ゃ窒化シリコン膜などが使用できる)を備えても良い。また、半導体膜 13として使用 する多結晶 Si膜は、非晶質構造を有する半導体膜 (非結晶 Si膜)を、レーザーァ- ールゃ RTA (Rapid Thermal Annealing)などの熱処理により結晶化することで得るこ とがでさる。
[0053] 第 1層間絶縁膜 17上にはソース電極 18 (例えば、 Al、 Mo、 Tほたはそれらの合金 が使用できる)が形成されていて、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通 するコンタクトホールを介して半導体膜のソース領域 13bに電気的に接続されて!、る 。同様に、第 1層間絶縁膜 17上に形成されているドレイン電極 19 (例えば、 Al、 Mo、 Tほたはそれらの合金が使用できる)は、第 1層間絶縁膜 17およびゲート絶縁膜 15 を貫通するコンタクトホールを介して半導体膜のドレイン領域 13cに電気的に接続さ れている。
[0054] 以上が、ここで使用する TFT6の基本的な構造である。そして、表示領域 8にお ヽ ては、上述の TFT6を覆うように、さらに表示用カラーフィルタ 22と、第 2層間絶縁膜 2 0が順に形成されている。ここで、表示用カラーフィルタ 22は、青、緑、赤、シアン、マ ゼンタ、イェローなどの色を持つフィルタであり、画素毎に対応して各色のカラーフィ ルタが配設されている。通常は、色の 3原色である、青、緑、赤の 3色のカラーフィル タを用いることが多い。第 2層間絶縁膜 20は、層間の絶縁性に加えて下層の凹凸を 平坦ィ匕する役割が要求されるので、塗布や印刷よつて形成が可能な有機膜が主に 使用される。
[0055] 更に、第 2層間絶縁膜 20の上層には、画素電極 7 (例えば、 ITO (Indium- Tin- Oxid e)、 IZO (Indium-Zinc-Oxide)、 Alなどが使用できる)が形成される。画素電極 7は、 第 2層間絶縁膜 20に形成されたコンタクトホールを介して、ドレイン電極 19に電気的 に接続されている。この、第 2層間絶縁膜 20としては、感光性を有する有機絶縁膜を 用いることが好ましぐこれにより、マスク露光と現像処理によって、簡便に第 2層間絶 縁膜 20にコンタクトホールを形成することができる。このように感光性を有する有機絶 縁膜としては、例えば、アクリル、ポリイミド、 BCB (Benzo- Cyclo- Butene)などが例示 できる。
[0056] 次に、図 1 (b)を参照しながら、光センサ 11の構造について説明する。ここで使用 する光センサ 11の構造は、「ラテラル構造の光ダイオード」と呼ばれるものであり、半 導体の PIN接合が基板の面方向(横方向)に形成されたダイオードを備えるものであ る。
[0057] ベース基材となる基板 14 (TFTが形成されて ヽる基板と共通の基板)上に、半導体 膜 (多結晶 Si膜) 21による PINダイオードが形成されて 、る。この光センサ 11の多結 晶 Si膜 21は、表示領域 8の TFT6の多結晶 Si膜 13と同一プロセスで同時に形成さ れるものである。従って、多結晶 Si膜 21と多結晶 Si膜 13とは、同じ膜厚を有する。 PI N接合は、不純物が高濃度にドープされた p+層(領域 21b)と n+層(領域 21c)、及び 不純物がドープされない i層(領域 21a)によって形成されている。なお、 i層の代わり に、低濃度にドープされた P—層や n層を単独、又は併設して用いることも可能である
[0058] さらに、 PIN接合を有する半導体膜 21を覆うように、表示領域 8の構成部材と共通 のゲート絶縁膜 15 (例えば、酸ィ匕シリコン膜ゃ窒化シリコン膜などが使用できる)と第 1層間絶縁膜 17 (例えば、酸ィ匕シリコン膜ゃ窒化シリコン膜が使用できる)が形成され る。光センサ 11のゲート絶縁膜 15および第 1層間絶縁膜 17は、画素配列領域 8に おける TFT6のゲート絶縁膜 15および第 1層間絶縁膜 17が、周辺領域 9まで延在し たものである。
[0059] 第 1層間絶縁膜 17上に形成されている p側電極 33 (例えば、 Α1、 Μο、 Ήまたはそ れらの合金が使用できる)は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通する コンタクトホールを介して多結晶 Si膜 21の ρ+領域 21bに電気的に接続されている。 同様に、第 1層間絶縁膜 17上に形成されている n側電極 34 (例えば、 Al、 Mo、 Tほ たはそれらの合金が使用できる)は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫 通するコンタクトホールを介して多結晶 Si膜 21の n+領域 21cに電気的に接続されて いる。
[0060] 以上が、光センサ 11の基本的な構造である。そして、周辺領域 9においては、上記 光センサ 11を覆うように、さらに、光センサ用カラーフィルタ 23と、必要に応じて第 2 層間絶縁膜 20が順に形成されている。ここで、光センサ用カラーフィルタ 23は、青、 緑、赤、シアン、マゼンタ、イェローなどの可視光領域の光に対して透過性を有する フィルタが使用され、上述の表示用カラーフィルタ 22と同材料及び Z又は同プロセス で形成されている。
