WO2006101230A1 - 放射線画像取得システム、カセッテ、コンソール、放射線画像通信システム及びプログラム - Google Patents
放射線画像取得システム、カセッテ、コンソール、放射線画像通信システム及びプログラム Download PDFInfo
- Publication number
- WO2006101230A1 WO2006101230A1 PCT/JP2006/306143 JP2006306143W WO2006101230A1 WO 2006101230 A1 WO2006101230 A1 WO 2006101230A1 JP 2006306143 W JP2006306143 W JP 2006306143W WO 2006101230 A1 WO2006101230 A1 WO 2006101230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- console
- communication
- image data
- encryption
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T7/00—Details of radiation-measuring instruments
Definitions
- Radiation image acquisition system cassette, console, radiation image communication system and program
- the present invention relates to a radiation image acquisition system, a cassette, a console, a radiation image communication system, and a program.
- FPD Fluorescence Detector
- the DR Digital Radiography
- FPD detects X-rays that have been irradiated, photoelectrically converts them into electrical signals, and processes the electrical signals after photoelectric conversion to obtain X-ray images. It takes a few seconds after X-ray imaging. You can check the image.
- a portable type (force set type) has been developed that incorporates an FPD in a force set and is portable.
- FPD force set type
- a force set with a built-in FPD and a console for image confirmation were connected by a cable, so it was necessary to route the force set so that the cable did not get tangled with the subject during X-ray photography. There was a problem that handling was troublesome.
- Patent Document 1 JP 2004-180931 A
- Patent Document 2 JP 2004-173907 (corresponding to US Patent Publication 2004-114725)
- Patent Document 3 Japanese Patent Laid-Open No. 2002-191586
- Patent Document 5 Japanese Unexamined Patent Publication No. 2004-97635
- Patent Document 7 Japanese Patent Laid-Open No. 2003-126046 (corresponding to US Patent Publication No. 2003-035584)
- Patent Document 8 Japanese Patent Application Laid-Open No. 2004-57592
- radiation imaging may be performed at a place other than the radiation imaging room surrounded by a lead plate, and even if information for identifying an individual is not attached to the radiation image data itself, It was found that there is a problem that radiographic image data of the target individual can be obtained if the timing of radiography of the target individual is specified by another method.
- FIG. 2 is a perspective view showing a schematic configuration of a force set according to an embodiment of the present invention.
- FIG. 4 is a circuit diagram showing a configuration of a circuit centered on a photodetector according to an embodiment of the present invention.
- FIG. 5 is a diagram showing a configuration of encryption processing means according to an embodiment of the present invention.
- Wireless communication includes radio communication, optical communication, and ultrasonic communication.
- Radiographic image data communication or optical communication is preferable for radiographic image data communication.
- the communication using radio waves includes a method of transmitting using radio waves having a frequency of more than 1 GHz and a method of communicating using radio waves having a frequency of 1 GHz or less.
- Information for the radiological image acquisition means of the present invention to obtain radiological image data it is preferable to use a radio wave with a frequency of 1 GHz or less.
- a method of transmitting by radio waves with a frequency exceeding 1 GHz includes, for example, a method using a next-generation mobile phone using, for example, a 4 GHz band, a 2 GHz band, or a 2.1 GHz band, IEEE802.11a, IEEE802.l. Compatible with standards such as ib and IEEE802.l lg 2.4 GHz band and 5.2 GHz band, etc. V, wireless LAN method, FWA (Fixed Wireless Access, fixed using 18 GHz band and 19 GHz band, etc.
- Wireless access 2.45GHz band Bluetooth or 2.4GHz band HomeRF (Home Radio Frequency)
- UWB Ultra Wide Band
- ISM Industrial, Scientific and Medical band
- the light used for communication by light is a force using near infrared rays, near infrared rays, visible light, ultraviolet rays, etc. Communication using near infrared rays (especially near infrared rays having a wavelength of 700 nm or more and 2000 nm or less) is preferable.
- the wireless communication between the console and the force set using the wireless communication may be a form in which the console and the force set directly communicate with each other, or a wireless repeater is provided in the middle of the wireless communication.
- a mode of performing wireless communication via a repeater may be used.
- the wireless communication using these radio waves may be analog communication or digital communication.
- the power source of the force set may be an external power source that supplies external force power such as a power unit connected to the force set via a power line or an AC power source, but an internal power source provided in the force set is preferable because it can be easily handled.
- the internal power source provided in the force set may be a power supply unit provided in contact with the force set, but is preferably an internal power source provided in the force set.
- Radiation is an electromagnetic wave or particle beam that has a strong ionizing or fluorescent action.
- X-rays, y-rays, j8-rays, alpha rays, deuteron rays, proton rays, and other heavy charged particle rays and neutron rays Are listed.
- electron rays, X rays, and ⁇ rays are preferred as radiation, and X rays are particularly preferred.
- a console is a device for an operator to communicate with a force set, and a separate display device or operation device may be connectable, or the display device or operation device is integrated.
- Encryption is the conversion of data in accordance with established rules so that it cannot be stolen or altered by a third party during communication.
- Encryption methods include public key cryptography such as RSA, ElGamal cryptography, and elliptic curve cryptography, and private key cryptography such as RC4, DES, IDEA, FE AL, and MISTY. Good. It is also possible to use the encryption method used in communication standards such as WEP, which is adopted as the security system for IEEE 802. ib.
- the radiation image data obtained by the radiation image acquisition means may be directly encrypted, or may be subjected to encryption processing after other processing such as compression processing. Encrypting after obtaining the compressed data from the radiographic image data obtained by the radiographic image acquisition means reduces the redundancy of the radiographic image data, such as the presence of a missing part in radiography, and decrypts the data. This is preferable because the difficulty increases.
- the radiation image data obtained by the radiation image acquisition means may be directly compressed or may be subjected to force compression processing by performing other processing such as correction processing.
- the compressed data may be directly encrypted, or may be encrypted after other processing.
- the decryption key is to return the encrypted data to a readable state.
- the data obtained by the console communication means may be directly decrypted according to the post-process of the encryption process, or decompressed after performing the process according to the process after the encryption process. You may do it.
- after decryption processing after decryption processing, depending on preprocessing of encryption processing You may process.
- Decompression is restoration of data whose capacity has been reduced while maintaining the meaning of the data by compression processing to the original state.
- the data obtained by the decryption process may be directly decompressed according to the process before the encryption process after the compression process, or may be decompressed after performing other processes.
- the data obtained by the decompression process can be saved directly, or it can be saved after other processes.
- an X-ray image acquisition system 1000 is a type of radiological image acquisition system that acquires radiographic image data, and X-rays using X-rays that are a type of radiation. Image data is obtained.
- the X-ray image acquisition system 1000 is a system that assumes X-ray imaging performed in a hospital.
- the X-ray imaging room R1 that irradiates the subject with X-rays and the X-ray technician irradiates the subject with X-rays. It is placed in the X-ray control room R2 that controls the X-rays and performs image processing of X-ray images obtained by irradiating X-rays.
- a console 1 is provided in the X-ray control room R2.
- the entire X-ray image acquisition system 1000 is controlled by the console 1, and X-ray image capturing control and image processing of the acquired X-ray image are performed.
- a display unit 3 for displaying an X-ray image or the like is connected to the console 1, and the display 1 of the display unit 3 is controlled by the display control unit 11 constituting the console 1.
- the display unit 3 for example, a liquid crystal monitor, a monitor such as a CRT (Cathode Ray Tube) monitor, an electronic bino electronic film, or the like can be used. Characters such as X-ray imaging conditions and image processing conditions and X-ray images are displayed on the display unit 3 under the control of the display control unit 11 of the console 1.
- the input unit 12 receives the instruction content from the operation input unit 2.
- the console control unit 13 determines the imaging conditions based on the instruction content received by the input unit 12 from the operation input unit 2 and the order information received by the network communication unit 18 from the HISZRIS 71. Then, the console control unit 13 transmits an imaging signal useful for imaging such as imaging condition information regarding the imaging condition to the X-ray source 4 and the force set 5 by the console communication unit 14. Control X to take X-ray images.
- the console control unit 13 causes the image storage unit 16 to temporarily store the X-ray image data transmitted from the force set 5 and received by the console communication unit 14.
- the console control unit 13 also controls the X-ray image data force temporarily stored in the image storage unit 16 so that the image processing unit 15 creates thumbnail X-ray image data.
- the display control unit 11 controls the display unit 3 to display a thumbnail image based on the generated thumbnail X-ray image data.
- the console control unit 13 performs image processing based on the instruction content received by the input unit 12 and the order information of the HISZRIS 71, and the image processing unit 15 performs X-ray image data. Control is performed so that the line image data is stored in the image storage unit 16.
- the display control unit 11 is controlled so that the display unit 3 displays a thumbnail image as a result of processing. Further, the console control unit 13 causes the image processing unit 15 to perform re-image processing of the X-ray image data based on the instruction content received by the input unit 12 from the operation input unit 2 thereafter.
- the display control unit 11 is controlled so that the display unit 3 displays the result, and the network communication unit 18 is controlled so that the X-ray image data is transferred, stored, and displayed to an external device on the network. To do.
- the console control unit 13 has a function of managing a channel transmitted by the force set (radiation image acquisition device) 5 and a channel transmitted by other devices using microwaves as a transmission control device.
- the console control unit 13 performs control so that other devices do not transmit with the microwave of the channel and interfere with each other.
- the console control unit 13 performs radio communication that can obtain the antenna power of the radio repeater 6 when a new device is introduced or always through the radio repeater 6 connected to the console communication unit 14 by a communication cable. Channel information is acquired, and the channel used by other devices is confirmed and stored.
- the console control unit 13 changes the channel of the force set 5 if possible, and if possible. Control to change the channel of other devices. In addition, if it is impossible to change each channel, the console control unit 13 warns the display unit 3 not to use other devices when transmitting radiation X-ray image data. The display control unit 11 is controlled to display a notification.
- the console control unit 13 includes a CPU (Central Processing Unit) and a RAM (Random
- ROM Access Memory
- ROM Read Only Memory
- the CPU reads the program stored in the ROM or hard disk, expands the program on the RAM, and controls each part of the console 1, the X-ray source 4, the force set 5, and the external device according to the expanded program.
- the CPU reads various processing programs including system programs stored in the ROM or hard disk and stores them in the RAM. And various processes described later are executed.
- the ROM is a non-volatile memory, for example, and stores a system program executed by the CPU, various programs corresponding to the system program, and the like. These various programs are stored in the form of readable program code, and the CPU sequentially executes operations according to the program code.
- the display control unit 11 controls the display unit 3 to display images, characters, and the like based on X-ray image data, character data, and the like based on the control of the console control unit 13.
- a graphic board or the like can be used for the display control unit 11.
- the communication cable connecting the console communication unit 14 to the X-ray source 4 and the wireless repeater 6 is detachable.
- image transfer can be performed at high speed, so X-ray image acquisition, X-ray image processing, X-ray image confirmation, etc. can be performed in a shorter time.
- the image processing unit 15 performs image processing on the X-ray image data received from the force set 5 by the console communication unit 14.
- the image processing unit 15 performs X-ray image data correction processing, enlargement compression processing, spatial filtering processing, recursive processing, gradation processing, scattered radiation correction processing, grid correction processing, frequency enhancement processing, dynamic Image processing such as range (DR) compression is performed.
- the image storage unit (image storage unit) 16 has a storage device for storing X-ray image data.
- the console communication unit 14 temporarily stores X-ray image data received from the force set 5, Save the processed X-ray image data.
- the console power supply unit 17 is supplied with power from an external power source (not shown) such as an AC power source, or an internal power source (not shown) such as a knotter and a battery, and constitutes the console 1. Power is supplied to each part.
- an external power source such as an AC power source, or an internal power source (not shown) such as a knotter and a battery, and constitutes the console 1. Power is supplied to each part.
- the external power supply of the console power supply unit 17 is detachable.
- the console power supply 17 is supplied with power from an external power supply, it is not necessary to charge, so it is possible to shoot for a long time.
- the network communication unit 18 communicates various types of information between the console 1 and an external device via a LAN (Local Area Network).
- a LAN Local Area Network
- an external device for example, HIS / RI 3 ⁇ 4 (Hospital Information System / Radiology Information system: In-hospital ⁇ Blue News Nam Z Radiology Information System) terminal 71, imager 72, image processing terminal 73, view ⁇ 74, file server 75, etc. Can be connected.
- the network communication unit 18 is configured according to a predetermined protocol such as DICO M (Digital Imaging and Communications in Medicine). Line image data is output to an external device.
- DICO M Digital Imaging and Communications in Medicine
- the display control unit 11 and the console control unit 13 are provided separately, but the display control unit and the console control unit may be separate bodies.
- a mother board having a CPU and a memory mounted as a console control unit is used, and a graphic subsystem incorporated in the mother board is used as a display control unit.
- the console control unit 13 may also serve as a display control unit.
- the image processing unit 15 may be a force console control unit 13 that is a separate body from the console control unit 13 and also serves as the image processing unit.
- the console control unit 13 has the function of a transmission control device, and both are integrated.
- the present invention is not limited to this, and the console control unit 13 and the transmission control device are separated. It may consist of a body.
- the transmission control device may be provided in the console 1 or may be provided independently as a device different from the console 1.
- a radio repeater 6 for relaying communication between the console 1 and the force set 5 is installed.
- the wireless repeater 6 performs wireless communication with the force set 5 by the wireless method described later. It communicates with console 1 via a communication cable. Then, the control signal transmitted from the console 1 is received by the force set 5 via the wireless repeater 6, and various signals are transmitted from the force set 5 to the console 1.
- the wireless repeater 6 connects an internal power source 51 of a force set 5 described later. It has the function of a charger for charging.
- the wireless repeater 6 is provided with a connector. When this connector and the force set 5 are connected, the internal power supply 51 of the force set 5 is charged.
- the wireless repeater 6 is preferably formed so that the force set 5 can be easily attached and detached. Further, the wireless repeater 6 may have a function as a holder when the force set 5 is not used, in addition to the function as a charger of the force set 5.
- the X-ray room R1 also includes an X-ray source 4 that irradiates the subject with X-rays, and a radiation image acquisition device that detects the X-rays irradiated to the subject and acquires X-ray image data. Force set 5 is placed.
- the X-ray room R1 is a room covered with an X-ray shielding member so that X-rays from the X-ray source 4 do not leak out of the X-ray room R1.
- an X-ray shielding member is a metal member such as a lead plate, that is, a conductive member, and has a property of suppressing transmission of radio waves and a property of reflecting radio waves.
- the force set 5 is portable and can be taken out of the X-ray room R1.
- the wireless repeater 6 communicates with the console 1 via a communication cable. Then, the image data acquired by the force set 5 is transmitted to the console 1 via the wireless repeater 6, and a control signal and a shooting signal such as various information are communicated between the console 1 and the force set 5.
- the console 1 and the radio repeater 6 are connected by a cable, and the radio repeater 6 is disposed in the X-ray radiographing room R1, so that X-ray imaging separated from the console 1 by a radiation shielding member. Even if force set 5 is used in room R1, good wireless communication is possible.
- the X-ray source 4 is provided with an X-ray source control unit 43, and the high-pressure generation source 41 and the X-ray tube 42 are connected to the X-ray source control unit 43, respectively.
- the X-ray source control unit 43 drives and controls each unit of the X-ray source 4 based on the control signal transmitted from the console communication unit 14. That is, the X-ray source control unit 43 controls the high pressure generation source 41 and the X-ray tube 42.
- the force set 5 as the radiation image acquisition apparatus includes a housing 55 as shown in FIG. It is.
- the casing 55 is made of a light metal such as aluminum or magnesium. By using a lightweight metal for the housing 55, the strength of the housing 55 can be maintained.
- the operator adjusts the force setting 5 and the position and orientation of the subject so that X-rays transmitted at the desired position 'direction of the subject are photographed (in some cases, the X-ray source 6 ) O
- X-ray source 4 generates X-rays in response to an instruction from console 1. Then, the X-ray that has passed through the subject at the desired position 'is incident on the force set 5 from the X-ray source 4.
- the force set 5 is provided with an internal power supply 51, a force set communication unit 52, a force set control unit 53, and a nonel 54.
- the internal power supply 51, the force set communication unit 52, the force set control unit 53, and the panel 54 are each connected to a bus in the force set 5.
- the internal power supply 51 is provided in each part such as a panel 54 as a radiation image acquisition unit disposed in the force set 5, a force set communication unit 52 as a communication unit, and a force set control unit 53 as a control unit. , Supplying power to drive them.
- the internal power supply 51 is provided with a capacitor that can be charged and can handle the power consumed during shooting. As the capacitor, an electrolytic double layer capacitor can be applied.
- a primary battery such as a manganese battery, a nickel-cadmium battery, a mercury battery, or a lead battery that requires battery replacement, or a rechargeable secondary battery can be applied.
- the force set has a plurality of power supply states with different power supply states, and changes the power supply state of the force set with appropriate timing.
- a power supply state for example, it is preferable to have a shootable state and a state of lower power consumption than the shootable state. It is preferable to have a state under control of a plurality of shooting standby modes and a state under sleep mode control with lower power consumption.
- the imaging operation is an operation necessary for obtaining radiographic image data by radiography.
- the electric power generated by panel initialization and radiation irradiation is used. These operations are energy storage, electrical signal reading, and radiation image data conversion.
- the radiographable state is a state in which radiation image data can be obtained immediately by this radiographing operation.
- the force set communication unit 52 demodulates the reception signal input to the antenna 521 and the antenna 521 that transmits / receives various signals to / from the console communication unit 14, or modulates and amplifies various signals to output to the antenna 521.
- the force set communication unit 52 transmits various signals to the console communication unit 14 via the wireless repeater 6 through wireless communication. It functions as a communication means capable of transmitting and receiving.
- the antenna 521 is provided outside the housing 55. Specifically, it is disposed close to the outside of the housing 55 and the side surface of the force set 5. It may be provided close to the back surface on the side opposite to the side irradiated with X-rays on the side of the force set 5.
- the shape and arrangement of the antenna are not limited to those illustrated.
- a wireless circuit 522 to which an antenna 521 is connected is provided inside the housing 55, and the antenna 521 transmits and receives radio waves when the wireless circuit 522 is driven.
- the radio wave applied to the antenna 521 and the radio circuit 522 is a radio wave having a frequency exceeding 1 GHz of a predetermined channel set in advance.
- the console communication unit 14 force also indicates whether to apply a voltage from the internal power supply 51 to each drive unit such as various circuits inside the force set 5.
- the operation state of the force set 5 can be switched by this instruction signal.
- a signal notifying that X-rays are emitted, an instruction signal (timing signal) for instructing the reading timing of the X-ray image data to the panel 54, a signal for instructing to transfer the X-ray image data, and the X-ray image data are normal. Signal and other signals that indicate that it has been received.
- the signal transmitted from the force set communication unit 52 to the console communication unit 14 includes, for example, a signal notifying the operation state of the force set 5, a signal notifying that the X-ray image data is ready to be transmitted, and the like. Signals for shooting are listed.
- the force set communication unit 52 can transmit X-ray image data to the console communication unit 14 via the wireless repeater 6. That is, when a predetermined signal is transmitted from the console 1, the force set communication unit 52 acquires the console communication unit 14 from the panel by wireless communication via the antenna 521 and the wireless repeater 6 communication cable. Large-capacity X-ray image data can be transmitted quickly and reliably.
- the force set control unit 53 serves as a control means for receiving the control signal received by the force set communication unit 52. Based on the imaging signal such as No. 1, the control unit controls the panel 54, the force set communication unit 52, and the like disposed in the force set 5.
- the panel 54 functions as a radiation image acquisition unit that outputs (detects) X-ray image data based on X-rays transmitted through the subject.
- the panel 54 of the present embodiment is an indirect flat panel detector (FPD).
- FIG. 2 is a perspective view showing a schematic configuration of the force cassette 5
- FIG. 3 is a cross-sectional view of the cassette 5 centering on the panel 54.
- the panel 54 is provided with a scintillator 541 that detects X-rays transmitted through the subject and converts the detected X-rays into fluorescence in the visible region (hereinafter referred to as “visible light”) in layers.
- a scintillator 541 that detects X-rays transmitted through the subject and converts the detected X-rays into fluorescence in the visible region (hereinafter referred to as “visible light”) in layers.
- a protective layer (not shown) is provided on the upper layer of the scintillator 541!
- the protective layer protects the scintillator and completely covers the top and edges of the scintillator.
- any material may be used as long as it has the effect of protecting the scintillator from moisture.
- a phosphor having hygroscopicity in particular, a columnar crystal phosphor made of alkali halide and further alkali halide
- a podium formed by the CVD method disclosed in USP 6469305 is used.
- an organic film made of riparaxylylene an organic film formed of a polymer containing a silazane or a siloxazan type polymer compound such as polysilazane or polysiloxazan, or an organic film formed by a plasma polymerization method. I prefer it.
- a radiation detector 542 X-ray detector
- a radiation detector formed of amorphous silicon are stacked and extended. Visible light emitted from the scintillator 541 is converted into electrical energy and output.
- the panel 54 is preferably composed of pixels of 1000 X 1000 pixels or more (especially 2000 X 2000 pixels or more) from the viewpoint of diagnostic performance of X-ray images!
- the panel 54 is preferably composed of pixels of 10,000 x 10,000 pixels or less (especially 6000 x 6000 pixels or less) from the viewpoint of human visibility and X-ray image processing speed! ! / ⁇ . It is also preferred to ensure the immediateness of communication by high-speed encryption processing.
- the size of the imaging area of the panel 54 is preferably 10 cm X 10 cm or more (especially, 20 cm X 20 cm or more) from the viewpoint of diagnostic properties by X-ray images!
- the size of the shooting area of panel 54 is preferably 70cm x 70cm or less (especially 50cm x 50cm or less)! / ⁇ .
- the size of one pixel of panel 54 is preferably 40 m X 40 m or more (especially 70 m X 70 m or more) from the viewpoint of reducing X-ray exposure!
- the panel 54 is composed of 4096 ⁇ 3072 pixel covers, the imaging area has an area force of S430 mm ⁇ 320 mm, and the size of one pixel is 105 m ⁇ 105 ⁇ m.
- the photodetector 542 has a two-dimensionally arranged collection electrode 5421 for reading out the electric energy stored in accordance with the intensity of the irradiated X-rays.
- the collecting electrode 5421 is one electrode of a capacitor 5424 so that electric energy can be stored in the capacitor 5424.
- one collecting electrode 5421 corresponds to one pixel of X-ray image data.
- a scanning line 5422 and a signal line 5423 are disposed between the collecting electrodes 5421 adjacent to each other.
- the scanning line 5422 and the signal line 5423 are orthogonal to each other.
- a switching thin film transistor 5425 (TFT: Thin Film Transistor, hereinafter referred to as a transistor) for controlling storage and reading of electric energy is connected to the capacitor 5424.
- the transistor 5425 has a drain electrode or a source electrode connected to the collection electrode 5421 and a gate electrode connected to the scanning line 5422. When the drain electrode is connected to the scanning line 5422, the source electrode is connected to the signal line 5423, and when the source electrode is connected to the collection electrode 5421, the drain electrode is connected to the signal line 5423.
- an initialization transistor 5427 to which a drain electrode is connected is provided on the signal line 5423. The source electrode of this transistor 5427 is grounded! The gate electrode is connected to the reset line 5426.
- the transistor 5425 and the transistor 5427 are preferably formed using a silicon stacked structure or an organic semiconductor.
- a reset line 5426 to which a reset signal RT is transmitted from the scan drive circuit 543 is connected to the scan drive circuit 543 at right angles to the signal line 5423.
- the reset line 5426 is connected to the gate electrode of the initialization transistor 5427 that is turned on by the reset signal RT.
- the gate electrode is connected to the reset line 5426
- the drain electrode is connected to the signal line 5423
- the source electrode is grounded.
- the scanning line 5422 includes a scanning drive circuit that supplies a readout signal RS to the scanning line 5422.
- Road 543 is connected.
- the transistor 5425 connected to the scan line 5422 to which the read signal RS is supplied is turned on, and the electric energy accumulated in the capacitor 5424 connected to the transistor 5425 is read and supplied to the signal line 5423.
- the scan driving circuit 543 can generate a signal for each pixel of the X-ray image data by driving the transistor 5425.
- a signal reading circuit 544 is connected to the signal line 5423. Electric energy stored in the capacitor 5424 and read out to the force signal line 5423 is supplied to the signal reading circuit 544.
- the signal reading circuit 544 includes a signal converter 5441 that supplies a voltage signal SV proportional to the amount of electric energy supplied to the signal reading circuit 544 to the AZD converter 5442, and a voltage signal SV from the signal converter ⁇ 5441.
- An AZD conversion 5442 is provided that converts the signal into a digital signal and supplies it to the data conversion unit 545.
- a data conversion unit 545 is connected to the signal reading circuit 544.
- the data converter 545 generates X-ray image data based on the digital signal supplied from the signal reading circuit 544.
- a signal conversion circuit (data conversion circuit) is constituted by the signal reading circuit 544 and the data conversion unit 545.
- the console control unit 13 receives the X-ray image data according to the imaging method selected by the operator. Control signals such as decimation, pixel averaging, and region extraction are transmitted to the force set control unit 53.
- the cassette control unit 53 performs control so as to execute the following decimation, pixel averaging, and region extraction in accordance with the received control signals such as decimation, pixel averaging, and region extraction.
- the pixel average can be calculated by simultaneously driving a plurality of scanning lines 5422 and performing analog addition of two pixels in the same column direction.
- the pixel average is not limited to being calculated by adding two pixels, but can be easily obtained by performing analog addition of a plurality of pixels in the column signal wiring direction.
- 2 ⁇ 2 in combination with the above-mentioned analog addition by digitally adding adjacent pixels after AZD conversion output The sum of square pixels such as can be obtained. As a result, it is possible to read data at high speed without making the irradiated X-rays useless.
- the area extraction has a means for limiting the X-ray image data capturing area. This is because the X-ray image data acquisition area that requires force, such as instructions for the imaging method, is specified, and the force setting control unit 53 determines the data acquisition range of the scanning drive circuit 543 based on the acquired acquisition area.
- the panel 54 drives the changed capture range.
- a memory 546 is connected to the data conversion unit 545.
- the memory 546 stores the X-ray image data generated by the data conversion unit 545. Further, the memory 546 stores gain correction data in advance.
- the stored X-ray image data can be transmitted from force set 5 to console 1 at a communication speed corresponding to the communication state between force set 5 and console 1.
- the capacity of the memory 546 is preferably 4 or more (particularly 10 or more) in terms of the number of images that can store images of the maximum data size from the viewpoint of shooting efficiency. Further, the capacity of the memory 546 is preferably 100000 or less (particularly 100 or less) in terms of the number of images that can be stored with the maximum data size from the viewpoint of low cost.
