[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006038354A1 - アンモニア/co2冷凍システム - Google Patents

アンモニア/co2冷凍システム Download PDF

Info

Publication number
WO2006038354A1
WO2006038354A1 PCT/JP2005/012232 JP2005012232W WO2006038354A1 WO 2006038354 A1 WO2006038354 A1 WO 2006038354A1 JP 2005012232 W JP2005012232 W JP 2005012232W WO 2006038354 A1 WO2006038354 A1 WO 2006038354A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cooler
brine
receiver
ammonia
Prior art date
Application number
PCT/JP2005/012232
Other languages
English (en)
French (fr)
Inventor
Takashi Nemoto
Akira Taniyama
Shinjirou Akaboshi
Iwao Terashima
Original Assignee
Mayekawa Mfg. Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004289105A external-priority patent/JP2005172416A/ja
Application filed by Mayekawa Mfg. Co., Ltd filed Critical Mayekawa Mfg. Co., Ltd
Priority to CA2602536A priority Critical patent/CA2602536C/en
Priority to ES05765291.9T priority patent/ES2459990T3/es
Priority to EP05765291.9A priority patent/EP1795831B1/en
Priority to JP2006539158A priority patent/JP4465686B2/ja
Publication of WO2006038354A1 publication Critical patent/WO2006038354A1/ja
Priority to US11/692,291 priority patent/US7406837B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to ammonia composed of an ammonia cycle and a CO cycle.
  • an ammonia refrigeration cycle a brine cooler that cools CO using the latent heat of vaporization of ammonia, and a liquid CO brine cooled by the CO brine
  • Patent Document 1 discloses a heat pump system in which an ammonia cycle and a carbon dioxide gas cycle are combined. A specific configuration thereof will be described with reference to Fig. 11 (A).
  • the ammonia cycle when gaseous ammonia compressed by the compressor 104 passes through the condenser 105, it is cooled by cooling water or air to become a liquid.
  • the ammonia that has become liquid is expanded to a saturation pressure corresponding to the required low temperature by the expansion valve 106 and then evaporated by the cascade condenser 107 to become a gas. At this time, the ammonia removes heat from the carbon dioxide heat in the carbon dioxide refrigeration cycle and liquefies it.
  • the carbon dioxide cycle it is cooled by the cascade condenser 107 and liquefied.
  • the liquid ⁇ ⁇ carbon dioxide gas descends due to the natural circulation phenomenon using the liquid head difference, passes through the flow control valve 108 and enters the bottom feed type evaporator 109 that performs the desired cooling, where it is warmed and evaporated
  • the gas then returns to the cascade capacitor 107 again.
  • the cascade condenser 107 is installed at a position higher than the evaporator 109 that performs the desired cooling, for example, on the rooftop, and by adopting such a configuration, the cascade condenser 107 and the cooler fan 109a are arranged. A liquid head difference is formed with the evaporator 109 having the above.
  • the dotted line in the figure is the ammonia cycle based on the heat pump cycle by the compressor, and the solid line is the CO2 by natural circulation.
  • the above-mentioned conventional technology uses a cascade condenser (evaporator that cools the carbon dioxide medium) that becomes an evaporator in the ammonia cycle, such as a rooftop of a building.
  • a cascade condenser evaporator that cools the carbon dioxide medium
  • refrigerated showcases and freezer units may need to be installed on the high floors of medium- and high-rise buildings for the convenience of customers, and in such cases, it is not possible to cope with them.
  • the liquid pump 110 is provided in the cycle in order to assist the circulation of the carbon dioxide medium secondarily and make the circulation more reliable.
  • the technology that works with force is limited to natural circulation using the liquid head difference, and the carbon dioxide medium is cooled by controlling the amount of liquid circulation.
  • the auxiliary pump flow path must be connected in parallel to the natural circulation cycle.
  • a cascade condenser an evaporator that cools the carbon dioxide medium
  • a cascade condenser is a carbon dioxide gas. It must be set higher than the target evaporator in the cycle, and this will eliminate the basic drawbacks mentioned above! /.
  • the conventional technology can be applied to the case where evaporators (refrigeration showcases, air conditioners, etc.) are installed on the first and second floors and the liquid head difference between the respective cascade capacitors is different. Have difficulty.
  • the CO liquid is contained in the cooling pipe on the lower inlet side.
  • the cooler Since the CO liquid may cause explosive vaporization (boiling), the cooler (
  • Patent Document 1 Japanese Patent No. 3458310
  • the present invention has an ammonia refrigeration cycle, a cooler that cools CO using the latent heat of vaporization of ammonia, and the cooler
  • CO brine with a liquid pump on the feed line that feeds the liquid CO to the cooling load side For example, a cooling device such as a refrigeration showcase on the cooling load side of the CO cycle
  • Ammonia Zco refrigeration system that can form a combined cycle of ammonia cycle and co-cycle with peace of mind even when the load is installed at any location for the convenience of the customer
  • the purpose is to provide 2 systems.
  • Another object of the present invention is to provide the position and type of the cooler on the CO cycle side (bottom feed type,
  • Refrigeration system capable of smoothly forming a CO circulation cycle even when there is a difference in height between the evaporator and the cooler, and the CO bra used in the system.
  • the other purpose is to defrost (defrost) and clean the CO cycle side cooler.
  • the purpose is to quickly and reliably collect CO liquid from the CO cycle when performing
  • the present invention provides an ammonia refrigeration cycle, a brine cooler that cools CO using the latent heat of vaporization of the ammonia, and the above-mentioned blur ink.
  • the liquid pump formed with a forced circulation pump of variable liquid supply type
  • a startup pipe interposed between the liquid pump and the heat exchanger of the cooling load
  • a communication pipe communicating the top of the startup pipe with the CO gas layer of the receiver
  • the CO recovered from the cooler outlet on the cooling load side is in a liquid or gas-liquid mixed state (not
  • the startup level of the startup pipe is set to the maximum storage level of the CO brine in the receiver.
  • the highest CO brine storage level in the receiver is the CO brine cycle stoppage.
  • the volume of the liquid receiver including up to the liquid pump inlet at the time of stopping, is collected in the liquid receiver.
  • the start-up level of the raising pipe can be fixed.
  • the actual lift of the liquid pump is a force determined by the startup level of the return pipe.
  • the startup level force of the startup pipe is set equal to or lower than the startup level of the return pipe. Is preferred.
  • a pressure sensor that detects the differential pressure between the inlet and outlet of the liquid pump is installed, and based on the output of the sensor, the actual pump head and pipe pressure from the liquid pump to the return pipe start-up level It is preferable to set the liquid pump discharge pressure (forced drive flow rate) so that the pressure exceeds the loss.
  • a supercooler for supercooling at least part of the liquid CO in the liquid receiver is provided, and the liquid
  • a sufficient suction head can be secured at the liquid pump inlet to prevent cavitation.
  • the liquid receiver is higher than the liquid pump suction side. C of the CO receiver
  • the controller that calculates the degree of supercooling by comparing the CO saturation temperature in the receiver and the measured liquid temperature.
  • the top of the start-up pipe and the CO gas layer of the liquid receiver are connected by a communication pipe, and the liquid pump
  • a flow control valve may be provided in the communication pipe.
  • a brine cooler is placed at a position higher than the receiver, and the liquid or gas-liquid mixed CO recovered from the outlet of the cooler on the cooling load side is returned to the CO gas layer of the receiver.
  • the CO gas layer of the receiver and the brine cooler are connected by piping, and the condensate is cooled by the brine cooler.
  • It may be configured to return the stored CO brine to the receiver and store it.
  • CO recovered from the outlet of the cooler 6 on the cooling load side is in a liquid or gas-liquid mixed state (
  • the discharge pressure (forced drive flow rate) of the liquid pump 5 is set so that it returns to the brine cooler 3 or the receiver 4 in the incomplete evaporation state.
  • the discharge pressure (forced drive flow rate) of the liquid pump 5 is set so that it returns to the brine cooler 3 or the receiver 4 in the incomplete evaporation state.
  • the liquid pump 5 is a variable supply amount type forced circulation pump, and the CO recovered from the outlet of the cooler 6 on the cooling load side is in a liquid or gas-liquid mixed state.
  • the forced circulation amount of the liquid pump 5 is more than twice the required circulation amount on the cooler 4 side, preferably 3 to 4 times.
  • the pumping pressure (forced drive flow rate) of the liquid pump 5 was set so that the actual pump lift from the liquid pump 5 to the return pipe start-up level and the pressure of the pipe pressure loss were exceeded, the ammonia pump In the cycle, the brine cooler 3 is placed in the basement of the building, etc., and has the evaporation function in the liquid or gas-liquid mixed state (incomplete evaporation state) in the CO cycle
  • the gas-liquid mixed state can be maintained even in the bottom feed structure of the cooler even above the cooling pipe of the cooler. If only the gas is not cooled sufficiently, smooth cooling can be achieved over the entire cooling pipe.
  • cooler 6 refrigeration showcase, etc.
  • a cooler 6 that has an evaporation function in a gas-liquid mixed state (incompletely evaporated state), a CO2 cycle on the same floor, or a brine cooler upstairs and downstairs in an ammonia cycle.
  • the liquid or gas-liquid mixed state incompletely evaporated state
  • the CO cycle can be smoothly circulated in the same manner as described above.
  • a startup pipe 90 is provided between the liquid pump 5 and the heat exchanger (cooler 6) of the cooling load, and the startup level of the startup pipe 90 is set to the maximum storage of CO brine in the receiver. Lebe Set to the same level or higher, and connect the top of the startup piping to the CO gas layer of the receiver.
  • the CO recovered from the cooler outlet on the cooling load side is in a liquid or gas-liquid mixed state (not
  • High storage level includes up to 5 liquid pump inlets when CO brine cycle is stopped.
  • the startup pipe 90 is set to a level equal to or higher than the maximum storage level of the CO brine solution in the receiver 4, and
  • the top of the pipe and the CO gas layer 4a of the receiver 4 are connected by a communication pipe.
  • the CO brine cycle smoothly moves the CO brine liquid at the same time as the liquid pump stops.
  • the heat transfer can be stopped.
  • a supercooler for supercooling CO of the liquid receiver 4 or the liquid receiver 4 for maintaining the supercooled state up to the pump inlet side should be provided! /.
  • the determination of the supercooled state of the liquid receiver 4 is based on the fact that the CO after the cooling is liquefied.
  • the pressure and liquid temperature of the liquid receiver 4 to be measured are measured, and the saturation temperature based on the pressure is compared with the measured liquid temperature to calculate the degree of supercooling.
  • the liquid in receiver 4 is saturated and the degree of supercooling is 1 below the saturation temperature.
  • the liquid pump 5 is driven in a state where the temperature is set to about -5 ° C., smooth driving is possible. Since the vertical height between A and B of the startup pipe 90 is about 2.5 m, it is about 0.0279 MPa when converted to a pressure difference, so this head (height) must be overcome by the liquid pump 5. is there . Without the discharge pressure of this liquid pump 5, the CO brine liquid is not forcibly circulated.
  • a pressure sensor for detecting the differential pressure between the inlet Z outlet of the liquid pump 5 is provided. Based on the sensor output, the actual pump lift and the pipe pressure from the liquid pump 5 to the return pipe start-up level are provided. The discharge pressure (forced drive flow rate) of the liquid pump 5 is set so that the pressure is higher than the loss. Part of the CO brine solution through the communication pipe 100
  • the liquid is returned to the liquid receiver 4, but most is supplied to the cooler 6.
  • the reflux amount is controlled by the diameter of the communication pipe 100 or the flow control valve 102.