[0061] 上記のとおり、実施の形態 1に係る表示装置 1では、周辺領域 9の光センサ 11の構 成部材は、表示領域 8の TFT6の構成部材と基本的に同じである。従って、両者の 製造プロセスの少なくとも一部を共通にすることができる。このようにして、アクティブ マトリクス基板 2には、表示領域 8の TFT6と周辺領域 9の光センサ 11がモノリシック に形成されている。このように、表示領域 8の TFT6と周辺領域 9の光センサ 11がモノ リシックに形成されているので、光センサ 11を形成するための追加プロセスが不要で あるといったメリットを有する。また、 TFT6が薄膜素子であることから、光センサ 11も 薄膜素子として形成されるため、上述した従来の構成のように、別途ディスクリート素 子となる光センサチップを使用する場合に比べると、アクティブマトリクス基板 2のべ一 ス基板の表面(基板 14の表面)からの TFT6と光センサ 11の高さを略同じにすること ができる。これにより、 TFT6および光センサ 11の形成工程よりも後の工程で形成す ることになる表示用カラーフィルタ 22と光センサ用カラーフィルタ 23を、互いに同じ条 件で形成しやす!ゝと!ゝつたメリットを有する。
[0062] また、表示用カラーフィルタ 22と光センサ用カラーフィルタ 23についても、両者を同 材料及び Z又は同プロセスで形成することで、アクティブマトリクス基板 2上に、これら をモノリシックに形成することが可能である。このように、表示用カラーフィルタ 22と光 センサ用カラーフィルタ 23を同材料及び Z又は同プロセスで形成することにより、ェ 数増加や部材増カロ、及びそれに伴うコストアップを伴うことなぐ光センサ 11上に簡 便に光センサ用カラーフィルタ 23を形成することができる。 [0063] なお、表示用カラーフィルタ 22や光センサ用カラーフィルタ 23は、榭脂に顔料を分 散させた榭脂材料を、周知の方法 (スピンコート、転写、印刷、インクジェットなど)で 塗布 (またはラミネート)することで形成できる。
[0064] つまり、本実施の形態の表示装置 1の構造上の特徴は、表示装置 1が表示領域 8と 周辺領域 9を備えている点、周辺領域 9に外光の明るさを検出する光センサ 11が形 成されている点、周辺領域 9の光センサ 11上に光センサ用カラーフィルタ 23が形成 されている点にある。なお、光センサ用カラーフィルタ 23は、光センサ 11の形成層よ り上側 (換言すると観察者側)に配設されていればよぐ光センサ用カラーフィルタ 23 の配置場所や配置層を限定するものではな 、。
[0065] このように、本発明の表示装置 1は、光センサ 11上に光センサ用カラーフィルタ 23 を備えているので、光センサ 11が近紫外線や近赤外線の照度の影響を受けることが ない。この結果、光センサ 11は、視認性に影響を与える可視光の照度変化をより正 確に検出することができる。
[0066] また、 TFT6の半導体膜 (多結晶 Si膜) 13が、光センサ 11の半導体膜 (多結晶 Si 膜) 21と同層で形成されていると、光センサ 11の半導体膜 21がアクティブ素子 6の 半導体膜 13と略同一の厚みを有することとなるので、光センサ 11の赤外光に対する 感度が相対的に弱くなる。しかし、光センサ 11の上側に光センサ用カラーフィルタ 23 を配置することにより、波長特性を変化させ、所望の性能を得ることができるようにな る。
[0067] 上記の通り、 TFT6とモノリシックに形成される光センサ 11は、受光部の半導体膜 2 1が薄膜であるために、可視光領域の中の長波長域の光 (赤色の光)は透過しやすく なり、相対的に赤色に対する感度が悪くなる。図 7は、厚さ 0. 05nmの薄膜からなる 多結晶 Si膜の PINフォトダイオードの分光感度特性 (光電流量の相対値)を示す。こ のように、赤色→緑色→青色の順にフォトダイオードの感度が向上する傾向が確認 できる。
[0068] 従って、光センサ 11の感度の絶対値を重視する場合、光センサ用カラーフィルタ 2 3としては、赤色ではなぐ青色や緑色 (好ましくは青色)を用いることが好ましいとい える。この結果、赤色の光センサ用カラーフィルタ 23を使用する場合に比べて、光セ ンサ 11のサイズを小さく設計することが可能となり、光センサ 11のレイアウトの自由度 向上や、周辺領域 9 (額縁領域)の縮小化が可能となる。
[0069] また、表示領域 8の表示用カラーフィルタとして、赤、青、緑と併せて、透明(白)の カラーフィルタを使用する場合 (例えば、 RGBWの 4色カラーフィルタを使用する場 合)において、該透明(白)カラーフィルタの近紫外線や近赤外線の透過率が 50% 以下の場合には、光センサ用カラーフィルタ 23として透明(白)色を採用することもで きる。
[0070] 一方、感度の絶対値だけでなぐ人間の視感度特性に合わせた感度特性を重視す る場合には、緑色のカラーフィルタを光センサ用カラーフィルタ 23に使用することが 好適である。
[0071] [実施の形態 2]
本発明の実施の形態 2として、実施の形態 1で説明した表示装置 1の変形例につい て説明する。なお、便宜上、実施の形態 1の表示装置 1と同一の構成については同 一の符号を付して説明を省略する場合がある。