- the scintillator 541 is completely covered with a protective layer at the top and edges, and a support 547 at the bottom.
- a covered configuration is preferred. In this case, water vapor in the atmosphere is blocked by the protective layer and the support 547, and deterioration of the scintillator 541 by moisture can be suppressed.
- an internal power source 51 On the lower surface of the X-ray shielding member 549, an internal power source 51, a force set control unit (control means) 53, and a data conversion circuit (signal reading circuit 544 and data conversion unit 545) are provided.
- the internal power supply 51, the force set control unit (control means) 53, and the data conversion circuit X-rays are absorbed by the X-ray shielding member 549, so the internal power supply 51, the force set control unit (control means) 53 and the data conversion X-rays are not scattered by the circuit and reflected on the panel 54. Thereby, the panel 54 can acquire high-quality X-ray image data.
- the force set 5 is driven by the power from the internal power supply unit 51 and is portable, and the force set communication unit 52 and the console communication unit 14 communicate via wireless communication. While maintaining linkage with the console 1, it is possible to improve shooting efficiency with good operability.
- the power shown in the example in which the panel 54 is configured by one panel having 4096 ⁇ 3072 pixels is not limited to this, and for example, four panels having nonel 54 force S2048 ⁇ 1536 pixels are provided. What consists of a small panel can also be used. When a panel is composed of multiple small panels in this way, the four small panels are combined into a single panel. However, since the yield of each panel is improved, there is an advantage that the yield is improved as a whole and the cost is reduced.
- AZD modification 5442 is provided in the signal reading circuit 544 , but the present invention is not limited to this, and a plurality of AZD modifications can be applied.
- the number of AZD converters is preferably 4 or more, particularly 8 or more in order to shorten the image reading time and obtain a desired SZN ratio.
- the number of AZD converters is preferably 64 or less, particularly 32 or less, in order to reduce cost and reduce size. As a result, the analog signal band and the AZD conversion rate are not increased unnecessarily.
- the force shown in the example of the support 547 formed of glass is not limited to this, and a support formed of a resin or the like can be applied.
- the power console 1 that states that the console 1 is installed in the X-ray control room R2 may be a portable terminal capable of wireless communication.
- a radio repeater is also installed in the X-ray control room R2, and the console communication unit 14 can communicate wirelessly with the radio repeater 6 in the X-ray radiographing room R1 and with the radio repeater in the X-ray control room R2.
- it is preferable that communication with the force set 5 is possible in both the X-ray imaging room R1 and the X-ray control room R2.
- the console controller 13 can also obtain the antenna force of the radio repeater 6 when a new device is introduced or always through the radio repeater 6 connected to the console communication unit 14 via a communication cable.
- Channel information for wireless communication is acquired, and the channel used by other devices is confirmed and stored.
- the console control unit 13 controls the display unit 11 to display on the display unit 3 the fact that it has been installed and the channel information being used.
- the console control unit 13 displays that fact on the display unit 3 and is a device in which another newly introduced device can change the channel. Judge whether or not. If the channel of another device can be changed, the console control unit 13 changes the channel of the other device to one of the searched empty channels, and displays that the channel has been changed and the channel after the change.
- the display control unit 11 is controlled as in part 3.
- the console control unit 13 Control the display control unit 11 so that the display unit 3 displays that effect, and then display a warning message on the display unit 3 so as not to use other devices when transmitting X-ray image data.
- the display control unit 11 is controlled to perform.
- the force setting control unit 53 performs control so as to keep the scanning drive circuit 543 in the OFF state.
- the scanning drive circuit 543 is not connected to the collection electrode 5421 so that the scanning line 5422, the signal line 5423, and the reset line 5426 are set to the same potential and no bias is applied to the collecting electrode 5421.
- Control unit 53 controls.
- the force setting control unit 53 may keep the power supply of the signal reading circuit 544 in the OFF state and set the potentials of the scanning line 5422, the signal line 5423, and the reset line 5426 to the GND potential.
- the state in which no bias is applied to the scanning drive circuit 543 and the signal reading circuit 544 includes a photographing standby mode and a sleep mode.
- the scan drive circuit 543 and the signal reading circuit 544 not only apply a bias potential to the photodiode but also rise quickly so that power is not supplied to the scan drive circuit 543 and the signal reading circuit 544 as well. This is preferable because it can further reduce power consumption. Further, since no signal is generated in the shooting standby mode, it is preferable not to supply power to the data conversion unit 545 because it can further reduce power consumption. It is also preferable to provide a sleep mode that consumes less power than the shooting standby mode. Then, it is preferable to shift to the sleep mode after the captured image is completely transmitted to the console 1.
- the sleep mode it is possible to stop the power supply to the power set communication unit 52 or the entire transmission function and power supply to the memory, leaving only the functions necessary for starting up to the shooting standby mode by an instruction from the console 1.
- the console 1 Like U ⁇ . That is, in the sleep mode, no bias potential is applied to the photodiode, and the high-speed transmission function or the entire transmission function of the scanning drive circuit 543, the signal reading circuit 544, the data conversion unit 545, the memory 546, and the force set communication unit 52 It is preferable not to supply power. As a result, wasteful power consumption can be further suppressed.
- the scanning line 5422, the signal line 5423, and the reset line 5426 Since the potential is the same and no bias is applied to the collecting electrode 5421, that is, the voltage is not substantially applied to a plurality of pixels, the deterioration is caused by the voltage being substantially applied to the PD or TFT. That is, deterioration of a plurality of pixels can be suppressed. In addition, wasteful power consumption can be reduced.
- the input unit 12 in which the 1st switch of the X-ray irradiation switch is turned on or predetermined items such as subject information and imaging information are input via the operation input unit 2
- Console control unit 13 determines the shooting conditions based on the instruction contents of the operator and powerful order information such as HISZRIS71. Based on these shooting conditions!
- the obtained radiography preparation instruction signal is transmitted to the X-ray source control unit 43 and the force setting control unit 53 via the console communication unit 14 to shift to a radiographable state.
- the X-ray source control unit 43 drives and controls the high-voltage generation source 41 to shift to a state in which a high voltage is applied to the X-ray tube 42.
- the force setting control unit 53 When the force setting control unit 53 receives the shooting preparation instruction signal, the force setting control unit 53 shifts to a shooting ready state. That is, all pixels are reset at predetermined intervals until a shooting instruction is input in a shooting enabled state, thereby preventing electrical energy from being accumulated in the capacitor 5424 due to dark current. Since it is unknown how long the shooting can be continued, the predetermined interval is set longer than that during shooting, and the ON time of the transistor 5425 is set shorter than that during shooting. As a result, in a state in which photographing can be performed, the reading operation with a load on the transistor 5425 is reduced. Then, after shifting to the photographing enabled state, the force setting control unit 53 transmits a photographing enabled state transition signal to the console 1. When the console control unit 13 receives the imaging ready state transition signal, the console control unit 13 controls the display control unit 11 so that the display unit 3 displays the force setting imaging ready state display indicating that the force setting has shifted to the imaging ready state. .
- the console control unit 13 determines the shooting condition based on the instruction content of the operator or the order information from the HISZRIS71, and the shooting condition information regarding this shooting condition. Is transmitted to the X-ray source control unit 43 and the force set control unit 53 via the console communication unit 14. For example, a signal transmitted from the console communication unit 14 to the force set control unit 53 is transmitted via the wireless repeater 6 to the force set communication unit 5 of the force set 5. The signal is received by the second antenna 521, and the received signal is demodulated by the radio circuit 522 and sent to the force set control unit 53.
- the console control unit 13 When the console control unit 13 receives an X-ray irradiation instruction from the operator such as turning on the 2nd switch of the X-ray irradiation switch, for example, the console control unit 13 transmits an imaging instruction signal to the force setting control unit 53 of the force set 5. Then, after an X-ray irradiation instruction is input to the console control unit 13, the console control unit 13 controls the X-ray source 4 and the force set 5 and performs imaging while synchronizing them.
- the force setting control unit 53 When receiving the imaging instruction signal, the force setting control unit 53 initializes the panel 54 and shifts to a state in which the panel 54 can store electrical energy. Specifically, refreshing is performed, and all pixels dedicated for the imaging sequence are reset a predetermined number of times and all pixels dedicated to the electric energy storage state are reset to transit to the electric energy storage state. Required power for exposure The short period of time required for completion of preparation for imaging is required for practical use. For this purpose, all pixels dedicated to the imaging sequence are reset. In addition, when an exposure request is generated even for a state force that can be taken in an imaging-ready state, operability can be reduced by shortening the period until the preparation for imaging is completed by entering the immediate imaging sequence drive. To improve.
- the force set control unit 53 sends a preparation completion signal for the force set 5 from the force set communication unit 52 to the console communication unit 14 via the wireless repeater 6. Send.
- the console communication unit 14 transmits a force set preparation end signal to the console control unit 13.
- the console control unit 13 transmits an X-ray irradiation signal to the X-ray source 4 when receiving the force set preparation completion signal and receiving the X-ray irradiation instruction.
- the X-ray source control unit 43 drives and controls the high-pressure generation source 41 to apply a high pressure to the X-ray tube 42 and generate X-rays from the X-ray source 4.
- X-rays generated from the X-ray source 4 are irradiated to the subject after the X-ray irradiation range is adjusted by an X-ray aperture device provided at the X-ray irradiation port.
- the console control unit 13 controls the display control unit 11 so that the display unit 3 displays a display during X-ray imaging indicating that X-ray imaging is being performed.
- the X-ray that has passed through the subject is incident on the force set 5.
- X-rays incident on the force set 5 are converted into visible light by the scintillator 541.
- the X-ray dose sensor 548 detects the X-ray dose irradiated to the force set 5. When the detected X-ray irradiation amount reaches a predetermined amount, the X-ray dose sensor 548 transmits a predetermined X-ray dose signal to the force set control unit 53. When the force set control unit 53 receives the predetermined X-ray dose signal, the force set control unit 53 transmits an X-ray end signal to the console communication unit 14 via the wireless repeater 6.
- the console communication unit 14 When receiving the X-ray end signal, the console communication unit 14 transmits the X-ray end signal to the console control unit 13 and transmits the X-ray irradiation stop signal to the X-ray source control unit 43.
- the X-ray source control unit 43 receives this X-ray irradiation stop signal, the X-ray source control unit 43 drives and controls the high-pressure generation source 41, and the high-pressure generation source 41 stops applying high pressure to the X-ray tube 42. This stops X-ray generation.
- the force set control unit 53 drives the scanning drive circuit 543 and the signal reading circuit 544 based on the X-ray end signal. Dynamic control.
- the scanning drive circuit 543 reads the electrical energy acquired by the photodetector 542 and inputs the acquired electrical energy to the signal reading circuit 544.
- the electrical energy acquired by the photodetector 542 may be read after a predetermined time from the start or end of transmission of the X-ray end signal, or the electrical energy acquired by the photodetector 542 at the same time as the end of transmission.
- the engineering energy may be read out.
- the signal reading circuit 544 converts the input electrical energy into a digital signal.
- the data conversion unit 545 configures the digital signal into X-ray image data.
- the memory 546 temporarily stores the X-ray image data configured by the data conversion unit 545.
- the force setting control unit 53 acquires X-ray image data, and then acquires correction X-ray image data.
- the correction X-ray image data is dark X-ray image data that is not irradiated with X-rays, and is used to correct the X-ray image in order to obtain a high-quality X-ray image.
- the method for acquiring X-ray image data for correction is the same as the method for acquiring X-ray image data except that X-rays are not irradiated.
- the electrical energy storage time is set to be the same when X-ray image data is acquired and when correction X-ray image data is acquired.
- the electric energy storage time is the time from when the reset operation is completed, that is, until the transistor 5425 is turned off at the time of resetting, and then the transistor 5425 is turned on to read the electric energy. is there. Therefore, the timing at which electric energy accumulation starts and the electric energy accumulation time are different for each scanning line 5422.
- the data conversion unit 545 performs offset correction on the configured X-ray image data based on the acquired X-ray image data for correction, and subsequently acquires the gain correction data stored in the memory 546 in advance. Gain correction based on the data. In the case of a panel composed of insensitive pixels or a plurality of small panels, the correction process derived from the panel is completed by continuously interpolating the image so that no discomfort occurs at the joints of the small panels. .
- the force set control unit 53 that is a separate body from the force set control unit 53 may also serve as the data conversion unit 545.
- the force set 5 then encrypts and transmits the image data corrected based on the X-ray image data (not corrected !, which may be the X-ray image data as it is).
- the force set 5 is provided with an encryption processing means for encrypting the X-ray image data to be transmitted, and the console 1 is provided with a decryption processing means for decrypting the encrypted X-ray image data.
- Such an encryption processing means may serve as the force set control unit 53 or the force set communication unit 52, or an encryption key processing unit may be provided separately from these.
- such a decoding processing means may be served by the wireless repeater 6, the console communication unit 14, the console control unit 13 or the image processing unit 18, or a decoding key processing unit may be provided separately from these. Good.
- the encryption key processing means is also used as the force set communication unit 52, and the decryption key processing means is also used as the console communication unit 14.
- WEP Wi-Fi Protected Access: TKIP3 ⁇ 4EEE802.lx
- AES Advanced Encryption Standard
- the SSID Service Set Identifier: an ID unique to the connected device and ignores packets that do not match the SSID included in the packet header
- MAC Media Access Control (Media Access Control) address (LAN card specific address) filtering function (registered ANY connection denial function (a function that is set as an access point and the client's SSID setting is “ANY”).
- the ability to connect to an access point with any SSID is usually provided.
- a function that does not include the SSID in the beacon signal user authentication by the authentication (RADIUS) server specified in IEEE802.lx (reject all communication from unauthenticated terminals, and allow communication only to authenticated users)
- Other functions may be added.
- the force set 5 is set with a service set ID (SSID), and the force set communication unit 52 sets this setting to data obtained by compressing and encrypting the X-ray image data. It is transmitted by wireless communication together with the service set ID information.
- the console communication unit 14 of the console 1 is also set with a service set ID, and the console communication unit 14 only receives the data signal transmitted together with the information of the same service set ID as the set service set ID. Receive. In other words, it has an SSID function including an ANY connection rejection function that rejects connection with an access point when the client's SSID setting capability is “ANY”.
- the force set 5 is provided with compression processing means for compressing the X-ray image data to be transmitted, and the console 1 decompresses the compressed X-ray image data or the image data corrected based on the X-ray image data.
- a thawing processing means may serve as the force set control unit 53 or the force set communication unit 52, or a compression processing unit may be provided separately from these.
- a decompression processing means may serve as the wireless repeater 6, the console communication unit 14, the console control unit 13, or the image processing unit 18, or a decompression processing unit may be provided separately from these. .
- the force setting communication unit 52 is also used as the compression processing means, and the console communication unit 14 is also used as the decompression processing means.
- the X-ray image data stored in the memory 546 and the image data corrected based on the X-ray image data are compressed and then encrypted, and the data is transmitted from the force set communication unit 52.
- the data transmitted and received by the console communication unit 14 is preferably decrypted and then decompressed. That is, the X-ray image data compressed by the compression processing means or the image data corrected based on the X-ray image data is encrypted by the encryption means, and wirelessly transmitted from the force set communication unit 52 to the wireless repeater 6, Wireless repeater 6 is wirelessly transmitted X-ray image data obtained by decoding the data received by the console communication unit 14 by the decoding processing means or image data corrected based on the X-ray image data by the decompression processing means. It is preferable to thaw.
- the encryption processing unit 52a as the encryption key processing unit in the force set communication unit 52 of the present embodiment performs the above-described X-ray image data (or X-ray data).
- Compression processing unit 52b as compression processing means for performing compression processing on image data (corrected based on image data), selector 52c for selecting an encryption method for the data subjected to compression processing by compression processing unit 52b, and compression processing unit
- the WEP encryption unit 52d encrypts the data compressed by 52b using the WEP method.
- the TKIP encryption unit 52e encrypts the data compressed by the compression processing unit 52b using the TKIP method.
- the transmitting unit 52f performs processing for transmitting the data encrypted by the WEP encryption unit 52d or the TKIP encryption unit 52e to the console 1.
- the compression processing unit 52b does not perform the compression processing, and first selects the encryption method by the selector 52c.
- the selector 52c selects an encryption method suitable for the data, and selects the selected WEP.
- the decryption unit 14d or the TKIP decryption unit 14e performs the decryption process on the data subjected to the reception process by the reception unit 14b.
- the decompression processing unit 14f performs decompression processing on the data decrypted by the WEP decryption unit 14d or the TKIP decryption unit 14e, and the decompressed processing unit 14f saves the image as an image. It is designed to be sent to part 16.
- the decompression processing unit 14f does not perform the decompression processing and sends the decrypted data to the image storage unit 16 as it is.
- the encryption method and the like are determined by switching the setting switch 56 so that an instruction is issued to the selector 52c.
- the setting switch 56 may be a software switch that is switched by an instruction issued by the force setting control unit 53 according to various conditions, or may be a hardware switch that can be switched at the operator's will.
- console control unit 13 When the console control unit 13 receives the X-ray image data, the console control unit 13 temporarily stores it in the image storage unit 16. Then, the console control unit 13 performs control so that thumbnail image data is created from the X-ray image data temporarily stored in the image storage unit 16 by the image processing unit 15. The display control unit 11 controls the display unit 3 to display a thumbnail image based on the created thumbnail image data.
- the image processing unit 15 performs image processing on the X-ray image data based on the content of the operator's instruction and the order information from the HISZRIS71 or the like!
- the image-processed X-ray image data is displayed on the display unit 3 and simultaneously transmitted to the image storage unit 16 and stored as X-ray image data. Further, the image processing unit 15 re-images the X-ray image data based on an instruction from the operator, and the display unit 3 displays the image processing result of the X-ray image data.
- the network communication unit 18 transfers the X-ray image data to an imager 72, an image processing terminal 73, a view screen 74, a file server 75, etc., which are external devices on the network.
- the transferred external device functions correspondingly. That is, the imager 72 records this X-ray image data on an image recording medium such as a film.
- the image processing terminal 73 performs image processing of this X-ray image data and CAD (Computer Aided Diagnosis (Computer Diagnosis Support) is processed and stored in the file server 75.
- CAD Computer Aided Diagnosis (Computer Diagnosis Support) is processed and stored in the file server 75.
- oView 74 displays an X-ray image based on this X-ray image data.
- the file server 75 stores this X-ray image data.
- the data signal transmitted by wireless communication is a signal obtained from the encrypted data
- the data signal that was intercepted and transmitted should leak.
- the intercepted person cannot practically obtain an X-ray image.
- the risk that the redundancy of the X-ray image itself (for example, the missing area of the X-ray image) is used in decryption is the risk of the compression process. Redundancy is reduced after being reduced, and it is reduced by encryption, increasing the difficulty of decryption. Even if the data signal that is intercepted and transmitted is leaked, the intercepted person obtains an X-ray image This is not practically possible.
- the console 1 can receive a data signal from the force set 5 set with the same service set ID, and the occurrence of a situation where the data signal is mixed in from other devices can be suppressed.
- the occurrence of a situation in which data signals are mixed into other devices that are not console 1 for force set 5 is suppressed, while a situation in which data signals from other devices that are not console 1 for power set 5 are mixed into the console is prevented. It can be suppressed.
- the radiation image acquisition system 1 detects X-ray radiation and obtains X-ray image data.
- the X-ray image data acquired by the panel 54 is transmitted from the antenna 521 to a predetermined channel exceeding 1 GHz.
- the force set 5 that has the force set communication unit 52 that transmits by radio waves of the frequency, the channel that the force set 5 transmits, and the channels that other devices transmit by the radio waves of the frequency exceeding 1 GHz are managed.
- a force set (radiation image acquisition device) Note
- subject information such as the subject's name and age is not added to the image data, and subject information is added to the image data in console 1.
- the force setting (radiation image acquisition device) 5 does not add imaging information such as an imaging region and imaging conditions to the image data, and the console.
- an X-ray irradiation switch 21 for inputting an imaging preparation instruction and an imaging instruction by the operator to the operation input unit 2, and an instruction content by the operator for the X-ray source control unit 43
- An X-ray source instruction content input unit 22 for inputting to the console and a console instruction content input unit 23 for inputting the instruction content to the console 5 by the operator are provided.
- the X-ray irradiation switch 21 supplies the X-ray source control unit 43 to the X-ray source control unit 43.
- various instructions may be input to the X-ray source control unit 43 by the X-ray source instruction content input unit 22.
- the operation input unit 2 and the X-ray source control unit 43 are connected by a wired method or a wireless method, and are configured to be able to transmit and receive signals to each other.
- the force set 5 transmits the image data after encrypting it.
- An example in which a preparation end signal or the like is transmitted without encryption is described.
- it takes time for encryption for communication that requires encryption, and time for encryption for communication that does not require encryption It is possible to reduce the time that is not necessary to achieve the purpose of encryption, while achieving the purpose of encryption.
- it becomes encrypted communication or non-encrypted communication Therefore, it takes time for encryption for communication that requires encryption, and for communication that does not require encryption. Saves time so that the purpose of the encryption key can be achieved and the increase in time unnecessary to achieve the purpose of encryption can be suppressed.
- the power set preparation completion signal is fixed to be transmitted without encryption, but the image data can be selected between encrypted communication and non-encrypted communication.
- Image data that satisfies the specified conditions (for example, image data shot in the high image quality mode) is fixed to encrypted communication, but image data that does not satisfy the specified conditions (for example, image data shot in the low image quality mode)
- Encryption communication and non-encryption communication can be selected.
- encryption communication and non-encryption communication can be selected according to the instruction signal, but when it is not received, it is fixed to encryption communication.
- an encryption method used from one or more encryption methods is used. You may choose to select it. In this case, for example, it is possible to select an appropriate encryption method such as encryption strength, Z time, and Z characteristics according to the user's request and usage environment, so that the purpose of encryption can be achieved while achieving the purpose of encryption. Increase in unnecessary time can be suppressed.
- an appropriate encryption method such as encryption strength, Z time, and Z characteristics according to the user's request and usage environment, so that the purpose of encryption can be achieved while achieving the purpose of encryption. Increase in unnecessary time can be suppressed.
- WEP computation processing
- the selection of this lightweight encryption method and heavy encryption method is not limited to the following examples.
- the console control unit 13 of the console 1 controls the console communication unit 14 according to the operation input from the operation input unit 2, and the force of the console communication unit 14 is also transmitted.
- the force setting control unit 53 makes a selection according to the selection method selection signal. At this time, if the force set communication unit 52 does not receive the encryption method selection signal, the previous encryption method is selected, but if the initial strength is not received, the heavy encryption method is selected. To do.
- a switch is provided in the force set 5 and the force set control unit 53 selects the encryption method in accordance with the switching of the switch.
- the switch is switched to select the encryption method according to the request of the delivery destination.
- a switch is provided on the surface of the force set 5 or outside, and the force set control unit 53 selects the encryption method in accordance with the switching of the switch.
- the switch is switched so as to select a desired encryption method in accordance with the environment where the operator uses the force setting 5 for shooting.
- the first example includes a determination unit that determines whether the radiation image data is a still image or a moving image, and the encryption processing unit performs encryption processing or encryption processing according to the determination result of the determination unit. There is not.
- cassette The control unit 53 determines whether the radiation image data is a still image or a moving image power, and the selector 52C sends the compressed radiation image data to the TKIP encryption unit 52e or the WEP encryption unit 52d according to the determination result. Send them to the transmitter 52f without passing through them.
- the encryption processing means performs encryption processing or does not perform encryption processing depending on whether the radiation image data is a still image or a moving image.
- the selector 52C sends the power to the TKIP encryption unit 52e or the WEP encryption unit 52d depending on whether the radiation image data is a still image or a moving image, and sends it to the transmission unit 52f without passing through these.
- still image data is encrypted and communicated.
- still image data that has a lower data capacity than moving images but is useful for diagnosis While the communication is encrypted, the risk of eavesdropping is reduced, and the data capacity is relatively large.
- This is a means for acquiring still image data.
- the risk of eavesdropping is relatively small.
- video data is communicated without encryption, so there is a risk of eavesdropping. Instructions for acquiring still images in a timely manner.
- the selector 52C sends the compressed image data of the specific area to the TKIP encryption unit 52e or the WEP encryption unit 52d, and the image data of the area other than the compressed specific area is Then, the data is sent to the transmission unit 52f without passing through.
- the encryption processing means performs encryption processing only on image data in a specific area. For example, the selector 52C determines whether or not it is a specific area of the compressed image data. If it is a specific area, it is sent to the TKIP encryption unit 52e or the WEP encryption part 52d. Send to transmitter 52f.
- the ability to communicate by encrypting a part of the image area is useful for diagnosis by appropriately setting the part area by communicating the other area of the image without encryption.
- the area is encrypted, reducing the risk of interception, while the other areas are not encrypted. This means that the area can be communicated faster than encrypting the entire area, and images can be stored and displayed quickly. it can.
- Examples of the specific area include the center of the screen, the area other than the blank area (other than the high radiation dose value area), and the like.
- examples of performing communication with encryption or performing communication without encryption in accordance with the operation of the operator include the following examples.
- the first example has a determination means for determining the operation of the operator, and the encryption processing means has the power to perform encryption processing or encryption processing according to the determination result of the determination means.
- the force set control unit 53 determines the operation of the operator (for example, the state of the operation switch), and the radiographic image data compressed by the selector 52C according to the determination result is TKIP encryption unit 52e or WEP encryption. The data is sent to the part 52d or sent to the transmitting part 52f without passing through these parts.
- the encryption processing unit performs encryption processing or does not perform encryption processing according to the state of the operation unit operated by the operator.
- a switch (not shown) that can be operated by the operator is provided in the force set, and the radiographic image data compressed by the selector 52C in conjunction with this switch is sent to the TKIP encryption unit 52e or the WEP encryption unit 52d. Then, the data is sent to the transmission unit 52f without passing through.
- communication is performed with encryption, or communication without encryption is performed.
- encryption is used for communication to reduce the risk of eavesdropping, but for shooting where the risk is low even if eavesdropping is taken in a room with wireless communication security established, encryption is not performed.
- images can be stored and displayed quickly by communicating at high speed.
- examples of performing communication with encryption or not performing encryption according to the setting of the setting switch include the following examples.
- the encryption processing means performs encryption processing or does not perform encryption processing according to the setting switch provided in the force set.
- a switch (not shown) is provided inside the cassette so that the manufacturer or sales company can operate it at the time of shipment, and the radiographic image data compressed by the selector 52C in conjunction with this switch is used as the TKIP encryption unit 52e or WEP. Sent to encryption section 52d Without sending them, send them to the transmitter 52f.
- the encryption processing means performs encryption processing or does not perform encryption processing according to the state of the operation unit operated by the operator.