  • the return pipe 53 side is circulated in the substantially liquid state of the liquid or gas-liquid mixed state (incompletely evaporated state) of the required circulation amount on the cooling load heat exchanger (cooler 6) side.
  • the CO recovery process connecting the cooler outlet side and the brine cooler 3 is performed.
  • a pressure relief path connecting the cooler and brine cooler 3 or downstream receiver 4 is provided separately from the passage, and the cooler internal pressure is set to a predetermined pressure (near the design pressure) as when the pump is started at room temperature. (E.g. 90% load) or more, the CO pressure is released via the pressure relief path.
  • a plurality of sets of the coolers can be provided even when the liquid supply path of the liquid pump 5 is branched or when the fluctuation of the cooling load is large, at least one of which is a top-feed type cooler. But it can respond.
  • a controller for forcibly unloading the refrigerator of the ammonia refrigeration cycle based on the detection result of the differential pressure between the inlet Z and the outlet of the liquid pump 5 is also provided.
  • a heat-insulating joint should be inserted at the connection with the cooling load.
  • the brine cooler 3 is placed higher than the receiver 4 and the liquid or gas-liquid mixed gas state CO recovered from the outlet of the cooler 6 on the cooling load side is received by the receiver 4 CO
  • It is configured to store the condensed CO brine in the receiver 4.
  • the CO gas layer 4a of the receiver 4 is the CO gas layer 4a of the receiver 4
  • the condensation cycle can be formed by returning the CO to the receiver 4 and storing it.
  • the CO gas condensate can be discharged without returning to the brine cooler 3.
  • FIG. 13 is a pressure no enthalpy diagram of a refrigeration system combining an ammonia cycle and a CO cycle.
  • A shows the present invention
  • B shows a prior art.
  • FIGS. 2 (A) to (E) are schematic diagrams showing various correspondences of the present invention.
  • FIG. 2 2 is an overall schematic diagram showing a freezer unit that cools (freezes) a load using latent heat of vaporization using a pipeline.
  • FIG. 4 is a control flow diagram of FIG.
  • FIG. 5 is a graph showing the start-up operation (change in rotational speed and change in pump differential pressure) of the liquid pump of the present invention.
  • FIG. 7 is a schematic view showing an embodiment in which the present invention is applied to an ice making factory.
  • FIG. 8 is a schematic view showing an embodiment in which the present invention is applied to a refrigerated warehouse.
  • FIG. 9 is a schematic view showing an embodiment in which the present invention is applied to a freezer chamber.
  • FIG. 10 is a schematic view showing an embodiment in which the return pipe is connected to a liquid receiver while being applied to the refrigerator of the present invention.
  • FIG. 1 A first figure.
  • a Machine unit (CO brine generator)
  • Fig. 1 ( ⁇ ⁇ ) is a pressure diagram showing the basic configuration of the present invention. The principle of the present invention will be described. This figure shows the CO cycle, and in this figure it is cooled by brine cooler 3 and receiver 4
  • the liquid pump 5 that feeds the liquid CO after rejection to the cooling load side is a forced circulation with variable liquid supply type
  • CO that is recovered from the cooler outlet on the cooling load side is liquid or gas.
  • the liquid pump 5 forced circulation amount is set to more than twice the necessary circulation amount on the cooler side having the evaporation function in the liquid or gas-liquid mixed state (incomplete evaporation state) so that it can be recovered in the liquid mixed state is doing.
  • the pump discharge on the receiver side is set to more than twice the necessary circulation amount on the cooler side having the evaporation function in the liquid or gas-liquid mixed state (incomplete evaporation state) so that it can be recovered in the liquid mixed state is doing.
  • the CO discharge head which is lower than the discharge head, is fed to the cooler inlet side on the cooling load side.
  • the cooler having the evaporation function in the liquid or gas-liquid mixed state is configured.
  • FIG. 2 shows the correspondence.
  • A is the ammonia refrigeration cycle and ammonia ZCO heat
  • B is a CO brine that is liquid cooled by the machine unit.
  • the configuration of the machine unit will be described.
  • the gas compressed in the refrigerator 1 is condensed in the condenser 2, and then the liquid ammonia is expanded by an expansion valve, and then the line 24 (see Fig. 3). ) And evaporate again while exchanging heat with CO in the brine cooler 3 for cooling CO brine.
  • CO brine is freezer unit B side power After collecting CO gas and liquid, CO brine cooling
  • the number of revolutions can be varied by an inverter motor.
  • the start-up level of the start-up pipe 90 is set to be equal to or higher than the maximum storage level L of the CO brine liquid in the receiver.
  • startup pipe 90 and the upper CO gas layer in receiver 4 communicate with each other through communication pipe 100.
  • Freezer unit B is a liquid pump 5 between the discharge side and the brine cooler 3 suction side. And a plurality of coolers 6 having an evaporation function in the liquid or gas-liquid mixed state (incomplete evaporation state) are disposed on the line, and are introduced into the free unit. A part of the liquid CO is evaporated in the cooler 6 to form a liquid or gas-liquid mixed gas
  • a top-feed type cooler 6 and a bottom-feed type cooler 6 are arranged in parallel on the pump discharge side.
  • a pressure relief line 30 Separately from the recovery line 53, there is provided a pressure relief line 30 with a safety valve or pressure regulating valve 31 that connects the cooler 6 and the brine cooler 3 or the receiver 4 on the downstream side.
  • the safety valve or pressure adjustment valve 31 opens when the pressure exceeds the specified pressure, and the CO pressure is released via the pressure relief line 30.
  • Fig. 2 (B) shows an example of connecting a top-feed type cooler.
  • a pressure relief line 30 is provided in which a safety valve or a pressure regulating valve 31 is connected to connect the cooler and the brine cooler 3 or the downstream liquid receiver 4. Also in this example, the CO brine is pumped by the liquid pump 5 and is freed via the start-up piping 90.
  • a plurality of pumps 5 are provided on the feed path 52 on the outlet side of the brine cooler 3 and are configured so as to be independently capable of forced circulation with the bottom feed cooler 6 independently.
  • the CO brine is pumped by the liquid pump 5 and freezer via the startup pipe 90.
  • the forced circulation capacity can be set appropriately.
  • the CO recovered from the cooler outlet on the cooling load side is liquid or gas-liquid.
  • the liquid pump 5 forced circulation so that it is recovered in the mixed state It is necessary to set the amount to more than twice the required circulation amount on the cooler side.
  • FIG. 2 (D) shows an example in which a bottom feed type cooler is connected.
  • the CO brine is pumped by the liquid pump 5 and is connected to the freezer unit B via the startup pipe 90.
  • the cooler and brine cooler 3 or the downstream side are separated from the CO recovery line 53 that connects the cooler outlet side and the brailer 3.
  • a pressure relief line 30 is provided in which a safety valve or pressure regulating valve 31 is connected.
  • the part is evaporated and returned to the brine cooler 3 in the machine unit in the liquid or gas-liquid mixed gas state.
  • Figure 3 shows the CO brine recovered after cooling the cooling load by its latent heat of vaporization.
  • Example 1 It is a schematic diagram of Example 1 of a 2 type load cooling device.
  • A consists of an ammonia refrigeration cycle and an ammonia ZCO heat exchanger (brine cooler 3).
  • B is the cooling load machine unit
  • 8 is a bypass pipe that bypasses the line 24 between the expansion valve 23 outlet side and CO brine cooling brine cooler 3 inlet side It is built in the CO receiver 4 with a supercooler 8 connected to.
  • the CO brine is installed on the discharge side of the pump 5 with the above startup pipe 90, and then the heat insulating joint 10
  • the CO brine is recovered from the freezer unit B side via the
  • the liquid CO is introduced into the receiver 4 and within the receiver 4 is 1-5 ° C lower than the saturation point by the supercooler 8.
  • the supercooled liquid CO can be rotated on the feeding path 52 by the inverter motor 51.
  • the CO brine liquid returned to the liquid receiver 4 is a part of the amount supplied by the liquid pump 5.
  • [0034] 9 is a bypass that bypasses the liquid pump 5 outlet side and the brine cooler 3 for CO brine cooling
  • Aisle, 11 is ammonia decontamination line, and a brine ink for CO brine cooling through on-off valve
  • a fire or the like occurs in the unit, it detects an increase in temperature and opens an abnormal pressure rise in the temperature detection valve or CO system in the brine cooler 3.
  • valve 131 which consists of a safety valve to detect, and inject CO from the nozzle 132.
  • 14 is a CO discharge line, which receives liquid CO from brine cooler 3 for CO brine cooling.
  • the self-cooling is performed when the temperature inside the unit A rises by opening the valve 151 through the self-cooling device 15 in which the number 4 is wound and releasing it into the unit A. And the valve 151 stops the load operation It consists of a safety valve that is opened when the internal pressure of the brine cooler 3 rises above the specified pressure.
  • Freezer unit B is a CO brine cooler above the conveyor 25 that conveys the product to be frozen.
  • a plurality of cooler fans 29 are arranged along the conveyor 25, and are configured to be capable of rotation control by an inverter motor 261.
  • a defrost spray nozzle 28 connected to a defrost heat source is interposed between the cooler fan 29 and the cooler 6.
  • a part of the CO is evaporated by the cooler and the gas-liquid mixed CO is
  • each of the coolers that have the evaporation function in the liquid or gas-liquid mixed state has a pressure at start-up to prevent unnecessary pressure increase due to partially gasified CO.
  • Each is provided with a pressure relief line 30 in which a safety valve or a pressure regulating valve 31 is connected between the cooler 6 and the brine cooler 3 or the receiver 4 on the downstream side.
  • T1 is a temperature sensor that detects the CO liquid temperature in the receiver
  • T2 is a freezer.
  • Temperature sensor that detects CO temperature at the unit inlet side, T3 is C at the freezer unit outlet side
  • T4 is a temperature sensor that detects the freezer unit internal temperature.
  • P1 is a pressure sensor that detects the pressure inside the receiver
  • P2 is a pressure sensor that detects the cooler pressure
  • P3 is a pressure sensor that detects the pump differential pressure
  • CL is the liquid pump inverter motor 51 and cooler fan inverter
  • a controller for controlling the motor 261, 20 is an open / close control valve for the binos pipe 81 that supplies the ammonia to the subcooler 8
  • 21 is an open / close control valve for the binoslein 9 on the outlet side of the liquid pump 5.
  • This example uses the signals from the PI and T1 sensors that measure the CO pressure and temperature of the CO receiver 4.
  • a controller CL that calculates the degree of supercooling by comparing the saturation temperature with the measured liquid temperature is provided so that the amount of ammonia refrigerant introduced into the bypass pipe 81 can be adjusted.
  • the CO temperature in vessel 4 is controlled 1-5 ° C below the saturation point.
  • the supercooler 8 may be provided independently outside the liquid receiver 4, not necessarily inside the liquid receiver 4.
  • This configuration ensures a stable degree of supercooling with the supercooler 8 that cools the CO liquid that is installed inside or outside the receiver 4 or all of the liquid in the receiver 4 to cool the CO liquid.
  • the signal of the pressure sensor P2 that detects the internal pressure of the cooler 6 that has an evaporation function in the liquid or gas-liquid mixed state (incomplete evaporation state) causes the inverter motor 51 that varies the amount of liquid pump 5 to feed. It is input to the controller CL to be controlled, and stable liquid supply is performed by inverter control (including intermittent liquid supply and continuous variable).
  • the signal from the pressure sensor P2 is also input to the controller CL of the inverter motor 261 that changes the air flow rate of the cooler fan 29 in the freezer unit B, and the CO liquid is supplied stably by the inverter control of the cooler fan 29 together with the liquid pump 5. Configured to do liquid