[0072] 図 2 (a)は、本発明の実施の形態 2に係る表示装置 24の全体構成図である。この表 示装置 24は、多数の画素 5がマトリクス状に配列されたアクティブマトリクス基板 2と、 これに対向するように配置された対向基板 3を備えている。また、表示装置 24は、画 素 5が配列された表示領域 8と、表示領域 8に近接する周辺領域 9を有しており、対 向基板 3は、アクティブマトリクス基板 2における表示領域 8を覆うとともに、周辺領域 9 の少なくとも一部が露出するように配設されて 、る。
[0073] アクティブマトリクス基板 2と対向基板 3は、対向基板 3の外周に沿って設けられた枠 状のシール材(図示せず)によって接着されている。アクティブマトリクス基板 2と対向 基板 3の間隙には、表示媒体 4である液晶が挟持されて 、る。
[0074] アクティブマトリクス基板 2の各画素 5には、表示媒体 4を駆動するための薄膜トラン ジスタ (TFT) 6や画素電極 7が形成されており、対向基板 3には、後述する表示用力 ラーフィルタ 22A、ブラックマトリクス 26、対向電極 32が、少なくとも表示領域 8をカバ 一するように形成されて 、る。
[0075] アクティブマトリクス基板 2の周辺領域 9には、表示装置 24に外部の駆動回路(図示 せず)を接続するための FPC (Flex¾le Printed Circuit) 10が実装され、さらに、外光 の明るさを検出するための光センサ 25が配設されている。またその他にも、上記周辺 領域には、図示しない周辺回路 (外部の駆動回路力 の入力信号に基づいて表示 領域 8の TFT6を駆動するための駆動回路、光センサ 25や駆動回路に接続される配 線、表示領域 8からの引き出し配線など)が適宜配設されている。
[0076] 表示領域 8に形成される TFT6と、周辺領域 9に形成される光センサ 25とは、同一 基板上に、ほぼ同一のプロセスによってモノリシックに形成されている。つまり、光セ ンサ 25の一部の構成部材は、 TFT6の一部の構成部材と同時に形成される。
[0077] 上述の表示装置 24の基本的な動作や表示メカニズムは、実施の形態 1の表示装 置 1と同じであり、図 6で説明したような筐体 35に組み込んで使用することも可能であ る。
[0078] 以下、図 2 (b)を参照しながら、表示装置 24の構造にっ 、て、表示装置 1 (実施の 形態 1)と異なる部分を中心に説明する。なお、構造が同じ部分については、説明を 割愛する。
[0079] 図 2 (b)は、図 2 (a)の表示装置 24における表示領域 8の画素 5部分の断面構造及 び周辺領域 9の光センサ 25部分の断面構造を概略的に示す略部分断面図である。 紙面に向力つて左側が画素 5部分の断面構造を示しており、紙面に向かって右側が 光センサ 25部分の断面構造を示している。なお、画素 5部分と、光センサ 25部分と を破線で接続しているが、図 2 (b)において破線で接続されている箇所は、基板 14 の表面から同じ高さである。
[0080] 表示装置 24が、実施の形態 1の表示装置 1と異なる点は、表示領域 8における表 示用カラーフィルタ 22Aと周辺領域 9における光センサ用カラーフィルタ 23A力 ァク ティブマトリクス基板 2側でなく対向基板 3側に具備されている点、および、対向基板 3が周辺領域 9の光センサ 25の上方を覆う領域まで延設されている点にある。
[0081] このように、表示装置 24は、表示装置 1 (実施の形態 1)と同様に、対向基板 3にお いて光センサ 25の上方に相当する位置に光センサ用カラーフィルタ 23Aを備えてい るので、光センサ 25が近紫外線や近赤外線の照度の影響を受けることがない。この 結果、光センサ 25は、視認性に影響を与える可視光の照度変化をより正確に検出す ることができる。また、光センサ 25上の光センサ用カラーフィルタ 23A力 表示用カラ 一フィルタ 22Aと同一材料及び Z又は同一プロセスで形成されて 、るので、工数の 増加や部材の増加を伴うことなぐ光センサ 25上に簡便に光センサ用カラーフィルタ 23Aを形成することができる。
[0082] また、アクティブ素子 6の半導体膜 13が、光センサ 25の半導体膜 21と同層で形成 されていると、光センサ 25の半導体膜 21がアクティブ素子 6の半導体膜 13と略同一 の厚みを有することとなるので、光センサ 25の赤外光に対する感度が相対的に弱く なるが、光センサ 25の上側に光センサ用カラーフィルタ 23Aを配置することにより、 波長特性を変化させ、所望の性能を得ることができるようになる。
[0083] さらに、光センサ 25の感度の絶対値を重視する場合、光センサ用カラーフィルタ 23 Aとしては、赤色ではなぐ青色や緑色 (好ましくは青色)を用いることが好ましい。こ の結果、赤色の光センサ用カラーフィルタ 23Aを使用する場合に比べて、光センサ 2 5のサイズを小さく設計することが可能となり、光センサ 25のレイアウトの自由度向上 や、周辺領域 9 (額縁領域)の縮小化が可能となる。一方、感度の絶対値だけでなぐ 人間の視感度特性に合わせた感度特性を重視する場合には、緑色のカラーフィルタ を光センサ用カラーフィルタ 23Aとして使用することが好適である。
[0084] [実施の形態 3]
本発明の実施の形態 3として、実施の形態 1で説明した表示装置 1の変形例につい て説明する。なお、便宜上、表示装置 1と同一の構成については同一の符号を付し て説明を省略する。