- the force set is provided with a switch (not shown) that can be operated by an operator, and the radiographic image data compressed by the selector 52C in conjunction with this switch is sent to the TKIP encryption unit 52e or the WEP encryption unit 52d, Send them to the transmitter 52f without passing through them.
- a switch (not shown) that can be operated by an operator, and the radiographic image data compressed by the selector 52C in conjunction with this switch is sent to the TKIP encryption unit 52e or the WEP encryption unit 52d, Send them to the transmitter 52f without passing through them.
- communication is performed with encryption, or communication is performed without encryption.
- the setting switch is set to encrypt and communicate to reduce the risk of eavesdropping, and there is no risk even if eavesdropping is taken in a room where wireless communication security is established.
- setting to communicate without encryption enables high-speed communication and quick storage and display of images.
- a setting switch is provided inside the cassette so that it cannot be operated by the operator, so if the setting switch is changed unintentionally and intercepted, it will be encrypted in the case of a high-risk shooting facility. If the facility communicates without hesitation or is intercepted and the risk is small, the risk of slowing communication by encryption can be reduced.
- the encryption processing means performs encryption processing or does not perform encryption processing according to encryption necessity information received from the console 1 and indicating whether or not the encryption power is transmitted.
- the force setting control unit 53 determines the encryption necessity information from the console 1, and the radiation image data compressed by the selector 52C is converted into the TKIP encryption unit 52e or the WEP encryption according to the determination result. The force sent to the No. d part 52d It sends to the transmission part 52f without passing these.
- the cassette control unit 53 determines whether encryption processing is necessary or not according to information received from the console 1 (for example, shooting condition information or console 1 information), and In response, the encryption processing means performs encryption processing or does not perform encryption processing. For example, it is determined from the information from the console 1 whether or not the force setting control unit 53 has the power to perform encryption processing. Based on the determination result, the radiographic image data compressed by the selector 52C is converted into the TKIP encryption unit 52e. Or, the data to be sent to the WEP encryption unit 52d, and sent to the transmission unit 52f without passing through them.
- the force set preparation completion signal is fixed to be transmitted without encryption, but as an example of the image data that can be selected between encrypted communication and non-encrypted communication, the following examples are given. It is done.
- the encryption processing means encrypts and transmits the information according to the information received from the console 1 or transmits the image without performing the encryption processing. If it is not data, it is sent without encryption.
- the information transmitted from the force set 5 is image data
- the compression processing unit 52b performs compression processing
- the radiographic image data compressed by the selector 52C according to the information received from the console 1 is converted into the TKIP encryption key.
- the data sent to the part 52e or the WEP encryption key part 52d is sent to the sending part 52f without passing through them. If it is not image data, the compression processing unit 52b does not perform compression processing, and the selector 52C sends the data to the transmission unit 52f without passing through the TKIP encryption unit 52e'WEP encryption unit 52d.
- the force set preparation completion signal is fixed to be transmitted without encryption.
- image data can be selected between encrypted communication and non-encrypted communication, there is no problem even if intercepted.
- the power set preparation completion signal can be transmitted at high speed without encryption, and the image data can be selected to reduce the risk of being intercepted by encrypted communication or to communicate at high speed by non-encrypted communication. .
- Still image data is fixed to encrypted communication, but moving image data can be selected between encrypted communication and non-encrypted communication, for example.
- the encryption processing means when the information transmitted from the cassette 5 is moving image data, the encryption processing means performs the encryption processing and transmits the information according to the information received from the console 1, or does not perform the encryption processing. If it is still image data, it is encrypted before being sent.
- the radiographic image data compressed by the selector 52C according to the information received from the console 1 is converted into TKIP. Send to the encryption unit 52e or the WEP encryption unit 52d, or send to the transmission unit 52f without passing through them.
- the selector 52C performs the compression processing.
- the image data is sent to the TKIP encryption unit 52e or the WEP encryption unit 52d.
- the encryption processing means encrypts and transmits it according to the setting switch inside the force set 5 or the operation of the operator. Sending without encryption processing, or for still image data, sending with encryption processing.
- the selector 52C is compressed according to the setting switch inside the force set 5 and the operation of the operator.
- the radiation image data is sent to the TKIP encryption unit 52e or the WEP encryption unit 52d, or sent to the transmission unit 52f without passing through them.
- the selector 52C sends the compressed radiation image data to the TKIP encryption unit 52e or WEP encryption unit 52d.
- still image data is fixed to encrypted communication. Since moving image data can be selected between encrypted communication and non-encrypted communication, the data capacity is low compared to moving images, but still useful for diagnosis.
- Image data is encrypted and communicated to reduce the risk of eavesdropping, while the data capacity is relatively large. For video data, the risk of eavesdropping is low. Communicating without conversion, it is possible to prevent the video that was sent without encryption processing from being interrupted, and to be interrupted, and when there is a high risk of being intercepted, it is encrypted. The risk of interception can be reduced by communicating.
- image data that satisfies a predetermined condition (for example, image data shot in a high-quality mode) is fixed to encrypted communication but does not satisfy the predetermined condition (for example, an image shot in a low-quality mode).
- Examples of data) that can be selected from encrypted communication and non-encrypted communication include the following.
- the force setting control means determines whether or not the image data satisfies a predetermined condition, and when the image data satisfies the predetermined condition, the encryption processing means performs encryption processing and transmits the image data. Does not meet the prescribed conditions! In the case of / ⁇ , depending on the information received from the console 1, the encryption processing means transmits the encrypted data or transmits it without performing the encryption processing.
- the force setting control unit 53 determines whether or not the radiation image data is image data captured in the high image quality mode, and the radiation image data is determined. If the force setting control unit 53 determines that the image data is the image data shot in the high quality mode, the compression processing unit 52b performs compression processing, and then the selector 52C encrypts the compressed radiation image data with TKIP encryption. The data is sent to the unit 52e or the WEP encryption unit 52d, encrypted, and then sent to the communication unit 52f. On the other hand, if the force setting control unit 53 determines that the radiation image data is image data taken in the low image quality mode, whether or not the force setting control unit 53 performs encryption processing according to the information received from the console 1.
- the selector 52C passes the compressed radiation image data through the TKIP encryption unit 52e or the WEP encryption unit 52d according to the determination result of the force setting control unit 53. Without being sent to the communication unit 52f or sent to the TKIP encryption unit 52e or the WEP encryption unit 52d for encryption processing and then sent to the communication unit 52f.
- the force setting control means determines whether or not the image data satisfies a predetermined condition, and when the image data satisfies the predetermined condition, the encryption processing means performs an encryption process and transmits the image data.
- the encryption processing means transmits the encrypted data according to the setting switch inside the force set 5 or the operation of the operator, or transmits it without performing the encryption processing.
- the force setting control unit 53 determines whether or not the radiation image data is image data captured in the high quality mode, and if the radiation image data is image data captured in the high quality mode, the force setting control unit 53 53, if the compression processing unit 52b performs compression processing, the selector 52C sends the compressed radiation image data to the TKIP encryption unit 52e or the WEP encryption unit 52d, performs encryption processing, and then performs communication. Send to part 52f.
- the force setting control unit 53 determines that the radiation image data is image data taken in the low image quality mode
- the force setting control unit 53 in accordance with the operation of the setting switch inside the force setting 5
- the compression processing unit 52b performs compression processing
- the selector 52C converts the compressed radiation image data into the TKIP encryption unit according to the determination result of the force setting control unit 53.
- the data is sent to the communication unit 52f without passing through the 52e or WEP encryption unit 52d, or sent to the TKIP encryption unit 52e or the WEP encryption unit 52d, encrypted, and then sent to the communication unit 52f.
- image data that satisfies the predetermined condition is fixed to encrypted communication, but image data that does not satisfy the predetermined condition can be selected as encrypted communication or non-encrypted communication.
- Image data that is likely to be large is fixed in encrypted communication and intercepted
- the risk of being intercepted is reduced, while the probability of being intercepted is low, and the risk of image data being intercepted is reduced, and encrypted communication that can reduce the risk of interception and non-encrypted communication that can be communicated at high speed Since it can be selected, it is possible to respond flexibly according to the situation in each case, while also reducing the overall risk.
- encrypted communication or non-encrypted communication can be selected according to the instruction signal.
- the encryption processing means performs encryption processing or encryption processing according to the encryption necessity information indicating whether or not to transmit the encrypted message received from the console 1. I'll do my best.
- the encryption processing means performs encryption processing.
- console 1 For example, console 1
- the force setting control unit 53 determines whether or not the encryption necessity information from 1 has been received and the encryption necessity information when it is determined that it has been received, and the selector 52C is compressed according to this determination result. Sends the radiographic image data to the TKIP encryption unit 52e or the WEP encryption unit 52d.
- the second example is based on whether or not predetermined information has been received from console 1 and the predetermined information received from console 1 when it is determined that it has been received (for example, shooting condition information or console 1 information). Then, the force setting control unit 53 determines whether or not encryption processing is necessary, and the encryption processing means performs encryption processing or performs encryption processing according to the result.
- the selector 52C sends the compressed radiation image data to the TKIP encryption unit 52e or WEP encryption unit 52d, or sends it to the transmission unit 52f without passing through them.
- force set 5 and console 1 have a one-to-one correspondence.
- the present invention is not limited to this, and force set and console have a one-to-one M and N pair. It can be used in correspondence with 1, N to M (N and M are natural numbers of 2 or more).
- N to M N and M are natural numbers of 2 or more.
- a network between the force set and the console is provided, the correspondence between the force set and the console is stored in the correspondence information holding unit, and the correspondence information holding unit is provided on the network or in the console. It is preferable to control the force set.
- both the console 1 and the force set 5 supply a system or an apparatus with a storage medium that records a software program for realizing the functions of the above-described embodiments. It goes without saying that this can also be achieved by the computer (or CPU or MPU) of the device reading and executing the program stored in the storage medium.
- a storage medium for storing a program etc., it may be stored in a storage medium such as a non-volatile memory, a volatile memory backed up by a power source, a ROM memory, an optical disk, a hard disk such as a hard disk, or a magneto-optical disk.
- an OS (basic system or operating system) that runs on a computer based on the instructions of the program that not only realizes the functions of the above-described embodiments by executing the program read by the computer. Needless to say, a part or all of the actual processing is performed, and the case where the functions of the above-described embodiment are realized by the processing.
- the function expansion is performed based on the instruction of the program code. It goes without saying that the CPU or the like provided in the board or function expansion unit performs part or all of the actual processing and the functions of the above-described embodiments are realized by the processing.
- Such a program may be provided from outside via a network or a line. Even when an externally supplied program is used, the program is stored in a non-volatile memory, a power-backed up volatile memory, a magnetic disk such as an optical disk or a hard disk, or a storage medium such as a magneto-optical disk. Well, ... [0120] [Common to the above embodiments]
- radiological image acquisition apparatus comprising: a communication means for obtaining a data signal from data based on the data encrypted by the encryption processing means and transmitting the data signal by wireless communication; and the radiographic image acquisition apparatus Console communication means for receiving data signals and obtaining encrypted data; decryption processing means for decrypting data based on the encrypted data obtained by the console communication means; A console having image storage means for storing image data based on the radiation image data obtained by the decoding processing means; Since radiographic image acquisition system provided can event transmitted data signals be intercepted, the person who has intercepted obtain a radiation image from being able to substantially.
- the time taken is shorter thawing, it can be stored quickly image data in the console. In addition, it can be quickly displayed on the display unit.
- the risk that the redundancy of the radiographic image itself (for example, the missing region of the radiographic image) is used in cryptanalysis is reduced by encryption after the redundancy is suppressed by the compression process.
- the difficulty of decryption increases, and even if the intercepted data signal is leaked, the intercepted person cannot substantially obtain a radiographic image.
- a radiological image acquisition device comprising: a radiological image acquisition unit that obtains image data; a communication unit that acquires data from the radiographic image acquisition unit and transmits the data together with information on the set service set ID; and a service Console communication means for receiving data transmitted together with information of the same service set ID, in which set IDs are set, and image storage means for storing image data based on radiation image data obtained by the console communication means So that the console can receive data signals from radiographic image acquisition devices with the same service set ID, and other devices can prevent the occurrence of data signals being mixed in. be able to.
- the service set ID set in the radiological image acquisition apparatus is set.
- the service set ID that is managed and set in the radiological image acquisition apparatus is the same as the service set ID that is set in the console communication means, and is also used in the console for the radiological image acquisition apparatus. It is not a radiological image acquisition device for consoles.
- the service set ID set for other devices is different from the service set ID set for the radiological image acquisition device. As a result, the occurrence of a situation in which the data signal is mixed into other equipment other than the console for the radiographic image acquisition device is suppressed, and the console is free to be used. There other devices power of the data signal by the line image acquisition apparatus as possible out to suppress the occurrence of a situation that slip into the console.
- the radio communication device has a radio repeater connected via a cable connected to the console communication means, and the radiographic image acquisition device is set with a unique number and set together with data transmitted by the communication means.
- the wireless repeater is set with a unique number of a device capable of wireless communication, and wirelessly communicates only with a device with the set unique number. Therefore, it is possible to more effectively suppress the occurrence of a situation in which data signals of other devices that are not console radiographic image acquisition devices are mixed into the console.
- the radiological image acquisition apparatus controls the radiological image acquisition unit and the communication unit, the radiological image acquisition unit, the communication unit, and the control unit. Since the power set has a power supply that supplies power to drive the camera, no cable is required for image data transmission or power supply, and photography can be performed in a cable-less state. Therefore, it is possible to improve operability, shooting efficiency, etc., since there is no need to shoot while taking care not to get tangled in the subject.
- the radiological image acquisition apparatus has a memory for temporarily storing image data based on the radiographic image data obtained by the radiological image acquisition means, the radiographic image data can be temporarily stored. Therefore, processing such as encryption can be easily performed, and transmission can be performed at a communication speed corresponding to the communication state.
- the subject information is added to the image data in the console, the subject information is unknown even if the image data transmitted from the radiation image acquisition device to the console is decoded. It is image data and the risk of leakage of personal information is reduced.
- the imaging information is added to the image data in the console, even if the image data transmitted from the radiographic image acquisition device to the console is decoded, both the subject information and the imaging information are present. It is unknown image data, and the risk of leakage of personal information is further reduced.
- a communication method is selected from a plurality of the communication methods according to the communication content, it takes time to encrypt the communication that requires encryption according to the communication content. For communications that do not need to be saved, the time for encryption can be saved, and the increase in extra time can be suppressed while achieving the purpose of encryption.
- Non-encrypted communication saves time for encryption and secures communication interception security for general wards!
- encrypted communication is desired in a case-free case. It is possible to cope with both of cases where there is a case where the communication is desired and non-encrypted communication is desired.
- an encryption method to be used can be selected from a plurality of encryption methods, an appropriate encryption method such as encryption strength, Z time, and Z characteristics can be selected according to the user's request, usage environment, and the like. ⁇ The method can be selected, and the increase in time unnecessary for achieving the purpose of encryption can be suppressed while achieving the purpose of encryption.
- the image processing apparatus includes compression processing means for obtaining compressed data from image data based on the radiation image data acquired by the radiation image acquisition means, and the encryption processing means is compressed by the compression processing means. Since the encrypted data is obtained from the data based on the obtained data, the time required for the encryption is obtained because the compressed data is encrypted rather than the radiation image data itself is encrypted. Coupled with the reduction in the time required for wireless communication, the image data can be quickly saved on the console. Moreover, it can display on a display part promptly. In addition, the risk that the redundancy that the radiographic image itself has (for example, the missing region of the radiographic image) is used for cryptanalysis is encrypted after this redundancy is suppressed by the compression process. Therefore, even if the data signal that was intercepted and transmitted is leaked, the intercepted person can practically not obtain the radiographic image.
- the redundancy that the radiographic image itself has for example, the missing region of the radiographic image
- the image storage means stores the image data based on the radiation image data obtained by the decompression processing means. Because it is stored, there is a risk that the redundancy of the radiographic image itself (for example, the missing region of the radiographic image) is used for cryptanalysis.
- the time required for encryption is shorter than that for encrypting radiation image data itself, and the time required for wireless communication is also shortened.
- Data based on radiation image data can be saved from the encoded data, so the time required for decompression can be shortened, and image data can be stored quickly on the console. It can be. In addition, it can be promptly displayed on the display unit.
- the difficulty of cryptanalysis increases, and even if a data signal that has been intercepted and transmitted is leaked, the intercepted person cannot substantially obtain a radiation image.
- an encryption processing means for obtaining encrypted data from the image data based on the radiation image data, and a digital data signal based on the data encrypted by the encryption processing means are obtained and transmitted by wireless communication.
- a force set including communication means, console communication means for receiving data signals transmitted from the radiation image transmitting apparatus and obtaining encrypted data, and the encryption processing obtained by the console communication means
- a radiation image receiving apparatus comprising: a decoding processing unit that decodes data based on the received data; and an image storage unit that stores image data based on the radiation image data obtained by the decoding processing unit. Because it is an image communication system, even if the transmitted data signal is intercepted, the intercepted person can obtain a radiation image. It is possible to qualitatively can it! /, As.
- the force set is compressed from image data based on the radiation image data.
- Compression processing means for obtaining the processed data, wherein the encryption processing means obtains encrypted data from data based on the data compressed by the compression processing means, and receives the radiation image
- the apparatus has decompression processing means for obtaining decompressed data from data based on the data obtained by the decoding processing means, and the image storage means is an image based on radiation image data obtained by the decompression processing means. Since data is stored, the time required for encryption is shortened and the time required for wireless communication is shortened because encryption is performed on the compressed data rather than encrypting the radiation image data itself. Coupled with the shortening of the time required for decompression, the image receiving device can quickly store the image data.
- the radiographic image itself (for example, the missing region of the radiographic image) is reduced by the encryption after the redundancy is suppressed by the risk power compression process used in decryption.
- the difficulty of decryption increases, and even if a data signal that is intercepted and transmitted is leaked, the intercepted person can be substantially prevented from obtaining a radiographic image.
- the radiographic image acquired by the radiological image acquiring means is mounted on a computer mounted on a force set having radiographic image acquiring means for obtaining radiographic image data by radiography and a communication means for transmitting data signals by wireless communication.
- An encryption processing function for obtaining encrypted data from image data based on the data, and a data signal obtained from the data based on the data encrypted by the encryption processing function is transmitted to the communication means by wireless communication Therefore, even if the data signal transmitted by this program is intercepted by this program, the person who intercepted should be able to obtain a radiological image substantially. Can do.
- the console communication means that receives the data signal and obtains the encrypted data and the image storage means that stores the image data includes the console communication means obtained by the console communication means.
- a decryption processing function for decrypting data based on the encrypted data an image storage function for causing the image storage unit to store image data based on the radiation image data obtained by the decryption processing unit; Therefore, even if the transmitted data signal is intercepted, this program allows the console to obtain data that has been encrypted so that the person who intercepted cannot obtain a radiological image. Data based on radiation image data can be saved.