  • liquid pump 5 that feeds the CO brine to the freezer unit B side is the cooling load side (
  • the pump capacity is 3 to 4 times the circulating amount of CO brine required by the freezer unit
  • the inverter motor 51 of the pump 5 is used to fill the cooler 6 with liquid CO and increase the liquid CO speed in the pipe to improve heat transfer performance.
  • the pressure sensor P3 that detects the pressure difference of the pump first starts when the differential pressure of the pump decreases and enters the cavitation state.
  • the controller CL detects that the differential pressure of the pump 5 has dropped, and the controller CL opens the open / close control valve 21 of the bypass line 9 on the liquid pump outlet side to
  • the Liquid gas mixture CO gas can be liquidized.
  • the control can also be performed on the ammonia refrigeration cycle side.
  • the pressure sensor P3 detects that the differential pressure of the pump has decreased. This is forcibly unloaded using the control valve 33 of the refrigerator (capacity compressor) for early recovery on the controller CL side to simulate the CO saturation temperature.
  • the refrigerator 1 on the ammonia cycle side is operated, and the liquid CO in the brine cooler 3 and the receiver 4 is cooled.
  • the liquid pump 5 is
  • the liquid pump is operated at 100%, and when the pump differential pressure reaches the full operation load (pump head), it is reduced to 60%. If the pump differential pressure reaches the full operating load (pump head), it is reduced to 60%, and then the inverter frequency (pump rotation speed) is increased and the operation is shifted to the steady operation.
  • Pump 5 When the forced circulation rate is set to more than twice the required circulation rate on the cooler 6 side that has the evaporation function in the above liquid or gas-liquid mixed state (incomplete evaporation state), preferably 3 to 4 times However, since it is operated at room temperature during startup, the risk of unnecessary pressure increase and exceeding the pump design pressure can be eliminated.
  • the top of the start-up pipe 90 and the CO gas layer in the upper part of the receiver 4 are connected with a communication pipe 100.
  • the cooling load can be freely adjusted.
  • the freezer unit B cooler inlet side liquid CO temperature and outlet side gas CO The temperature is measured by the temperature sensor, and the two temperature sensors T2, T3
  • the controller CL grasps the detected temperature difference and determines the remaining CO amount in the freezer unit B.
  • Recovery control can be performed. That is, when the temperature difference disappears, it is determined that the collection has been completed.
  • the CO recovery control is performed by the internal temperature sensor T4 and the pressure sensor P2 on the cooler 6 side.
  • cooler is a water spray defrost type cooler
  • the freezer unit B may be pasteurized at the end of each operation in order to freeze the food. At this time, the temperature is transmitted through the piping and all of the CO communication pipes on the machine unit A side
  • the connecting part of the freezer unit B is composed of a CO connecting pipe that uses a low heat transfer heat insulation joint such as tempered glass.
  • the circulation of the CO liquid is interrupted, and the riser upstream of the communication pipe 100 connection part in the flow direction
  • CO in the receiver is at a liquid level of 110 in the receiver 4 and is balanced with CO gas.
  • the CO liquid that has already passed through the top of the pipe reaches the cooler 6 where the amount of heat for defrosting and high-temperature killing
  • the (NH) evacon unit A1 is an ammonia compressor 1, and the ammonia compressed by the compressor 1
  • Cooling and condensing your gas with a cooling fan 2a with water spraying Evacon 2 (Evaporator condenser) CO2 is cooled by using the expansion valve 23 that expands and vaporizes the condensed ammonia liquid and the heat of vaporization (heat removal) of the ammonia.
  • Brine cooler to perform ammonia consisting of 3
  • a refrigeration cycle is formed, and the brine cooler 3 is arranged at a high position near the ceiling of the Evacon unit 2.
  • the machine unit A2 is adjacent to the EVACON unit A1 and has the same ground level, but the ceiling height is slightly lower than the EVACON unit A1 to form a building height, and the EVACON unit A1 is inside of it. Receives liquid-cooled CO in the side brine cooler 3
  • the startup level of the startup pipe 90 is the level of the CO brine in the receiver 4
  • start-up pipe 90 and the upper CO gas layer in receiver 4 are connected by communication pipe 100.
  • the reflux amount is set smaller than the diameter of the communication pipe 100, for example, the diameter of the liquid supply pipe 54, or is controlled by the flow control valve 102.
  • the volume of receiver 4 is the same as the inlet of liquid pump 5 when the CO brine cycle is stopped.
  • the volume where the CO gas layer exists is set.
  • the brine liquid pump 5 is a forced circulation pump, and is a cooler on the cooling load side.
  • CO recovered from the outlet to the brine cooler 3 is a gas-liquid mixture in which the CO is liquid or substantially liquid
  • At least the brine pump discharge flow rate should be set to at least twice the required circulation rate on the cooler side so that it can be recovered in the combined state.
  • the brine pump is provided with a driving force having a total lift in consideration of the actual lift and the piping pressure loss, and the brine liquid pump 5 is disposed with a sufficient suction head.
  • This suction head is in a state where the pump suction side is maintained at a saturation pressure or higher even when the pump discharge flow rate is maximum, and at least supercooled liquid CO is stored.
  • liquid receiver is located higher than the pump suction side.
  • the ice making room B is located away from the machine unit A2 and the evacon unit A1, but the ground level is the same.
  • a CO brine type herring bo In ice chamber B, a CO brine type herring bo
  • the salt calbrine tank 71 in which the coil 6A (evaporator) is accommodated is disposed, and the CO liquid supplied from the lower pipe to the coil 6A (evaporator) from the lower side passes through the valve 72.
  • the salt carbline is deprived of heat by the latent heat of vaporization of the CO solution in the coil 6A,
  • It is configured to return to the brine cooler 3 of the evacon unit A1 via a return pipe 53 (ceiling connection duct 73) arranged at a position higher than the brine cooler 3 in the liquid gas mixed state.
  • the gas power compressed by the ammonia compressor 1 is condensed by the evaporator condenser 2 and then the liquid ammonia is expanded by the expansion valve 23, and then heat exchanged with CO by the blanker 3. While evaporating the ammonia, introduce it again into the compressor 1
  • the supercooled liquid CO is supplied to the forced circulation amount of the brine liquid pump 5 on the cooler 6 side.
  • the brine pump discharge flow rate is set to at least the actual lift height that is at least twice the required circulation amount on the cooler side, so that all of the CO brine evaporates even at the maximum load.
  • the return pipe path 53 is transported back in a liquid or gas-liquid mixed state (liquid mist state) and passes through a return pipe 53 (connected to the back of the ceiling) whose top is positioned higher than the brine cooler 3. It can be returned to the brine cooler 3 in a liquid or gas-liquid mixed state.
  • the position of the cooler 6A is lower than the position of the brine cooler 3, and the return CO is substantially in a liquid or liquid mist state (in the return pipe 53), so that it is caused by the action of gravity.
  • the forced circulation amount of the brine pump is set to more than twice the necessary circulation amount on the cooler side, and the pumping force of the brine pump 5 is liquid CO Or in the liquid mist (gas-liquid mixture) state (return pipe side)
  • the return conveyance on the return pipe side from the herring bon coil 6A side to the brine cooler 3 in the ice making chamber is a gas-liquid mixed state (liquid mist state), in other words, it is not in a gas state.
  • the diameter of the return pipe can be small, the diameter of the return pipe can be the same as or smaller than the diameter of the start-up pipe 90 on the evaporator inlet side, and the ceiling back pipe is easy.
  • the circulation of the brine cooler 3 ⁇ evaporator (herring bon coil) ⁇ brine cooler 3 is a forced circulation in a substantially liquid state by the brine pump 5, the return pipe diameter can be reduced and the startup pipe 90 and All return pipes are placed higher than the brine cooler 3. In other words, even if the cooler 6A is installed on the ground, the start-up pipe 90 and the return pipe can be installed on the ceiling. The working environment is greatly improved without the system being extended.
  • start-up pipe 90 and the communication pipe 100 can be said to be the same as the actions described in the first embodiment.
  • Example 3 shown in Fig. 8 relates to a refrigerated warehouse.
  • the machine room is integrated into the outdoor unit A, and suspended in the refrigerator warehouse B CO brine
  • Type 2 air cooler 6B is installed, and riser pipe 90 is installed between brine pump 5 installed on outdoor unit A side and air cooler 6B on freezer warehouse B side.
  • the gap of B is also installed on the ground line (ground line)!
  • an ammonia refrigeration cycle consisting of an ammonia compressor 1, an evacon 2, an expansion valve 23 and a brine cooler 3 is formed, and a brine cooler 3.
  • a receiver 4 and a brine pump 5 are provided. It is connected to the air cooler 6B in the refrigeration warehouse B through a rising pipe 90 that has been raised to a position corresponding to the actual lifting height of the brine liquid pump 5 + pipe pressure loss.
  • the rising top of the rising pipe 90 of the cooler is automatically It can be set to the same height as the return pipe 53 from the cooler.
  • the other configuration is the same as that of Example 2, but is a ceiling-suspended CO brine type air cooler in which the air cooler disposed in the refrigerated warehouse is suspended from the ceiling and cooled by the brine cooler 3.
  • the present invention can be carried out without any problem even in the case where the rejector is located at a high gravity position.
  • Example 4 shown in FIG. 9 is a refrigeration factory, and Example 4 is a CO brine type freezer (freezer).
  • the outdoor unit A is arranged as a single unit, and a rising pipe 90 is arranged between the brine pump arranged on the outdoor unit side and the air cooler on the refrigeration warehouse side.
  • the rising pipe 90 is set at a height equal to or higher than the position where the brine cooler 3 is mounted, and is set to the same height as the return pipe 53 from the cooler.
  • Example 5 shown in Fig. 10 the cooler 6 is installed on the first floor of the building, the machine room is installed on the fourth floor of the building, and the Evacon unit Al and the machine unit A2 are installed. This is an example.
  • Example 5 the (NH 3) evacon unit A1 is not shown, but an ammonia compressor,
  • a brine cooler 3 is provided on the machine unit A2 side to form an ammonia refrigeration cycle.
  • the machine unit A2 is provided adjacent to the Evaccon unit A1, and receives a liquid receiver 4 for receiving CO liquefied and cooled by the brine cooler 3, a liquid pump 5 having a variable rotation speed, and a startup unit.
  • the top of the rising pipe 90 has a liquid level of the CO receiver 4.
  • the communication pipe 100 is provided with a flow control valve 102.
  • the CO brine liquid passes through the liquid supply pipe 54 and is cooled by the valve 72 via the top of the rising pipe 90 by the discharge pressure of the liquid pump 5 provided below the liquid receiver 4.
  • the startup pipe 90 and the communication pipe 100 are the same as described in the first embodiment.
  • Example 5 the brine cooler 3 is arranged at a position higher than the receiver 4 and the CO gas of the receiver 4 in which the CO recovered from the outlet of the cooler 6 on the cooling load side is removed by the brine cooler 3 is used.
  • the CO brine that has been connected and condensed is stored in the receiver 4.
  • Cooler on the cooling load side CO recovered from the outlet is in liquid or gas-liquid mixed gas state
  • Layer 4a is guided to brine cooler 3 by piping 104, and CO gas layer 4a portion of receiver 4 is condensed.
  • the ammonia refrigeration cycle the brine cooler that performs the CO coolant using the latent heat of vaporization of the ammonia, and the brine cooler
  • In generator is combined into one unit, for example, a refrigeration system on the cooler side of the CO cycle.
  • the position and type of the cooler on the CO cycle side bottom feed type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