[0085] 図 3は、本発明の実施の形態 3に係る表示装置 27の全体構成図である。表示装置 1 (実施の形態 1)と異なる点は、アクティブマトリクス基板 2の周辺領域 9に、複数(図 では 3つ)の光センサ 11が形成されている点にある。さらに、この複数の光センサ 11 のそれぞれの上層に、異なる色(図では、赤、青、緑の 3色)の光センサ用カラーフィ ルタ 23が形成されている。
[0086] 上記構造により、表示装置 27は、色 (波長)毎に外光の明るさ情報 (例えば、朝焼 けや夕焼けの赤い光など)を検知することが可能になり、外光の明るさに加えて色味 ( 色バランス)を検出することが可能となる。そして、ノ ックライトシステム 12の色バラン ス、又は表示装置 27の表示信号の色信号を制御する制御回路(図示せず)をさらに 備え、上記色バランスの検出値を基に表示装置 27の表示色バランスを調整すること で、さらに視認性の優れた表示装置を実現することが可能になる。この場合、ノ ックラ イトシステム 12として、赤、青、緑の LEDを用いた LEDバックライトを使用すれば、各 色の制御を容易に行うことができるため有用である。
[0087] ここで、図 4を参照し、複数の光センサ 11の検出値に基づきバックライトシステム 12 の色バランスを補正する機能を有する場合の、表示装置 27の概略構成について説 明する。図 4の構成では、赤、青、緑の 3色の光センサ用カラーフィルタ 23 (図 4では 図示省略)がそれぞれ設けられた 3つの光センサ 11を備えている。すなわち、これら 3つの光センサ 11は、外光中の赤色の波長成分と、青色の波長成分と、緑色の波長 成分とをそれぞれ検出して出力する。また、ノ ックライトシステム 12は、光源として赤、 青、緑の LED121を備えている。これらの LED121は、バックライトシステム 12の導 光板の側面や下面に規則的に配置される。
[0088] さらに、図 4に示すように、表示装置 27は、カラーコントローラ 271と、設定値メモリ 2 72と、赤、青、緑の 3色の LED121を駆動する LEDドライバ 273R, 273G, 273Bと を備えている。設定値メモリ 272には、輝度および色座標の設定値が予め記憶され ている。カラーコントローラ 271は、光センサ 11からの出力信号をそれぞれ入力し、 設定値メモリ 272に記憶されている値と光センサ 11の出力値とを比較し、その比較結 果を LEDドライバ 273R, 273G, 273Bへ出力する。 LEDドライバ 273R, 273G, 2 73Bは、上記の比較結果に従い、赤、青、緑の 3色の LED121の駆動電流を色毎に 制御する。なお、図 4では、バックライトシステム 12において LEDが RGBの順に配置 されて!/、る例を示した力 LEDの配置順はこれに限らな!/、。
[0089] また、表示装置 27が、バックライトシステム 12を使用しない反射型表示モード (外光 の光反射光を用いて表示を行う表示モード)の場合は、外光 (環境光)の色によって 表示の色味が大きく作用されるので、複数の光センサ 11の検出値に基づき表示信 号の色信号を補正することで、表示性能を格段に向上させることが可能である。また 、表示信号の色信号を補正するための構成としても、図 4に示したカラーコントローラ 271および設定値メモリ 272等を備えた構成を援用することができる。 [0090] なお、光センサ用カラーフィルタ 23として複数の色を用いる場合、色の 3原色である 赤、青、緑の 3原色のカラーフィルタを用いることが好ましいが、これに限定されるもの ではなぐシアン、マゼンタ、イェロー、透明(白)など、他の色を併用しても構わない。 また、複数の光センサ 11上の各色の光センサ用カラーフィルタ 23を、全て表示用力 ラーフィルタ 22と同一材料'同一プロセスで形成することで、工数の増加や部材の増 加を伴うことなぐ光センサ 11上に簡便に光センサ用カラーフィルタ 23を形成するこ とがでさる。
[0091] [実施の形態 4]
本発明の実施の形態 4として、実施の形態 2で説明した表示装置 24の変形例につ いて説明する。なお、便宜上、表示装置 24と同一の構成については同一の符号を 付して説明を省略する。
[0092] 図 5は、本発明の実施の形態 4に係る表示装置 28の全体構成図である。表示装置 24 (実施の形態 2)と異なる点は、アクティブマトリクス基板 2の周辺領域 9に、複数( 図では 3つ)の光センサ 25が形成されている点にある。さらに、対向基板 3において、 この複数の光センサ 25の各々に対向する位置に、異なる色(図では、赤、青、緑の 3 色)の光センサ用カラーフィルタ 23Aが形成されて!、る。
[0093] 上記構造により、表示装置 28は、色 (波長)毎に外光の明るさ情報 (例えば、朝焼 けや夕焼けの赤い光など)を検知することが可能になり、外光の明るさに加えて色味( 色バランス)を検出することが可能となる。
[0094] そして、例えば図 4に示した構成と同様に、ノ ックライトシステム 12の色バランス、又 は表示装置 28の表示信号の色信号を制御する制御回路をさらに備え、上記色バラ ンスの検出値を基に表示装置の表示色バランスを調整することで、さらに視認性の優 れた表示装置を実現することが可能になる。この場合、ノ ックライトシステム 12として 、赤、青、緑の LEDを用いた LEDバックライトを使用することで、各色の制御を容易 に行うことができるため有用である。