- the turn off the data in the storage the time required for the decompression is shortened, it kills in a store quickly image data in the console. Moreover, it can display on a display part in speed and force. In addition, the difficulty of cryptanalysis increases, and even if a data signal that has been intercepted and transmitted is leaked, the intercepted person cannot substantially obtain a radiation image.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measurement Of Radiation (AREA)
- Radiography Using Non-Light Waves (AREA)
Abstract
本発明の放射線画像通信システムは、放射線撮影により放射線画像データを得る放射線画像取得手段と、取得した放射線画像データに基づく画像データから暗号化処理されたデータを得る暗号化処理手段と、暗号化処理されたデータに基づくデータからデータ信号を得て無線通信により送信する通信手段とを備える放射線画像取得装置と、送信されたデータ信号を受信して暗号化処理されたデータを得るコンソール通信手段と、暗号化処理されたデータに基づくデータを復号化処理する復号化処理手段と、放射線画像データに基づく画像データを保存する画像保存手段とを有するコンソールとを備える。
Description
明 細 書
放射線画像取得システム、カセッテ、コンソール、放射線画像通信システ ム及びプログラム
技術分野
[0001] 本発明は、放射線画像取得システム、カセッテ、コンソール、放射線画像通信シス テム及びプログラムに関するものである。
背景技術
[0002] X線等の放射線を用いた撮影にぉ 、て、従来の CR (Computed Radiography)や、 フィルムによる撮影では X線撮影から撮影画像の確認まで数十秒から数分必要であ つた。このため、画像確認の結果、撮影不良であった場合には、既に撮影室から出 て着衣し、又は、放射線科から出た被写体を呼び戻して再撮影する必要があった。
[0003] そこで、近年、多数の光電変換素子をマトリクス状に配した薄型平板状の所謂「フラ ットパネルディテクタ(Flat Panel Detector) (以下「FPD」と称する。;)」を放射線画像 取得装置として用いた DR (Digital Radiography)が提案されている。 FPDは、照射さ れた X線を検出して電気信号に光電変換し、光電変換後の電気信号を画像処理す ることにより、 X線画像を得るものであり、 X線撮影から数秒で撮影画像を確認できる。
[0004] 放射線画像取得装置としては、 FPDを力セッテに内蔵し持ち運び自在とした携帯 型 (力セッテ型)のものが開発されている。しかし、従来は、 FPDを内蔵した力セッテと 画像確認用のコンソールとがケーブルで結ばれたものであったため、 X線撮影時に ケーブルが被写体に絡みつかないように、力セッテを取り回す必要があり、取り回しが 厄介であるという問題があった。
[0005] このような問題に対し、力セッテをケーブルレスにして力セッテの取り回しを容易に するため、特許文献 1〜6のように、 FPDを内蔵した力セッテに無線通信部と内部電 源を設け、無線 (無線通信のこと)を介して外部機器と通信する装置が提案されて 、 る。
[0006] また、従来、特許文献 7、 8に示すように、医用診断画像を圧縮し暗号化して他の機 器に伝送することが提案されて 、る。
特許文献 1 :特開 2004— 180931号公報
特許文献 2 :特開 2004— 173907号公報(対応米国特許公開 2004— 114725号公 報)
特許文献 3:特開 2002— 191586号公報
特許文献 4:特開 2004— 49887号公報(対応米国特許公開 2003— 223540号公 報)
特許文献 5:特開 2004— 97635号公報
特許文献 6:特開 2004— 101442号公報
特許文献 7 :特開 2003— 126046号公報(対応米国特許公開 2003— 035584号公 報)
特許文献 8:特開 2004— 57592号公報
発明の開示
発明が解決しょうとする課題
[0007] ところで、無線通信の方法としては、光通信や電波などを用いて大容量データを高 速に通信する方法があり、例えば、無線 LANの規格である IEEE802. l la、 IEEE8 02. l lb、IEEE802. l lg等に適合した無線 LANによる方法が挙げられる。そして 、放射線画像取得システムにおいては、通常、鉛板で囲まれた放射線撮影室内で用 いられるので、このように無線通信をしても、放射線画像データが漏洩しないと思わ れていた。また、無線通信する放射線画像データに個人を特定する情報を付属させ なければ、万一漏洩しても、誰の画像なのか全く不明なので問題にならないと思われ ていた。
[0008] しかしながら、実際には、鉛板で囲まれた放射線撮影室以外の場所で放射線撮影 することもあるし、また、放射線画像データ自体に個人を特定する情報が付されてい なくても、別の方法で目的の個人の放射線撮影のタイミングを特定すれば、目的の 個人の放射線画像データを得ることができるという問題があることを発見した。
ここで、前記した特許文献 1〜6には、無線通信を暗号ィ匕することについては記載さ れていない。また、前記した特許文献 7、 8には、放射線画像取得装置とコンソール 間の無線通信を暗号ィ匕することは記載されて 、な 、。
[0009] 本発明は以上のような課題を解決するためになされたものであり、無線通信で送信 されたデータが万一漏洩しても、漏洩したデータから放射線画像を得ることが実質的 にできないようにすることができる放射線画像取得システム、カセッテ、コンソール、放 射線画像通信システム及びプログラムを提供することを目的とする。
図面の簡単な説明
[0010] [図 1]本発明の一実施形態の X線画像取得システムの概略構成を示す図である。
[図 2]本発明の一実施形態の力セッテの概略構成を示す斜視図である。
[図 3]本発明の一実施形態のパネルを中心とした力セッテの断面図である。
[図 4]本発明の一実施形態の光検出器を中心とした回路の構成を示す回路図である
[図 5]本発明の一実施形態の暗号化処理手段の構成を示す図である。
[図 6]本発明の一実施形態の復号化処理手段の構成を示す図である。
[図 7]本発明の一実施形態の X線画像取得システムの変形例の概略構成を示す図 である。
発明を実施するための最良の形態
[0011] 以下、用語について説明する。
無線通信には、電波による通信と光による通信と超音波による通信などが挙げられ る力 放射線画像データの通信には、電波による通信又は光による通信が好ましい。 電波による通信には、 1GHz超の周波数の電波により送信する方法と 1GHz以下 の周波数の電波を用いて通信する方法が挙げられる力 本発明の前記放射線画像 取得手段が放射線画像データを得るための情報の通信には、 1GHz以下の周波数 の電波を用いて通信する方法が好まし 、。
[0012] そして、 1GHz超の周波数の電波により送信する方法には、例えば、 1. 4GHz帯 や 2GHz帯や 2. 1GHz帯などを利用した次世代携帯電話による方法、 IEEE802. 11a, IEEE802. l ib, IEEE802. l lg等の規格に適合した 2. 4GHz帯や 5. 2G Hz帯などを用 V、た無線 LANによる方法や、 18GHz帯や 19GHz帯などを利用した FWA (Fixed Wireless Access,固定無線アクセス)を用いた方法や、 2. 45GHz帯を 利用した Bluetoothや 2. 4GHz帯を利用した HomeRF (Home Radio Frequency)を
用いた方法などの無線通信規格に基づく方法や、 UWB (Ultra Wide Band)すなわ ち超広帯域の電波を利用した通信方法や、 2. 4GHz帯や 5. 8GHz帯などを利用し た産業科学医療用周波数帯(ISM : Industrial, Scientific and Medical band)を利用 する方法などがある。そして、「シャドウイング (Shadowing)」や「マルチパスフェージン グ (Multi Pass Fading)」等の問題の少ない電波の回り込みと通信回路の小型ィヒ '低コ ストイ匕の観点から、 10GHz以下 (特に、 3GHz以下)の周波数の電波が好ましい。
[0013] また、 1GHz以下の周波数の電波を用いて通信する方法には、例えば 7 X 10MHz 帯や 4 X 102MHz帯を利用した特定小電力無線による方法、 PHSによる方法、 8 X 1 02MHz帯や 9 X 102MHz帯を利用した携帯電話による方法などが挙げられる。 1G Hz以下の周波数の電波としては、電波の回りこみの観点から、 8 X 102MHz以下 (特 に、 4 X 102MHz以下)の周波数の電波が好ましい。また、アンテナの小型化の観点 から、 3 X 10MHZ以上(特に、 1 Χ 102ΜΗζ以上)の周波数の電波が好ましい。
[0014] 光による通信に用いられる光は、遠赤外線、近赤外線、可視光、紫外線などが挙げ られる力 近赤外線 (特に 700nm以上 2000nm以下の波長の近赤外線)を用いた 通信が好ましい。
[0015] また、これらの無線通信によるコンソールと力セッテの間の無線通信は、コンソール と力セッテとが直接、無線通信する形態であっても良いし、途中に無線中継器を設け て、無線中継器を介して無線通信する形態であってもよい。また、これらの電波によ る無線通信は、アナログ通信であっても、デジタル通信であってもよい。
また、力セッテの電源は、力セッテと電力線を介して接続された電源ユニットや交流 電源など外部力 電力を供給する外部電源でも良いが、力セッテに設けられた内部 電源が取り回し易く好ましい。また、力セッテに設けられた内部電源として、力セッテ に外接して設けられた電源ユニットでも良いが、力セッテ内に設けられた内部電源で ある事が好ましい。
[0016] 放射線は、強い電離作用や蛍光作用を有する電磁波や粒子線のことで、 X線、 y 線、 j8線、 α線、重陽子線、陽子線その他の重荷電粒子線及び中性子線が挙げら れる。本発明においては、放射線として、電子線、 X線、 γ線が好ましぐ特に X線が 好ましい。
[0017] コンソールとは、操作者が力セッテと交信を行うための装置で、別体の表示装置や 操作装置が接続可能であってもよ 、し、表示装置や操作装置が一体であってもよ ヽ
[0018] 暗号化とは、通信途中で第三者に盗み見られたり改ざんされたりされないよう、決ま つた規則に従ってデータを変換することである。暗号ィ匕の方法としては、 RSA、 ElGa mal暗号、楕円曲線暗号などの公開鍵暗号による方法と、 RC4、 DES、 IDEA, FE AL、 MISTYなどの秘密鍵暗号による方法が挙げられるが、いずれでもよい。また、 I EEE 802. l ibのセキュリティシステムとして採用されている WEPなど通信規格に 採用されて ヽる暗号ィ匕の方法でもよ ヽ。
[0019] また、放射線画像取得手段により得た放射線画像データを直接、暗号化処理して も良いし、圧縮処理など他の処理をしてから暗号ィ匕処理しても良い。そして、放射線 画像取得手段により得た放射線画像データから圧縮処理したデータを得てから暗号 化することが、放射線撮影の素抜け部が存在するなどの放射線画像データの冗長性 が緩和され暗号解読の困難性が増すので、好ましい。
また、暗号化処理して得られたデータを直接送信しても良いし、他の処理をしてか ら送信しても良い。
[0020] 圧縮とは、一定の手順にしたがって、データの意味を保ったまま、容量を削減する 処理のことで、ハフマン符号ィ匕などのデータを完全に復元できる可逆圧縮と、 JPEG 圧縮などのデータにある程度の損失が生じる不可逆圧縮とが挙げられるが、可逆圧 縮が好ましい。
また、放射線画像取得手段により得た放射線画像データを直接、圧縮処理しても 良いし、補正処理など他の処理をして力 圧縮処理しても良い。また、圧縮処理され たデータを直接暗号化処理してもよ 、し、他の処理をしてから暗号化処理してもよ ヽ
[0021] 復号ィ匕とは、暗号ィ匕されたデータを元に戻し、読める状態に戻すことである。なお、 復号化処理は、暗号化処理の後処理に応じて、コンソール通信手段により得たデー タを直接復号ィ匕しても良いし、暗号化処理後の処理に応じた処理をした後に解凍し てもよい。また、復号化処理の後に、暗号ィヒ処理の前処理に応じて、復号化処理後
に処理をしてもよい。
[0022] 解凍とは、圧縮処理によってデータの意味を保ったまま容量を削減されたデータを 、元の状態に復元することである。なお、解凍処理は、圧縮処理後の暗号化処理前 の処理に応じて、復号ィ匕処理により得たデータを直接解凍しても良いし、他の処理を した後に解凍してもよい。また、圧縮処理の前処理に応じて、解凍処理により得たデ ータを直接保存しても良 、し、他の処理をした後に保存してもよ 、。
[0023] 以下、図面を参照しながら本発明の実施形態について説明する。なお、本発明が これらの実施形態に限られな 、ことは、述べるまでもな 、。
発明の実施の形態欄の記載は、発明を実施するために発明者が最良と認識してい る形態を示すものであり、発明の範囲や、請求の範囲に用いられている用語を一見、 断定又は定義するような表現もあるが、これらは、あくまで、発明者が最良と認識して いる形態を特定するための表現であり、発明の範囲や、請求の範囲に用いられてい る用語を特定又は限定するものではな 、。
[0024] 図 1〜6を参照しながら本発明に係る放射線画像取得システムの一実施形態につ いて説明する。
[0025] 図 1に示すように、本実施形態に係る X線画像取得システム 1000は、放射線画像 データを取得する放射線画像取得システムの一種であり、放射線の一種である X線 を用いて X線画像データを得るものである。 X線画像取得システム 1000は、病院内 で行われる X線画像撮影を想定したシステムであり、例えば、被写体に X線を照射す る X線撮影室 R1と、 X線技師が被写体に照射する X線の制御や、 X線を照射して取 得した X線画像の画像処理等を行う X線制御室 R2とに配置されるものである。
[0026] X線制御室 R2には、コンソール 1が設けられている。このコンソール 1によって X線 画像取得システム 1000全体が制御され、 X線画像撮影の制御や取得した X線画像 の画像処理が行われる。
コンソール 1には、操作者が撮影準備指示や撮影指示、指示内容を入力する操作 入力部 2が接続されている。操作入力部 2としては、例えば、 X線照射要求スィッチや タツチパネノレ、マウス、キーボード、ジョイスティック等を用いることが可能であり、操作 入力部 2を介して、 X線管電圧や X線管電流、 X線照射時間等の X線撮影条件、撮
影タイミング、撮影部位、撮影方法等の X線撮影制御条件、画像処理条件、画像出 力条件、力セッテ選択情報、オーダ選択情報、被写体 ID等の指示内容がコンソール 1に入力される。
更に、コンソール 1には、 X線画像などを表示する表示部 3が接続されており、コンソ ール 1を構成して 、る表示制御部 11により表示部 3の表示が制御される。表示部 3と しては、例えば、液晶モニタ、 CRT (Cathode Ray Tube)モニタ等のモニタ、電子べ 一ノ^電子フィルム等を用いることができる。表示部 3には、コンソール 1の表示制御 部 11の制御により、 X線撮影条件や画像処理条件等の文字及び X線画像を表示す る。
[0027] また、コンソール 1は、表示制御部 11、入力部 12、コンソール制御部 13、コンソ一 ル通信部 14、画像処理部 15、画像保存部 16、コンソール電源部 17、ネットワーク通 信部 18等を備えている。表示制御部 11、入力部 12、コンソール制御部 13、コンソ一 ル通信部 14、画像処理部 15、画像保存部 16、コンソール電源部 17、ネットワーク通 信部 18は、それぞれバスに接続しており、データ交換可能である。
[0028] 入力部 12は、操作入力部 2からの指示内容を受信する。
[0029] コンソール制御部 13は、入力部 12が操作入力部 2から受信した指示内容やネット ワーク通信部 18が HISZRIS 71から受信したオーダ情報に基づ!/、て撮影条件を決 定する。そしてコンソール制御部 13は、コンソール通信部 14が X線源 4と力セッテ 5と に撮影条件に関する撮影条件情報などの撮影に有用な撮影用信号を送信し、 X線 源 4と力セッテ 5とを制御して X線画像撮影をする。
また、コンソール制御部 13は、力セッテ 5から送信されてコンソール通信部 14が受 信した X線画像データを画像保存部 16に一時保存させる。また、コンソール制御部 1 3は、画像保存部 16に一時保存した X線画像データ力もサムネイル X線画像データ を画像処理部 15が作成するように制御する。表示制御部 11は、作成されたサムネィ ル X線画像データに基づ ヽて、表示部 3がサムネイル画像を表示するように制御する 。そして、コンソール制御部 13は、入力部 12が受信した指示内容や HISZRIS71の オーダ情報に基づ ヽた画像処理を画像処理部 15が X線画像データに行 ヽ、この画 像処理をされた X線画像データを画像保存部 16に保存するように制御する。そして、
画像処理部 15が画像処理した結果の X線画像データに基づ 、て、処理結果のサム ネイル画像を表示部 3が表示するように、表示制御部 11を制御する。更に、コンソ一 ル制御部 13は、その後に入力部 12が操作入力部 2から受信した指示内容に基づい て、 X線画像データの再画像処理を画像処理部 15に行わせたり、その画像処理結 果の表示を表示部 3がするように表示制御部 11を制御したり、又、 X線画像データを ネットワーク上の外部装置に転送、保存、表示させるようにネットワーク通信部 18を制 御したりしたりする。
[0030] また、コンソール制御部 13は送信制御装置として、力セッテ (放射線画像取得装置 ) 5が送信するチャンネルと、他の機器がマイクロ波で送信するチャンネルを管理する 機能を有している。すなわち、コンソール制御部 13は、力セッテ 5が所定のチャンネ ルのマイクロ波で送信する際に、他の機器が当該チャンネルのマイクロ波で送信して 混信することがないように制御する。例えば、コンソール制御部 13は、コンソール通 信部 14と通信ケーブルで接続された無線中継器 6を介して、新しい機器が導入され たとき又は常時、無線中継器 6のアンテナ力 得られる無線通信のチャンネル情報を 取得し、他の機器がどのチャンネルを使用して 、るかを確認して記憶するようになつ ている。そして、当該他の機器のチャンネルと力セッテ 5で使用するチャンネルが同じ となってしまう場合には、コンソール制御部 13は、可能であれば力セッテ 5のチャンネ ルを変更し、また可能であれば他の機器のチャンネルを変更するように制御する。ま た、ぞれぞれのチャンネルの変更が不可能である場合には、コンソール制御部 13は 、放射線 X線画像データの送信時等に、他の機器を使用しないように表示部 3が警 告表示をするように表示制御部 11を制御する。
[0031] コンソール制御部 13としては、 CPU (Central Processing Unit)及び RAM (Random
Access Memory)や ROM (Read Only Memory)等のメモリが搭載されているマザ一 ボードを適用することが可能である。
CPUは、 ROM又はハードディスクに記憶されているプログラムを読み出し、 RAM 上にプログラムを展開し、展開したプログラムに従ってコンソール 1の各部、 X線源 4、 力セッテ 5、外部装置を制御する。また、 CPUは、 ROM又はハードディスクに記憶さ れているシステムプログラムをはじめとする各種処理プログラムを読み出して RAM上
に展開し、後述する各種処理を実行する。
RAMは、揮発性のメモリであり、コンソール制御部 13の CPUにより実行制御される 各種処理において、 ROM力 読み出されて CPUで実行可能な各種プログラム、入 力もしくは出力データ等を一時的に記憶するワークエリアを形成する。
ROMは、例えば、不揮発性のメモリであり、 CPUで実行されるシステムプログラム、 システムプログラムに対応する各種プログラムなどを記憶する。これらの各種プロダラ ムは、読取可能なプログラムコードの形態で格納され、 CPUは、当該プログラムコー ドに従った動作を逐次実行する。
また、 ROMの代わりにハードディスクを用いてもよい。この場合、ハードディスクは、 CPUで実行されるシステムプログラムと各種アプリケーションプログラムを記憶する。 また、ハードディスクは、その一部もしくは全部をサーバ等の他の機器力 ネットヮー ク回線の伝送媒体を介してコンソール通信部 14から、本発明のプログラムなどの各 種アプリケーションプログラムを受信して記憶するようにしてもよい。更に、 CPUは、ネ ットワーク上に設けられたサーバのハードディスクなどの記憶装置力 本発明のプロ グラム等の各種アプリケーションプログラムを受信し、 RAM上に展開して、本発明の 処理などの各種処理をするようにしてもよ!、。
[0032] 表示制御部 11は、コンソール制御部 13の制御に基づいて、 X線画像データや文 字データなどに基づいて、表示部 3が画像や文字などを表示するように制御する。表 示制御部 11には、グラフィックボード等を用いることができる。
[0033] コンソール通信部(コンソール通信手段) 14は、 X線源 4及び無線中継器 6にそれ ぞれ通信ケーブルを介して接続されており、コンソール通信部 14が無線中継器 6を 介して力セッテ 5と通信可能である。コンソール通信部 14は、コンソール制御部 13か らの指示内容に基づいた各種の制御信号や各種情報などの撮影用信号を X線源 4 及び力セッテ 5に送信可能である一方、力セッテからの動作状態を伝える信号や各種 情報などの撮影用信号を受信可能である。また、コンソール通信部 14は、指示内容 に基づいた各種の制御信号や各種情報などの撮影用信号を X線源 4に送信可能で あるとともに、 X線源 4からの動作状態を伝える信号や各種情報などの撮影用信号を 受信可能である。
また、コンソール通信部 14は、力セッテ 5から送信される X線画像データを受信可 能である。
コンソール通信部 14と X線源 4及び無線中継器 6を接続している通信ケーブルは、 着脱可能である。通信ケーブルが接続されているときは、画像転送が高速に行える ので X線撮影による X線画像取得、 X線画像処理、 X線画像確認等をより短時間で行 うことが可能である。
[0034] 画像処理部 15は、コンソール通信部 14が力セッテ 5から受信した X線画像データを 画像処理する。画像処理部 15では、指示内容に基づいて X線画像データの補正処 理、拡大圧縮処理、空間フィルタリング処理、リカーシブ処理、階調処理、散乱線補 正処理、グリッド補正処理、周波数強調処理、ダイナミックレンジ (DR)圧縮処理等の 画像処理が行われる。
[0035] 画像保存部 (画像保存手段) 16は、 X線画像データを記憶する記憶装置を有して おり、コンソール通信部 14が力セッテ 5から受信した X線画像データの一時保存や、 画像処理された X線画像データの保存を行う。画像保存部 16としては、大容量かつ 高速の記憶装置であるハードディスク、 RAID (Redundant Array of Independent Disk s)等のハードディスクアレー、シリコンディスク等を用いることが可能である。
[0036] コンソール電源部 17は、 AC電源等の外部電源(図示せず)、又は、ノ ッテリー、電 池等の内部電源(図示せず)から電力を供給されており、コンソール 1を構成する各 部に電力を供給している。
コンソール電源部 17の外部電源は、着脱可能である。コンソール電源部 17が外部 電源より電力を供給されるときは、充電の必要がないため長時間撮影を行うことが可 能である。
[0037] ネットワーク通信部 18は、 LAN (Local Area Network)によりコンソール 1と外部装 置との間で各種情報の通信を行うものである。外部装置としては、例えば、 HIS/RI ¾ (Hospital Information System/ Radiology Information system :病院内†青報ンスアム Z放射線科情報システム)端末 71、イメージャ 72、画像処理端末 73、ビューヮ 74、 ファイルサーバ 75等を接続することが可能である。ネットワーク通信部 18は、 DICO M (Digital Imaging and Communications in Medicine)等所定のプロトコノレに従って X
線画像データを外部装置に出力する。
[0038] HISZRIS端末 71は、 HIS/RISから、被写体の情報や撮影部位及び撮影方法 などの情報を取得し、コンソール 1に提供する。イメージャ 72は、コンソール 1から出 力された X線画像データに基づいて X線画像をフィルムなどの画像記録媒体に記録 する。画像処理端末 73は、コンソール 1から出力された X線画像データの画像処理 や CAD (Computer Aided Diagnosis :コンピュータ診断支援)のための処理をして、フ アイルサーバ 75に保存する。ビューヮ 74は、コンソール 1から出力された X線画像デ ータに基づいて X線画像を表示する。ファイルサーバ 75は、処理画像処理された X 線画像データを保存するファイルサーバである。
[0039] なお、本実施形態では、表示制御部 11とコンソール制御部 13とが別体に設けられ た例であるが、表示制御部とコンソール制御部とがー体であってもよい。例えば、コン ソール制御部として CPU及びメモリが搭載されて 、るマザ一ボードを用い、表示制御 部としてこのマザ一ボードに内蔵されたグラフィックサブシステムを用いることが挙げ られる。また、コンソール制御部 13が表示制御部を兼ねても良い。また、本実施形態 では、画像処理部 15は、コンソール制御部 13と別体である力 コンソール制御部 13 が画像処理部を兼ねても良 ヽ。
[0040] また、本実施形態では、コンソール制御部 13が送信制御装置の機能を有しており 、両者が一体となっているが、これに限らず、コンソール制御部 13と送信制御装置が 別体で構成されていても良い。その場合、送信制御装置は、コンソール 1内に備えら れていても良いし、コンソール 1とは別の装置として、独立して設けられるようになって いても良い。
[0041] X線撮影室 R1には、前記コンソール 1と力セッテ 5との間での通信を中継する無線 中継器 6が設置されている。
[0042] 無線中継器 6は、力セッテ 5との間で後述する無線方式にて無線通信をする。また、 コンソール 1とは通信ケーブルを介して通信する。そして、無線中継器 6を介して、コ ンソール 1から送信された制御信号が力セッテ 5に受信され、又、力セッテ 5から各種 の信号がコンソール 1に送信される。
[0043] また、本実施形態において、無線中継器 6は、後述する力セッテ 5の内部電源 51を
充電する充電器の機能を具備している。無線中継器 6にはコネクタが備えられており 、このコネクタと力セッテ 5とが接続されると力セッテ 5の内部電源 51が充電される。無 線中継器 6は、力セッテ 5の着脱が容易なように形成されていることが好ましい。また、 無線中継器 6は、力セッテ 5の充電器としての機能の他に、力セッテ 5が未使用時に おけるホルダとしての機能を具備してもよ ヽ。
[0044] X線撮影室 R1には、また、被写体に X線を照射する X線源 4と、被写体に照射され た X線を検出して X線画像データを取得する放射線画像取得装置としての力セッテ 5 とが配置される。 X線撮影室 R1は X線源 4の X線が当該 X線撮影室 R1の外部に漏出 しないように X線遮蔽部材で覆われた室となっている。通常、このような X線遮蔽部材 は、例えば鉛板のような金属製部材すなわち導電性部材であり、電波の透過を抑え る性質や電波を反射する性質を持つ。
また、本実施形態において、力セッテ 5は携帯可能なもので、 X線撮影室 R1の外部 にも持ち出せるようになって 、る。
[0045] 更に、 X線撮影室 R1には、無線中継器 6が設置されている。無線中継器 6は、カセ ッテ 5との間で無線通信をする。また、無線中継器 6は、コンソール 1とは通信ケープ ルを介して通信する。そのため、力セッテ 5と無線中継器 6との間の通信においては、 通信用のケーブルが不要であり、 X線撮影時にぉ 、て当該ケーブルが被写体に絡 みっかな!/、ように注意を払!、ながら力セッテ 5を取り扱うと 、つた事態を回避すること ができる。
また、無線中継器 6はコンソール 1と通信ケーブルを介して通信する。そして、無線 中継器 6を介して、力セッテ 5が取得した画像データがコンソール 1に送信され、又、 コンソール 1と力セッテ 5の間で、制御信号や各種情報などの撮影用信号が通信され る。これにより、コンソール 1と無線中継器 6とがケーブルにより接続されていて、 X線 撮影室 R1に無線中継器 6を配置することで、コンソール 1とは放射線遮蔽部材で隔 てられた X線撮影室 R1で力セッテ 5が用いられても、良好な無線通信をすることがで きる。
[0046] また、無線中継器 6は、力セッテ 5の充電器の機能と、力セッテ 5の未使用時におけ るホルダの機能とを具備して 、ることが好まし 、。
例えば、無線中継器 6にはコネクタが備えられており、このコネクタと力セッテ 5とが 接続されると力セッテ 5の内部電源部 51が充電される。このとき、無線中継器 6は、力 セッテ 5の着脱が容易なように形成されていることが好ましい。また、無線中継器 6は 、力セッテ 5を充電しながら保持する形状であることが好ましぐこれにより、力セッテ 5 が未使用時におけるホルダとして機能しつつ、充電器としても機能することが好まし い。