 CO2サイクルの冷却器側である冷凍ショーケース等を任意の場所に据え付けた場合でも安心してアンモニアサイクルとCO2サイクルとを組み合わせた冷凍サイクルを形成できるアンモニア/CO2冷凍システムの提供するために、アンモニア冷凍サイクルのアンモニア蒸発潜熱を利用してブラインクーラで冷却された液CO2を冷却器に給送する液ポンプを備えたアンモニア/CO2冷凍システムにおいて、ブラインクーラ3で冷却されたCO2ブラインを受液する受液器4と、給液量可変型の液ポンプ5と、液ポンプ5と冷却器6との間に介装した立ち上げ配管90と、立ち上げ配管90の頂部と受液器4のCO2ガス層とを連通する連通管100とを有し、冷却器6より回収されるCO2が液若しくは気液混合状態でブラインクーラ3若しくは受液器4に戻るように、液ポンプ5の吐出圧を設定するとともに、立ち上げ配管90の立ち上げレベルを受液器4のCO2ブラインの最高貯留レベルより同等かそれより高く設定する。

Description

明 細 書
アンモニア Zco冷凍システム
2
技術分野
[0001] 本発明は、アンモニアサイクルと COサイクルで構成したアンモニア
2 Zco冷凍シ
2 ステムにかかり、特にアンモニア冷凍サイクルと、そのアンモニアの蒸発潜熱を利用し て COの冷却を行うブラインクーラと、前記 COブラインで冷却された液 COブライン
2 2 2 を冷却負荷側に給送する給送ライン上に液ポンプを備えたアンモニア Zco冷凍シ
2 ステムに関する。
背景技術
[0002] オゾン層破壊、地球温暖化防止に対する対策が強く要求されてきているなかで、空 調、冷凍分野においてオゾン層破壊の観点からの脱フロンば力りでなぐ地球温暖 化の点より代替冷媒 HFCの回収とエネルギ効率の向上が急務となっている。上記要 求に沿うため、自然冷媒であるアンモニア、炭化水素、空気、炭酸ガス等の使用が考 えられ、大型の冷却 ·冷凍設備にはアンモニア冷媒の採用が多く見受けられ、し力も 、上記大型冷却 ·冷凍設備に付随する例えば冷蔵倉庫や荷捌き室や加工室等の小 規模冷却'冷凍設備でも、 自然冷媒のアンモニアの導入増大の傾向にある。
しかしながらアンモニアは毒性を有するために、アンモニアサイクルと COサイクル
2 とを組み合わせ COを冷却負荷側の二次冷媒として用いる冷凍サイクルが製氷工場
2
、冷蔵倉庫や食品の冷凍工場で多く用いられている。
[0003] 例えば特許文献 1には、アンモニアサイクルと炭酸ガスサイクルとを組み合わせたヒ ートポンプシステムが開示されており、その具体的構成を第 11図 (A)に基づいて説 明するに、まずアンモニアサイクルでは、圧縮機 104によって圧縮された気体状のァ ンモユアが、コンデンサ 105を通るとき、冷却水または空気によって冷やされて液体と なる。液体となったアンモニアは、膨張弁 106によって必要な低温度に相当する飽和 圧力まで膨張した後、カスケードコンデンサ 107で蒸発して気体となる。このとき、ァ ンモユアは、炭酸ガス冷凍サイクル内の二酸ィ匕炭素力 熱を奪い、これを液化する。 一方、炭酸ガスサイクルでは、カスケードコンデンサ 107によって冷やされて液ィ匕し た液ィ匕炭酸ガスが、液ヘッド差を利用した自然循環現象によって下降し、流量調整 弁 108を通って、 目的の冷却を行うボトムフィード型の蒸発器 109に入り、ここで温め られて蒸発し、ガスとなって再びカスケードコンデンサ 107に戻っていく。
そして前記従来技術においては、カスケードコンデンサ 107は、 目的の冷却を行う 蒸発器 109よりも高い位置、例えば屋上等に設置され、そしてこのような構成を採るこ とによって、カスケードコンデンサ 107とクーラファン 109aを有する蒸発器 109との間 に液ヘッド差を形成するものである。
力かる原理を第 1図(B)の圧力線図に基づ!/、て説明するに、図中点線は圧縮機に よるヒートポンプサイクルに基づくアンモニアサイクルで、実線が自然循環による CO
2 サイクルを示し、本図ではカスケードコンデンサ 107とボトムフィードの蒸発器 109と の間に液ヘッド差を利用して自然循環可能に構成してある。
し力しながら、前記従来技術はアンモニアサイクル内において蒸発器となるカスケ ードコンデンサ (二酸化炭素媒体を冷やす蒸発器)を、建物の屋上など COサイクル
2 内の目的の蒸発器 (冷凍ショーケース等)よりも高い位置に設置しなければならない という基本的な欠陥がある。
特に冷凍ショーケースやフリーザユニットは顧客の都合により、中高層ビルの高層 階に据え付ける必要があることもあり、このような場合には全く対応できない。
このため、前記従来技術では、図 11 (B)に示すように、二酸化炭素媒体の循環を 二次的に補助し、循環をより確実なものとするために、サイクル内に液ポンプ 110を 設ける形態をとつて 、るものもある。し力しながら力かる技術も液ヘッド差を利用した 自然循環にとどまり、補助的に液の循環量を制御して二酸化炭素媒体を冷却するも のである。
即ち前記従来技術にお!ヽても自然循環サイクルに並列して補助ポンプ流路を配置 するものであるために、液ヘッド差を利用した自然循環経路の存在が前提となるもの であり、 CO 自然循環サイクルが形成された上での補助ポンプ流路である。(従って
2
補助ポンプ流路は自然循環サイクルに対して並列接続でなければならな 、。 ) 特に前記従来技術も液ヘッド差を確保していることを前提に補助的に液ポンプを利 用するもので、カスケードコンデンサ(二酸化炭素媒体を冷やす蒸発器)が炭酸ガス サイクル内の目的の蒸発器より高い位置に設定することが前提となるものであり、前 記した基本的な欠点の解消にはつながらな!/、。
しかも前記従来技術は 1階と 2階に蒸発器 (冷凍ショーケース、冷房機等)を設置す る場合にそれぞれの蒸発器のカスケードコンデンサとの間の液ヘッド差が異なる場合 にもその適用が困難である。
[0005] 又前記従来技術においては、カスケードコンデンサ 107と蒸発器 109との間に液へ ッド差を設けるということは図 11に示すように、蒸発器は、 CO入口側が蒸発器ボトム
2
であり、 CO出口側が蒸発器トップである、いわゆるボトムフィード構成でなければ自
2
然循環が行われな ヽと 、う制約がある。
し力しながらボトムフィード構造では下方入口側の冷却管の中では、 CO液が管内
2 に奪熱されながら蒸発するがその蒸発したガスは、冷却管の上方に向かって流れ冷 却管の上方位置ではガスのみとなつて冷却が十分行われず、下方の冷却管のみが 有効に冷却され、また入口側に液ヘッダを設けた場合に冷却管への均一な分配も出 来ないという問題がある。実際に第 1図 (B)に示す圧力線図でも蒸発器 109で CO
2 が完全に蒸発した後回収される線図になって!/、る。
[0006] また、 COを冷却負荷側の二次冷媒として用いる冷凍サイクルが製氷工場、冷蔵
2
倉庫や食品の冷凍工場で多く用いられているが、このような冷凍装置においては、冷 凍能力の維持、消毒等から、定期的または随時に、装置を停止してクーラのデフロス ト (霜取り)および洗浄作業を行なう必要があり、かかる作業は、当然クーラ (蒸発器) の温度上昇を伴うため、 CO液がクーラ (蒸発器)付近の循環経路内に滞留している
2
と、 CO液が爆発的気化 (沸騰)を生じるおそれがあるため、運転停止後に、クーラ(
2
蒸発器)近傍における CO液を速やか、かつ完全に回収することが望まれている。
2
[0007] 特許文献 1 :特許第 3458310号公報
発明の開示
発明が解決しょうとする課題
[0008] 従って、本発明は力かる従来技術の問題に鑑み、アンモニア冷凍サイクルと、その アンモニアの蒸発潜熱を利用して COの冷却を行う冷却器と、前記冷却器で冷却さ
2
れた液 COを冷却負荷側に給送する給送ライン上に液ポンプを備えた COブライン 生成装置を、例えば COサイクルの冷却負荷側である冷凍ショーケース等の冷却負
2
荷を顧客の都合により任意の場所に据え付けた場合でも安心してアンモニアサイク ルと coサイクルとを組み合わせたサイクルが形成できるアンモニア Zco冷凍シス
2 2 テムを提供することを目的とする。
本発明の他の目的は、 COサイクル側の冷却器の位置、種類 (ボトムフィード型、ト
2
ップフィード型)及びその数、更には蒸発器と冷却器間に高低差を有する場合でも円 滑に CO循環サイクルが形成できる冷凍システムと該システムに使用される COブラ
2 2 イン生成装置を提供することを目的とする。
また、他の目的は、 COサイクル側の冷却器のデフロスト(霜取り)および洗浄作業
2
を行なう際の、 COサイクルからの CO液の回収を迅速かつ確実に行なうことを目的
2 2
とする。
課題を解決するための手段
そこで、本発明は力かる課題を解決するために、アンモニア冷凍サイクルと、そのァ ンモユアの蒸発潜熱を利用して COの冷却を行うブラインクーラと、前記ブラインク
2 一 ラで冷却された液 COを冷却負荷の熱交換器 (冷却器)側に給送する給送ライン上
2
に液ポンプを備えたアンモニア Zco冷凍システムにお 、て、
2
前記ブラインクーラで冷却された COブラインを受液する受液器と、
2
給液量可変型の強制循環ポンプで形成した前記液ポンプと、
前記液ポンプと冷却負荷の熱交換器間に介装した立ち上げ配管と、
前記立ち上げ配管の頂部と前記受液器の COガス層とを連通する連通管と、
2
前記冷却負荷側の冷却器出口より回収される COが液若しくは気液混合状態 (不
2
完全蒸発状態)で前記ブラインクーラもしくは前記受液器に戻るように、前記液ポンプ 吐出圧 (強制駆動流量)を設定するとともに、
前記立ち上げ配管の立ち上げレベルを前記受液器の COブラインの最高貯留レ
2
ベルと同等もしくはそれより高く設定したことを特徴とする。
この場合に、受液器の COブラインの最高貯留レベルは、 COブラインサイクル停
2 2
止時における液ポンプ入口までを含む受液器の容積を、受液器内に回収した CO
2 ブライン液とともに、その上部に COガス層が存在する容積に設定することにより立ち 上げ配管の立ち上げレベルを固定できる。
[0010] 又、本発明は、前記液ポンプの実揚程は戻り配管の立ち上げレベルによって決ま る力 前記立ち上げ配管の立ち上げレベル力 戻り配管の立ち上げレベルと同等か それより低く設定することが好まし 、。
より具体的には.前記液ポンプの入口 Z出口間の差圧を検知する圧力センサを設 け、該センサ出力に基づいて、液ポンプから戻り配管の立ち上げレベルまでのポンプ 実揚程と配管圧力損失以上の圧力になるように前記液ポンプ吐出圧 (強制駆動流量 )を設定するのがよい。
[0011] 又前記受液器内の液 COの少なくとも一部を過冷却する過冷却器を設け、前記液
2
ポンプ入口側の CO液を飽和温度以下の過冷却状態に維持させるのがよい。これに
2
より液ポンプ入口ではキヤビテーシヨン防止のために十分な吸込みヘッドを確保でき る。
[0012] そしてその具体的な構成として、少なくとも過冷却されている液 COが貯留されて
2
いる受液器が液ポンプ吸込側より高い位置にあるのがよい。又前記 CO受液器の C
2
o圧力を検出する圧力センサとその液温を計測する温度センサよりの信号に基づい
2
て、受液器内の CO飽和温度と実測液温を比較して過冷却度を演算するコントロー
2
ラと、該コントローラよりの信号に基づいて導入されるアンモニア冷媒の量が調整され る前記過冷却器とを具えるように構成してもよ 、。
[0013] 又、立ち上げ配管の頂部と受液器の COガス層とを連通管で連結させ、液ポンプ
2
運転時には、 COブラインの一部を受液器に還流するとともに、液ポンプ停止時には
2
、 COガスを立ち上げ配管の頂部へ、受液器の COガス層から導入するように構成
2 2
し、その連通管に流量制御弁を設けるようにしてもょ 、。
さらに、ブラインクーラを前記受液器より高い位置に配置し、冷却負荷側の冷却器 出口より回収される液若しくは気液混合状態の COを受液器の COガス層に戻し、こ
2 2
の受液器の COガス層とブラインクーラを配管で連通して、ブラインクーラで凝縮液
2
ィ匕した COブラインを受液器に戻して、貯留するように構成してもよい。
2
発明の効果
[0014] 前記冷却負荷側の冷却器 6の出口より回収される COが液若しくは気液混合状態( 不完全蒸発状態)でブラインクーラ 3もしくは受液器 4に戻るように、前記液ポンプ 5の 吐出圧 (強制駆動流量)を設定するものであり、まず、ブラインクーラ 3に戻す場合の 効果を、図 6 (a)を参照して説明する。
[0015] 前記のごとく本発明は、前記液ポンプ 5が給液量可変型の強制循環ポンプであつ て、前記冷却負荷側の冷却器 6の出口より回収される COが液若しくは気液混合状
2
態 (不完全蒸発状態)でブラインクーラに戻るようにするために、前記液ポンプ 5の強 制循環量を冷却器 4側の必要循環量の 2倍以上に、好ましくは 3〜4倍に、更に言い 換えれば液ポンプ 5から戻り配管の立ち上げレベルまでのポンプ実揚程と配管圧力 損失以上の圧力になるように前記液ポンプ 5の吐出圧 (強制駆動流量)を設定したた めに、アンモニアサイクル内においてブラインクーラ 3を、建物の地下等に配置して C Oサイクル内の前記液若しくは気液混合状態 (不完全蒸発状態)での蒸発機能を有
2
する冷却器 6 (冷凍ショーケース等)を地上の任意の位置に配置しても円滑に COサ
2 イタルを循環することができるとともに、例えば、 1階と 2階に冷却器 6 (冷凍ショーケー ス、冷房機等)を設置する場合にそれぞれの冷却器 6とブラインクーラ 3との間の液へ ッド差と無関係に COサイクルを運転できる。
2
この場合に冷却負荷側熱交換器出口より回収される COが戻り配管経路を通って
2
液若しくは気液混合状態でブラインクーラ 3に戻るように構成してあるために、ボトムフ イード構造の冷却器であっても、該冷却器の冷却管の上方位置でも気液混合状態が 維持できるためにガスのみとなつて冷却が十分行われな 、ことがなぐ冷却管全体に わたって円滑な冷却が可能である。
[0016] なお、アンモニアサイクル内においてブラインクーラ 3と、 COサイクル内の前記液
2
若しくは気液混合状態 (不完全蒸発状態)での蒸発機能を有する冷却器 6 (冷凍ショ 一ケース等)とを、同等階、またはアンモニアサイクル内においてブラインクーラを階 上に、そして階下に COサイクル内の前記液若しくは気液混合状態 (不完全蒸発状