[0095] 光センサ用カラーフィルタ 23Aとして複数の色を用いる場合、色の 3原色である赤、 青、緑の 3原色のカラーフィルタを用いることが好ましいが、これに限定されるもので はなぐシアン、マゼンタ、イェローなど、他の色を併用しても構わない。 [0096] 上述した、実施の形態 1〜実施の形態 4で説明した表示装置は、アクティブ素子と カラーフィルタを備えた表示装置に広く適用することができ、液晶表示装置、 EL表示 装置、電気泳動表示装置などの各種カラー表示装置などに適用することができる。
[0097] なお、上述の実施形態では、多結晶 Si膜を用いて TFTと光センサを形成した例を 示したが、両者は非結晶 Si膜を用いて形成することも可能である。また、トップゲート 構造 (正スタガ構造)の TFTに限らず、ボトムゲート構造 (逆スタガ構造)の TFTを用 いても構わない。さらに、光センサとしても、 PIN接合を利用したものだけでなぐショ ットキー接合や MIS接合を有するフォトダイオードを利用することもできる。例えば、 非結晶 Si膜を用いたボトムゲート構造 (逆スタガ構造)の TFTと、 MIS接合を有する フォトダイオードを同一基板上にモノリシックに形成する方法としては、特開平 6— 18 8400号公報を参照することができる。また、光センサ 11の構造としては、 2つの端子 が横方向(面方向)に形成された光コンダクタや光トランジスタなど、他の素子構造を 用いることも可能である。
[0098] また、上記の説明では、光センサ 11, 25力 TFT6とほぼ同一のプロセスによって アクティブマトリクス基板上にモノリシックに形成されている例を示した力 光センサが アクティブマトリクス基板のガラス基板上に COG実装された構成であっても良い。
[0099] また、実施の形態 1〜実施の形態 4で説明した表示装置を、携帯電話、 PDA, DV Dプレイヤー、モパイルゲーム機器、ノート PC、 PCモニター、 TV等、幅広い情報機 器、 TV機器、アミューズメント機器などの電子機器に組み込むことで、上述の特徴を 活力 た表示装置を備えた電子機器を実現することができる。
[0100] [実施の形態 5]
本発明の一実施形態にカゝかる電子機器の概略構成を図 8に示す。図 8に示すよう に、本実施形態に力かる電子機器 60は、実施の形態 1にかかる表示装置 1と、この 表示装置 1の光センサ 11によって検出された外光の明るさ情報に応じて、表示装置 1の表示輝度を制御する制御回路 61とを備えている。なお、図 8では、表示装置 1お よび電子機器 60における機能ブロックの図示を簡略ィ匕している。制御回路 61は、表 示輝度の制御以外に、電子機器 60の任意の動作を制御する機能を有して ヽても良 い。また、電子機器 60は、その用途等に応じて、図 8に示した以外の任意の機能プロ ックを有し得る。
[0101] 制御回路 61は、光センサ 11によって検出された外光の明るさ情報 (センサ出力)に 応じてバックライトシステム 12の輝度を調整することにより、表示装置 1の表示輝度を 制御する。なお、表示装置 1は液晶表示装置であるためバックライトの輝度を制御す ることによって表示輝度の調整が可能であるが、 EL素子等の自発光素子を表示装 置として用いる場合は、制御回路 61は、自発光素子の発光輝度を制御するよう構成 される。
[0102] また、本実施形態では、実施の形態 1にかかる表示装置 1を用いた構成を例示した 力 実施の形態 2〜4ならびにこれらの変形例に力かる表示装置を用いた電子機器 も、本発明の範囲内である。
[0103] 特に、実施の形態 3または実施の形態 4にかかる表示装置を用いた電子機器の場 合は、制御回路 61が、各色の光センサ用カラーフィルタ 23または 23Aに対応する光 センサ 11, 25の出力に応じて、ノ ックライトシステム 12の色バランス、又は表示装置 の表示信号の色信号を制御すれば良 、。
[0104] 以上のように、周囲の明るさに応じて必要十分な輝度になるよう表示輝度を制御す ることにより、消費電力を低減し、かつ、見易い表示を実現する電子機器を提供でき る。本実施形態の電子機器は、使用環境の明るさの変化に対して良好な視認性と低 消費電力化を両立できることから、屋外に持ち出して使用する機会が多くバッテリー 駆動を必要とするモパイル機器として特に有用である。このようなモパイル機器の具 体例としては、本発明の用途をこれらに限定するものではないが、例えば、携帯電話 、 PDA等の情報端末、モパイルゲーム機器、携帯型音楽プレイヤー、デジタルカメラ 、ビデオカメラ等がある。
[0105] なお、本実施形態では、表示装置の表示輝度を制御するための制御回路 61が表 示装置の外部に設けられた構成を例示したが、制御回路が表示装置の一部として設 けられた構成としても良い。
産業上の利用可能性
[0106] 本発明は、光センサを備えた表示装置に広く適用することができ、液晶表示装置以 外にも、 EL表示装置、電気泳動表示装置などの各種表示装置などに適用すること ができる。その結果、表示装置を使用する電子機器 (例えば、これらに限定されない
1S 携帯電話、 PDA, DVDプレイヤー、モパイルゲーム機器、ノート PC、 PCモニタ 一、テレビジョン受像機)にも利用可能である。