[0047] まず、 X線源 4には、高圧電圧を発生する高圧発生源 41及び高圧発生源 41により 高圧電圧が印加されると X線を発生する X線管 42が配設されて 、る。 X線管 42の X 線照射口には、 X線照射範囲を調整する X線絞り装置(図示せず)が設けられて 、る 。 X線絞り装置は、コンソール 1からの制御信号に従って X線照射方向を制御するの で、 X線照射範囲が撮影領域に応じて調整される。更に、 X線源 4には、 X線源制御 部 43が配設されており、高圧発生源 41及び X線管 42は、 X線源制御部 43とそれぞ れ接続されている。 X線源制御部 43は、コンソール通信部 14から送信された制御信 号に基づいて、 X線源 4の各部を駆動制御する。すなわち、 X線源制御部 43は、高 圧発生源 41と X線管 42とを制御する。
[0048] 次に、本実施形態において、放射線画像取得装置としての力セッテ 5は、図 2に示 すように筐体 55を備えており、筐体 55により内部が保護されて携帯可能なものであ る。筐体 55には、アルミニウム、マグネシウムのような軽金属が用いられている。筐体 55に軽量金属を用いたことにより、筐体 55の強度を保持することができるようになつ ている。
X線撮影前に、被写体の所望の位置 '向きで透過した X線を撮影するように操作者 により力セッテ 5と被写体の位置と向きが調整されて配置される(場合により、 X線源 6 の位置と向きも調整されて配置される。 ) oその後、コンソール 1からの指示で X線源 4 が X線を発生させる。すると、力セッテ 5には、 X線源 4から所望の位置 '向きの被写体 を透過した X線が入射する。
[0049] 力セッテ 5には、内部電源 51、力セッテ通信部 52、力セッテ制御部 53、ノネル 54 が配設されている。内部電源 51、力セッテ通信部 52、力セッテ制御部 53、パネル 54 は、それぞれ力セッテ 5内のバスに接続されている。
[0050] 内部電源 51は、力セッテ 5内に配設された放射線画像取得手段としてのパネル 54 、通信手段としての力セッテ通信部 52、制御手段としての力セッテ制御部 53等の各 部に、これらを駆動するための電力を供給する。内部電源 51には、充電可能でかつ 撮影時に消費する電力に対応可能なコンデンサが設けられている。コンデンサとして は、電解二重層コンデンサを適用することが可能である。また、内部電源 51としては 、電池交換が必要なマンガン電池、ニッケル ·カドミウム電池、水銀電池、鉛電池など の一次電池や、充電可能な二次電池を適用することが可能である。
[0051] 内部電源 51の容量は、撮影効率の観点から、最大サイズの X線画像を連続して撮 影可能な枚数で換算して、 4枚以上 (特に 7枚以上)であることが好ま 、。
また、内部電源 51の容量は、小型化 ·軽量化'低コストィ匕の観点から、最大サイズ の X線画像を連続して撮影可能な枚数で換算して、 100枚以下 (特に 50枚以下)で あることが好ましい。
[0052] 力セッテは、電力の供給状態が異なる複数の電力供給の状態を有し、適切なタイミ ングで力セッテの電力供給の状態を変えることが好まし 、。このような電力の供給状 態としては、例えば、撮影可能状態と、撮影可能状態より電力消費の低い状態を有 することが好ましぐ特に、撮影可能状態より電力消費の低い状態として、 1又は複数 の撮影待機モード制御下の状態と、更に消費電力の低いスリープモード制御下の状 態を有することが好ましい。
[0053] なお、撮影動作とは、放射線撮影により放射線画像データを得るのに必要な動作 のことで、例えば、実施形態で示すパネルであれば、パネルの初期化、放射線照射 によって生成された電気エネルギーの蓄積、電気信号の読み取り、及び、放射線画 像データ化の各動作が該当する。
そして、撮影可能状態とは、直ちにこの撮影動作により放射線画像データを得るこ とができる状態のことである。
[0054] 力セッテ通信部 52は、コンソール通信部 14と各種信号を送受信するアンテナ 521 とアンテナ 521に入力された受信信号を復調したり、各種信号を変調増幅してアンテ ナ 521に出力したりする無線回路 522とにより構成されており、力セッテ通信部 52は 、無線中継器 6を介してコンソール通信部 14との間で各種の信号を無線通信により
送受信することが可能な通信手段として機能するものである。
[0055] 図 2に示すように、アンテナ 521は、筐体 55の外部に設けられている。具体的には 、筐体 55の外側、力セッテ 5の側面に近接して配設されている。力セッテ 5の側面で はなぐ X線が照射される側と反対側の裏面に近接して設けても良い。なお、アンテ ナの形状及び配置は、図示したものに限定されない。
また、筐体 55の内部には、アンテナ 521が接続される無線回路 522が設けられて おり、無線回路 522が駆動することによりアンテナ 521が電波を送受信する。本実施 形態では、このアンテナ 521及び無線回路 522に適用する電波は、予め設定された 所定のチャンネルの 1GHz超の周波数の電波である。なお、 1GHz超の周波数の電 波に限定されるものではなぐ信号の送受信を確実に行うために、直進性、指向性の 少ない 1GHz以下の周波数の電波を用いても良 、し、光通信を用いても良!、。
[0056] コンソール通信部 14力も力セッテ通信部 52に送信される信号としては、例えば、力 セッテ 5の内部の各種回路等の各駆動部に内部電源 51から電圧を印加するか否か を指示する指示信号がある。力セッテ 5の動作状態として撮影可能な状態、撮影待機 状態等複数の状態がある場合には、この指示信号により力セッテ 5の動作状態を切り 替えることができる。また、 X線を照射する旨を知らせる信号、パネル 54に対する X線 画像データの読取タイミングを指示する指示信号 (タイミング信号)、 X線画像データ を転送するよう指示する信号、 X線画像データを正常に受信した旨を知らせる信号そ の他の信号が挙げられる。
他方、力セッテ通信部 52からコンソール通信部 14に送信される信号としては、例え ば、力セッテ 5の動作状態を知らせる信号、 X線画像データを送信する準備ができた ことを知らせる信号その他の撮影用信号が挙げられる。
[0057] また、力セッテ通信部 52は、無線中継器 6を介してコンソール通信部 14に X線画像 データを送信することが可能である。すなわち、コンソール 1から所定の信号が送信さ れると、力セッテ通信部 52は、アンテナ 521及び無線中継器 6通信ケーブルを介した 無線方式の通信によりコンソール通信部 14に対して、パネルにより取得した大容量 の X線画像データを高速かつ確実に送信可能である。
[0058] また、力セッテ制御部 53は制御手段として、力セッテ通信部 52が受信した制御信
号などの撮影用信号に基づいて、力セッテ 5に配設されたパネル 54、力セッテ通信 部 52等の各部を制御する。
[0059] パネル 54は、被写体を透過した X線に基づ 、て X線画像データを出力(検出)する 放射線画像取得手段として機能する。また、本実施形態のパネル 54は、間接型フラ ットパネルディテクタ(FPD : Flat Panel Detector)である。
[0060] 図 2に力セッテ 5の概略構成を示す斜視図を、図 3にパネル 54を中心としたカセッ テ 5の断面図を示す。
なお、本実施形態では、図 2及び図 3に示した例を説明するが、これに限定されず
、シンチレータの厚さや種類が異なるものや、撮像領域の面積であるパネルの面積 が異なるものを用いることも適用可能である。シンチレータの厚さが厚いほど感度が 高くなり、シンチレータの厚さが薄いほど空間分解能が高くなる。また、シンチレータ の種類によって分光感度が異なる。
[0061] パネル 54には、被写体を透過した X線を検出し、検出した X線を可視領域の蛍光( 以下「可視光」と称す)に変換するシンチレータ 541が層状に設けられている。
シンチレータ 541は、蛍光体を主たる成分としている。シンチレータ 541は、照射さ れた X線により蛍光体の母体物質が励起(吸収)し、その再結合エネルギーにより可 視光を発光する層である。この蛍光体としては、例えば、 CaWO、 CdWO
4 4等の母体 物質により蛍光を発光するものや、 CsI :Tl、 ZnS :Ag等の母体物質内に付加された 発光中心物質により蛍光を発光するものなどが挙げられる。
[0062] シンチレータ 541の上層には保護層(図示せず)が設けられて 、ることが好まし!/、。
保護層はシンチレータを保護するもので、シンチレータの上部及び辺縁を完全に覆 つている。保護層としては、シンチレータの防湿保護の効果を有するものであればい ずれの材料を用いてもよい。そして、シンチレータとして、吸湿性を有する蛍光体 (特 に、アルカリハライド、更に、アルカリハライドからなる柱状結晶蛍光体)が用いられる 場合、例えば USP 6469305号において開示された、 CVD法によって形成されたポ リパラキシリレン製有機膜や、ポリシラザン、ポリシロキサザンなどのシラザン又はシロ キサザンタイプのポリマー化合物を含むポリマーから形成される有機膜や、プラズマ 重合法によって形成された有機膜などの防湿性有機膜を用いることが好ま ヽ。
[0063] シンチレータ 541の下層には、アモルファスシリコンにより形成された放射線検出器 と (X線検出器)しての光検出器 542が積層して延在しており、この光検出器 542によ りシンチレータ 541から発光する可視光が電気エネルギーに変換されて出力される。 そして、パネル 54は、 X線画像による診断の診断性の観点から、 1000 X 1000画 素以上(特に 2000 X 2000画素以上)の画素で構成されて!ヽることが好まし!/、。 また、パネル 54は、人の視認限界と X線画像の画像処理速度の観点から、 1万 X 1 万画素以下(特に 6000 X 6000画素以下)の画素で構成されて!ヽることが好まし!/ヽ。 また、暗号ィ匕処理の高速ィ匕による通信の即時性を確保するためにも好ま 、。
また、パネル 54の撮影領域のサイズは、 X線画像による診断の診断性の観点から、 10cm X 10cm以上(特に、 20cm X 20cm以上)の面積であることが好まし!/、。
また、パネル 54の撮影領域のサイズは、力セッテとしての取り扱いやすさの観点か ら、 70cm X 70cm以下(特に 50cm X 50cm以下)の面積が好まし!/ヽ。
また、パネル 54の一画素のサイズは、 X線被爆量低減の観点力も 40 m X 40 m以上(特に 70 m X 70 m以上)のサイズが好まし!/、。
また、パネル 54の一画素のサイズは、 X線画像による診断の診断性の観点から 20 0 m X 200 m以下(特に 160 m X 160 m以下)が好まし!/、。
本実施形態では、パネル 54が 4096 X 3072の画素カゝら構成されており、撮影領域 の面積力 S430mm X 320mmであり、 1画素のサイズが 105 m X 105 μ mとなって いる。
[0064] ここで、図 4を参照しつつ、光検出器 542を中心とした回路構成について説明する
[0065] 図 4に示すように、光検出器 542には、照射された X線の強度に応じて蓄積された 電気工ネルギーを読み出すための収集電極 5421が二次元配設されている。この収 集電極 5421には、コンデンサ 5424の一方の電極とされて、電気エネルギーがコン デンサ 5424に蓄えられるようになつている。ここで、 1つの収集電極 5421は、 X線画 像データの 1画素に対応するものである。
互いに隣接する収集電極 5421の間には、走査線 5422と信号線 5423とが配設さ れている。走査線 5422と信号線 5423とは、直交している。
[0066] コンデンサ 5424には、電気エネルギーの蓄電及び読み取りを制御するスィッチン グ薄膜トランジスタ 5425 (TFT: Thin Film Transistor,以下トランジスタと呼ぶ)が接 続される。トランジスタ 5425は、ドレイン電極あるいはソース電極が収集電極 5421に 接続されるとともに、ゲート電極は走査線 5422に接続される。ドレイン電極が走査線 5422に接続されるときには、ソース電極が信号線 5423に接続され、ソース電極が収 集電極 5421に接続されるときには、ドレイン電極が信号線 5423に接続される。また 、パネル 21では、信号線 5423に、例えばドレイン電極が接続された初期化用のトラ ンジスタ 5427が設けられて!/、る。このトランジスタ 5427のソース電極は接地されて!ヽ る。また、ゲート電極はリセット線 5426と接続される。
なお、トランジスタ 5425とトランジスタ 5427は、シリコン積層構造あるいは有機半導 体で構成されて ヽることが好まし 、。
[0067] また、走査駆動回路 543には、走査駆動回路 543からリセット信号 RTが送信される リセット線 5426が、信号線 5423と直交して接続されて 、る。
リセット線 5426には、リセット信号 RTによりオン状態となる初期化用トランジスタ 54 27のゲート電極が接続されている。初期化用トランジスタ 5427は、ゲート電極がリセ ット線 5426に接続されるとともに、ドレイン電極が信号線 5423と接続され、ソース電 極が接地されている。ソース電極が信号線 5423に接続されるときには、ドレイン電極 が接地されている。
走査駆動回路 543がリセット信号 RTをリセット線 5426を介して初期化用トランジス タ 5427に供給して初期化用トランジスタ 5427をオン状態とするとともに、走査駆動 回路 543が走査線 5422を介してトランジスタ 5425に読み出し信号 RSを供給してト ランジスタ 5425をオン状態とすると、コンデンサ 5424に蓄積された電気エネルギー 力 Sトランジスタ 5425を介して光検出器 542外に放出される。即ち、光検出器 542から 放出された電気エネルギーが信号線 5423及び初期化用トランジスタ 5427を介して グランド電極に放出される。以下、リセット信号 RTが供給されてコンデンサ 5424に蓄 積された電気工ネルギ一が光検出器 542外に放出されることを、光検出器 542のリ セット (初期化)と称する。
また、走査線 5422には、走査線 5422に読み出し信号 RSを供給する走査駆動回
路 543が接続されている。読み出し信号 RSが供給された走査線 5422に接続されて いるトランジスタ 5425は、オン状態となり、トランジスタ 5425と接続するコンデンサ 54 24に蓄積された電気エネルギーを読み出して信号線 5423に供給する。すなわち、 走査駆動回路 543は、トランジスタ 5425を駆動することで、 X線画像データの画素毎 の信号を生成することができる。
[0068] 信号線 5423には、信号読取回路 544が接続される。この信号読取回路 544には、 コンデンサ 5424に蓄電されて力 信号線 5423に読み出された電気エネルギーが 供給される。信号読取回路 544には、信号読取回路 544に供給された電気工ネルギ 一量に比例する電圧信号 SVを AZD変換器 5442に供給する信号変換器 5441と、 信号変 ^5441からの電圧信号 SVをデジタル信号に変換してデータ変換部 545 に供給する AZD変翻 5442とが設けられて 、る。
[0069] 信号読取回路 544には、データ変換部 545が接続されている。このデータ変換部 5 45は、信号読取回路 544から供給されたデジタル信号に基づ 、て X線画像データを 生成する。本実施形態においては、信号読取回路 544とデータ変換部 545とによつ て信号変換回路 (データ変換回路)が構成されて 、る。
[0070] 高分解能の X線画像データが必要でな 、ときや X線画像データを速く取得した 、と きには、操作者が選択した撮影方法に応じて、コンソール制御部 13は、受信した間 引き、画素平均、領域抽出などの制御信号が力セッテ制御部 53に送信する。カセッ テ制御部 53は、受信した間引き、画素平均、領域抽出などの制御信号に応じて、以 下の間引き、画素平均、領域抽出などを実行するように制御する。
間引きは、奇数列又は偶数列のみ読み出すことにより、読み出す画素数を全画素 数の 1Z4に間引いたり、同様にして 1Z9、 1Z16などに間引いたりすることにより行 われる。なお、間引きの方法は、この方法に限られるものではない。
また、画素平均は、同時に複数の走査線 5422を駆動し、同じ列方向の 2画素のァ ナログ加算を行うことにより算出することが可能である。画素平均は、 2画素の加算に より算出することに限らず、列信号配線方向の複数画素のアナログ加算を行うことに より容易に得ることができる。更に、行方向の加算については、 AZD変換出力後に 隣り合う画素をデジタル加算することにより、上述のアナログ加算と合わせて、 2 X 2
等の正方形画素の加算値を得ることができる。これらによって、照射された X線を無 駄にすることなぐ高速にデータを読み出すことが可能である。
また、領域抽出は、 X線画像データの取込領域を制限する手段がある。これは、撮 影方法の指示内容など力 必要な X線画像データの取得領域を特定し、この特定さ れた取得領域に基づいて力セッテ制御部 53が走査駆動回路 543のデータ取込範囲 を変更し、この変更した取込範囲をパネル 54が駆動するものである。
[0071] データ変換部 545には、メモリ 546が接続されている。このメモリ 546は、データ変 換部 545により生成された X線画像データを保存する。また、メモリ 546には、予めゲ イン補正用データが保存される。
メモリ 546は、 RAM (Random Access Memory)及び不揮発性メモリにより構成され る。このメモリ 546は、データ変換部 545により逐次生成された X線画像データを RA Mに逐次書き込みをした後に不揮発性メモリに一括書き込みすることができる。不揮 発性メモリは、 EEPROM、フラッシュメモリ等のメモリ部品 2つ以上により構成されて おり、このメモリ部品の一方を消去している間に他方に書き込みをすることができる。 このように、力セッテ 5は X線画像データを一時的に保存するために、 X線画像デー タを一時的に記憶するメモリ 546を備えて 、るので、取得した X線画像データをー且 メモリ 546に保存でき、圧縮処理や暗号化処理が余裕を持ってでき、通信不良や通 信不能な状態であっても、通信状態が良くなるまで X線撮影を遅らせる必要がなぐ そのメモリ 546に保存した X線画像データを、力セッテ 5とコンソール 1との間の通信 状態に応じた通信速度で、力セッテ 5からコンソール 1に送信することができる。なお、 メモリ 546の容量は、撮影の効率性の観点から、最大データサイズの画像の保存で きる画像数で換算して、 4以上 (特に 10以上)が好ましい。また、メモリ 546の容量は、 低コストィ匕の観点から、最大データサイズの画像の保存できる画像数で換算して、 10 00以下(特に 100以下)が好ましい。
[0072] 光検出器 542の下層には、ガラス基板により形成された平板上の支持体 547が設 けられ、支持体 547によりシンチレータ 541及び光検出器 542の積層構造が支持さ れている。
なお、シンチレータ 541が上部及び辺縁が保護層で、下部が支持体 547で完全に
覆われた構成であることが好ましい。この場合、大気中の水蒸気が保護層と支持体 5 47とで遮断され、シンチレータ 541が水分で劣化するのを抑えられる。
支持体 547の下面 (即ち、支持体 547の X線照射方向と反対側の面)には、 X線量 センサ 548が設けられている。 X線量センサ 548は、光検出器 542を透過した X線量 を検出し、 X線量が所定量に達すると、所定 X線量信号を力セッテ制御部 53に送信 する。また、本実施形態では、 X線量センサ 548として、アモルファスシリコン受光素 子を用いている。だが、 X線量センサは、これに限られず、結晶シリコンによる受光素 子等を用いて直接 X線を検出する X線センサや、シンチレータにより蛍光を検出する センサを用いてもよい。
支持体 547及び X線量センサ 548の下面(即ち、支持体 547及び X線量センサの X 線照射方向と反対側の面)には、 X線遮蔽部材 549が設けられている。 X線遮蔽部 材 549は、例えば鉛等の放射線を吸収するとともに導電性を有する材料によって形 成されている。なお、 X線遮蔽部材 549を形成する材料はここに例示したものに限定 されない。照射された X線は、 X線遮蔽部材 549により吸収され、 X線遮蔽部材 549 を透過しない。 X線遮蔽部材 549の下面には、内部電源 51、力セッテ制御部(制御 手段) 53及びデータ変換回路 (信号読取回路 544とデータ変換部 545)が設けられ ている。内部電源 51、力セッテ制御部(制御手段) 53及びデータ変換回路において は、 X線遮蔽部材 549により X線が吸収されるので、内部電源 51、力セッテ制御部( 制御手段) 53及びデータ変換回路により X線が散乱してパネル 54に反射することが ない。これにより、パネル 54は、良質な X線画像データを取得することができる。 上述のように、力セッテ 5は、内部電源部 51からの電力で駆動し、可搬型のケープ ルレスであり、力セッテ通信部 52とコンソール通信部 14とが無線通信を介して通信 するので、コンソール 1との連動性を維持しつつ、操作性が良ぐ撮影効率を向上さ せることができる。
なお、本実施形態では、パネル 54が 4096 X 3072画素を持つ 1枚のパネルで構 成された例を示した力 これに限定されず、例えば、ノネル 54力 S2048 X 1536画素 を持つ 4枚の小パネルで構成されたものを用いることもできる。このように複数枚の小 パネルからパネルを構成した場合、 4つの小パネルを組みあわせて 1枚のパネルとす
る手間が発生するが、各パネルの歩留まりが向上するので、全体としても歩留まりが 向上し低コストィ匕するという利点がある。
更に、本実施形態では、シンチレータ 541と光検出器 542とを用いて照射された X 線の電気エネルギーを読み出す例を示した力 これに限定されず、 X線を電気エネ ルギ一に直接変換できる光検出器を適用することが可能である。例えば、ァモルファ ス Seや PbI2等を用いた X線電気エネルギー変換部とアモルファスシリコン TFT等と により構成された X線検出器を用いるようにしてもょ 、。
また、本実施形態では、信号読取回路 544に 1つの AZD変翻5442が設けられ た例を示したが、これに限定されず、複数の AZD変 を適用することが可能であ る。 そして、 AZD変換器の数は、画像読取時間を短くして所望の SZN比を得るた めに、 4以上、特に 8以上であることが好ましい。
また、 AZD変換器の数は、低コスト化'小型化のために、 64以下、特に 32以下で あることが好ましい。これにより、アナログ信号帯域及び AZD変換レートを不必要に 大きくすることがない。
また、本実施形態では、ガラスにより形成された支持体 547の例を示した力 これに 限定されず、榭脂ゃ金属等によって形成された支持体を適用することが可能である。 なお、上記では、コンソール 1は X線制御室 R2に設置されている旨記載した力 コ ンソール 1は無線通信可能な携帯端末であってもよい。この場合、 X線制御室 R2に も無線中継器を設置し、コンソール通信部 14は、 X線撮影室 R1内の無線中継器 6と も X線制御室 R2内の無線中継器とも無線通信可能で、その結果、 X線撮影室 R1内 でも X線制御室 R2内でも力セッテ 5と通信できることが好ましい。これにより、撮影者 は、従来のように X線制御室 R2内だけでなぐ X線撮影室 R1内で被写体に撮影位 置等につ 、て指示をしながら当該コンソール 1で X線画像を確認したり、 X線画像デ ータの画像処理を開始させたりすることができ、また、 X線撮影室 R1と X線制御室 R2 の間の移動時間で X線画像を確認したり、 X線画像データの画像処理を開始させた りすることもでき、 X線撮影から X線画像を確認するサイクルを繰り返す X線撮影全体 のトータルの撮影効率を向上させることができる。また、この場合、送信データは圧縮 •暗号ィ匕処理されたままのデータで送信されることが、 X線画像データの漏洩防止と
処理の単純化のために好まし!/、。
[0075] 次に、本発明の一実施形態による X線画像取得システムによる動作について説明 する。
[0076] まず、コンソール制御部 13は、コンソール通信部 14と通信ケーブルで接続された 無線中継器 6を介して、新しい機器が導入されたとき又は常時、無線中継器 6のアン テナ力も得られる無線通信のチャンネル情報を取得し、他の機器がどのチャンネルを 使用しているかを確認して記憶するようになっている。また、新しい機器が導入された ときには、コンソール制御部 13は、導入された旨と使用しているチャンネル情報を表 示制御部 11が表示部 3に表示するように制御する。
[0077] そして、コンソール制御部 13は、当該他の機器のチャンネルが力セッテ 5で既に使 用しているチャンネルと同じ力否かの判定を行う。ここで、他の機器のチャンネルと力 セッテ 5で使用するチャンネルが異なる場合には、コンソール制御部 13は、その旨の 表示を表示部 3で行うように表示制御部 11を制御し、そのまま待機する。これに対し 、他の機器のチャンネルと力セッテ 5で使用するチャンネルが同じであった場合には 、コンソール制御部 13は次のような制御を行う。
[0078] まず、コンソール制御部 13は、保存しているチャンネルの使用状況から、空いてい るチャンネルを検索する。次に、コンソール制御部 13は、力セッテ 5がチャンネル変 更可能な装置であるか否かの判断を行う。力セッテ 5がチャンネル変更可能であれば 、コンソール制御部 13は、前記検索した空チャンネルのいずれかに力セッテ 5のチヤ ンネルを変更し、チャンネルを変更した旨と変更後のチャンネルの表示を表示部 3で 行うように表示制御部 11を制御する。
また、コンソール制御部 13は、力セッテ 5がチャンネル変更不可能な装置であれば 、その旨を表示部 3に表示させた上で、新しく導入された他の機器がチャンネル変更 可能な装置であるか否かの判断を行う。他の機器がチャンネル変更可能であれば、 コンソール制御部 13は、前記検索した空チャンネルのいずれかに他の機器のチャン ネルを変更し、チャンネルを変更した旨と変更後のチャンネルの表示を表示部 3で行 うように表示制御部 11を制御する。
また、他の機器もチャンネル変更不可能な装置であれば、コンソール制御部 13は、
その旨の表示を表示部 3で行うように表示制御部 11を制御した上で、 X線画像デー タの送信時等に他の機器を使用しな ヽように警告する表示を表示部 3で行うように表 示制御部 11を制御する。
[0079] そして、コンソール制御部 13から撮影準備指示信号を受信するまで、力セッテ制御 部 53は、走査駆動回路 543をオフ状態に保つように制御する。力セッテ制御部 53は 、オフ状態に保っために、走査線 5422、信号線 5423、リセット線 5426の電位を同 電位にし、収集電極 5421にバイアスを印加しないように、走査駆動回路 543をカセ ッテ制御部 53が制御する。また、力セッテ制御部 53は、信号読取回路 544の電源を オフ状態に保ち、走査線 5422、信号線 5423、リセット線 5426の電位を GND電位 にしてもよい。
[0080] 走査駆動回路 543及び信号読取回路 544にバイアスが印加されていない状態に は、撮影待機モードとスリープモードとがある。
なお、撮影待機モードでは、フォトダイオードへバイアス電位を印加しないだけでな ぐ走査駆動回路 543及び信号読取回路 544は立ち上がりが早いので、走査駆動回 路 543及び信号読取回路 544にも電力供給をしないことが、電力消費を更に抑える ことができ好ましい。更に、撮影待機モードでは、信号が発生しないので、データ変 換部 545にも電力供給しないことが、電力消費を更に抑えることができ好ましい。 また、撮影待機モードよりも更に消費電力の少ないスリープモードを設けることが好 ましい。そして、撮影済み画像をコンソール 1に完全に送信後、スリープモードに移行 することが好ましい。そして、スリープモードでは、コンソール 1から指示により撮影待 機モードへ立ち上がるのに必要な機能のみ残して、力セッテ通信部 52の高速送信 機能又は送信機能全体やメモリへの電力供給を停止することが好ま Uヽ。すなわち、 スリープモードでは、フォトダイオードへのバイアス電位を印加せず、走査駆動回路 5 43、信号読取回路 544、データ変換部 545、メモリ 546、及び力セッテ通信部 52の 高速送信機能又は送信機能全体に電力供給しないことが好ましい。これにより、無駄 な電力消費をより抑えることができる。
このように、単位時間当たりの消費電力が撮影可能状態より低い撮影待機モードと スリープモード制御下の状態では、走査線 5422、信号線 5423、リセット線 5426の
電位を同電位にし、収集電極 5421にバイアスを印加しない状態、すなわち、複数の 画素に電圧が実質的に印加されない状態であるので、 PDや TFTに電圧が実質的 に印可されることにより劣化、すなわち、複数の画素の劣化を抑えることができる。ま た、無駄な電力の消費も抑えられる。
[0081] そして、例えば、 X線照射スィッチの 1stスィッチが ONされたり、操作入力部 2を介 して、被写体情報や撮影情報等、所定の項目が入力されるなどの入力部 12が撮影 のための指示内容を受信したり、また、 HISZRIS71からオーダ情報を受信したりす ると、コンソール制御部 13は、操作者の指示内容や HISZRIS71など力ものオーダ 情報に基づ ヽて撮影条件を決定し、この撮影条件に基づ!ヽた撮影準備指示信号を 、 X線源制御部 43及び力セッテ制御部 53にコンソール通信部 14を介して送信し、撮 影可能状態に移行させる。