2
態)での蒸発機能を有する冷却器 6 (冷凍ショーケース等)を配置した場合にお!ヽても 、上記同様に円滑に COサイクルを循環することができる。
2
[0017] 前記液ポンプ 5と冷却負荷の熱交換器 (冷却器 6)との間に立ち上げ配管 90を有し 、前記立ち上げ配管 90の立ち上げレベルを受液器の COブラインの最高貯留レベ ルより同等かそれより高く設定し、立ち上げ配管の頂部と受液器の COガス層とを連
2
通管で連結させる理由について詳細に説明する。
[0018] 先ず、本システムの COブラインサイクルは前記自然循環方式の従来技術と異なり
2
、前記冷却負荷側の冷却器出口より回収される COが液若しくは気液混合状態 (不
2
完全蒸発状態)でブラインクーラ 3に戻るように COブラインサイクル内のブラインは
2
基本的に実質的液状態の飽和状態に設定されており、受液器 4の COブラインの最
2
高貯留レベルは、 COブラインサイクル停止時における液ポンプ 5入口までを含む受
2
液器の容積を、受液器内に回収した COブライン液とともに、その上部に COガス層
2 2
4aが存在する容積に設定して、前記立ち上げ配管 90の立ち上げレベルを受液器 4 の COブライン液の最高貯留レベルより同等かそれより高く設定し、さらに、立ち上げ
2
配管の頂部と受液器 4の COガス層 4aとを連通管で連結させているので、液ポンプ 5
2
停止直後の COブライン液の移動を円滑に遮断できる。
2
[0019] その際に、液ポンプ 5停止直後の熱バランス状態を説明すると、図 6 (a)に示すよう に、例えば、液ポンプ 5が停止すると B点にある液は、レベル Lにバランスしようとして A点もしくは、 A'点に落ちようとする。 B点の頂上部に設けた連通管 100を通って、受 液器 4の COガス層 4aからガスが流入し、 B点の液はレベル Lまで自動落下する。す
2
なわち COブラインサイクルは、液ポンプ停止と同時に COブライン液の移動を円滑
2 2
に遮断し、熱移動の停止が可能になる。
[0020] 次に、ポンプを起動し COが循環している状態の場合を説明する。
2
前記停止後に液ポンプ 5を再駆動するには、液ポンプ 5入口ではキヤビテーシヨン 防止のために十分な吸込みヘッドが必要であり、このため液入口を過冷却状態にし た後に駆動する必要がある。
従って、本発明は受液器 4、若しくはポンプ入口側までの過冷却状態を維持するた めの受液器 4の COを過冷却する過冷却器を設けるのがよ!/、。
2
具体的には前記受液器 4の過冷却状態の判断が、前記冷却液化後の COを液溜
2 する受液器 4の圧力と液温を計測して、前記圧力に基づく飽和温度と実測液温を比 較して過冷却度を演算するコントローラによりおこなわれるのがよい。
たとえば図 6 (a)において、受液器 4の液は飽和状態で過冷却度を飽和温度より 1 〜5°C程度低く設定した状態で液ポンプ 5の駆動を行うと円滑な駆動が可能となる。 又立ち上げ配管 90の A— B間の垂直高さは約 2. 5mであるので圧力差に換算する と約 0. 0279Mpaであるので、このヘッド(高さ)は液ポンプ 5で打ち勝つ必要がある 。この液ポンプ 5の吐出圧がないと COブライン液は強制循環しない。
2
従って、本発明では前記液ポンプ 5の入口 Z出口間の差圧を検知する圧力センサ を設け、該センサ出力に基づいて、液ポンプ 5から戻り配管の立ち上げレベルまでの ポンプ実揚程と配管圧力損失以上の圧力になるように前記液ポンプ 5の吐出圧 (強 制駆動流量)を設定している。なお、連通管 100を通じて COブライン液の一部は、
2
受液器 4に還流されるが、大部分は冷却器 6に供給される。連通管 100の径、または 流量制御弁 102によって還流量が制御される。
液ポンプ 5を運転してシステムが正常に運転される状態でポンプを停止すると上記 の 2. 5mのヘッドを打ち勝つ力がなくなるので液循環が停止する。停止と同時に、連 通管 100を通って受液器 4の COガス層から COガスが立ち上げ管 90の頂部に導
2 2
入される。
従って、液ポンプ 5停止中は、常にブライン液の循環がなされない状態になってい る。
即ち、受液器の液面 Lと同一レベルの立ち上げ配管 90の A点以上の配管中の液 が落ち、立ち上げ配管 90の A—B—A'中に飽和蒸気が満たされており、液循環が 不可能となることは前記した通りである。
従って、このような前記立ち上げ配管 90を有する液ポンプ 5を具えた CO循環サイ
2 クルにおいて、前記戻り配管 53側を前記液若しくは気液混合状態 (不完全蒸発状態 )の実質的な液状態で循環させるのは冷却負荷熱交換器 (冷却器 6)側の必要循環 量の 2倍以上に、好ましくは 3〜4倍に設定する必要があることは前記した通りである 力 起動時は常温力 運転するために、無用な圧力上昇が起こり、ポンプ設計圧力 を超えてしまう恐れがある。
そこでポンプ起動時に間欠運転と回転数可変制御を組み合わせてポンプ吐出圧 力を設計圧力以下で運転し、その後回転数可変制御で運転を行うのがよい。
更に安全設計思想として、前記冷却器出口側とブラインクーラ 3を結ぶ CO回収経 路と別個に冷却器とブラインクーラ 3若しくはその下流側の受液器 4を結ぶ圧力逃が し経路を設け、常温時のポンプ起動時のように冷却器内圧力が所定圧力(設計圧力 の近傍例えば 90%負荷)以上の場合に圧力逃がし経路を介して CO圧力を逃がし
2
て安全設計思想を組み込むのがよ 、。
又前記冷却器は複数組設けてもよぐ液ポンプ 5の給液経路を分岐させる場合や 冷却負荷の変動が大きい場合であっても対応でき、少なくともその 1つがトップフィー ド型冷却器であっても対応できる。
又、前記液ポンプ 5出口側とブラインクーラ 3間を、開閉制御弁を介してバイパスす るバイパス通路を設けるのがよ 、。
更に、液ポンプ 5の入口 Z出口間の差圧検知結果に基づいてアンモニア冷凍サイ クルの冷凍機を強制アンロードするコントローラを備えているのがよぐ又前記ブライ ン生成装置の給送ラインと冷却負荷との接続部に、断熱継手が介装されているのが よい。
次に、冷却負荷側の冷却器 6の出口より回収される液若しくは気液混合状態 (不完 全蒸発状態)の COを、受液器 4に戻す場合の効果を図 6 (b)を参照して説明する。
2
図 6 (b)に示すように、ブラインクーラ 3を受液器 4より高い位置に配置し、冷却負荷 側の冷却器 6出口より回収される液若しくは気液混合ガス状態 COを受液器 4の CO
2
ガス層 4aに戻し、受液器 4の COガス層 4aとブラインクーラ 3を配管 104で連結して
2 2
凝縮液化した COブラインを受液器 4に貯留するように構成する。
2
冷却負荷側の冷却器 6の出口より回収される COが液若しくは気液混合状態 (不完
2
全蒸発状態)であるため、ブラインクーラ 3に戻すと、ブラインクーラ 3内の流路抵抗が 増大して、液ポンプ 5に対する圧力負荷が過大となり、液ポンプの大型化、装置の大 型化をまねくおそれがある力 受液器 4の COガス層 4aに戻すことによって、液ボン
2
プ 5の背圧の低下を図ることができる。さらに、受液器 4の COガス層 4aを配管 104で
2
ブラインクーラ 3へ導き、受液器 4の COガス層 4a部分の COを凝縮液化し、液ィ匕し
2 2
た COを受液器 4へ戻して貯留することによって、凝縮サイクルを形成することができ
2
るため、ブラインクーラ 3へ戻さなくても、 COガスの凝縮液ィ匕を行なうことができる。
2
なお、その他効果については、前述した図 6 (a)と同様のことがいえる。 図面の簡単な説明
[0023] [図 13アンモニアサイクルと COサイクルとを組み合わせた冷凍システムの圧力ノエン タルピー線図で (A)が本発明、 (B)が従来技術を示す図である。
[図 2〗 (A)〜(E)は本発明の種々の対応を示す概要図である。
[図 3]アンモニア冷凍サイクル部とアンモニア ZCO熱交換部が組み込まれたマシン ユニット (COブライン生成装置)、と冷却負荷をマシンユニット側で液冷却した CO
2 2 プラインを利用してその蒸発潜熱により負荷を冷却 (冷凍)するフリーザユニットを示 す全体概要図である。
[図 4]図 3の制御フロー図である。
[図 5]本発明の液ポンプの起動運転 (回転数変化とポンプ差圧変化)状況を示すグラ フ図である。
[図 6]本発明の COブラインサイクルに配置した立ち上げ配管の特徴を示す作用説
2
明図である。
[図 7]本発明を製氷工場に適用した実施例を示す概略図である。
[図 8]本発明を冷蔵倉庫に適用した実施例を示す概略図である。
[図 9]本発明をフリーザ室に適用した実施例を示す概略図である。
[図 10]本発明の冷凍器に適用するとともに、戻し配管を受液器に連結した実施例を 示す概略図である。
[図 11]従来のアンモニアサイクルと COサイクルとを組み合わせたヒートポ:/ 7"システ
2
ムの構成図である。
符号の説明
[0024] 1 アンモニア冷凍德 (圧縮機)
2 ェパコン式?膽器
3 ブラインク^ラ
4 受液器
5 液ポンプ
6 冷却器
7 アンモニア除害水槽 差替え用弒(S|lj2fJ) 8 過冷却器
53 戻し配管
54 給液配管
90 立ち上げ配管
100 連通管
102 流量制御弁
A マシンユニット(COブライン生成装置)
2
B フリーザユニット
CL コントローラ
P1〜P2 圧力センサ
T1〜T4 温度センサ
発明を実施するための最良の形態
[0025] 以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの 実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に 特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなぐ単なる 説明例に過ぎない。
[0026] 第 1図 (Α)は本発明の基本構成を示す圧力線図で、本発明の原理を説明するに、 図中点線は圧縮機によるヒートポンプサイクルに基づくアンモニアサイクルで、実線 が強制循環による COサイクルを示し、本図ではブラインクーラ 3及び受液器 4で冷
2
却後の液 COを冷却負荷側に給送する前記液ポンプ 5が給液量可変型の強制循環
2
ポンプであって、前記冷却負荷側の冷却器出口より回収される COが液若しくは気
2
液混合状態で回収されるように、前記液ポンプ 5強制循環量を前記液若しくは気液 混合状態 (不完全蒸発状態)での蒸発機能を有する冷却器側の必要循環量の 2倍 以上に設定している。この結果冷却負荷側の COサイクルでは、受液器側ポンプ吐
2
出ヘッドより低い CO吐出ヘッドで冷却負荷側の冷却器入口側に給送され、冷却器
2
出口給送ラインよりブラインクーラ 3の間に圧力差が十分とれ、前記冷却負荷側の冷 却器出口より回収される COが液若しくは気液混合状態で回収される(第 1図 (A)の
2
右側圧力線図の内側で反転して回収される)ように構成することができる。 これにより冷却負荷の冷却器とブラインクーラ 3間に高低差や距離があっても、前記 液若しくは気液混合状態 (不完全蒸発状態)での蒸発機能を有する冷却器を構成し たために、単一及び複数ポンプによる多室 (冷却器)冷却管理及び冷却器のボトムフ イード及びトップフィード方式等あらゆる冷却サイクルに対応できる。
[0027] その対応を第 2図に示す。 Aは、アンモニア冷凍サイクル部とアンモニア ZCO熱
2 交換部(ブラインクーラ 3と CO液ポンプ 5を含む)が組み込まれたマシンユニット(C
2
Oブライン生成装置)、 Bは冷却負荷をマシンユニット側で液冷却した COブラインを
2 2 利用してその蒸発潜熱と顕熱により負荷を冷却 (冷凍)するフリーザユニットである。 次にマシンユニットの構成について説明する。
1はアンモニア冷凍機 (圧縮機)で、該冷凍機 1で圧縮されたガスは、凝縮器 2で凝 縮された後、その液アンモニアを膨張弁で膨張させ、ついでライン 24 (第 3図参照)を 介して COブライン冷却用ブラインクーラ 3で COと熱交換させながら蒸発させて再
2 2
度冷凍機 1に導入してアンモニア冷凍サイクルを構成する。
COブラインはフリーザユニット B側力 CO気液を回収した後、 COブライン冷却
2 2 2 用ブラインクーラ 3に導き、アンモニア冷媒との熱交換により COを冷却凝縮した後、
2
該凝縮した液 COを受液器 4に貯留させた後、インバータモータにより回転数可変及
2
び間欠運転可能な液ポンプ 5で圧送されて、立ち上げ配管 90を介してフリーザュ- ット B側に導く。
そして COブラインサイクル停止時における液ポンプ 5入口までを含む受液器 4の
2
容積を、受液器内に回収した COブライン液とともに、その上部に COガス層が存在
2 2
する容積に設定されており、又前記立ち上げ配管 90の立ち上げレベルを受液器の COブライン液の最高貯留レベル Lより同等かそれより高く設定されている。
2
立ち上げ配管 90の頂部と受液器 4内の上部の COガス層とは、連通管 100で連通
2
され、液ポンプ 5の作動時には、 COブライン液の一部が連通管 100を経由して受液
2
器 4内に還流され、液ポンプ 5の停止時には、受液器 4内の上部の COガスが立ち上
2
げ配管 90の頂部に流れる。
[0028] 次にフリーザユニット Bの説明を行う。
フリーザユニット Bは液ポンプ 5吐出側とブラインクーラ 3吸込側間に COブラインラ インが形成されており、そのライン上に前記液若しくは気液混合状態 (不完全蒸発状 態)での蒸発機能を有する冷却器 6がー又は複数個配設されており、フリーザュニッ トに導入された液 COを冷却器 6でその一部が蒸発して液若しくは気液混合ガス状
2
態でマシンユニット内の COブライン冷却用ブラインクーラ 3に戻され、 CO二次冷媒
2 2 サイクルが構成される。
そして第 2図 (A)は前記ポンプ吐出側にトップフィード方式の冷却器 6とボトムフィ ード方式の冷却器 6が並列配置されて 、る。
そしてボトムフィードの冷却器 6の場合にガス化された COによる無用の圧力上昇
2
を防ぐため、又起動時の圧力上昇を防ぐために、前記液若しくは気液混合状態 (不 完全蒸発状態)での蒸発機能を有する冷却器 6出口側とブラインクーラ 3を結ぶ CO