Claims

請求の範囲
[1] ベース基板上に複数の画素が配列された画素配列領域を有するアクティブマトリク ス基板を備えた表示装置において、
前記画素配列領域に配列され、表示媒体を駆動する複数のアクティブ素子と、 前記アクティブマトリクス基板において前記画素配列領域の周囲に存在する周辺 領域に配置された光センサと、
前記アクティブ素子の配置位置に対して前記ベース基板とは相対する側に配置さ れた表示用カラーフィルタと、
前記光センサの配置位置に対して前記ベース基板とは相対する側に配置された光 センサ用カラーフィルタとを備えたことを特徴とする表示装置。
[2] 前記アクティブ素子の半導体膜と、前記光センサの半導体膜とは、同層で形成され て 、る請求項 1に記載の表示装置。
[3] 前記表示用カラーフィルタと、前記光センサ用カラーフィルタとは、同一材料で形成 されている請求項 1または 2に記載の表示装置。
[4] 前記表示用カラーフィルタと、前記光センサ用カラーフィルタとは、同一プロセスで 形成されて 、る請求項 1〜3の 、ずれか一項に記載の表示装置。
[5] 前記アクティブ素子と前記光センサが、前記アクティブマトリクス基板上にモノリシッ クに形成されて 、る、請求項 1〜4の 、ずれか一項に記載の表示装置。
[6] 前記表示用カラーフィルタと、前記光センサ用カラーフィルタ力 前記アクティブマト リクス基板上に形成されている、請求項 1〜5のいずれか一項に記載の表示装置。
[7] 前記表示媒体を介して前記アクティブマトリクス基板と対向する位置に対向基板を 備え、
前記表示用カラーフィルタと、前記光センサ用カラーフィルタが、前記対向基板上 に形成されて ヽる、請求項 1〜5の ヽずれか一項に記載の表示装置。
[8] 前記センサ用カラーフィルタは、青および緑のいずれか一方の色である、請求項 1 〜7の 、ずれか一項に記載の表示装置。
[9] 前記光センサによって検知された外光の明るさ情報に基づき、表示輝度を制御す る制御回路を備えた、請求項 1〜8のいずれか一項に記載の表示装置。
[10] 前記周辺領域に前記光センサが複数形成され、
前記複数の光センサに対して、複数色の光センサ用カラーフィルタが配されて 、る
、請求項 1〜7のいずれか一項に記載の表示装置。
[11] 前記複数色の光センサ用カラーフィルタは、少なくとも青、緑、赤の 3色の光センサ 用カラーフィルタを含む、請求項 10に記載の表示装置。
[12] 前記複数の光センサによって検知された外光の色情報に基づき、表示の色バラン スを制御する制御回路を備えた、請求項 10または 11に記載の表示装置。
[13] 請求項 1〜12のいずれか一項に記載の表示装置を備えたことを特徴とする電子機
PCT/JP2006/306551 2005-03-29 2006-03-29 表示装置および電子機器 WO2006104214A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/887,397 US20090128529A1 (en) 2005-03-29 2006-03-29 Display Device and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-093666 2005-03-29
JP2005093666A JP2008089619A (ja) 2005-03-29 2005-03-29 表示装置および電子機器

Publications (1)

Publication Number Publication Date
WO2006104214A1 true WO2006104214A1 (ja) 2006-10-05

Family

ID=37053468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306551 WO2006104214A1 (ja) 2005-03-29 2006-03-29 表示装置および電子機器

Country Status (3)

Country Link
US (1) US20090128529A1 (ja)
JP (1) JP2008089619A (ja)
WO (1) WO2006104214A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096523A (ja) * 2006-10-06 2008-04-24 Hitachi Displays Ltd 表示装置
JP2008158273A (ja) * 2006-12-25 2008-07-10 Seiko Epson Corp 電気光学装置
JP2009158553A (ja) * 2007-12-25 2009-07-16 Sony Corp 受光素子および表示装置
US7773139B2 (en) 2004-04-16 2010-08-10 Apple Inc. Image sensor with photosensitive thin film transistors
US7830461B2 (en) 2002-05-23 2010-11-09 Apple Inc. Light sensitive display
US7872641B2 (en) 2002-02-20 2011-01-18 Apple Inc. Light sensitive display
US8207946B2 (en) 2003-02-20 2012-06-26 Apple Inc. Light sensitive display
US8441422B2 (en) 2002-02-20 2013-05-14 Apple Inc. Light sensitive display with object detection calibration
US8638320B2 (en) 2011-06-22 2014-01-28 Apple Inc. Stylus orientation detection
US8928635B2 (en) 2011-06-22 2015-01-06 Apple Inc. Active stylus
US9176604B2 (en) 2012-07-27 2015-11-03 Apple Inc. Stylus device
US9310923B2 (en) 2010-12-03 2016-04-12 Apple Inc. Input device for touch sensitive devices
US9329703B2 (en) 2011-06-22 2016-05-03 Apple Inc. Intelligent stylus
US9557845B2 (en) 2012-07-27 2017-01-31 Apple Inc. Input device for and method of communication with capacitive devices through frequency variation
US9652090B2 (en) 2012-07-27 2017-05-16 Apple Inc. Device for digital communication through capacitive coupling
US9939935B2 (en) 2013-07-31 2018-04-10 Apple Inc. Scan engine for touch controller architecture
US10048775B2 (en) 2013-03-14 2018-08-14 Apple Inc. Stylus detection and demodulation
US10061450B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch
US10474277B2 (en) 2016-05-31 2019-11-12 Apple Inc. Position-based stylus communication