[0082] X線源制御部 43は、撮影準備指示信号を受信すると、高圧発生源 41を駆動制御 して、 X線管 42に高圧を印加する状態に移行させる。
[0083] 力セッテ制御部 53は、撮影準備指示信号を受信すると、撮影可能状態に移行する 。すなわち、撮影可能状態において撮影指示が入力されるまで全ての画素のリセット を所定間隔で繰り返し、暗電流によりコンデンサ 5424に電気エネルギーが蓄積され ることを防止する。撮影可能状態が継続する時間は不明なため、この所定間隔は、 撮影時よりも長ぐまた、トランジスタ 5425のオン時間が撮影時よりも短く設定される。 これにより撮影可能状態では、トランジスタ 5425に負荷の力かる読み出し動作が少 なくなる。そして、撮影可能状態に移行した後、力セッテ制御部 53は、コンソール 1に 撮影可能状態移行信号を送信する。コンソール制御部 13は、撮影可能状態移行信 号を受信すると、力セッテが撮影可能状態に移行したことを示す力セッテ撮影可能状 態表示を表示部 3がするように表示制御部 11を制御する。
[0084] 撮影指示がコンソール制御部 13に入力されると、コンソール制御部 13は、操作者 の指示内容や HISZRIS71などからのオーダ情報に基づいて撮影条件を決定し、 この撮影条件に関する撮影条件情報を、 X線源制御部 43及び力セッテ制御部 53に コンソール通信部 14を介して送信する。例えば、コンソール通信部 14から力セッテ 制御部 53に送信される信号は、無線中継器 6を介して力セッテ 5の力セッテ通信部 5
2のアンテナ 521によって受信され、受信した信号が無線回路 522によって復調され て力セッテ制御部 53に送られる。
[0085] コンソール制御部 13は、例えば X線照射スィッチの 2ndスィッチ ONなどの操作者 力もの X線照射指示を受けると、撮影指示信号を力セッテ 5の力セッテ制御部 53に送 信する。そして、コンソール制御部 13に X線照射指示が入力された後、コンソール制 御部 13は、 X線源 4と力セッテ 5とを制御し、同期をとりながら撮影をする。
力セッテ制御部 53は、撮影指示信号を受信すると、パネル 54を初期化し、パネル 5 4が電気エネルギーを蓄積することができる状態に移行する。具体的には、リフレツシ ュを行い、そして、撮像シーケンスの為の専用の全画素のリセットを所定回数及び電 気エネルギー蓄積状態専用の全画素のリセットを行って電気工ネルギー蓄積状態に 遷移する。曝射要求力 撮影準備完了までの期間は所定時間が短いことが実使用 上要求されるので、そのために撮像シーケンス専用の全画素のリセットを行う。更に、 撮影可能状態の駆動の 、かなる状態力もも曝射要求が発生した場合は、即時撮像 シーケンス駆動に入ることにより曝射要求力 撮影準備完了までの期間を短くするこ とにより、操作性の向上を図る。
[0086] パネル 54が電気エネルギーを蓄積できる状態に移行すると、力セッテ制御部 53は 、力セッテ通信部 52から無線中継器 6を介してコンソール通信部 14に力セッテ 5の準 備終了信号を送信する。コンソール通信部 14は、この準備終了信号を受信すると、 コンソール制御部 13に力セッテの準備終了信号を伝達する。
コンソール制御部 13は、この力セッテの準備終了信号を受信した状態で、かつ、 X 線照射指示を受けた状態になると、 X線照射信号を X線源 4に送信する。 X線源制御 部 43は、 X線照射信号を受信すると、高圧発生源 41を駆動制御して X線管 42に高 圧を印加し、 X線源 4から X線を発生させる。 X線源 4から発生した X線は、 X線照射 口に設けられた X線絞り装置により X線照射範囲を調整され、被写体に照射される。 また、コンソール制御部 13は、 X線撮影中である旨の X線撮影中表示を表示部 3が するように表示制御部 11を制御する。
[0087] 被写体を透過した X線は、力セッテ 5に入射する。この力セッテ 5に入射した X線は、 シンチレータ 541によって可視光に変換される。
[0088] X線量センサ 548は、力セッテ 5に照射された X線量を検出する。そして、検出した X線照射量が所定量に達すると、 X線量センサ 548が所定 X線量信号を力セッテ制 御部 53に送信する。力セッテ制御部 53は所定 X線量信号を受信すると、無線中継 器 6を介してコンソール通信部 14に X線終了信号を送信する。コンソール通信部 14 は、この X線終了信号を受信すると、コンソール制御部 13に X線終了信号を伝達す るとともに、 X線源制御部 43に X線照射停止信号を送信する。 X線源制御部 43は、こ の X線照射停止信号を受信すると、高圧発生源 41を駆動制御し、高圧発生源 41が X線管 42への高圧の印加を停止する。これにより X線の発生が停止する。
[0089] 力セッテ制御部 53は、力セッテ通信部 52が無線中継器 6を介して X線終了信号を 送信すると、 X線終了信号に基づいて走査駆動回路 543と信号読取回路 544とを駆 動制御する。走査駆動回路 543は、光検出器 542が取得した電気エネルギーを読 み出し、取得した電気エネルギーを信号読取回路 544に入力する。例えば、 X線終 了信号の送信の開始又は終了から所定時間後、光検出器 542が取得した電気エネ ルギーを読み出すようにしてもよいし、送信の終了と同時に光検出器 542が取得した 電気工ネルギーを読み出すようにしてもよい。信号読取回路 544は、入力された電気 エネルギーをデジタル信号に変換する。そして、データ変換部 545は、デジタル信号 を X線画像データに構成する。メモリ 546は、データ変換部 545により構成された X線 画像データを一時記憶する。
[0090] 続、て力セッテ制御部 53は、 X線画像データを取得した後に、補正用 X線画像デ ータを取得する。補正用 X線画像データは、 X線照射をしない暗 X線画像データであ り、高品質の X線画像を取得するために X線画像の補正に使用するものである。補正 用 X線画像データの取得方法は、 X線を照射しない点以外は、 X線画像データの取 得方法と同じである。電気エネルギー蓄積時間は、 X線画像データを取得するときと 補正用 X線画像データを取得するときとで等しくなるように設定する。ここで、電気工 ネルギー蓄積時間とは、リセット動作が完了したとき、即ちリセット時のトランジスタ 54 25をオフにして力 、次に電気エネルギー読み出しを行うためにトランジスタ 5425を オンにするまでの時間である。よって、各走査線 5422により電気エネルギー蓄積が 始まるタイミングや電気エネルギー蓄積時間が異なる。
[0091] データ変換部 545は、構成した X線画像データを、取得した補正用 X線画像データ に基づいてオフセット補正し、続いて、予め取得してメモリ 546に記憶されているゲイ ン補正用データに基づいてゲイン補正する。そして、不感画素や複数の小パネルで 構成されたパネルの場合、小パネルのつなぎ目部などに違和感を生じな 、ように画 像を連続的に補間して、パネルに由来する補正処理を完了する。本実施形態では、 データ変換部 545は、力セッテ制御部 53と別体である力 力セッテ制御部 53がデー タ変換部 545を兼ねても良い。
[0092] そして、力セッテ 5は、 X線画像データに基づき補正した画像データ (補正しな!、で X線画像データそのままの場合もある)を無線送信する前に、暗号化処理して送信す る。すなわち、力セッテ 5に、送信する X線画像データを暗号化する暗号化処理手段 を設け、また、コンソール 1に暗号化された X線画像データを復号化する復号化処理 手段を設ける。このような暗号化処理手段は、力セッテ制御部 53又は力セッテ通信部 52が兼ねてもよいし、これらとは別に暗号ィ匕処理部を設けても良い。また、このような 復号化処理手段は、無線中継器 6、コンソール通信部 14、コンソール制御部 13又は 画像処理部 18が兼ねてもよいし、これらとは別に復号ィ匕処理部を設けてもよい。 なお、本実施形態では、暗号ィ匕処理手段は力セッテ通信部 52が兼ねており、また 、復号ィ匕処理手段はコンソール通信部 14が兼ねている。
[0093] そして、このような暗号化に適する技術としては、例えば、 IEEE802. 11で規定さ れた WEP (Wired Equivalent Privacy: 64bit又は 128bitのキー長の共通鍵を用いた喑 号化)や、 IEEE802. l liで規定された TKIP (Temporal Key Integrity Protocol:キ 一を自動的に変更して暗号化を行うようにした暗号化)、 WPA (Wi-Fi Protected Acc ess :TKIP¾EEE802. lxを併用した暗号化)、 IEEE802. l liに規定される AES ( Advanced Encryption Standard)などが挙げられるがこれらに限らない。
[0094] また、力セッテ通信部 52やコンソール通信部 14や無線中継器 6に他の機器がァク セスすることを制限することが好ましい。このようなアクセス制限機能として、本実施形 態では、 SSID (Service Set Identifier:接続する機器固有の IDであり、パケットのへッ ダに含まれる SSIDがー致しないパケットを無視する)、 MAC (Media Access Control 、媒体アクセス制御)アドレス (LANカード固有のアドレス)フィルタリング機能 (登録し
た MACアドレスの端末に対してだけ、接続が可能とする)、 ANY接続拒否機能 (ァク セスポイントに設定する機能で、クライアントの SSID設定が「ANY」となっている場合 に、アクセスポイントとの接続を拒否する機能。通常は、クライアントの SSID設定が「 ANY」となっている場合、あらゆる SSIDを持つアクセスポイントに対して接続が可能 であることに対する)が設けられている力 これ以外に例えば、ビーコン信号に SSID を含めない機能、 IEEE802. lxに規定された認証 (RADIUS)サーバによるユーザ認 証(認証されていない端末からの通信を全て拒否し、認証されたユーザにのみ通信 を許可する)など他の機能を付加しても良い。
[0095] すなわち、力セッテ 5には、サービスセット ID (SSID)を設定されており、力セッテ通 信部 52は、 X線画像データから圧縮、暗号化処理して得たデータに、この設定され ているサービスセット IDの情報とともに無線通信により送信する。そして、コンソール 1 のコンソール通信部 14にも、サービスセット IDを設定されており、コンソール通信部 1 4は、設定されたサービスセット IDと同一のサービスセット IDの情報と共に送信された データ信号だけを受信する。すなわち、クライアントの SSID設定力 「ANY」となってい る場合に、アクセスポイントとの接続を拒否する ANY接続拒否機能を含む SSID機能 を有している。そして、コンソール 1は、受信したデータ力 復号化、解凍処理して X 線画像データを得て、得た X線画像データを画像保存部 16に保存する。これ〖こより、 力セッテ 5用コンソール 1以外の他の機器にデータ信号が紛れ込む事態の発生が抑 えられつつ、力セッテ 5などのコンソール 1用装置以外の他の機器力ものデータ信号 力 Sコンソール 1に紛れ込む事態の発生が抑えられる。
[0096] そして、力セッテ 5に設定されているサービスセット IDと、コンソール 1のコンソール 通信手段 14に設定されているサービスセット IDと、他の機器に設定されているサー ビスセット IDを管理し、力セッテ 5に設定されているサービスセット IDと、コンソール通 信部 14に設定されて 、るサービスセット IDが同じになり、力セッテ 5用コンソール以外 であり、力セッテ 5などのコンソール 1用装置以外の他の機器に設定されているサービ スセット IDと、力セッテ 5やコンソール 1に設定されているサービスセット IDとが異なる サービスセット IDとなるようにしているので、力セッテ 5用コンソール 1以外の他の機器 にデータ信号が紛れ込む事態の発生がより効果的に抑えられつつ、コンソール 1用
装置以外の他の機器からのデータ信号がコンソール 1に紛れ込む事態の発生がより 効果的に抑えられる。
[0097] また、力セッテ 5が、固有番号である MACアドレスを設定されており、力セッテ通信 部 52が送信するデータとともに設定された MACアドレスの情報を送信するものであ る。また、コンソール通信部 14から通信ケーブルを介して接続された無線中継器 6を 有し、無線中継器 6は、この無線中継器 6と無線通信可能な装置のみ、その MACァ ドレスが設定されており、設定された MACアドレスの装置に対してのみ無線通信す るものである力ゝら、すなわち、登録した MACアドレスの端末に対してだけ、接続が可 能とする MACアドレスフィルタリング機能を有するから、コンソール 1用装置以外の他 の機器力 のデータ信号がコンソール 1に紛れ込む事態の発生がより効果的に抑え られる。
[0098] また、通信速度を向上させるために、力セッテ 5で X線画像データ又は X線画像デ ータに基づき補正した画像データを圧縮し、コンソール 1側で解凍することが好まし い。すなわち、力セッテ 5に、送信する X線画像データを圧縮する圧縮処理手段を設 け、また、コンソール 1に圧縮された X線画像データ又は X線画像データに基づき補 正した画像データを解凍する解凍処理手段を設けることが好ま 、。このような圧縮 処理手段は、力セッテ制御部 53又は力セッテ通信部 52が兼ねてもよいし、これらとは 別に圧縮処理部を設けても良い。また、このような解凍処理手段は、無線中継器 6、 コンソール通信部 14、コンソール制御部 13又は画像処理部 18が兼ねてもよいし、こ れらとは別に解凍処理部を設けてもよい。
なお、本実施形態では、圧縮処理手段は力セッテ通信部 52が兼ねており、また、 解凍処理手段はコンソール通信部 14が兼ねている。
[0099] そして、本実施形態では、メモリ 546に保存されて 、る X線画像データ又は X線画 像データに基づき補正した画像データを圧縮処理した後、暗号化処理して力セッテ 通信部 52から送信し、コンソール通信部 14が受信したデータを、復号化処理した後 、解凍処理することが好ましい。すなわち、圧縮処理手段により圧縮された X線画像 データ又は X線画像データに基づき補正した画像データを暗号ィ匕手段により暗号ィ匕 し、力セッテ通信部 52から無線中継器 6へ無線送信し、無線中継器 6は無線送信さ
れたデータをコンソール通信部 14に送信し、コンソール通信部 14が受信したデータ を復号化処理手段により復号化された X線画像データ又は X線画像データに基づき 補正した画像データを解凍処理手段により解凍することが好ましい。
[0100] 具体的には、本実施形態の力セッテ通信部 52における暗号ィ匕処理手段としての暗 号化処理部 52aは、図 5に示すように、前記した X線画像データ (又は X線画像デー タに基づき補正した画像データ)に圧縮処理を行う圧縮処理手段としての圧縮処理 部 52b、圧縮処理部 52bで圧縮処理を行ったデータに対する暗号化方式を選択す るセレクタ 52c、圧縮処理部 52bで圧縮処理を行ったデータに WEP方式で暗号化を 行う WEP暗号化部 52d、圧縮処理部 52bで圧縮処理を行ったデータに TKIP方式 で暗号化を行う TKIP暗号化部 52e、 WEP暗号化部 52d又は TKIP暗号化部 52eで 暗号化を行ったデータのコンソール 1への送信処理を行う送信部 52fを備えている。 そして、暗号化処理部 52aに送られてきた X線画像データ (又は X線画像データに基 づき補正した画像データ)に対し、力セッテ制御部 53によって、データに圧縮処理を 行うように指示され、まず圧縮処理部 52bで X線画像データ (又は X線画像データに 基づき補正した画像データ)に圧縮処理を行う。次に、セレクタ 52cで、力セッテ制御 部 53によって指示されている方式の暗号ィ匕方式を選択し、 WEP暗号ィ匕部 52d又は TKIP暗号化部 52eで、圧縮処理部 52bで圧縮処理を行ったデータの暗号化処理を 行う。その後、送信部 52fで、 WEP暗号ィ匕部 52d又は TKIP暗号ィ匕部 52eで暗号ィ匕 を行ったデータのコンソール 1への送信処理が行われるようになつている。なお、カセ ッテ制御部 53によってデータに圧縮処理を行うように指示されていないときには、圧 縮処理部 52bは圧縮処理は行わず、始めにセレクタ 52cで暗号化方式の選択を行う
[0101] また、本実施形態のコンソール通信部 14における復号ィ匕処理手段としての復号ィ匕 処理部 14aは、図 6に示すように、力セッテ 5から送信されたデータの受信処理を行う 受信部 14b、受信部 14bで受信処理を行ったデータに対する復号化方式を選択す るセレクタ 14c、受信部 14bで受信処理を行ったデータに WEP方式で復号化を行う WEP復号ィ匕部 14d、受信部 14bで受信処理を行ったデータに TKIP方式で復号ィ匕 を行う TKIP復号ィ匕部 14e、 WEP復号ィ匕部 14d又は TKIP復号ィ匕部 14eで復号ィ匕を
行ったデータに解凍処理を行う解凍処理手段としての解凍処理部 14fを備えている 。そして、受信部 14bが力セッテ 5から復号ィ匕処理部 14aに送られてきたデータを受 信すると、まず、セレクタ 52cで、当該データに適合した暗号化方式を選択し、選択さ れた WEP復号化部 14d又は TKIP復化部 14eで、受信部 14bで受信処理を行った データの復号化処理を行う。次に、解凍処理部 14fで、 WEP復号ィ匕部 14d又は TKI P復号化部 14eで復号化を行ったデータに解凍処理を行 ヽ、解凍処理部 14fで解凍 処理を行ったデータを画像保存部 16に送り出すようになつている。なお、力セッテ 5 力 送信されたデータに圧縮処理が行われていないときには、解凍処理部 14fは解 凍処理は行わず、復号ィ匕したデータをそのまま画像保存部 16に送り出す。
また、前記した暗号化方式等の決定は、設定スィッチ 56の切換えにより行われ、セ レクタ 52cに指示が出されるようになつている。なお、設定スィッチ 56としては、種々 の条件に応じて力セッテ制御部 53が出す指示で切り替わるソフト的なスィッチでも良 ぐ操作者の意思で切り換えられるハード的なスィッチでも良い。
[0102] そして、コンソール制御部 13は、 X線画像データを受信すると、画像保存部 16に一 時保存する。そして、コンソール制御部 13は、画像処理部 15が画像保存部 16に一 時保存した X線画像データからサムネイル画像データを作成するように制御する。表 示制御部 11は、作成されたサムネイル画像データに基づいて、表示部 3がサムネィ ル画像を表示するように制御する。
[0103] その後、画像処理部 15は、 X線画像データを操作者の指示内容や HISZRIS71 などからのオーダ情報に基づ!/ヽて画像処理する。この画像処理された X線画像デー タは、表示部 3に画像表示されると同時に画像保存部 16に送信され、 X線画像デー タとして保存される。更に、操作者の指示に基づいて、画像処理部 15は X線画像デ 一タを再画像処理し、 X線画像データの画像処理結果は表示部 3が表示する。また、 ネットワーク通信部 18は、 X線画像データをネットワーク上の外部装置であるイメージ ャ 72、画像処理端末 73、ビューヮ 74、ファイルサーバ 75等に転送する。コンソール 1 から X線画像データが転送されると転送された外部装置は対応して機能する。すな わち、イメージャ 72は、この X線画像データをフィルムなどの画像記録媒体に記録す る。画像処理端末 73は、この X線画像データの画像処理や CAD (Computer Aided
Diagnosis :コンピュータ診断支援)のための処理をし、ファイルサーバ 75に保存する oビューヮ 74は、この X線画像データに基づいて X線画像を表示する。ファイルサー バ 75は、この X線画像データを保存する。
[0104] 以上のように、本実施形態によれば、無線通信により送信されるデータ信号が暗号 化処理されたデータから得た信号なので、傍受されて万一送信されたデータ信号が 漏洩しても、傍受した者が X線画像を得ることが実質的にできない。特に、圧縮処理 された後に暗号ィ匕されるので、 X線画像そのものが持つ冗長性 (例えば、 X線撮影画 像の素抜け領域など)が暗号解読で利用されるリスクが、圧縮処理でこの冗長性が緩 和された後に暗号化されることで低減し、暗号解読の困難性が増し、傍受されて万一 送信されたデータ信号が漏洩しても、傍受した者が X線画像を得ることが実質的にで きない。
[0105] 更に、コンソール 1は、同一のサービスセット IDを設定された力セッテ 5からデータ 信号を受信でき、他の機器からデータ信号が紛れ込む事態の発生を抑えられる。ま た力セッテ 5用のコンソール 1でない他の機器にデータ信号が紛れ込む事態の発生 が抑えられつつ、コンソール 1用の力セッテ 5でない他の機器からのデータ信号がコ ンノールに紛れ込む事態の発生が抑えられる。また、コンソール 1用の力セッテ 5でな い他の機器力 のデータ信号がコンソールに紛れ込む事態の発生がより効果的に抑 えられる。
[0106] また、放射線画像取得システム 1が、照射された放射線を検出して X線画像データ を得るパネル 54と、パネル 54により取得した X線画像データをアンテナ 521から所定 のチャンネルの 1GHz超の周波数の電波により送信する力セッテ通信部 52とを備え る力セッテ 5と、力セッテ 5が送信するチャンネルと、他の機器が 1GHz超の周波数の 電波で送信するチャンネルを管理し、力セッテ 5が所定のチャンネルのマイクロ波で 送信する際に、他の機器が当該チャンネルの 1GHz超の周波数の電波で送信しな いように制御するコンソール制御部 13とを備えるため、他の機器による通信不能な状 態が発生することを防止して、 1GHz超の周波数の電波を用いて大容量の X線画像 データを高速かつタイムリーに送信することができる。
[0107] また、本実施形態の放射線画像取得システムでは、力セッテ (放射線画像取得装
置) 5では画像データに被験者の氏名、年齢等の被写体情報を付加せず、コンソ一 ル 1にお 、て、画像データに被写体情報を付加するようになって!/、る。
このようになっていると、力セッテ (放射線画像取得装置) 5からコンソール 1に送信 された画像データを万一解読されても、被写体情報が不明な画像データであり、個 人情報漏洩リスクが低くなる。
[0108] 更に、本実施形態の放射線画像取得システムでは、力セッテ (放射線画像取得装 置) 5では画像データに撮影部位や撮影条件等の撮影情報を付加せず、コンソール
1にお 、て、画像データに撮影情報を付加する。
このようになっていると、力セッテ (放射線画像取得装置) 5からコンソール 1に送信 された画像データを万一解読されても、被写体情報と撮影情報の両方が不明な画像 データであり、個人情報漏洩リスクが一層低くなる。
[0109] なお、本実施形態では、コンソール通信部 14が、力セッテ 5の力セッテ制御部 53と 力セッテ通信部 52を介して通信するとともに、 X線源 4の X線源制御部 43とも通信す るように構成したが、コンソール 1と他の外部機器との通信の構成はここに例示したも のに限定されない。
[0110] 例えば、図 7に示すように、操作入力部 2に、操作者により撮影準備指示や撮影指 示を入力する X線照射スィッチ 21と、操作者により指示内容を X線源制御部 43に入 力する X線源指示内容入力部 22と、操作者により指示内容をコンソール 5に入力す るコンソール指示内容入力部 23とが設けられ、 X線照射スィッチ 21により X線源制御 部 43に撮影準備指示及び撮影指示を入力するとともに、 X線源指示内容入力部 22 により X線源制御部 43に各種指示を入力するように構成してもよい。この場合には、 操作入力部 2と X線源制御部 43とが有線方式又は無線方式により接続され、相互に 信号の送受信が可能となるように構成される。
[0111] また、本実施形態では、力セッテ通信部 52は、無線中継器 6を介してコンソール 1 のコンソール通信部 14との間で信号の送受信を行うことを例として説明した力 無線 中継器 6が、例えば、 X線源等の他の外部機器とも接続され、力セッテ通信部 52がコ ンソール 1以外の外部機器との間でも信号の送受信を行う構成としてもよい。
[0112] 上述の実施形態では、力セッテ 5が、画像データを暗号化して送信し、力セッテの
準備終了信号などは暗号ィ匕せずに送信する例を説明した。このように、暗号通信と 非暗号通信の 2方式を有するので、暗号化が必要な通信には暗号化のための時間 をかけ、暗号ィ匕が不要な通信には暗号ィ匕のための時間を省け、暗号ィ匕の目的の達 成しつつ、暗号化の目的の達成に不要な時間の増加を抑えられる。特に、通信内容 に応じて、暗号通信又は非暗号通信となるので、暗号化が必要な通信には暗号化の ための時間をかけ、暗号ィ匕が不要な通信には暗号ィ匕のための時間を省けるので、暗 号ィ匕の目的の達成しつつ、暗号化の目的の達成に不要な時間の増加を抑えられる
[0113] なお、暗号通信と非暗号通信の 2つの通信方式を有する例としては、例えば、以下 の例が挙げられる力 これらに限らない。
•静止画データは暗号ィ匕して通信するが、動画データは暗号ィ匕せずに通信する。 •画像の一部領域 (例えば画面中央部)は暗号ィ匕して通信するが、画像の他の領域( 例えば画像周辺部)は暗号化せずに通信する。
•操作者の操作に応じて、暗号化して通信したり、暗号ィ匕せずに通信したりする。 •設定スィッチの設定に応じて、暗号ィ匕して通信したり、暗号ィ匕せずに通信したりする
•コンソールからの指示信号に応じて、暗号ィ匕して通信したり暗号ィ匕せずに通信した りする。
[0114] また、これらの選択は全てのケースで選択可能でも、一部のケースだけで選択可能 でもよい。一部のケースだけ選択可能な例としては、例えば、以下の例が挙がれるが 、これらに限らない。
'力セッテの準備終了信号は暗号ィ匕せずに送信することに固定だが、画像データは 、暗号通信と非暗号通信を選択可能である。
•静止画データは暗号通信に固定だが、動画データは、暗号通信と非暗号通信を選 択可能である。
•所定条件を満たす画像データ (例えば、高画質モードで撮影された画像データ)は 、暗号通信に固定だが、所定条件を満たさない画像データ (例えば、低画質モード で撮影された画像データ)は、暗号通信と非暗号通信を選択可能である。
'コンソール力 の指示信号を受信した場合は、指示信号に応じて暗号通信と非暗 号通信を選択可能だが、受信しなかった場合、暗号通信に固定する。
[0115] また、本実施形態では、 2つの暗号化方式で暗号化する例を説明したが、少なくと も一部のケースで、 1又は 3つ以上の暗号化方式から使用する暗号化方式を選択で きるよう〖こしてもよい。この場合、例えばユーザの要求や使用環境等に応じて暗号ィ匕 強度 Z時間 Z特性などを適切な暗号化方式を選択でき、暗号化の目的の達成しつ つ、暗号化の目的の達成に不要な時間の増加を抑えられる。具体例を示すと、病院 関係者と患者しか入室しな 、X線撮影室内では、 WEPのような演算処理が比較的軽 量な暗号化方式で暗号化し、患者の関係者の入室も可能な病室では、前記 WEPの ような暗号ィ匕方式より演算処理が重いが暗号解読が困難な TKIPのような暗号ィ匕方 式で暗号化するように選択できることである。この軽量な暗号化方式と重 、暗号化方 式の選択としては、以下の例が挙げられる力 これらに限らない。
[0116] 第一の例は、操作入力部 2からの操作入力に応じてコンソール 1のコンソール制御 部 13が制御してコンソール通信部 14力も送信され、力セッテ通信部 52が受信した暗 号ィ匕方式選択信号によって、力セッテ制御部 53が選択する。そして、この際、暗号ィ匕 方式選択信号を力セッテ通信部 52が受信しなかった場合、従前の暗号化方式を選 択するが、最初力も受信しな力つた場合、重い暗号化方式を選択する。
第二の例は、力セッテ 5の内部にスィッチを設け、このスィッチの切り替えに応じて力 セッテ制御部 53が暗号ィ匕方式を選択する。この場合、力セッテ 5を納入する際に、そ の納入先の要望に応じた暗号ィ匕方式を選択するようにスィッチを切り替える。
第三の例は、力セッテ 5の表面又は外部にスィッチを設け、このスィッチの切り替え に応じて力セッテ制御部 53が暗号化方式を選択する。この場合、操作者が力セッテ 5 で撮影する環境などに応じて、所望の暗号化方式を選択するようにスィッチを切り替 える。
[0117] また、静止画データは暗号ィ匕して通信するが、動画データは暗号ィ匕せずに通信す る例としては、例えば、以下の例が挙げられる。第一の例は、放射線画像データが静 止画か動画か判断する判断手段を有し、前記判断手段の判断結果に応じて、前記 暗号化処理手段が暗号化処理したり、暗号化処理しなかったりする。例えば、カセッ
テ制御部 53が放射線画像データが静止画か動画力判断し、この判断結果に応じて セレクタ 52Cが圧縮処理された放射線画像データを TKIP暗号ィ匕部 52e又は WEP 暗号化部 52dへ送るか、これらを通さずに送信部 52fに送る。第二の例は、放射線画 像データが静止画か動画かに応じて、前記暗号化処理手段が暗号化処理したり、暗 号化処理しなかったりする。例えば、セレクタ 52Cが放射線画像データが静止画か 動画かに応じて、 TKIP暗号化部 52e又は WEP暗号化部 52dに送る力、これらを通 さずに送信部 52fに送る。
このように、静止画データは暗号ィ匕して通信する力 動画データは暗号ィ匕せずに通 信することにより、動画像と比較してデータ容量が低いが診断に有用な静止画データ は暗号ィ匕して通信することで傍受のリスクを低減しつつ、比較的データ容量が大き ヽ が静止画データを取得するための手段であり、傍受された場合のリスクが比較的小さ V、事が多 、動画データにつ 、ては暗号ィ匕せずに通信するので、傍受のリスクは有る 力 暗号ィ匕処理が間に合わずに送信された動画が中断された動画になることを抑え られ、タイムリーに静止画を取得するための指示ができる。