2 回収ライン 53と別個に冷却器 6とブラインクーラ 3若しくはその下流側の受液器 4を結 ぶ安全弁若しくは圧力調整弁 31が介装された圧力逃がしライン 30を設け、冷却器 6 内圧力が所定圧力以上の場合に安全弁若しくは圧力調整弁 31が開き圧力逃がしラ イン 30を介して CO圧力を逃がすように構成している。
2
第 2図(B)はトップフィード方式の冷却器を接続した例である。
この場合も起動時の圧力上昇を防ぐために、前記液若しくは気液混合状態 (不完 全蒸発状態)での蒸発機能を有する冷却器 6出口側とブラインクーラ 3を結ぶ CO回
2 収ライン 53と別個に冷却器とブラインクーラ 3若しくはその下流側の受液器 4を結ぶ 安全弁若しくは圧力調整弁 31が介装された圧力逃がしライン 30を設けている。本実 施例の場合も COブラインは液ポンプ 5で圧送されて、立ち上げ配管 90を介してフリ
2
一ザユニット B側に導くように構成されて 、る。
第 2図(C)はブラインクーラ 3出口側に給送路 52上に複数のポンプ 5を設け、夫々 独立してボトムフィードの冷却器 6との間で強制循環可能に構成してある。本実施例 の場合も COブラインは液ポンプ 5で圧送されて、立ち上げ配管 90を介してフリーザ
2
ユニット B側に導くように構成されて!ヽる。
このように構成すれば冷却器毎の高低差や距離が大きく異なる場合でもそれに適 した強制循環容量に設定できるが、いずれも前記冷却負荷側の冷却器出口より回収 される COが液若しくは気液混合状態で回収されるように、前記液ポンプ 5強制循環 量を冷却器側の必要循環量の 2倍以上に設定する必要がある。
[0030] 第 2図(D)はボトムフィード方式の冷却器を接続した例である。本実施例の場合も C Oブラインは液ポンプ 5で圧送されて、立ち上げ配管 90を介してフリーザユニット B
2
側に導くように構成されて 、る。
この場合もボトムフィードの冷却器 6の場合にガス化された COによる無用の圧力
2
上昇を防ぐため、起動時の圧力上昇を防ぐために、前記冷却器出口側とブラインク ーラ 3を結ぶ CO回収ライン 53と別個に冷却器とブラインクーラ 3若しくはその下流側
2
の受液器を結ぶ安全弁若しくは圧力調整弁 31が介装された圧力逃がしライン 30を 設けている。
[0031] なお、第 2図 (A)〜(D)において、フリーザユニットに導入された CO液を冷却器 6
2
でその一部が蒸発して、液若しくは気液混合ガス状態でマシンユニット内のブライン クーラ 3に戻される構成について説明したが、受液器 4の COガス層に戻す構成であ
2
つてもよい。例えば、代表的に第 2図(A)に示す例について、受液器 4の COガス層
2 に戻す構成を、第 2図 (E)に例示する。
実施例 1
[0032] 第 3図は冷却負荷をその蒸発潜熱により冷却後回収した COブラインをアンモニア
2
冷媒との熱交換により冷却制御しながら負荷冷却サイクルを構成する CO強制循環
2 型負荷冷却装置の実施例 1の概要図である。
Aは、アンモニア冷凍サイクル部とアンモニア ZCO熱交換部(ブラインクーラ 3)が
2
組み込まれたマシンユニット(COブライン生成装置)、 Bは冷却負荷をマシンユニット
2
側で液冷却した COブラインを利用してその蒸発潜熱により負荷を冷却 (冷凍)する
2
フリーザユニットである。
次にマシンユニットの構成について説明する。
1はアンモニア冷凍機 (圧縮機)で、該冷凍機 1で圧縮されたガスは、ェバコン式凝 縮器 2で凝縮された後、その液アンモニアを膨張弁 23で膨張させ、ついでライン 24 を介して COブライン冷却用ブラインクーラ 3で COと熱交換させながら蒸発させて再
2 2
度冷凍機 1に導入してアンモニア冷凍サイクルを構成する。 8は膨張弁 23出口側と C Oブライン冷却用ブラインクーラ 3入口側間のライン 24をバイパスさせたバイパス管 に接続させた過冷却器 8で、 CO受液器 4内に内蔵されている。
2
7はアンモニア除害水槽で、ェバコン式アンモニア凝縮器 2を散布した水をポンプ 2 6を介して繰り返し循環して 、る。
COブラインはポンプ 5の吐出側に前記立ち上げ配管 90を設けた後、断熱継手 10
2
を介してフリーザユニット B側から COガスを回収した後、 COブライン冷却用ブライ
2 2
ンクーラ 3に導き、アンモニア冷媒との熱交換により COを冷却凝縮した後、該凝縮し
2
た液 COを受液器 4に導き、該受液器 4内で過冷却器 8により飽和点より 1〜5°C低い
2
温度で過冷却する。
そして過冷却された液 COは、インバータモータ 51により給送路 52上の回転数可
2
変な液ポンプ 5を介して断熱継手 10よりフリーザユニット B側に導く。
[0033] 立ち上げ配管 90の頂部と受液器 4内の上部の COガス層とは連通管 100で連通さ
2
れ、連通管 100の径の大きさ、流量制御弁 102を制御することによって、受液器 4に 還流される COブライン液は、液ポンプ 5によって供給される量の一部となっており、
2
大部分は、冷却器 6に供給される。また、液ポンプ 5の停止時には、受液器 4内の上 部の COガスが立ち上げ配管 90の頂部に供給される。
2
[0034] 9は液ポンプ 5出口側と COブライン冷却用ブラインクーラ 3をバイパスするバイパス
2
通路、 11はアンモニア除害ラインで、開閉弁を介して COブライン冷却用ブラインク
2
ーラ 3よりの液若しくは液ガス混合 COをアンモニア冷凍機 1と対面する位置等のァ
2
ンモユア漏洩区域に放出する除害ノズル 91と接続している。
12は中和ラインでブラインクーラ 3よりの COを除害水槽 7に導入してアンモニアを
2
炭酸アンモニアへと中和させて除害している。
13は消火ラインで、ユニット内で火災等が発生した場合は、その温度上昇を検知し て開放する温度検知バルブもしくはブラインクーラ 3内の CO系統の異常圧力上昇を
2
検知する安全弁等で構成されたバルブ 131を開いてノズル 132より COを噴射させ
2
て消火を行う。
14は CO放出ラインで、 COブライン冷却用ブラインクーラ 3よりの液 COを受液器
2 2 2
4を卷回した自冷装置 15を介してバルブ 151を開放してユニット A内に放出して該ュ ニット内が温度上昇した場合の自冷を行う。そして前記バルブ 151は負荷運転停止 中にブラインクーラ 3内圧力が規定圧力以上に上昇した場合に開放される安全弁で 構成されている。
[0035] 次にフリーザユニット Bの説明を行う。
フリーザユニット Bは被冷凍品を搬送するコンベア 25の上方に COブライン冷却器
2
6がコンベア搬送方向に沿って複数個配設されており、断熱継手 10を介して導入さ れた液 COを冷却器 6で一部蒸発 (液若しくは気液混合状態)して、その冷気をクー
2
ラファン 29により被冷凍品 27にむけて噴射する。
クーラファン 29はコンベア 25に沿って複数配列され、インバータモータ 261により 回転制御可能に構成されて 、る。
クーラファン 29と冷却器 6の間にはデフロスト熱源に接続されたデフロスト散布ノズ ル 28が介装されている。
そして冷却器により一部 COが蒸発して気液混合 COは断熱継手 10よりマシンュ
2 2
ニット内の COブライン冷却用ブラインクーラ 3に戻され、 CO二次冷媒サイクルが構
2 2 成される。
又前記液若しくは気液混合状態 (不完全蒸発状態)での蒸発機能を有する冷却器 には夫々一部がガス化された COによる無用の圧力上昇を防ぐため、起動時の圧力
2
上昇を防ぐために、前記冷却器出口側とブラインクーラ 3を結ぶ CO回収ラインと別
2
個に冷却器 6とブラインクーラ 3若しくはその下流側の受液器 4を結ぶ安全弁若しくは 圧力調整弁 31が介装された圧力逃がしライン 30を設けて 、る。
[0036] 力かる実施例の作用を第 4図に基づいて説明する。
第 3図及び第 4図の T1は受液器内 CO液温を検知する温度センサ、 T2はフリーザ
2
ユニット入口側の CO温度を検知する温度センサ、 T3はフリーザユニット出口側の C
2
O温度を検知する温度センサ、 T4はフリーザユニット内庫内温度を検知する温度セ
2
ンサ、又 P1は受液器内圧カを検知する圧力センサ、 P2は冷却器圧力を検知する圧 力センサ、 P3はポンプ差圧を検知する圧力センサ、 CLは液ポンプインバータモータ 51とクーラファンインバータモータ 261制御用のコントローラ、 20は過冷却器 8へアン モ-ァを供給するバイノス管 81の開閉制御弁、 21は液ポンプ 5出口側のバイノ スラ イン 9の開閉制御弁である。 本実施例は CO受液器 4の CO圧力と液温を計測するセンサ PI, T1よりの信号に
2 2
基づ 、て、飽和温度と実測液温を比較して過冷却度を演算するコントローラ CLを設 けてバイパス管 81に導入するアンモニア冷媒の量を調整可能に構成しており、これ により受液器 4内の CO温度は飽和点より 1〜5°C低く制御されている。
2
[0037] 尚、過冷却器 8は必ずしも受液器 4の内部ではなぐ外部に独立して設けてもよい。
このように構成することにより受液器 4の液の全量もしくは一部を、受液器 4の内部も しくは外部に装備した CO液を冷却する過冷却器 8で安定した過冷却度を確保でき
2
る。
又前記液若しくは気液混合状態 (不完全蒸発状態)での蒸発機能を有する冷却器 6の内部圧力を検知する圧力センサ P2の信号は液ポンプ 5の送液量を可変させるィ ンバータモータ 51を制御するコントローラ CLに入力されて、(間欠給液や連続可変 を含む)インバータ制御により安定給液を行う。
更に前記圧力センサ P2の信号はフリーザユニット B内のクーラファン 29の送風量を 可変するインバータモータ 261のコントローラ CLにも入力されて、液ポンプ 5とともに クーラファン 29のインバータ制御により CO液の安定給液を行うように構成されてい
2
る。
又前記 COブラインをフリーザユニット B側に給送する液ポンプ 5は、冷却負荷側(
2
フリーザユニット側)が必要とする COブライン循環量の 3〜4倍のポンプ容量を持た
2
せて強制循環を行うとともに、該ポンプ 5のインバータモータ 51を利用して冷却器 6に 液 COを満たし管内の液 CO速度を上昇させ伝熱性能を向上させている。
2 2
[0038] さらに、冷却負荷の必要循環量の 3〜4倍のポンプ容量を持つ容量可変式 (インバ ータモータ付き)ポンプ 5によって液 COの強制循環を行うために、冷却器 6が複数
2
台の場合においても該冷却器 6への液 COの分配を良くすることができる。
2
更に液ポンプ 5の起動時や冷却負荷変動時に過冷却度が低下した場合、ポンプの 差圧が低下してキヤビテーシヨン状態になった場合は、まず前記ポンプの差圧を検 知する圧力センサ P3が、ポンプ 5の差圧が低下したことを検知し、コントローラ CLが 液ポンプ出口側のバイパスライン 9の開閉制御弁 21を開放してポンプ 5から COブラ
2 イン冷却用ブラインクーラ 3へのバイパスを行うことにより、キヤビテーシヨン状態にあ る液ガス混合 COガスを液ィ匕することができる。
2
又前記制御はアンモニア冷凍サイクル側で行うこともできる。
すなわち、液ポンプ 5の起動時や冷却負荷変動時に過冷却度が低下してポンプ 5 の差圧が低下してキヤビテーシヨン状態になった場合、圧力センサ P3がポンプの差 圧が低下したことを検知し、これをコントローラ CL側で早期復帰のために冷凍機 (容 積型圧縮機)の制御弁 33を利用して強制アンロードさせ、 COの飽和温度を擬似的
2
に上昇させ過冷却度を確保するようにしてもょ 、。
[0039] 次に本発明の実施例の運転方法について第 5図の実施例に基づき説明する。
まずアンモニアサイクル側の冷凍機 1を運転し、ブラインクーラ 3及び受液器 4の液 COを冷却運転しておく。この状態で液ポンプ 5はポンプ差圧を見ながら起動時は間
2
欠 Z周波数運転を行う。
具体的には 0→100%→60%→0→100%→60%である。このように構成すること によりポンプ差圧が設計圧力以上になるのを防ぐことができる。
また、具体的には液ポンプを 100%で運転して、ポンプ差圧が運転全負荷 (ポンプ ヘッド)に達したら 60%に落とし、更に液ポンプ 5の運転を所定時間停止してその後 1 00%運転を行い、ポンプ差圧が運転全負荷 (ポンプヘッド)に達したら 60%に落とし 更にその後インバータ周波数 (ポンプ回転数)を増加させながら定常運転に移行する このように構成することで前記液ポンプ 5強制循環量を前記液若しくは気液混合状 態 (不完全蒸発状態)での蒸発機能を有する冷却器 6側の必要循環量の 2倍以上に 、好ましくは 3〜4倍に設定した場合でも起動時は常温力 運転するために、無用な 圧力上昇が起こり、ポンプ設計圧力を超えてしまう恐れを解消できる。
また、立ち上げ配管 90の頂部と受液器 4内の上部の COガス層とは連通管 100で
2
連通され、連通管 100の径の大きさ、流量制御弁 102を制御することによって、還流 量が制御されるので、冷却負荷の自由な調整が可能である。
[0040] 更に凍結作業が終了し、フリーザユニットを消毒する際は、フリーザユニット B内の C Oをマシンユニット側のブラインクーラ 3を通じて受液器 4に回収する必要があるが、
2
この場合はフリーザユニット Bの冷却器の入口側液 CO温度と出口側のガス COの 温度を温度センサで計測し、前記 CO液回収時に前記 2つの温度センサ T2, T3の
2
検知温度差をコントローラ CLで把握して、フリーザユニット B内の CO残量を判断し
2
ながら回収制御を行うことができる。すなわち前記温度差がなくなれば回収が終了し たと判断する。
又前記 CO回収制御は、庫内温度検知センサ T4と冷却器 6側の圧力センサ P2で
2
CO圧力を検知し、その CO圧力の飽和温度と庫内温度をコントローラで比較して
2 2
前記飽和温度と庫内温度の差に基づ 、て庫内の CO残量がなくなつたと判断するこ
2
とも可能である。
又冷却器が、散水デフロスト方式のクーラの場合、散水の熱量を利用して COの回
2 収時間を短縮するように制御することができるが、この場合に冷却器 6側の圧力セン サ P2にて COの圧力を監視して散水熱量を調整するデフロスト制御を行うのがよい