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008017B2 (ja) * 2006-02-10 2012-08-22 ソニーモバイルディスプレイ株式会社 表示装置
JP4984874B2 (ja) * 2006-12-18 2012-07-25 セイコーエプソン株式会社 電気光学装置及び電気光学装置の製造方法
JP5014971B2 (ja) * 2007-12-19 2012-08-29 ソニーモバイルディスプレイ株式会社 ディスプレイ装置
US8736587B2 (en) * 2008-07-10 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20100008501A (ko) * 2008-07-16 2010-01-26 삼성모바일디스플레이주식회사 액정표시장치
JP4650703B2 (ja) * 2008-12-25 2011-03-16 ソニー株式会社 表示パネルおよびモジュール並びに電子機器
JP5120269B2 (ja) * 2009-01-14 2013-01-16 富士通モバイルコミュニケーションズ株式会社 電子機器
CN101901581A (zh) * 2009-05-31 2010-12-01 鸿富锦精密工业(深圳)有限公司 液晶显示器及其显示参数调节方法
JP2011065133A (ja) 2009-08-20 2011-03-31 Toppan Printing Co Ltd 液晶表示装置、ブラックマトリクス基板、及びカラーフィルタ基板
JP5740132B2 (ja) 2009-10-26 2015-06-24 株式会社半導体エネルギー研究所 表示装置及び半導体装置
US20120293528A1 (en) * 2011-05-18 2012-11-22 Larsen Eric J Method and apparatus for rendering a paper representation on an electronic display
US9030837B2 (en) 2011-06-10 2015-05-12 Scott Moncrieff Injection molded control panel with in-molded decorated plastic film that includes an internal connector
CN102957917B (zh) * 2011-08-30 2016-03-30 比亚迪股份有限公司 一种像素阵列、摄像头及基于该阵列的色彩处理方法
EP2703967B1 (de) * 2012-09-03 2019-10-30 Siemens Aktiengesellschaft Bedieneinrichtung für ein technisches System
US20140152632A1 (en) * 2012-12-04 2014-06-05 Apple Inc. Solar Cell Ambient Light Sensors For Electronic Devices
JP2015025834A (ja) * 2013-07-24 2015-02-05 セイコーエプソン株式会社 電気光学装置および電子機器
CN106932933B (zh) * 2017-05-09 2019-08-27 京东方科技集团股份有限公司 一种液晶天线及其制作方法
EP3401701B1 (en) * 2017-05-11 2021-08-11 ams AG Optical sensor arrangement
CN112447791A (zh) * 2019-08-30 2021-03-05 北京小米移动软件有限公司 显示面板及终端设备
CN215911169U (zh) * 2021-06-30 2022-02-25 华为技术有限公司 显示面板、显示屏及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355797A (ja) * 1998-06-04 1999-12-24 Olympus Optical Co Ltd カラー液晶表示装置
JP2002023658A (ja) * 2000-07-05 2002-01-23 Casio Comput Co Ltd 調光システム
JP2002277872A (ja) * 2001-03-19 2002-09-25 Casio Comput Co Ltd 液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827118A (en) * 1986-07-10 1989-05-02 Minolta Camera Kabushiki Kaisha Light-sensitive device having color filter and manufacturing method thereof
US5501900A (en) * 1993-03-03 1996-03-26 Dai Nippon Printing Co., Ltd. Black matrix substrate, and color filter and liquid crystal display device using the same
US6995753B2 (en) * 2000-06-06 2006-02-07 Semiconductor Energy Laboratory Co., Ltd. Display device and method of manufacturing the same
FI109632B (fi) * 2000-11-06 2002-09-13 Nokia Corp Valkoinen valaisu
EP1343134A4 (en) * 2000-12-06 2008-07-09 Sony Corp TIME CONTROL GENERATION CIRCUIT FOR A DISPLAY AND DISPLAY THEREOF
JP4152699B2 (ja) * 2001-11-30 2008-09-17 シャープ株式会社 信号線駆動回路、および、それを用いた表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355797A (ja) * 1998-06-04 1999-12-24 Olympus Optical Co Ltd カラー液晶表示装置
JP2002023658A (ja) * 2000-07-05 2002-01-23 Casio Comput Co Ltd 調光システム
JP2002277872A (ja) * 2001-03-19 2002-09-25 Casio Comput Co Ltd 液晶表示装置