また、画像の一部領域 (例えば画面中央部)は暗号ィ匕して通信するが、画像の他の 領域 (例えば画像周辺部)は暗号ィ匕せずに通信する例としては、例えば、以下の例 が挙げられる。第 1の例は、放射線画像データから特定領域の画像データと、この特 定領域以外の領域の画像データに分ける画像分解手段を有し、前記画像分解手段 によって分解された特定領域の画像データに基づくデータを前記暗号化処理手段 が暗号化処理する。例えば、図示しない画像分解部が放射線画像データから特定 領域の画像データと、この特定領域以外の領域の画像データに分ける。そして、圧 縮処理後、セレクタ 52Cが、圧縮処理された特定領域の画像データを、 TKIP暗号 化部 52e又は WEP暗号化部 52dへ送り、圧縮処理された特定領域以外の領域の画 像データは、これらを通さずに送信部 52fに送る。第二の例は、前記暗号化処理手 段が特定領域の画像データに対してだけ暗号化処理する。例えば、セレクタ 52Cが 圧縮処理された画像データの特定領域か否か判断し、特定領域の場合、 TKIP暗号 化部 52e又は WEP暗号化部 52dに送り、特定領域以外の場合、これらを通さずに送 信部 52fに送る。
このように、画像の一部領域は暗号ィ匕して通信する力 画像の他の領域は暗号ィ匕 せずに通信する事により、一部領域を適切に設定することで、診断に有用な領域は 暗号ィ匕され傍受のリスクを低減しつつ、他の領域は暗号ィ匕しな 、ことで全領域を暗号 化するよりも高速に通信でき、速やかに画像を保存したり、表示したりできる。
なお、特定領域の例としては、画面中央部、素抜け部以外 (高放射線量値領域以 外)などが挙げられる。
また、操作者の操作に応じて、暗号ィ匕して通信したり、暗号化せずに通信したりす る例としては、例えば、以下の例が挙げられる。第一の例は、操作者の操作を判断す る判断手段を有し、前記判断手段の判断結果に応じて、前記暗号化処理手段が暗 号化処理したり、暗号ィ匕処理しな力つたりする。例えば、力セッテ制御部 53が操作者 の操作 (例えば、操作スィッチの状態)を判断し、この判断結果に応じてセレクタ 52C が圧縮処理された放射線画像データを TKIP暗号化部 52e又は WEP暗号化部 52d へ送るか、これらを通さずに送信部 52fに送る。第二の例は、操作者が操作する操作 部の状態に応じて、前記暗号化処理手段が暗号化処理したり、暗号化処理しなかつ たりする。例えば、力セッテに操作者が操作可能な図示しないスィッチが設けられ、こ のスィッチに連動してセレクタ 52Cが圧縮処理された放射線画像データを TKIP暗号 化部 52e又は WEP暗号化部 52dに送るか、これらを通さずに送信部 52fに送る。 このように、操作者の操作に応じて、暗号ィ匕して通信したり、暗号ィ匕せずに通信した りする事により、深刻な疾患の可能性が有る等傍受されるとリスクの大きい撮影の場 合は、暗号ィ匕して通信し、傍受のリスクを低減しつつ、無線通信セキュリティーが確立 した部屋での撮影等傍受されてもリスクが小さい撮影の場合は、暗号ィ匕せずに、高 速に通信して、速やかに画像を保存したり、表示したりできる。
また、設定スィッチの設定に応じて、暗号ィ匕して通信したり、暗号ィ匕せずに通信した りする例としては、例えば、以下の例が挙げられる。第一の例は、力セッテ内部に設 けられた設定スィッチに応じて、前記暗号化処理手段が暗号化処理したり、暗号ィ匕 処理しなかったりする。例えば、出荷時にメーカ又は販売会社が操作するようにカセ ッテ内部に図示しないスィッチが設けられ、このスィッチに連動してセレクタ 52Cが圧 縮処理された放射線画像データを TKIP暗号化部 52e又は WEP暗号化部 52dに送
るカゝ、これらを通さずに送信部 52fに送る。第二の例は、操作者が操作する操作部の 状態に応じて、前記暗号化処理手段が暗号化処理したり、暗号化処理しなかったり する。例えば、力セッテに操作者が操作可能な図示しないスィッチが設けられ、この スィッチに連動してセレクタ 52Cが圧縮処理された放射線画像データを TKIP暗号 化部 52e又は WEP暗号化部 52dに送るか、これらを通さずに送信部 52fに送る。 このように、設定スィッチの設定に応じて、暗号化して通信したり、暗号ィ匕せずに通 信したりする事により、例えば、無線通信セキュリティーが甘い施設等傍受されるとリ スクの大き 、撮影の施設の場合は、設定スィッチを暗号ィ匕して通信する設定にするこ とで、傍受のリスクを低減し、無線通信セキュリティーが確立した部屋での撮影等傍 受されてもリスクが小さ ヽ施設の場合は、暗号化せずに通信する設定にすることで、 高速に通信して、速やかに画像を保存したり、表示したりできる。そして、設定スイツ チがカセッテ内部に設けられ、操作者が操作できないようにしている事により、意図 せずに設定スィッチが変更され、傍受されるとリスクの大きい撮影の施設の場合に暗 号ィ匕せずに通信したり、傍受されてもリスクが小さい施設の場合に暗号ィ匕して通信が 遅くなるリスクも低減できる。
また、コンソール力 の指示信号に応じて、暗号ィ匕して通信したり暗号ィ匕せずに通 信したりする例としては、例えば、以下の例が挙げられる。第一の例は、コンソール 1 から受信した暗号化して送信する力否かを示す暗号化要否情報に応じて、前記暗号 化処理手段が暗号化処理したり、暗号化処理しなかったりする。例えば、コンソール 1からの暗号ィ匕要否情報を力セッテ制御部 53が判断し、この判断結果に応じて、セ レクタ 52Cが圧縮処理された放射線画像データを TKIP暗号ィ匕部 52e又は WEP暗 号ィ匕部 52dに送る力 これらを通さずに送信部 52fに送る。第二の例は、コンソール 1 から受信した情報 (例えば撮影条件の情報やコンソール 1の情報等)に応じて、カセ ッテ制御部 53が暗号ィ匕処理の要否を判断し、その結果に応じて、前記暗号化処理 手段が暗号化処理したり、暗号化処理しなかったりする。例えば、コンソール 1からの 情報から、力セッテ制御部 53が暗号ィ匕処理する力 ないかを判断し、この判断結果 に応じて、セレクタ 52Cが圧縮処理された放射線画像データを TKIP暗号化部 52e 又は WEP暗号ィ匕部 52dに送るカゝ、これらを通さずに送信部 52fに送る。
このように、コンソールからの指示信号に応じて、暗号ィ匕して通信したり暗号ィ匕せず に通信したりする事により、傍受されるとリスクの大きい撮影の場合は、暗号化して通 信し、傍受のリスクを低減しつつ、傍受されてもリスクが小さい撮影の場合は、暗号ィ匕 せずに、高速に通信して、速やかに画像を保存したり、表示したりできつつ、力セッテ を操作したり配置したりする際に誤設定するリスクの発生も抑えられる。
また、力セッテの準備終了信号は暗号ィ匕せずに送信することに固定だが、画像デ ータは、暗号通信と非暗号通信を選択可能である例としては、例えば、以下の例が 挙げられる。力セッテ 5から送信する情報が画像データの場合、コンソール 1から受信 した情報に応じて、前記暗号化処理手段が暗号化処理して送信したり、暗号化処理 せずに送信したりし、画像データでない場合、暗号化処理せずに送信する。例えば、 力セッテ 5から送信する情報が画像データの場合、圧縮処理部 52bで圧縮処理した 後、コンソール 1から受信した情報に応じて、セレクタ 52Cが圧縮処理された放射線 画像データを TKIP暗号ィ匕部 52e又は WEP暗号ィ匕部 52dに送るカゝ、これらを通さず に送信部 52fに送る。画像データでない場合、圧縮処理部 52bで圧縮処理せずに、 セレクタ 52Cがデータを TKIP暗号化部 52e'WEP暗号化部 52dを通さずに送信部 52fに送る。
このように、力セッテの準備終了信号は暗号ィ匕せずに送信することに固定だが、画 像データは、暗号通信と非暗号通信を選択可能である事により、傍受されても問題 の無 、力セッテの準備終了信号は暗号ィ匕せずに高速に通信でき、画像データは、 暗号通信で傍受されるリスクを低減することと非暗号通信で高速に通信することを選 択可能である。
また、静止画データは暗号通信に固定だが、動画データは、暗号通信と非暗号通 信を選択可能である例としては、例えば、以下の例が挙げられる。第一の例は、カセ ッテ 5から送信する情報が動画データの場合、コンソール 1から受信した情報に応じ て、前記暗号化処理手段が暗号化処理して送信したり、暗号化処理せずに送信した りし、静止画データの場合、暗号化処理して送信する。例えば、力セッテ 5から送信す る情報が動画像データの場合、圧縮処理部 52bで圧縮処理した後、コンソール 1か ら受信した情報に応じて、セレクタ 52Cが圧縮処理された放射線画像データを TKIP
暗号化部 52e又は WEP暗号化部 52dに送るか、これらを通さずに送信部 52fに送る o静止画データの場合、圧縮処理部 52bで圧縮処理した後、セレクタ 52Cが圧縮処 理された放射線画像データを TKIP暗号化部 52e又は WEP暗号化部 52dに送る。 第二の例は、力セッテ 5から送信する情報が動画データの場合、力セッテ 5内部の設 定スィッチや操作者の操作に応じて、前記暗号化処理手段が暗号化処理して送信し たり、暗号化処理せずに送信したりし、静止画データの場合、暗号化処理して送信 する。例えば、力セッテ 5から送信する情報が動画像データの場合、圧縮処理部 52b で圧縮処理した後、力セッテ 5内部の設定スィッチや操作者の操作に応じて、セレク タ 52Cが圧縮処理された放射線画像データを TKIP暗号化部 52e又は WEP暗号ィ匕 部 52dに送るか、これらを通さずに送信部 52fに送る。静止画データの場合、圧縮処 理部 52bで圧縮処理した後、セレクタ 52Cが圧縮処理された放射線画像データを T KIP暗号化部 52e又は WEP暗号化部 52dに送る。
このように、静止画データは暗号通信に固定だ力 動画データは、暗号通信と非暗 号通信を選択可能である事により、動画像と比較してデータ容量が低いが診断に有 用な静止画データは暗号ィ匕して通信することで傍受のリスクを低減しつつ、比較的デ ータ容量が大き 、動画データにっ 、ては、傍受された場合のリスクが低 、場合等は 暗号化せずに通信することで、暗号ィヒ処理が間に合わずに送信された動画が中断さ れた動画になることを抑えられ、また、傍受された場合のリスクが高い場合等は暗号 化して通信することで傍受のリスクを低減できる。
また、所定条件を満たす画像データ (例えば、高画質モードで撮影された画像デー タ)は、暗号通信に固定だが、所定条件を満たさない画像データ (例えば、低画質モ ードで撮影された画像データ)は、暗号通信と非暗号通信を選択可能である例として は、例えば、以下の例が挙げられる。第一の例は、力セッテ制御手段が画像データ が所定条件を満たすか否か判断し、画像データが所定条件を満たす場合、前記暗 号化処理手段が暗号化処理して送信し、画像データが所定条件を満たさな!/ヽ場合、 コンソール 1から受信した情報に応じて、前記暗号化処理手段が暗号化処理して送 信したり、暗号化処理せずに送信したりしする。例えば、力セッテ制御部 53が放射線 画像データが高画質モードで撮影された画像データか否かを判断し、放射線画像デ
一タが高画質モードで撮影された画像データであると力セッテ制御部 53が判断した 場合、圧縮処理部 52bで圧縮処理した後、セレクタ 52Cが、圧縮処理された放射線 画像データを TKIP暗号化部 52e又は WEP暗号化部 52dに送り、暗号化処理した 後、通信部 52fに送る。一方、放射線画像データが低画質モードで撮影された画像 データであると力セッテ制御部 53が判断した場合、コンソール 1から受信した情報に 応じて、力セッテ制御部 53が暗号化処理するか否か判断し、圧縮処理部 52bで圧縮 処理した後、セレクタ 52Cが力セッテ制御部 53の判断結果に応じて、圧縮処理され た放射線画像データを TKIP暗号化部 52e又は WEP暗号化部 52dを通さずに通信 部 52fに送ったり、 TKIP暗号化部 52e又は WEP暗号化部 52dに送り、暗号化処理 した後、通信部 52fに送る。第二の例は、力セッテ制御手段が画像データが所定条 件を満たすか否か判断し、画像データが所定条件を満たす場合、前記暗号化処理 手段が暗号化処理して送信し、画像データが所定条件を満たさない場合、力セッテ 5 内部の設定スィッチや操作者の操作に応じて、前記暗号化処理手段が暗号化処理 して送信したり、暗号化処理せずに送信したりする。例えば、力セッテ制御部 53が放 射線画像データが高画質モードで撮影された画像データか否かを判断し、放射線画 像データが高画質モードで撮影された画像データであると力セッテ制御部 53が判断 した場合、圧縮処理部 52bで圧縮処理した後、セレクタ 52Cが、圧縮処理された放 射線画像データを TKIP暗号化部 52e又は WEP暗号化部 52dに送り、暗号化処理 した後、通信部 52fに送る。一方、放射線画像データが低画質モードで撮影された 画像データであると力セッテ制御部 53が判断した場合、力セッテ 5内部の設定スイツ チゃ操作者の操作に応じて、力セッテ制御部 53が暗号ィ匕処理するか否カゝ判断し、 圧縮処理部 52bで圧縮処理した後、セレクタ 52Cが力セッテ制御部 53の判断結果に 応じて、圧縮処理された放射線画像データを TKIP暗号化部 52e又は WEP暗号ィ匕 部 52dを通さずに通信部 52fに送ったり、 TKIP暗号ィ匕部 52e又は WEP暗号ィ匕部 52 dに送り、暗号化処理した後、通信部 52fに送る。
このように、所定条件を満たす画像データは、暗号通信に固定だが、所定条件を満 たさない画像データは、暗号通信と非暗号通信を選択可能である事により、傍受され た場合のリスクが大きい可能性が高い画像データは暗号通信に固定され、傍受され
た場合のリスクを低減しつつ、傍受された場合のリスクが大き ヽ可能性が低 、画像デ ータは傍受された場合のリスクを低減できる暗号通信と、高速に通信できる非暗号通 信を選択可能である事二より、その都度の状況に応じた柔軟な対応ができつつ、全 体としてのリスク低減もできる。
また、コンソール力もの指示信号を受信した場合は、指示信号に応じて暗号通信と 非暗号通信を選択可能だが、受信しなかった場合、暗号通信に固定する例としては
、例えば、以下の例が挙げられる。第一の例は、コンソール 1から受信した暗号ィ匕し て送信するか否かを示す暗号化要否情報に応じて、前記暗号化処理手段が暗号化 処理したり、暗号ィ匕処理しな力つたりする。一方、コンソール 1から暗号ィ匕要否情報を 受信しなかった場合、前記暗号化処理手段が暗号化処理する。例えば、コンソール
1からの暗号化要否情報を受信したか否かと、受信したと判断した場合の暗号化要 否情報を力セッテ制御部 53が判断し、この判断結果に応じて、セレクタ 52Cが圧縮 処理された放射線画像データを TKIP暗号化部 52e又は WEP暗号化部 52dに送る 力 これらを通さずに送信部 52fに送る。第二の例は、コンソール 1から所定の情報を 受信したか否かと、受信したと判断した場合のコンソール 1から受信した所定の情報( 例えば撮影条件の情報やコンソール 1の情報等)に応じて、力セッテ制御部 53が暗 号化処理の要否を判断し、その結果に応じて、前記暗号化処理手段が暗号化処理 したり、暗号ィ匕処理しな力つたりする。例えば、コンソール 1から所定の情報を受信し たか否かと、受信したと判断した場合のコンソール 1から受信した所定の情報から、力 セッテ制御部 53が暗号ィ匕処理する力しないかを判断し、この判断結果に応じて、セ レクタ 52Cが圧縮処理された放射線画像データを TKIP暗号ィ匕部 52e又は WEP暗 号化部 52dに送るか、これらを通さずに送信部 52fに送る。
このように、コンソールからの指示信号を受信した場合は、指示信号に応じて暗号 通信と非暗号通信を選択可能だが、受信しなかった場合、暗号通信に固定する事に より、傍受されるとリスクの大きい撮影の場合と、コンソール力 の指示信号を受信し なかったために、傍受されるとリスクの大きい撮影カゝ否か不明な場合は、暗号化して 通信し、傍受のリスクを低減しつつ、傍受されてもリスクが小さい撮影の場合は、暗号 化せずに、高速に通信して、速やかに画像を保存したり、表示したりできつつ、カセッ
テを操作したり配置したりする際に誤設定するリスクの発生も抑えられる。
[0118] また、本実施形態では、力セッテ 5とコンソール 1とが 1対 1で対応させている例を示 したが、これに限定されず、力セッテとコンソールとが 1対 M、 N対 1、 N対 M (N, Mは 2以上の自然数)で対応させて用いることが可能である。このときには、力セッテとコン ソール間のネットワークを設け、力セッテとコンソールとの対応関係を対応関係情報保 持部に保存し、対応関係情報保持部をネットワーク上又はコンソール内に設け、コン ノールが力セッテを制御することが好まし 、。
[0119] また、本実施形態では、コンソール 1及び力セッテ 5のいずれにおいても、前述した 実施例の機能を実現するソフトウェアのプログラムを記録した記憶媒体をシステムあ るいは装置に供給し、そのシステムあるいは装置のコンピュータ(又は CPUや MPU) が記憶媒体に格納されたプログラムを読み出し実行することによつても、達成されるこ とは言うまでもない。また、プログラム等を記憶させる記憶媒体としては、不揮発性メ モリ、電源バックアップされた揮発性メモリ、 ROMメモリ、光ディスク、ハードディスクな どの磁気ディスク、光磁気ディスク等の記憶媒体に記憶させるようにしてもよ!、。
また、コンピュータが読み出したプログラムを実行することにより、前述した実施形態 の機能が実現されるだけでなぐそのプログラムの指示に基づき、コンピュータ上で稼 動して 、る OS (基本システムあるいはオペレーティングシステム)などが実際の処理 の一部又は全部を行!、、その処理によって前述した実施形態の機能が実現される場 合も含まれることは言うまでもな 、。
更に、記憶媒体力も読み出されたプログラムが、コンピュータに挿入された機能拡 張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた 後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニット に備わる CPU等が実際の処理の一部又は全部を行 、、その処理によって前述した 実施形態の機能が実現される場合も含まれることは言うまでもない。
更に、このようなプログラムは、ネットワークや回線などを介して外部から提供された ものであってもよい。そして、外部から供給されるプログラムを使用する場合も、不揮 発性メモリ、電源バックアップされた揮発性メモリ、光ディスク、ハードディスクなどの磁 気ディスク、光磁気ディスク等の記憶媒体に記憶されるようにしてもょ 、。
[0120] [上述の実施形態に共通する事]
以上のように、放射線撮影により放射線画像データを得る放射線画像取得手段と、 前記放射線画像取得手段により取得した前記放射線画像データに基づく画像デー タから暗号化処理されたデータを得る暗号化処理手段と、前記暗号化処理手段によ り暗号化処理されたデータに基づくデータからデータ信号を得て無線通信により送 信する通信手段とを備える放射線画像取得装置と、前記放射線画像取得装置から 送信されたデータ信号を受信して暗号化処理されたデータを得るコンソール通信手 段と、前記コンソール通信手段により得た前記暗号化処理されたデータに基づくデ 一タを復号化処理する復号化処理手段と、前記復号化処理手段により得た放射線 画像データに基づく画像データを保存する画像保存手段とを有するコンソールと、を 備える放射線画像取得システムなので、万一送信されたデータ信号が傍受されても 、傍受した者が放射線画像を得ることが実質的にできないようにすることができる。
[0121] 更に、前記放射線画像取得装置は、前記放射線画像取得手段により取得した前 記放射線画像データに基づく画像データから圧縮処理されたデータを得る圧縮処理 手段を有し、前記暗号化処理手段は、前記圧縮処理手段により圧縮処理されたデー タに基づくデータから暗号ィ匕処理されたデータを得るものであり、前記コンソールは、 前記復号化処理手段により得たデータに基づくデータから解凍処理されたデータを 得る解凍処理手段を有し、前記画像記憶手段は、前記解凍処理手段により得た放 射線画像データに基づく画像データを記憶するものであるので、圧縮処理されたデ ータに対して暗号ィ匕するので、放射線画像データそのものを暗号ィ匕するよりも暗号ィ匕 に要する時間が短くなり、無線通信に要する時間も短くなることと解凍に要する時間 が短くなることと相まって、コンソールで速やかに画像データを保存できる。また、速 やかに表示部に表示できる。また、放射線画像そのものが持つ冗長性 (例えば、放 射線撮影画像の素抜け領域など)が暗号解読で利用されるリスクが、圧縮処理でこの 冗長性が抑えられた後に暗号化されることで低減し、暗号解読の困難性が増し、傍 受されて万一送信されたデータ信号が漏洩しても、傍受した者が放射線画像を得る ことが実質的にできな 、ようにすることができる。
[0122] 更に、サービスセット IDが設定されており、照射された放射線を検出して放射線画
像データを得る放射線画像取得手段と、前記放射線画像取得手段からデータを得 て、設定されている前記サービスセット IDの情報とともに無線通信により送信する通 信手段とを備える放射線画像取得装置と、サービスセット IDが設定されており、同一 のサービスセット IDの情報と共に送信されたデータを受信するコンソール通信手段と 、前記コンソール通信手段により得た放射線画像データに基づく画像データを記憶 する画像記憶手段とを有するコンソールと、を備えるので、コンソールは、同一のサー ビスセット IDを設定された放射線画像取得装置からデータ信号を受信でき、他の機 器力 データ信号が紛れ込む事態の発生を抑えられるようにすることができる。
[0123] 更に、前記放射線画像取得装置に設定されているサービスセット IDと、前記コンソ ール通信手段に設定されて 、るサービスセット IDと、他の機器に設定されて 、るサ 一ビスセット IDを管理し、前記放射線画像取得装置に設定されて!ヽるサービスセット I Dと、前記コンソール通信手段に設定されているサービスセット IDが同じになり、前記 放射線画像取得装置用のコンソールでもなぐ前記コンソール用の放射線画像取得 装置でもな ヽ他の機器に設定されて ヽるサービスセット IDと、前記放射線画像取得 装置に設定されているサービスセット IDとが異なるサービスセット IDとなるようにする ものであるので、放射線画像取得装置用のコンソールでな 、他の機器にデータ信号 が紛れ込む事態の発生が抑えられつつ、コンソール用の放射線画像取得装置でな い他の機器力 のデータ信号がコンソールに紛れ込む事態の発生を抑えることがで きる。
[0124] 更に、前記コンソール通信手段カゝらケーブルを介して接続された無線中継器を有 し、前記放射線画像取得装置は、固有番号が設定されており、前記通信手段が送信 するデータとともに設定された前記固有番号の情報を送信するものであり、前記無線 中継器は、無線通信可能な装置の固有番号が設定されており、設定された固有番 号の装置に対してのみ無線通信するものであるので、コンソール用の放射線画像取 得装置でない他の機器力 のデータ信号がコンソールに紛れ込む事態の発生をより 効果的に抑えることができる。
[0125] 更に、前記放射線画像取得装置が、前記放射線画像取得手段と前記通信手段と を制御する制御手段と、前記放射線画像取得手段と前記通信手段と前記制御手段
とを駆動する電力を供給する電源と、を有する力セッテであるので、画像データの送 信にも、電力の供給にもケーブルが不要で、撮影をケーブルレスの状態で行うことが でき、ケーブルが被写体に絡まらないように注意しながら撮影する必要が無ぐ操作 性、撮影効率等を向上させることができる。
[0126] 更に、前記放射線画像取得装置が、前記放射線画像取得手段により得た放射線 画像データに基づく画像データを一時的に保存するためのメモリを有するので、放 射線画像データを一時的に保存できるので、暗号ィ匕などの処理を容易に施すことが でき、また、通信状態に応じた通信速度で送信することができる。
[0127] 更に、前記コンソールにお 、て、画像データに被写体情報を付加するので、放射 線画像取得装置からコンソールに送信された画像データを万一解読されても、被写 体情報が不明な画像データであり、個人情報漏洩リスクが低くなる。
[0128] 更に、前記コンソールにお 、て、画像データに撮影情報を付加するので、放射線 画像取得装置からコンソールに送信された画像データを万一解読されても、被写体 情報と撮影情報の両方が不明な画像データであり、個人情報漏洩リスクが一層低く なる。
[0129] 更に、データを暗号化処理して送信する暗号通信と、データを暗号化処理せずに 送信する非暗号通信を含む複数の通信方式を有するので、暗号化が必要な通信に は暗号化のための時間をかけ、暗号ィ匕が不要な通信には暗号ィ匕のための時間を省 け、暗号化の目的の達成しつつ、余計な時間の増加を抑えられる。
[0130] 更に、通信内容に応じて複数の前記通信方式から通信方式を選択するので、通信 内容に応じて、暗号ィ匕が必要な通信には暗号ィ匕のための時間をかけ、暗号化が不 要な通信には暗号化のための時間を省け、暗号ィ匕の目的の達成しつつ、余計な時 間の増加を抑えられる。
[0131] 更に、所定の条件に応じて複数の前記通信方式力も通信方式を選択するので、例 えば鉛板で完全に覆われ、通信傍受セキュリティの確保された X線撮影室での撮影 では、非暗号通信で暗号化のための時間を省き、一般病棟等の通信傍受セキユリテ ィの確保されて!ヽな ヽ場所での撮影では、時間をかけて暗号化処理をして暗号通信 を行うと!、うように、同じ放射線画像取得装置でもケースノ ィケースで暗号通信が望
まれる場合と非暗号通信が望まれる場合が有るときに、そのどちらにも対応できる。
[0132] 更に、前記コンソールから前記放射線画像取得装置に前記非暗号通信で制御信 号又は制御情報を送信するので、暗号ィヒのための時間が不要でタイムリーに制御信 号を送信できる。
[0133] 更に、複数の暗号化方式の中から使用する暗号化方式を選択可能であるので、例 えばユーザの要求や使用環境等に応じて暗号化強度 Z時間 Z特性などの適切な 暗号ィ匕方式を選択でき、暗号化の目的の達成しつつ、暗号化の目的の達成に不要 な時間の増加を抑えられる。
また、放射線撮影により放射線画像データを得る放射線画像取得手段と、前記放 射線画像取得手段により取得した前記放射線画像データに基づく画像データから暗 号ィ匕処理されたデータを得る暗号化処理手段と、前記暗号化処理手段により暗号ィ匕 処理されたデータに基づくデータからデータ信号を得て無線通信により送信する通 信手段とを備える力セッテなので、万一送信されたデータ信号が傍受されても、傍受 した者が放射線画像を得ることが実質的にできないようにすることができつつ、取り回 しに制約の少ない通信線レスの力セッテ撮影も可能にすることができる。
更に、前記放射線画像取得手段により取得した前記放射線画像データに基づく画 像データから圧縮処理されたデータを得る圧縮処理手段を有し、前記暗号化処理手 段は、前記圧縮処理手段により圧縮処理されたデータに基づくデータから暗号化処 理されたデータを得るものであるので、放射線画像データそのものを暗号ィ匕するより も圧縮処理されたデータに対して暗号ィ匕するので暗号ィ匕に要する時間が短くなり、 無線通信に要する時間も短くなることと相まって、コンソールで速やかに画像データ を保存できる。また、速やかに表示部に表示できる。また、放射線画像そのものが持 つ冗長性 (例えば、放射線撮影画像の素抜け領域など)が暗号解読で利用されるリ スクが、圧縮処理でこの冗長性が抑えられた後に暗号ィ匕されることで低減し、暗号解 読の困難性が増し、傍受されて万一送信されたデータ信号が漏洩しても、傍受した 者が放射線画像を得ることが実質的にできないようにすることができる。
また、データ信号を受信して暗号ィ匕処理されたデータを得るコンソール通信手段と 、前記コンソール通信手段により得た前記暗号化処理されたデータに基づくデータ
を復号化処理する復号化処理手段と、前記復号化処理手段により得た放射線画像 データに基づく画像データを保存する画像保存手段とを有するコンソールなので、 万一送信されたデータ信号が傍受されても、傍受した者が放射線画像を得ることが 実質的にできな ヽように暗号化処理されたデータから放射線画像データに基づくデ ータを保存できる。
更に、前記復号化処理手段により得たデータに基づくデータから解凍処理された データを得る解凍処理手段を有し、前記画像保存手段は、前記解凍処理手段により 得た放射線画像データに基づく画像データを保存するものであるので、放射線画像 そのものが持つ冗長性 (例えば、放射線撮影画像の素抜け領域など)が暗号解読で 利用されるリスクが、圧縮処理でこの冗長性が抑えられた後に暗号ィ匕されることで低 減し、更に、放射線画像データそのものを暗号ィ匕するよりも暗号ィ匕に要する時間が短 くなり、無線通信に要する時間も短くなる圧縮処理されたデータに基づくデータを暗 号化処理されたデータから放射線画像データに基づくデータを保存できるので、解 凍に要する時間が短くなり、コンソールで速やかに画像データを保存できる。また、 速やかに表示部に表示できる。また、暗号解読の困難性が増し、傍受されて万一送 信されたデータ信号が漏洩しても、傍受した者が放射線画像を得ることが実質的に できな 、ようにすることができる。
また、放射線画像データに基づく画像データから暗号化処理されたデータを得る 暗号化処理手段と、前記暗号化処理手段により暗号化処理されたデータに基づくデ 一タカ データ信号を得て無線通信により送信する通信手段とを備える力セッテと、 前記放射線画像送信装置から送信されたデータ信号を受信して暗号化処理された データを得るコンソール通信手段と、前記コンソール通信手段により得た前記暗号化 処理されたデータに基づくデータを復号化処理する復号化処理手段と、前記復号化 処理手段により得た放射線画像データに基づく画像データを保存する画像保存手 段とを有する放射線画像受信装置と、を備える放射線画像通信システムなので、万 一送信されたデータ信号が傍受されても、傍受した者が放射線画像を得ることが実 質的にできな!/、ようにすることができる。
更に、前記力セッテは、前記放射線画像データに基づく画像データから圧縮処理