2 更に、フリーザユニット Bは食品の凍結を行うために、各作業終了時に高温殺菌す る場合がある、このとき温度が配管を伝わってマシンユニット A側の COの連絡管全
2
体を昇温しないようフリーザユニット Bの接続部に強化ガラス等の低伝熱性の断熱継 手を使用した CO連絡管で構成している。
2
[0041] 凍結作業が終了して液ポンプ 5を停止すると、停止と同時に、連通管 100を通って 受液器 4の COガス層から COガスが立ち上げ管 90の頂部に導入される。その結果
2 2
、 CO液の循環が遮断され、連通管 100接続部より流れ方向上流側の立ち上げ部
2
にある COは、受液器 4の液面レベル 110で、 COガスと釣り合い、立ち上げ配管 90
2 2
の頂部を既に通過した CO液は、冷却器 6に至り、デフロストのための熱量、高温殺
2
菌のための熱量を受けて、速やかに蒸発して液ポンプ 5へと回収される。このため、 散水デフロスト、高温音殺菌を行なう場合に、 CO液が冷却器 6付近の循環経路内
2
に滞留していると、 CO液の爆発的気化 (沸騰)を生じるおそれがあるが、 CO液の
2 2 速やかに、かつ完全な回収によって、 CO液の爆発的気化 (沸騰)の生じるおそれが
2
防止される。
実施例 2
[0042] 次に本発明を製氷工場に適用した実施例 2を図 7に基づいて説明する。 本実施例 2は(NH )ェバコンユニット Al、マシンユニット A2、及び製氷室 Bの三ュ
3
ニットからなり、いずれのユニットもグラウンドライン (地上ライン)に設置されており、ュ ニット間での高低差はな!/、。
(NH )ェバコンユニット A1はアンモニア圧縮機 1、該圧縮機 1で圧縮されたアンモ
3
ユアガスを水散布によるクーリングファン 2aにより冷却凝縮するェバコン 2 (エバポレ ータコンデンサ)凝縮されたアンモニア液を膨張気化させる膨張弁 23及び、アンモ- ァの気化熱(奪熱)を利用して COの冷却を行うブラインクーラ 3からなるアンモニア
2
冷凍サイクルが形成されており、ブラインクーラ 3はェバコンユニット 2の天井付近の 高!ヽ位置に配置されて 、る。
マシンユニット A2は前記ェバコンユニット A1に隣接して、グラウンドレベルは一致 しているが、天井高はェバコンユニット A1より僅かに低く建物高さを形成し、その内 部に前記ェバコンユニット A1側のブラインクーラ 3で液ィ匕冷却された COを受液する
2 受液器 4と、回転数可変なブライン液ポンプ 5と、立ち上がり配管 90とからなり、前記 立ち上がり配管は、 CO受液器液面より高くブラインクーラ 3の高さと同等若しくはそ
2
れ以上の高さの製氷室よりの戻り配管 53と同等か僅かに低い高さに設定する。 基本的には前記立ち上げ配管 90の立ち上げレベルは受液器 4の COブラインの
2 最高貯留レベルより高く設定すればいいのであって、本実施例によればブラインポン プ 5の実揚程 +管の圧損を考慮して設定された戻し配管 53が施設される天井裏連 絡ダクト内に設置している。
また、立ち上げ配管 90の頂部と受液器 4内の上部の COガス層とは連通管 100によ
2
つて、液ポンプ 5の作動時には、連通管 100を通じて COブライン液の一部は、受液
2
器 4に還流される。還流量は、連通管 100の径、例えば、給液配管 54の径より小さく 設定、または流量制御弁 102によって制御される。また、液ポンプ 5の停止時には、 受液器 4内の上部の COガスが立ち上げ配管 90の頂部に供給される。
2
尚、受液器 4の容積は COブラインサイクル停止時における液ポンプ 5入口までを
2
含む受液器 4の容積を、ブラインサイクルを流れる COブライン液とともに、その上部
2
に COガス層が存在する容積に設定している。
2
又前記ブライン液ポンプ 5は強制循環ポンプであって、前記冷却負荷側の冷却器 出口よりブラインクーラ 3に回収される COが液力若しくは実質的に液状態の気液混
2
合状態で回収されるように、少なくとも前記ブラインポンプ吐出流量を冷却器側の必 要循環量の 2倍以上に設定して 、る。
具体的にはブラインポンプは実揚程と配管圧損を考慮した全揚程を有する駆動力 を持たせるとともに、該ブライン液ポンプ 5は吸込みヘッドを十分確保した配置とする 。この吸込ヘッドとはポンプの吐出流量が最大でも、ポンプ吸込側が飽和圧力以上 に維持されて 、る状態を 、 、、少なくとも過冷却されて 、る液 COが貯留されて 、る
2
受液器がポンプ吸込側より高い位置にあることが必要である。
製氷室 Bはマシンユニット A2及びェバコンユニット A1と力も離れて配置しているが 、グラウンドレベルは一致している。そして製氷室 B内には COブライン型へリングボ
2
ンコイル 6A (蒸発器)が収納された塩カルブライン槽 71が配設され、前記コイル 6A( 蒸発器)に下側より前記立ち上がり配管より給液された CO液がバルブ 72を介して
2
給液され、コイル 6A内で該 CO液の気化潜熱にて塩カルブラインが奪熱冷却して、
2
液ガス混合状態でブラインクーラ 3より高い位置に配設してなる戻り配管 53 (天井裏 連絡ダクト 73)を介してェバコンユニット A1のブラインクーラ 3に戻るように構成されて いる。
次に係る装置の作用を説明する。
ェバコンユニット A1側ではアンモニア圧縮機 1で圧縮されたガス力 ェバコン式凝 縮器 2で凝縮された後、その液アンモニアを膨張弁 23で膨張させ、ついでブラインク ーラ 3で COと熱交換させながらアンモニアを蒸発させて再度圧縮機 1に導入してァ
2
ンモユア冷凍サイクルを構成する。
一方ブラインクーラ 3と製氷室内の COサイクルは、ブラインクーラ 3内でのアンモ-
2
ァ冷媒との熱交換により COを冷却凝縮した後、該凝縮した液 COをマシンユニット
2 2
A2側の受液器 4に導き、該受液器 4内の過冷却器(図 3参照)により飽和点より 1〜5 °C低い温度に過冷却する。
そして過冷却された液 COは、ブライン液ポンプ 5の強制循環量を冷却器 6側の必
2
要循環量の 2倍以上に設定しているために、該ブラインポンプ 5により立ち上がり配 管 90の実揚程高さまで容易に圧送される。 そして立ち上がり配管 90まで揚程された CO液は、更にその圧送力を利用して、
2
製氷室の冷却器 (ヘリングボンコイル) 6Aに給液される。(CO液のブラインクーラ 3よ
2
り冷却器までの給送側搬送工程)
そして該冷却器内で該 CO液の気化潜熱にて塩カルブラインを奪熱冷却するが、
2
前記ブラインポンプ吐出流量を少なくとも冷却器側の必要循環量の 2倍以上の実揚 程高さ以上に設定して 、るために最大負荷時でも COブラインの全てが蒸発するこ
2
となぐ戻り配管経路 53では液もしくは気液混合状態 (液ミスト状態)で戻り搬送され て、その頂部がブラインクーラ 3より高い位置に配設してなる戻り配管 53 (天井裏連絡 )を介してブラインクーラ 3に液もしくは気液混合状態で戻すことができる。
即ち、冷却器 6Aの位置はブラインクーラ 3の位置より低い位置にあり、その戻り CO は実質的に液若しくは液ミスト(戻り配管 53内)状態であるために重力の作用により
2
戻り経路 53の頂部に至るまでの冷却器 6A側では降下が生じる力 ブラインポンプの 強制循環量を冷却器側の必要循環量の 2倍以上に設定し、ブラインポンプ 5の圧送 力が COの液若しくは液ミスト (気液混合)状態 (戻り配管側)でブラインクーラ 3側に
2
搬送できる。
即ち、製氷室のへリングボンコイル 6A側からブラインクーラ 3への戻り配管側の戻り 搬送は気液混合状態 (液ミスト状態)の搬送であるために、言 、換えればガス状態で ないために、戻り配管の小径ィ匕が可能であり、戻り配管の口径を、蒸発器入口側の 立ち上げ配管 90の口径と同等か小に出来、天井裏配管も容易である。
従ってブラインクーラ 3→蒸発器 (ヘリングボンコイル)→ブラインクーラ 3の循環はブ ライン液ポンプ 5による実質的液状態の強制循環であるために戻り配管径を小径ィ匕 できるとともに立ち上げ配管 90及び戻り配管はいずれもブラインクーラ 3より高い位置 に配設、言 、換えれば冷却器 6Aが地上設置でも立ち上げ配管 90及び戻り配管を 天井設置にすることができ、蒸発器やブラインポンプ回りに配管系が延在することなく 作業環境が大幅に改善する。
また、立ち上げ配管 90、および連通管 100の作用については、実施例 1で説明し た作用と同様のことがいえる。
実施例 3 [0044] 図 8に示す実施例 3は冷蔵倉庫に関するもので、前記「(NH )ェバコンユニット、機
3
械室」を一体ィ匕して屋外ユニット Aとして、そして冷蔵倉庫 B内に天吊り COブライン
2 型空気冷却器 6Bを配設し、屋外ユニット A側に配設したブラインポンプ 5と冷凍倉庫 B側の空気冷却器 6B間に立ち上がり配管 90を配設したもので、屋外ユニット A及び 冷凍倉庫 Bの 、ずれもグラウンドライン (地上ライン)に設置されて!、る。
そして屋外ユニット側には、アンモニア圧縮機 1、ェバコン 2、膨張弁 23及ブライン クーラ 3からなるアンモニア冷凍サイクルが形成されており、ブラインクーラ 3.受液器 4とブライン液ポンプ 5が配設されており、ブライン液ポンプ 5の実揚程 +管圧損に相 当する高さ位置まで立ち上げた立ち上がり配管 90を介して冷蔵倉庫 B内の空気冷 却器 6Bに接続されている。
尚、前記空気冷却器 6Bはブラインクーラ 3の高さ以上の高さの冷蔵倉庫内の天井 部に設置されているために、冷却器の前記立ち上がり配管 90の立ち上げ頂部は、自 動的に冷却器よりの戻り配管 53と同等高さに設定することが出来る。
その他の構成は実施例 2と同様であるが、冷蔵倉庫内に配設した空気冷却器が天 井よりつり下げられた天吊り COブライン型空気冷却器であり、ブラインクーラ 3より冷
2
却器が重力的に高い位置にあり、本発明は前記先行技術と異なり、このような場合で も問題なく実施できる。
実施例 4
[0045] 図 9に示す実施例 4は冷凍工場で、本実施例 4は COブライン型フリーザ (フリーザ
2
型冷却器)を収納している冷凍庫の天井に前記「(NH )ェバコンユニット、機械室」
3
を一体ィ匕して屋外ユニット Aを配置し、屋外ユニット側に配設したブラインポンプと冷 凍倉庫側の空気冷却器間に立ち上がり配管 90を配設したものである。そして、前記 立ち上がり配管 90は、ブラインクーラ 3の取り付け位置以上の高さ位置に冷却器より の戻り配管 53と同等高さに設定されている。
その他の構成は前記実施例と同様であるが、フリーザ室内に配設したフリーザ冷却 器 6Cは、フリーザ室 B天井に設置した屋外ユニット Aのブラインクーラ 3より重力的に 低い位置にある力 立ち上げ配管 90及び戻り配管 53はいずれも受液器 4の COブ
2 ライン液の最高貯留レベル L、好ましくはブラインクーラ 3より高い位置に配設している 実施例 5
[0046] 図 10に示す実施例 5は、建物の 1階部分に冷却器 6が設置され、階上の 4階部分 に機械室が設けられて、ェバコンユニット Al、マシンユニット A2が設置されている例 である。
本実施例 5は、 (NH )ェバコンユニット A1は、図示しないが、アンモニア圧縮機、
3
エバポレータコンデンサ、膨張弁、からなり、マシンユニット A2側に、ブラインクーラ 3 が設けられて、アンモニア冷凍サイクルが形成されて 、る。
マシンユニット A2は、前記ェバコンユニット A1に隣接して設けられ、ブラインクーラ 3で液化冷却された COを受液する受液器 4と、回転数可変な液ポンプ 5と、立ち上
2
力 Sり配管 90とからなり、前記立ち上がり配管 90の頂部には、 COの受液器 4の液面
2
より高く設定されている。そして、その頂部には、受液器 4の CO
2ガス層 4aに連通管 1
00で連結し、連通管 100には流量制御弁 102が設けられている。
また、受液器 4より下に設けられた液ポンプ 5の吐出圧力によって、立ち上がり配管 90の頂部を経由して、 COブライン液は、給液配管 54を通過して、バルブ 72から冷
2
却器 6へ流入する。冷却器 6内で、負荷との熱交換により COブライン液の一部が気
2
化して気液混合状態となった CO 1S 戻し配管 53を通過して受液器 4に戻る。
2
[0047] 立ち上げ配管 90、連通管 100については実施例 1の説明と同様である。
また、実施例 5は、ブラインクーラ 3を受液器 4より高い位置に配置し、冷却負荷側 の冷却器 6出口より回収される COをブラインクーラ 3ではなぐ受液器 4の COガス
2 2 層 4aに戻している。そして、受液器 4の COガス層 4aとブラインクーラ 3を配管 104で
2
連結して凝縮液ィ匕した COブラインを受液器 4に貯留するように構成して ヽる。
2
冷却負荷側の冷却器 6出口より回収される COは、液若しくは気液混合ガス状態で
2
あるため、ブラインクーラ 3に戻されると、ブラインクーラ 3内の流路抵抗が増大して、 液ポンプ 5に対する圧力負荷が過大となるので、受液器 4の COガス層 4aに戻すこと
2
によって、液ポンプ 5の背圧の低下を図ることができる。さらに、受液器 4の COガス
2 層 4aをブラインクーラ 3へ配管 104で導き、受液器 4の COガス層 4a部分の COを凝
2 2 縮液化し、液ィ匕した COを管路 106で受液器 4へ戻して貯留することによって、凝縮 サイクルを形成することができるため、ブラインクーラ 3へ戻さなくても、 COガスの凝
2 縮液ィ匕を行なうことができる。
産業上の利用可能性
以上記載したごとく本発明によれば、アンモニア冷凍サイクルと、そのアンモニアの 蒸発潜熱を利用して COの冷却液ィ匕を行うブラインクーラと、前記ブラインクーラで冷
2
却された液 COを冷却負荷側に給送する給送ライン上に液ポンプを備えた COブラ
2 2 イン生成装置を一つのユニットィ匕して、例えば COサイクルの冷却器側である冷凍シ
2
ョーケース等を顧客の都合により任意の場所に据え付けた場合でも安心してアンモ 二アサイクルと COサイクルとを組み合わせたサイクルが形成できる。
2
又本発明によれば、 COサイクル側の冷却器の位置、種類 (ボトムフィード型、トツ
2
プフィード型)及びその数、更にはブラインクーラと冷却器間に高低差を有する場合 でも円滑に CO循環サイクルが形成できる。