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441422B2 (en) 2002-02-20 2013-05-14 Apple Inc. Light sensitive display with object detection calibration
US9411470B2 (en) 2002-02-20 2016-08-09 Apple Inc. Light sensitive display with multiple data set object detection
US9134851B2 (en) 2002-02-20 2015-09-15 Apple Inc. Light sensitive display
US9971456B2 (en) 2002-02-20 2018-05-15 Apple Inc. Light sensitive display with switchable detection modes for detecting a fingerprint
US11073926B2 (en) 2002-02-20 2021-07-27 Apple Inc. Light sensitive display
US8570449B2 (en) 2002-02-20 2013-10-29 Apple Inc. Light sensitive display with pressure sensor
US7872641B2 (en) 2002-02-20 2011-01-18 Apple Inc. Light sensitive display
US7830461B2 (en) 2002-05-23 2010-11-09 Apple Inc. Light sensitive display
US7880819B2 (en) 2002-05-23 2011-02-01 Apple Inc. Light sensitive display
US8044930B2 (en) 2002-05-23 2011-10-25 Apple Inc. Light sensitive display
US7880733B2 (en) 2002-05-23 2011-02-01 Apple Inc. Light sensitive display
US7852417B2 (en) 2002-05-23 2010-12-14 Apple Inc. Light sensitive display
US9354735B2 (en) 2002-05-23 2016-05-31 Apple Inc. Light sensitive display
US8207946B2 (en) 2003-02-20 2012-06-26 Apple Inc. Light sensitive display
US8289429B2 (en) 2004-04-16 2012-10-16 Apple Inc. Image sensor with photosensitive thin film transistors and dark current compensation
US7773139B2 (en) 2004-04-16 2010-08-10 Apple Inc. Image sensor with photosensitive thin film transistors
JP2008096523A (ja) * 2006-10-06 2008-04-24 Hitachi Displays Ltd 表示装置
JP2008158273A (ja) * 2006-12-25 2008-07-10 Seiko Epson Corp 電気光学装置
JP2009158553A (ja) * 2007-12-25 2009-07-16 Sony Corp 受光素子および表示装置
US9310923B2 (en) 2010-12-03 2016-04-12 Apple Inc. Input device for touch sensitive devices
US9921684B2 (en) 2011-06-22 2018-03-20 Apple Inc. Intelligent stylus
US8638320B2 (en) 2011-06-22 2014-01-28 Apple Inc. Stylus orientation detection
US9519361B2 (en) 2011-06-22 2016-12-13 Apple Inc. Active stylus
US8928635B2 (en) 2011-06-22 2015-01-06 Apple Inc. Active stylus
US9329703B2 (en) 2011-06-22 2016-05-03 Apple Inc. Intelligent stylus
US9582105B2 (en) 2012-07-27 2017-02-28 Apple Inc. Input device for touch sensitive devices
US9652090B2 (en) 2012-07-27 2017-05-16 Apple Inc. Device for digital communication through capacitive coupling
US9176604B2 (en) 2012-07-27 2015-11-03 Apple Inc. Stylus device
US9557845B2 (en) 2012-07-27 2017-01-31 Apple Inc. Input device for and method of communication with capacitive devices through frequency variation
US10048775B2 (en) 2013-03-14 2018-08-14 Apple Inc. Stylus detection and demodulation
US10067580B2 (en) 2013-07-31 2018-09-04 Apple Inc. Active stylus for use with touch controller architecture
US10845901B2 (en) 2013-07-31 2020-11-24 Apple Inc. Touch controller architecture
US9939935B2 (en) 2013-07-31 2018-04-10 Apple Inc. Scan engine for touch controller architecture
US11687192B2 (en) 2013-07-31 2023-06-27 Apple Inc. Touch controller architecture
US10061449B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch and stylus
US10061450B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch
US10067618B2 (en) 2014-12-04 2018-09-04 Apple Inc. Coarse scan and targeted active mode scan for touch
US10664113B2 (en) 2014-12-04 2020-05-26 Apple Inc. Coarse scan and targeted active mode scan for touch and stylus
US10474277B2 (en) 2016-05-31 2019-11-12 Apple Inc. Position-based stylus communication

Also Published As

Publication number Publication date
US20090128529A1 (en) 2009-05-21
JP2008089619A (ja) 2008-04-17

Similar Documents

Publication Publication Date Title
WO2006104214A1 (ja) 表示装置および電子機器
JP4621734B2 (ja) 表示装置およびこれを備えた電子機器
US8085256B2 (en) Electronic device
US8446390B2 (en) Electro-optical device and electronic apparatus
JP5008017B2 (ja) 表示装置
US8432510B2 (en) Liquid crystal display device and light detector having first and second TFT ambient light photo-sensors alternatively arranged on the same row
WO2006104212A1 (ja) アクティブマトリクス基板およびこれを備えた表示装置並びに電子機器
JP5333964B2 (ja) 光検出装置、電気光学装置及び電子機器
US20100045904A1 (en) Liquid crystal display
US20100128010A1 (en) Liquid crystal display device and method for driving the same
WO2022206687A1 (zh) 一种显示面板、显示模组及电子设备
JP2010056303A (ja) 光センサ及びこの光センサを使用した液晶表示装置
JP2006251636A (ja) 半導体装置
WO2006104204A1 (ja) 表示装置およびこれを備えた電子機器
JP2007304520A (ja) カラー液晶表示装置
JP4370957B2 (ja) 画像読取装置
US20240334795A1 (en) Display panel and display device
WO2006118166A1 (ja) 表示装置およびこれを備えた電子機器
CN112447791A (zh) 显示面板及终端设备
JP2008224896A (ja) 表示装置
JP2009080382A (ja) 液晶装置および電子機器
JP2008158273A (ja) 電気光学装置
WO2006104210A1 (ja) アクティブマトリクス基板、表示装置及び電子機器
JP2008083109A (ja) 表示装置
US20220320463A1 (en) Semiconductor apparatus, display apparatus, photoelectric conversion apparatus, electronic device, illumination apparatus, moving object, and manufacturing method for semiconductor apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11887397

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06730499

Country of ref document: EP

Kind code of ref document: A1