されたデータを得る圧縮処理手段を有し、前記暗号化処理手段は、前記圧縮処理 手段により圧縮処理されたデータに基づくデータから暗号化処理されたデータを得 るものであり、前記放射線画像受信装置は、前記復号化処理手段により得たデータ に基づくデータから解凍処理されたデータを得る解凍処理手段を有し、前記画像保 存手段は、前記解凍処理手段により得た放射線画像データに基づく画像データを保 存するので、放射線画像データそのものを暗号化するよりも圧縮処理されたデータに 対して暗号ィヒするので暗号ィヒに要する時間が短くなり、無線通信に要する時間も短 くなることと解凍に要する時間が短くなることと相まって、画像受信装置で速やかに画 像データを保存できる。また、速やかに表示部に表示できる。また、放射線画像その ものが持つ冗長性 (例えば、放射線撮影画像の素抜け領域など)が暗号解読で利用 されるリスク力 圧縮処理でこの冗長性が抑えられた後に暗号ィ匕されることで低減し、 暗号解読の困難性が増し、傍受されて万一送信されたデータ信号が漏洩しても、傍 受した者が放射線画像を得ることが実質的にできないようにすることができる。
また、放射線撮影により放射線画像データを得る放射線画像取得手段と、データ 信号を無線通信により送信する通信手段とを有する力セッテに搭載されるコンビユー タに、前記放射線画像取得手段により取得した前記放射線画像データに基づく画像 データから暗号化処理されたデータを得る暗号化処理機能と、前記暗号化処理機能 により暗号化処理されたデータに基づくデータから得られたデータ信号を前記通信 手段に無線通信により送信させる通信機能とを実現させるプログラムなので、このプ ログラムにより力セッテ力 送信されたデータ信号が万一傍受されても、傍受した者が 放射線画像を得ることが実質的にできな ヽようにすることができる。
また、前記放射線画像取得手段により取得した前記放射線画像データに基づく画 像データから圧縮処理されたデータを得る圧縮処理機能を有し、前記暗号化処理機 能は、前記圧縮処理機能により圧縮処理されたデータに基づくデータから暗号化処 理されたデータを得るものであるので、このプログラムにより、この力セッテでは圧縮 処理されたデータに対して暗号化するので、放射線画像データそのものを暗号化す るよりも暗号ィ匕に要する時間が短くなり、無線通信に要する時間も短くなることと解凍 に要する時間が短くなることと相まって、コンソールで速やかに画像データを保存で
きる。また、速やかに表示部に表示できる。また、放射線画像そのものが持つ冗長性 (例えば、放射線撮影画像の素抜け領域など)が暗号解読で利用されるリスクが、圧 縮処理でこの冗長性が抑えられた後に暗号化されることで低減し、暗号解読の困難 性が増し、傍受されて万一送信されたデータ信号が漏洩しても、傍受した者が放射 線画像を得ることが実質的にできないようにすることができる。
また、データ信号を受信して暗号ィ匕処理されたデータを得るコンソール通信手段と 、画像データを保存する画像保存手段とを有するコンソールに搭載されるコンビユー タに、前記コンソール通信手段により得た前記暗号ィ匕処理されたデータに基づくデ 一タを復号化処理する復号化処理機能と、前記復号化処理手段により得た放射線 画像データに基づく画像データを前記画像保存手段に保存させる画像保存機能と を実現させるプログラムなので、このプログラムによりコンソールは、万一送信された データ信号が傍受されても、傍受した者が放射線画像を得ることが実質的にできな Vヽように暗号化処理されたデータから放射線画像データに基づくデータを保存でき る。
また、前記復号化処理機能により得たデータに基づくデータから解凍処理されたデ ータを得る解凍処理機能を有し、前記画像保存機能は、前記解凍処理機能により得 た放射線画像データに基づく画像データを前記画像保存手段に保存させるものであ る請求の範囲第 23項に記載のプログラムなので、このプログラムによりコンソールは、 放射線画像そのものが持つ冗長性 (例えば、放射線撮影画像の素抜け領域など)が 暗号解読で利用されるリスクが、圧縮処理でこの冗長性が抑えられた後に暗号化さ れることで低減し、更に、放射線画像データそのものを暗号ィ匕するよりも暗号ィ匕に要 する時間が短くなり、無線通信に要する時間も短くなる圧縮処理されたデータに基づ くデータを暗号化処理されたデータから放射線画像データに基づくデータを保存で きるので、解凍に要する時間が短くなり、コンソールで速やかに画像データを保存で きる。また、速や力に表示部に表示できる。また、暗号解読の困難性が増し、傍受さ れて万一送信されたデータ信号が漏洩しても、傍受した者が放射線画像を得ること が実質的にできな 、ようにすることができる。
産業上の利用可能性
以上に記載したように、本発明は、放射線撮影分野、特に医療分野において有用 である。
Claims
[1] 放射線撮影により放射線画像データを得る放射線画像取得手段と、前記放射線画 像取得手段により取得した前記放射線画像データに基づく画像データから暗号化処 理されたデータを得る暗号化処理手段と、前記暗号化処理手段により暗号化処理さ れたデータに基づくデータからデータ信号を得て無線通信により送信する通信手段 とを備える放射線画像取得装置と、
前記放射線画像取得装置から送信されたデータ信号を受信して暗号化処理され たデータを得るコンソール通信手段と、前記コンソール通信手段により得た前記暗号 化処理されたデータに基づくデータを復号化処理する復号化処理手段と、前記復号 化処理手段により得た放射線画像データに基づく画像データを保存する画像保存 手段とを有するコンソールと、
を備える放射線画像取得システム。
[2] 前記放射線画像取得装置は、前記放射線画像取得手段により取得した前記放射 線画像データに基づく画像データから圧縮処理されたデータを得る圧縮処理手段を 有し、前記暗号化処理手段は、前記圧縮処理手段により圧縮処理されたデータに基 づくデータから暗号ィヒ処理されたデータを得るものであり、
前記コンソールは、前記復号ィヒ処理手段により得たデータに基づくデータ力 解凍 処理されたデータを得る解凍処理手段を有し、前記画像保存手段は、前記解凍処 理手段により得た放射線画像データに基づく画像データを保存するものである請求 の範囲第 1項に記載の放射線画像取得システム。
[3] サービスセット IDが設定されており、照射された放射線を検出して放射線画像デー タを得る放射線画像取得手段と、前記放射線画像取得手段からデータを得て、設定 されている前記サービスセット IDの情報とともに無線通信により送信する通信手段と を備える放射線画像取得装置と、
サービスセット IDが設定されており、同一のサービスセット IDの情報と共に送信され たデータを受信するコンソール通信手段と、前記コンソール通信手段により得た放射 線画像データに基づく画像データを保存する画像保存手段とを有するコンソールと、 を備える請求の範囲第 1項又は第 2項に記載の放射線画像取得システム。
[4] 前記放射線画像取得装置に設定されているサービスセット IDと、前記コンソール通 信手段に設定されているサービスセット IDと、他の機器に設定されているサービスセ ッ HDを管理し、
前記放射線画像取得装置に設定されて ヽるサービスセット IDと、前記コンソール通 信手段に設定されているサービスセット IDが同じになり、
前記放射線画像取得装置用のコンソールでもなく、前記コンソール用の放射線画 像取得装置でもな 、他の機器に設定されて 、るサービスセット IDと、前記放射線画 像取得装置に設定されているサービスセット IDとが異なるサービスセット IDとなるよう にするものである請求の範囲第 3項に記載の放射線画像取得システム。
[5] 前記コンソール通信手段力 ケーブルを介して接続された無線中継器を有し、 前記放射線画像取得装置は、固有番号が設定されており、前記通信手段が送信 するデータとともに設定された前記固有番号の情報を送信するものであり、
前記無線中継器は、無線通信可能な装置の固有番号が設定されており、設定され た固有番号の装置に対してのみ無線通信するものである請求の範囲第 1項〜第 4項 の!、ずれか一項に記載の放射線画像取得システム。
[6] 前記放射線画像取得装置が、
前記放射線画像取得手段と前記通信手段とを制御する制御手段と、
前記放射線画像取得手段と前記通信手段と前記制御手段とを駆動する電力を供 給する電源と、
を有する力セッテである請求の範囲第 1項〜第 5項のいずれか一項に記載の放射 線画像取得システム。
[7] 前記放射線画像取得装置が、前記放射線画像取得手段により得た放射線画像デ ータに基づく画像データを一時的に保存するためのメモリを有する請求の範囲第 1 項〜第 6項のいずれか一項に記載の放射線画像取得システム。
[8] 前記コンソールにおいて、画像データに被写体情報を付加する請求の範囲第 1項 〜第 7項のいずれか一項に記載の放射線画像取得システム。
[9] 前記コンソールにおいて、画像データに撮影情報を付加する請求の範囲第 8項に 記載の放射線画像取得システム。
[10] データを暗号化処理して送信する暗号通信と、データを暗号化処理せずに送信す る非暗号通信を含む複数の通信方式を有する請求の範囲第 1項〜第 9項のいずれ か一項に記載の放射線画像取得システム。
[11] 通信内容に応じて複数の前記通信方式力 通信方式を選択する請求の範囲第 10 項に記載の放射線画像取得システム。
[12] 所定の条件に応じて複数の前記通信方式力 通信方式を選択する請求の範囲第
10項又は第 11項に記載の放射線画像取得システム。
[13] 前記コンソールから前記放射線画像取得装置に前記非暗号通信で制御信号又は 制御情報を送信する請求の範囲第 10項〜第 12項のいずれか一項に記載の放射線 画像取得システム。
[14] 複数の暗号化方式の中から使用する暗号化方式を選択可能である請求の範囲第 1項〜第 13項の 、ずれか一項に記載の放射線画像取得システム。
[15] 放射線撮影により放射線画像データを得る放射線画像取得手段と、前記放射線画 像取得手段により取得した前記放射線画像データに基づく画像データから暗号化処 理されたデータを得る暗号化処理手段と、前記暗号化処理手段により暗号化処理さ れたデータに基づくデータからデータ信号を得て無線通信により送信する通信手段 とを備えるカセッテ。
[16] 前記放射線画像取得手段により取得した前記放射線画像データに基づく画像デ ータから圧縮処理されたデータを得る圧縮処理手段を有し、
前記暗号化処理手段は、前記圧縮処理手段により圧縮処理されたデータに基づく データから暗号ィ匕処理されたデータを得るものである請求の範囲第 15項に記載の力 セッテ。
[17] データ信号を受信して暗号化処理されたデータを得るコンソール通信手段と、前記 コンソール通信手段により得た前記暗号ィヒ処理されたデータに基づくデータを復号 化処理する復号化処理手段と、前記復号化処理手段により得た放射線画像データ に基づく画像データを保存する画像保存手段とを有するコンソール。
[18] 前記復号化処理手段により得たデータに基づくデータから解凍処理されたデータ を得る解凍処理手段を有し、
前記画像保存手段は、前記解凍処理手段により得た放射線画像データに基づく画 像データを保存するものである請求の範囲第 17項に記載のコンソール。
[19] 放射線画像データに基づく画像データから暗号化処理されたデータを得る暗号ィ匕 処理手段と、前記暗号化処理手段により暗号化処理されたデータに基づくデータか らデータ信号を得て無線通信により送信する通信手段とを備える力セッテと、 前記放射線画像送信装置から送信されたデータ信号を受信して暗号化処理され たデータを得るコンソール通信手段と、前記コンソール通信手段により得た前記暗号 化処理されたデータに基づくデータを復号化処理する復号化処理手段と、前記復号 化処理手段により得た放射線画像データに基づく画像データを保存する画像保存 手段とを有する放射線画像受信装置と、
を備える放射線画像通信システム。
[20] 前記力セッテは、前記放射線画像データに基づく画像データから圧縮処理された データを得る圧縮処理手段を有し、前記暗号化処理手段は、前記圧縮処理手段に より圧縮処理されたデータに基づくデータから暗号化処理されたデータを得るもので あり、
前記放射線画像受信装置は、前記復号化処理手段により得たデータに基づくデー タから解凍処理されたデータを得る解凍処理手段を有し、前記画像保存手段は、前 記解凍処理手段により得た放射線画像データに基づく画像データを保存する請求 の範囲第 19項に記載の放射線画像通信システム。
[21] 放射線撮影により放射線画像データを得る放射線画像取得手段と、データ信号を 無線通信により送信する通信手段とを有する力セッテに搭載されるコンピュータに、 前記放射線画像取得手段により取得した前記放射線画像データに基づく画像デ ータから暗号化処理されたデータを得る暗号化処理機能と、前記暗号化処理機能に より暗号ィ匕処理されたデータに基づくデータ力 得られたデータ信号を前記通信手 段に無線通信により送信させる通信機能とを実現させるプログラム。
[22] 前記放射線画像取得手段により取得した前記放射線画像データに基づく画像デ ータから圧縮処理されたデータを得る圧縮処理機能を有し、
前記暗号化処理機能は、前記圧縮処理機能により圧縮処理されたデータに基づく
データから暗号ィ匕処理されたデータを得るものである請求の範囲第 21項に記載のプ ログラム。
[23] データ信号を受信して暗号ィヒ処理されたデータを得るコンソール通信手段と、画像 データを保存する画像保存手段とを有するコンソールに搭載されるコンピュータに、 前記コンソール通信手段により得た前記暗号化処理されたデータに基づくデータ を復号化処理する復号化処理機能と、前記復号化処理手段により得た放射線画像 データに基づく画像データを前記画像保存手段に保存させる画像保存機能とを実 現させるプログラム。
[24] 前記復号化処理機能により得たデータに基づくデータから解凍処理されたデータ を得る解凍処理機能を有し、
前記画像保存機能は、前記解凍処理機能により得た放射線画像データに基づく画 像データを前記画像保存手段に保存させるものである請求の範囲第 23項に記載の プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007509365A JPWO2006101230A1 (ja) | 2005-03-25 | 2006-03-27 | 放射線画像取得システム、カセッテ、コンソール、放射線画像通信システム及びプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005089305 | 2005-03-25 | ||
JP2005-089305 | 2005-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006101230A1 true WO2006101230A1 (ja) | 2006-09-28 |
Family
ID=37023876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/306143 WO2006101230A1 (ja) | 2005-03-25 | 2006-03-27 | 放射線画像取得システム、カセッテ、コンソール、放射線画像通信システム及びプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2006101230A1 (ja) |
WO (1) | WO2006101230A1 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008268779A (ja) * | 2007-04-25 | 2008-11-06 | Fuji Xerox Co Ltd | 画像送信制御システム |
WO2009093593A1 (ja) * | 2008-01-23 | 2009-07-30 | Konica Minolta Medical & Graphic, Inc. | 放射線画像撮影システム |
WO2009096276A1 (ja) * | 2008-01-28 | 2009-08-06 | Konica Minolta Medical & Graphic, Inc. | 放射線画像撮影システム |
JP2009276619A (ja) * | 2008-05-15 | 2009-11-26 | Fujifilm Corp | 放射線画像検出装置及び放射線画像検出システム |
JP2010104398A (ja) * | 2008-10-28 | 2010-05-13 | Konica Minolta Medical & Graphic Inc | 可搬型放射線画像撮影装置および放射線画像撮影システム |
JP2010279496A (ja) * | 2009-06-03 | 2010-12-16 | Fujifilm Corp | データ転送システム、送信装置、受信装置、放射線画像転送システム、および放射線画像診断システム |
WO2011074289A1 (ja) * | 2009-12-16 | 2011-06-23 | コニカミノルタエムジー株式会社 | 放射線画像撮影システム |
CN102429669A (zh) * | 2010-08-20 | 2012-05-02 | 富士胶片株式会社 | 射线图像信号的编码方法和解码方法、射线图像检测设备以及射线图像信号产生设备 |
JP2012103645A (ja) * | 2010-11-15 | 2012-05-31 | Fujifilm Corp | 放射線画像撮影システムおよびその動作制御方法 |
JP2012105787A (ja) * | 2010-11-17 | 2012-06-07 | Konica Minolta Medical & Graphic Inc | 放射線画像撮影システム |
JP2013165969A (ja) * | 2007-07-30 | 2013-08-29 | Fujifilm Corp | 放射線画像撮影システム |
JP2013242176A (ja) * | 2012-05-18 | 2013-12-05 | Rigaku Corp | 放射線測定処理システム |
JP2014014695A (ja) * | 2013-08-22 | 2014-01-30 | Canon Inc | X線撮影装置及びx線撮影方法 |
JP2015058077A (ja) * | 2013-09-17 | 2015-03-30 | 富士フイルム株式会社 | 放射線撮影システム及び通信環境制御装置 |
JP2015084938A (ja) * | 2013-10-30 | 2015-05-07 | キヤノン株式会社 | 制御装置、制御装置の動作方法およびプログラム |
JPWO2017013896A1 (ja) * | 2015-07-17 | 2018-04-26 | コニカミノルタ株式会社 | 放射線画像撮影装置および放射線画像撮影システム |
WO2019021819A1 (ja) * | 2017-07-25 | 2019-01-31 | ソニーセミコンダクタソリューションズ株式会社 | 放射線検出装置 |
JP2020054684A (ja) * | 2018-10-03 | 2020-04-09 | コニカミノルタ株式会社 | 放射線発生制御装置、放射線発生制御システム及び放射線撮影システム |
KR102483185B1 (ko) * | 2022-03-04 | 2022-12-30 | 주식회사 오톰 | 원격촬영장치, 원격촬영시스템 및 원격촬영방법 |
JP7571506B2 (ja) | 2020-12-03 | 2024-10-23 | コニカミノルタ株式会社 | 放射線画像撮影装置、放射線画像撮影システム、制御方法および制御プログラム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5777279B2 (ja) * | 2009-12-15 | 2015-09-09 | キヤノン株式会社 | 放射線撮影システム、制御方法、及びプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002191586A (ja) * | 2000-12-25 | 2002-07-09 | Canon Inc | X線撮像装置及びこれらの通信方法 |
JP2003334185A (ja) * | 2002-05-21 | 2003-11-25 | Canon Inc | 医療用検査装置、方法及び記憶媒体 |
JP2004507309A (ja) * | 2000-08-29 | 2004-03-11 | イメージング セラピューティクス,インコーポレーテッド | X線画像の定量解析法および装置 |
-
2006
- 2006-03-27 WO PCT/JP2006/306143 patent/WO2006101230A1/ja active Application Filing
- 2006-03-27 JP JP2007509365A patent/JPWO2006101230A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004507309A (ja) * | 2000-08-29 | 2004-03-11 | イメージング セラピューティクス,インコーポレーテッド | X線画像の定量解析法および装置 |
JP2002191586A (ja) * | 2000-12-25 | 2002-07-09 | Canon Inc | X線撮像装置及びこれらの通信方法 |
JP2003334185A (ja) * | 2002-05-21 | 2003-11-25 | Canon Inc | 医療用検査装置、方法及び記憶媒体 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008268779A (ja) * | 2007-04-25 | 2008-11-06 | Fuji Xerox Co Ltd | 画像送信制御システム |
JP2013165969A (ja) * | 2007-07-30 | 2013-08-29 | Fujifilm Corp | 放射線画像撮影システム |
WO2009093593A1 (ja) * | 2008-01-23 | 2009-07-30 | Konica Minolta Medical & Graphic, Inc. | 放射線画像撮影システム |
WO2009096276A1 (ja) * | 2008-01-28 | 2009-08-06 | Konica Minolta Medical & Graphic, Inc. | 放射線画像撮影システム |
JP2009276619A (ja) * | 2008-05-15 | 2009-11-26 | Fujifilm Corp | 放射線画像検出装置及び放射線画像検出システム |
JP2010104398A (ja) * | 2008-10-28 | 2010-05-13 | Konica Minolta Medical & Graphic Inc | 可搬型放射線画像撮影装置および放射線画像撮影システム |
JP2010279496A (ja) * | 2009-06-03 | 2010-12-16 | Fujifilm Corp | データ転送システム、送信装置、受信装置、放射線画像転送システム、および放射線画像診断システム |
WO2011074289A1 (ja) * | 2009-12-16 | 2011-06-23 | コニカミノルタエムジー株式会社 | 放射線画像撮影システム |
CN102429669A (zh) * | 2010-08-20 | 2012-05-02 | 富士胶片株式会社 | 射线图像信号的编码方法和解码方法、射线图像检测设备以及射线图像信号产生设备 |
JP2012103645A (ja) * | 2010-11-15 | 2012-05-31 | Fujifilm Corp | 放射線画像撮影システムおよびその動作制御方法 |
JP2012105787A (ja) * | 2010-11-17 | 2012-06-07 | Konica Minolta Medical & Graphic Inc | 放射線画像撮影システム |
JP2013242176A (ja) * | 2012-05-18 | 2013-12-05 | Rigaku Corp | 放射線測定処理システム |
JP2014014695A (ja) * | 2013-08-22 | 2014-01-30 | Canon Inc | X線撮影装置及びx線撮影方法 |
JP2015058077A (ja) * | 2013-09-17 | 2015-03-30 | 富士フイルム株式会社 | 放射線撮影システム及び通信環境制御装置 |
JP2015084938A (ja) * | 2013-10-30 | 2015-05-07 | キヤノン株式会社 | 制御装置、制御装置の動作方法およびプログラム |
JPWO2017013896A1 (ja) * | 2015-07-17 | 2018-04-26 | コニカミノルタ株式会社 | 放射線画像撮影装置および放射線画像撮影システム |
WO2019021819A1 (ja) * | 2017-07-25 | 2019-01-31 | ソニーセミコンダクタソリューションズ株式会社 | 放射線検出装置 |
US11313980B2 (en) | 2017-07-25 | 2022-04-26 | Sony Semiconductor Solutions Corporation | Radiation detection apparatus |
JP2020054684A (ja) * | 2018-10-03 | 2020-04-09 | コニカミノルタ株式会社 | 放射線発生制御装置、放射線発生制御システム及び放射線撮影システム |
JP7571506B2 (ja) | 2020-12-03 | 2024-10-23 | コニカミノルタ株式会社 | 放射線画像撮影装置、放射線画像撮影システム、制御方法および制御プログラム |
KR102483185B1 (ko) * | 2022-03-04 | 2022-12-30 | 주식회사 오톰 | 원격촬영장치, 원격촬영시스템 및 원격촬영방법 |
WO2023167435A1 (ko) * | 2022-03-04 | 2023-09-07 | 주식회사 오톰 | 원격촬영장치, 원격촬영시스템 및 원격촬영방법 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006101230A1 (ja) | 2008-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006101230A1 (ja) | 放射線画像取得システム、カセッテ、コンソール、放射線画像通信システム及びプログラム | |
JPWO2006101231A1 (ja) | 放射線画像取得装置及び放射線画像取得システム | |
JP2006263339A (ja) | 画像取得装置及び画像取得システム | |
WO2006101233A1 (ja) | 放射線画像撮影システム、コンソール、コンソールで実行されるプログラム | |
WO2006101234A1 (ja) | 放射線画像取得装置及び放射線画像撮影システム | |
US9204855B2 (en) | Portable radiation imaging apparatus and portable radiation imaging system | |
JP6021403B2 (ja) | 放射線撮像装置 | |
US8855691B2 (en) | Radiographic imaging device and communication mode setting device | |
JP2006263322A (ja) | 放射線画像撮影システム、コンソール、コンソールで実行されるプログラム | |
WO2006101232A1 (ja) | 放射線画像撮影システム、コンソール、コンソールで実行されるプログラム、カセッテ、カセッテで実行されるプログラム | |
JP5167966B2 (ja) | 放射線画像撮影システム及び放射線画像検出器 | |
WO2006095453A1 (ja) | 放射線画像検出器及び放射線画像撮影システム | |
JP2008119018A (ja) | 放射線画像撮影システム及び放射線画像検出装置 | |
WO2006008979A1 (ja) | 放射線画像検出器及び放射線画像撮影システム | |
WO2006103794A1 (ja) | 放射線画像撮影システム、コンソール、コンソールで実行されるプログラム | |
US20120206233A1 (en) | Radiographic imaging device and communication mode setting device | |
JP2010240184A (ja) | 放射線画像撮影システム | |
WO2006101236A1 (ja) | 放射線画像撮影システム及び放射線画像撮影用カセッテ | |
JP2007007243A (ja) | 放射線画像撮影システム、コンソール、コンソールで実行されるプログラム | |
JP2005124618A (ja) | X線写真撮影者支援システム | |
JP2012100796A (ja) | 放射線画像撮影システム及び通信システム | |
JP2010240339A (ja) | 放射線画像検出器及び放射線画像撮影システム | |
US10677937B2 (en) | Radiation imaging apparatus, radiation imaging system, and method for controlling radiation imaging apparatus | |
JP2010249572A (ja) | 放射線画像生成システム及び放射線画像生成装置 | |
WO2023054160A1 (ja) | 放射線撮影装置、放射線撮影システム、および制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007509365 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06730091 Country of ref document: EP Kind code of ref document: A1 |