Claims

請求の範囲
[1] アンモニア冷凍サイクルと、そのアンモニアの蒸発潜熱を利用して COの冷却を行
2 うブラインクーラと、前記ブラインクーラで冷却された液 COを冷却負荷の熱交
2
冷却器)側に給送する給送ライン上に液ポンプを備えたアンモニア Zco冷凍シス
2 テムにおいて、
前記ブラインクーラで冷却された COブラインを受液する受液器と、
2
給液量可変型の強制循環ポンプで形成した液ポンプと、
前記液ポンプと冷却負荷の熱交換器間に介装した立ち上げ配管と、
前記立ち上げ配管の頂部と前記受液器の COガス層とを連通する連通管と、
2
前記冷却負荷側の冷却器出口より回収される COが液若しくは気液混合状態 (不
2
完全蒸発状態)で前記ブラインクーラもしくは前記受液器に戻るように、前記液ポンプ 吐出圧 (強制駆動流量)を設定するとともに、
前記立ち上げ配管の立ち上げレベルを前記受液器の COブラインの最高貯留レ
2
ベルと同等もしくはそれより高く設定したことを特徴とするアンモニア Zco冷凍シス
2 テム。
[2] COブラインサイクル停止時における前記液ポンプ入口までを含む受液器の容積
2
を、該受液器内に回収した COブライン液とともに、その上部に COガス層が存在す
2 2
る容積に設定したことを特徴とする請求項 1記載のアンモニア Zco冷凍システム。
2
[3] 前記受液器内の液 COの少なくとも一部を過冷却する過冷却器を設け、前記液ポ
2
ンプ入口側の CO液を飽和温度以下の過冷却状態に維持させたことを特徴とする請
2
求項 1記載のアンモニア Zco冷凍システム。
2
[4] 前記受液器の CO圧力を検出する圧力センサとその液温を計測する温度センサよ
2
りの信号に基づいて、該受液器内の CO飽和温度と実測液温を比較して過冷却度
2
を演算するコントローラと、該コントローラよりの信号に基づ 、て導入されるアンモニア 冷媒の量が調整される前記過冷却器とを具えた請求項 3記載のアンモニア ZCO冷
2 凍システム。
[5] 前記液ポンプの入口 Z出口間の差圧を検知する圧力センサを設け、該センサ出力 に基づ!/、て、前記液ポンプ力 戻り配管の立ち上げレベルまでのポンプ実揚程と配 管圧力損失以上の圧力になるように前記液ポンプ吐出圧 (強制駆動流量)を設定し たことを特徴とする請求項 1記載のアンモニア Zco冷凍システム。
2
[6] 少なくとも過冷却されて ヽる液 COが貯留されて ヽる前記受液器が前記液ポンプ
2
吸込側より高 、位置にある請求項 1記載のアンモニア Zco冷凍システム。
2
[7] 前記連通管に流量制御弁が設けられたことを特徴とする請求項 1記載のアンモ- ァ Zco冷凍システム。
2
[8] 前記ブラインクーラを前記受液器より高!ヽ位置に配置し、前記冷却負荷側の冷却 器出口より回収される液若しくは気液混合状態の COを前記受液器の COガス層に
2 2 戻し、該受液器の COガス層と前記ブラインクーラを連通して前記ブラインクーラで
2
凝縮液化した COブラインを前記受液器に戻して貯留することを特徴とする請求項 1
2
記載のアンモニア Zco冷凍システム。
PCT/JP2005/012232 2004-09-30 2005-07-01 アンモニア/co2冷凍システム WO2006038354A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2602536A CA2602536C (en) 2004-09-30 2005-07-01 Ammonia/co2 refrigeration system
ES05765291.9T ES2459990T3 (es) 2004-09-30 2005-07-01 Sistema de refrigeración de amoniaco/CO2
EP05765291.9A EP1795831B1 (en) 2004-09-30 2005-07-01 Ammonia/co2 refrigeration system
JP2006539158A JP4465686B2 (ja) 2004-09-30 2005-07-01 アンモニア/co2冷凍システム
US11/692,291 US7406837B2 (en) 2004-09-30 2007-03-28 Ammonia/Co2 refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004289105A JP2005172416A (ja) 2003-11-21 2004-09-30 アンモニア/co2冷凍システム
JP2004-289105 2004-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/692,291 Continuation US7406837B2 (en) 2004-09-30 2007-03-28 Ammonia/Co2 refrigeration system

Publications (1)

Publication Number Publication Date
WO2006038354A1 true WO2006038354A1 (ja) 2006-04-13

Family

ID=36142439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012232 WO2006038354A1 (ja) 2004-09-30 2005-07-01 アンモニア/co2冷凍システム

Country Status (9)

Country Link
US (1) US7406837B2 (ja)
EP (1) EP1795831B1 (ja)
JP (1) JP4465686B2 (ja)
KR (1) KR100858991B1 (ja)
CN (1) CN100588888C (ja)
CA (1) CA2602536C (ja)
ES (1) ES2459990T3 (ja)
TW (1) TW200619572A (ja)
WO (1) WO2006038354A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315694A (ja) * 2006-05-26 2007-12-06 Mayekawa Mfg Co Ltd デシカント空調システム及びその運転方法
JP2008175521A (ja) * 2006-12-20 2008-07-31 Mayekawa Mfg Co Ltd 空調設備及びその施工方法
WO2010013590A1 (ja) * 2008-07-28 2010-02-04 株式会社前川製作所 ヒートポンプシステム
JP2011196579A (ja) * 2010-03-17 2011-10-06 Mayekawa Mfg Co Ltd Co2液化ユニット及び食品冷凍設備、並びに既設食品冷凍設備の改造方法
JP2012102946A (ja) * 2010-11-11 2012-05-31 Mayekawa Mfg Co Ltd 凍結冷蔵方法及び凍結冷蔵設備

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071519A (ja) * 2005-09-09 2007-03-22 Sanden Corp 冷却システム
DE102007024842A1 (de) * 2007-05-29 2008-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kryoeinrichtung und zugehöriges Betriebsverfahren zum aktiven Brandschutz
WO2009127062A1 (en) * 2008-04-18 2009-10-22 Dube Serge Co2 refrigeration unit
US9989280B2 (en) * 2008-05-02 2018-06-05 Heatcraft Refrigeration Products Llc Cascade cooling system with intercycle cooling or additional vapor condensation cycle
US9238398B2 (en) * 2008-09-25 2016-01-19 B/E Aerospace, Inc. Refrigeration systems and methods for connection with a vehicle's liquid cooling system
US20100140286A1 (en) * 2008-12-08 2010-06-10 Michael Christopher Quinn Portable beverage machine
US9657977B2 (en) 2010-11-17 2017-05-23 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
US9664424B2 (en) * 2010-11-17 2017-05-30 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
US9829205B2 (en) * 2011-01-20 2017-11-28 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012174105A2 (en) 2011-06-13 2012-12-20 Lingelbach Fred Refrigeration system and methods for refrigeration
EP2718645A2 (en) 2011-06-13 2014-04-16 Lingelbach, Fred Condenser evaporator system (ces) for a refrigeration system and method
EP2562491B1 (en) * 2011-08-24 2019-05-01 Mahle International GmbH Filling system for transferring refrigerant to a refrigeration system and method of operating a filling system
US9651288B2 (en) * 2012-03-30 2017-05-16 Mitsubishi Electric Corporation Refrigeration apparatus and refrigeration cycle apparatus
CN105026845B (zh) 2013-02-12 2017-12-15 金尾英敏 数据中心的冷却机构
CA2911099A1 (en) 2013-05-03 2014-11-06 Hill Phoenix, Inc. Systems and methods for pressure control in a co2 refrigeration system
US20150068037A1 (en) * 2013-09-06 2015-03-12 Spx Corporation Thermal System Including an Environmental Test Chamber
US10174975B2 (en) * 2013-10-17 2019-01-08 Carrier Corporation Two-phase refrigeration system
BR112015017789B1 (pt) 2013-12-17 2022-03-22 Mayekawa Mfg. Co., Ltd. Sistema de descongelamento para aparelho de refrigeração e unidade de resfriamento
ES2935768T3 (es) * 2015-05-13 2023-03-09 Carrier Corp Circuito de refrigeración de eyector
JP2017036886A (ja) * 2015-08-10 2017-02-16 八洋エンジニアリング株式会社 アンモニア冷凍装置
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
CN107879359A (zh) * 2017-12-11 2018-04-06 营口萌达电子科技有限公司 一种液氨蒸发器撬装设备
US11378318B2 (en) 2018-03-06 2022-07-05 Vilter Manufacturing Llc Cascade system for use in economizer compressor and related methods
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
CN109647093B (zh) * 2019-01-31 2021-04-13 江苏师范大学 气体冷凝器、环保空气除尘装置
WO2020230879A1 (ja) * 2019-05-15 2020-11-19 株式会社前川製作所 製氷機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270473A (en) * 1975-12-10 1977-06-11 Hitachi Ltd Refrigerator
JPH0476393A (ja) * 1990-07-18 1992-03-11 Sanki Eng Co Ltd 空調用受液装置
JP2001507784A (ja) * 1997-01-08 2001-06-12 ノリルド アクティーゼルスカブ 閉鎖回路循環を備えた冷凍システム
JP2003166765A (ja) * 2001-11-30 2003-06-13 Hachiyo Engneering Kk アンモニアサイクルと炭酸ガスサイクルとを組み合わせた二元冷凍システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2258298B (en) * 1991-07-31 1995-05-17 Star Refrigeration Cooling method and apparatus
US5442931A (en) * 1994-08-02 1995-08-22 Gas Research Institute Simplified adsorption heat pump using passive heat recuperation
JP3365273B2 (ja) * 1997-09-25 2003-01-08 株式会社デンソー 冷凍サイクル
CN1149365C (zh) * 1999-02-24 2004-05-12 八洋工程株式会社 由氨循环回路与二氧化碳循环回路组合而成的热泵系统
JP2001091069A (ja) * 1999-09-17 2001-04-06 Hitachi Ltd アンモニア冷凍装置
DK174257B1 (da) * 2001-02-23 2002-10-21 Teknologisk Inst Anlæg samt fremgangsmåde, hvor CO2 anvendes som kølemiddel og som arbejdsmedie ved afrimning
JP4076393B2 (ja) * 2002-08-09 2008-04-16 Necトーキン株式会社 導電性ペーストおよび電子部品
US6966196B2 (en) * 2003-12-30 2005-11-22 Mayekawa Mfg. Co., Ltd. Refrigeration unit using ammonia

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270473A (en) * 1975-12-10 1977-06-11 Hitachi Ltd Refrigerator
JPH0476393A (ja) * 1990-07-18 1992-03-11 Sanki Eng Co Ltd 空調用受液装置
JP2001507784A (ja) * 1997-01-08 2001-06-12 ノリルド アクティーゼルスカブ 閉鎖回路循環を備えた冷凍システム
JP2003166765A (ja) * 2001-11-30 2003-06-13 Hachiyo Engneering Kk アンモニアサイクルと炭酸ガスサイクルとを組み合わせた二元冷凍システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1795831A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315694A (ja) * 2006-05-26 2007-12-06 Mayekawa Mfg Co Ltd デシカント空調システム及びその運転方法
JP2008175521A (ja) * 2006-12-20 2008-07-31 Mayekawa Mfg Co Ltd 空調設備及びその施工方法
WO2010013590A1 (ja) * 2008-07-28 2010-02-04 株式会社前川製作所 ヒートポンプシステム
EP2320158A1 (en) * 2008-07-28 2011-05-11 Mayekawa Mfg. Co., Ltd. Heat pump system
JP5246891B2 (ja) * 2008-07-28 2013-07-24 株式会社前川製作所 ヒートポンプシステム
EP2320158A4 (en) * 2008-07-28 2014-05-07 Maekawa Seisakusho Kk HEAT PUMP SYSTEM
JP2011196579A (ja) * 2010-03-17 2011-10-06 Mayekawa Mfg Co Ltd Co2液化ユニット及び食品冷凍設備、並びに既設食品冷凍設備の改造方法
JP2012102946A (ja) * 2010-11-11 2012-05-31 Mayekawa Mfg Co Ltd 凍結冷蔵方法及び凍結冷蔵設備

Also Published As

Publication number Publication date
TW200619572A (en) 2006-06-16
US20070234753A1 (en) 2007-10-11
KR100858991B1 (ko) 2008-09-18
EP1795831A1 (en) 2007-06-13
CA2602536C (en) 2012-09-18
CA2602536A1 (en) 2006-04-13
TWI345042B (ja) 2011-07-11
JPWO2006038354A1 (ja) 2008-05-15
JP4465686B2 (ja) 2010-05-19
US7406837B2 (en) 2008-08-05
EP1795831B1 (en) 2014-02-12
ES2459990T3 (es) 2014-05-13
KR20070055579A (ko) 2007-05-30
EP1795831A4 (en) 2010-09-01
CN100588888C (zh) 2010-02-10
CN101031761A (zh) 2007-09-05

Similar Documents

Publication Publication Date Title
WO2006038354A1 (ja) アンモニア/co2冷凍システム
JP4188971B2 (ja) アンモニア/co2冷凍システムと、該システムに使用されるco2ブライン生成装置及び該生成装置が組み込まれたアンモニア冷却ユニット
CN104350338B (zh) 空调装置
EP2019272B1 (en) Combined receiver and heat exchanger for a secondary refrigerant
US20090260389A1 (en) Co2 refrigeration unit
JP2005172416A (ja) アンモニア/co2冷凍システム
RU2619433C2 (ru) Система охлаждения и способ питания множества конденсаторных испарительных систем
JP6235467B2 (ja) 冷却装置用凝縮・蒸発装置とその方法
US20150143826A1 (en) Refrigeration system and methods for refrigeration
CN109028629B (zh) 一种二氧化碳载冷剂制冷系统及其制冷方法
JP2007218466A (ja) 二次冷媒式冷凍装置
JP3990161B2 (ja) アンモニア冷却ユニットのエバコン構造
CN100516710C (zh) 冷冻冷藏单元及冷藏库
JP5744424B2 (ja) フリーザー装置及びその運転制御方法
JP5064546B2 (ja) 冷凍サイクル装置
JPH10170124A (ja) 冷気循環型冷却装置
RU2285869C2 (ru) Холодильная установка с насосно-циркуляционной системой охлаждения
JP2008071021A (ja) 自動販売機
JP2009156524A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539158

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005765291

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11692291

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580033187.4

Country of ref document: CN

Ref document number: 1020077007464

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005765291

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2602536

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 11692291

Country of ref document: US