[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006030786A1 - 異常診断装置及び異常診断方法 - Google Patents

異常診断装置及び異常診断方法 Download PDF

Info

Publication number
WO2006030786A1
WO2006030786A1 PCT/JP2005/016845 JP2005016845W WO2006030786A1 WO 2006030786 A1 WO2006030786 A1 WO 2006030786A1 JP 2005016845 W JP2005016845 W JP 2005016845W WO 2006030786 A1 WO2006030786 A1 WO 2006030786A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
abnormality
signal
frequency
abnormality diagnosis
Prior art date
Application number
PCT/JP2005/016845
Other languages
English (en)
French (fr)
Inventor
Takanori Miyasaka
Yasushi Mutoh
Juntaro Sahara
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004265009A external-priority patent/JP2006077938A/ja
Priority claimed from JP2005004128A external-priority patent/JP4581693B2/ja
Priority claimed from JP2005168204A external-priority patent/JP2006234784A/ja
Priority claimed from JP2005176507A external-priority patent/JP4581860B2/ja
Priority claimed from JP2005176505A external-priority patent/JP2006234785A/ja
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to US10/586,996 priority Critical patent/US7860663B2/en
Priority to JP2006515429A priority patent/JPWO2006030786A1/ja
Priority to CN200580001831XA priority patent/CN1906473B/zh
Publication of WO2006030786A1 publication Critical patent/WO2006030786A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration

Definitions

  • the present invention relates to an abnormality diagnosis device and an abnormality diagnosis method for rotating or sliding parts used in mechanical equipment such as, for example, an axle of a railway vehicle, a gear box, or a reduction gear of a wind turbine for power generation.
  • the present invention relates to an abnormality diagnosing device and an abnormality diagnosing method for specifying presence / absence or a sign of abnormality of the component, or an abnormal part thereof.
  • bearings and other rotating parts are regularly inspected for abnormalities such as damage and wear.
  • This periodic inspection is carried out by disassembling the machinery and equipment that incorporates the rotating parts, and damage and wear that occurs in the rotating parts are discovered by visual inspection by the person in charge.
  • the main defects discovered by inspection include indentations caused by foreign object stagnation, peeling due to rolling fatigue, other wear, etc. in the case of gears, missing teeth or wear, etc. in the case of gears.
  • there is wear such as flats, and in any case, if irregularities or wear that are not found in new products are found, they will be replaced with new products.
  • Patent Documents 1 to 7 various methods for diagnosing abnormalities in rotating parts in an actual operating state without disassembling the mechanical equipment incorporating the rotating parts have been proposed (see, for example, Patent Documents 1 to 7).
  • an accelerometer is installed in the bearing section, the vibration acceleration of the bearing section is measured, and this signal is processed by FFT (Fast Fourier Transform).
  • FFT Fast Fourier Transform
  • a temperature sensor is mounted on a bearing box in a railway vehicle, and when the detected temperature rises above a reference value, an abnormal signal is issued to the cab or the ground side force temperature is measured.
  • the bearings are monitored for abnormalities.
  • the state of the bearing is constantly monitored by vibration or a temperature sensor, and when each value rises above the reference value, an abnormality alarm is output, To stop the operation.
  • Patent Document 8 proposes a device that detects a defect state of a railroad vehicle wheel and a track through which a train passes by a vibration sensor, a rotation measuring device, or the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-22617
  • Patent Document 2 JP-A-9 79915
  • Patent Document 3 Japanese Patent Laid-Open No. 11-125244
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-202276
  • Patent Document 5 European Patent Application Publication No. 1338873 (corresponding to Patent Document 4 European Patent Application Publication)
  • Patent Document 6 Japanese Patent Laid-Open No. 2004-257836
  • Patent Document 7 European Patent Application Publication No. 1548419 (corresponding to Patent Document 6 European Patent Application Publication)
  • Patent Document 8 Japanese Patent Publication No. 9-500452
  • Patent Document 9 US Pat. No. 5,433,111 (corresponding US Patent Publication of Patent Document 8)
  • Patent Document 10 Japanese Patent Laid-Open No. 4 148839
  • Patent Document 11 Special Table 2003-535755
  • Patent Document 12 International Publication No. 01Z94175 Pamphlet (Patent Document 11 Corresponding International Application Publication)
  • the presence / absence of an abnormality of a rotating component is determined based on a signal from one of a temperature sensor and a vibration sensor.
  • seizure abnormality it is difficult to detect the abnormality before it overheats due to temperature rise, and stable operation such as an abnormal alarm is generated due to sudden disturbance noise etc. There is a problem of being disturbed.
  • this device that even if an abnormality warning is issued and the operation of the machine is stopped, it is not possible to identify the abnormal part.
  • a rotation driving means such as a motor for transmitting a rotation driving force to the rotating component is attached to the device in which the rotating component is incorporated.
  • electrical disturbance noise such as electromagnetic noise suddenly occurs when the motor is driven, the SN ratio (signal-to-noise ratio) for abnormal diagnosis deteriorates, and an abnormal alarm is issued due to erroneous diagnosis.
  • the SN ratio signal-to-noise ratio
  • the defect state that shows abnormal vibration in a railway vehicle is caused by a force caused by a flat wheel, a force caused by an axle bearing, or a track or other abnormality. There is a problem that it cannot be identified.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to improve diagnostic accuracy in an actual operating state without disassembling the mechanical equipment that incorporates rotating or sliding parts.
  • An object of the present invention is to provide an abnormality diagnosis device and an abnormality diagnosis method for diagnosing an abnormality in a rotating or sliding part while ensuring.
  • the first object of the present invention is to simultaneously diagnose the presence or absence of parts and the degree of damage in actual operation without disassembling the mechanical equipment incorporating rotating or sliding parts.
  • Another object of the present invention is to provide an abnormality diagnosing device capable of performing a highly reliable abnormality diagnosis with a high SN ratio by preventing erroneous diagnosis due to the influence of sudden disturbance noise and the like.
  • the second object of the present invention is that even when the actual rotational speed cannot be directly captured.
  • An object of the present invention is to provide an abnormality diagnosis device and an abnormality diagnosis method capable of specifying the presence or absence of an abnormality and an abnormal part while ensuring diagnosis accuracy.
  • a third object of the present invention is to provide an abnormality diagnosis device capable of specifying the presence or absence of an abnormality and an abnormal portion even if a plurality of rotating parts having different design dimension specifications are incorporated in an arbitrary portion. It is in.
  • a fourth object of the present invention is to provide an abnormality diagnosis device and an abnormality diagnosis method capable of reducing the burden of creating a report of diagnosis results.
  • a fifth object of the present invention is to provide an abnormality diagnosis device and an abnormality that can accurately detect a state where an abnormality of a part such as a wheel flat in a railway vehicle has occurred and identify the wheel. It is to provide a diagnostic method.
  • the object of the present invention is achieved by the following configurations.
  • An abnormality diagnosing device used for mechanical equipment with parts that rotate or slide relative to a stationary member.
  • a detection unit fixed to a rotating or sliding part or a stationary member and having at least one vibration system sensor and a temperature sensor of a vibration sensor, an acoustic sensor, an ultrasonic sensor, and an AE sensor;
  • the signal processing unit determines the presence or absence of abnormality of parts, the presence or absence of abnormality, and the degree of damage based on the combination of the measurement result from the vibration system sensor and the measurement result from the temperature sensor. Diagnostic device.
  • the signal processing unit sets the measured value or rate of change in advance and compares each specified value to determine whether or not there is an abnormality in the part or whether there is an abnormality or the degree of damage.
  • the abnormality diagnosis device sets the measured value or rate of change in advance and compares each specified value to determine whether or not there is an abnormality in the part or whether there is an abnormality or the degree of damage.
  • an abnormality diagnosis device that is
  • a detection unit fixed to a component or a stationary member, and having at least one of a vibration sensor, an acoustic sensor, an ultrasonic sensor, and an AE sensor, and a temperature sensor;
  • An abnormality diagnosing device characterized by diagnosing a component abnormality based on a vibration or temperature detection signal from a detection unit during inertial movement of the component within a predetermined speed region when the drive device is not energized.
  • a detection unit having at least one of a vibration sensor, a temperature sensor, and a vibration sensor, an acoustic sensor, an ultrasonic sensor, and an AE sensor, fixed to a component or a stationary member,
  • the abnormality diagnosis apparatus characterized by diagnosing the abnormality of the component based on the detection signal of the vibration or temperature detection unit.
  • the feature is that the abnormality of the component is diagnosed based on the vibration or temperature detection signal by the detector during inertial rotation within the rotational speed region of the component when the drive unit is not energized.
  • the abnormality diagnosis device Provided with a rotation speed sensor that detects the rotation speed of the drive unit, and the component that links the rotation speed detection signal from the rotation speed sensor with the vibration or temperature detection signal from the sensor.
  • the abnormality diagnosis device according to any one of (3) to (7), characterized by diagnosing any abnormality.
  • the signal processing unit compares the frequency component resulting from component damage calculated based on the rotational speed signal with the comparison / collation unit that compares the frequency component of the measured data based on the signal detected by the vibration system sensor.
  • the signal processing unit includes a filter processing unit that removes unnecessary frequency bands from the signal waveform detected by the vibration system sensor, and an envelope process that detects the absolute value of the filtered waveform transferred from the filter processing unit.
  • the abnormality diagnosing device further comprising: a frequency analysis unit that analyzes the frequency of the transferred waveform.
  • An abnormality diagnosing device for use in mechanical equipment having at least one component that rotates or slides,
  • At least one detector that outputs the signal generated from the mechanical equipment as an electrical signal and frequency analysis of the waveform of the electrical signal!
  • the peak of the spectrum that is larger than the reference value calculated based on the spectrum obtained by frequency analysis
  • the frequency between peaks and the frequency component resulting from component damage calculated based on the rotation speed signal or movement speed signal are compared and verified, and the presence or absence of abnormal parts and the abnormal part are determined based on the comparison results.
  • An abnormality diagnosis device comprising:
  • An abnormality diagnosis device comprising:
  • the signal processing unit filters the waveform of the electrical signal and converts it into a full-wave rectified waveform every time the threshold is exceeded, a value that exceeds the threshold for a predetermined time according to the rotational speed signal.
  • the abnormality diagnosis device according to (13), wherein a waveform converted so as to be held in the waveform is configured and a possibility that an abnormality has occurred in a component is notified by the number of times that the waveform exceeds a threshold value per predetermined number of revolutions. .
  • the signal processing unit determines the truth of the possibility that an abnormality has occurred in the part due to the number of times that the waveform converted to hold the threshold exceeds the threshold per predetermined number of revolutions, using multiple statistical judgments.
  • the abnormality diagnosis apparatus according to (14).
  • An abnormality diagnosing device used for mechanical equipment having at least one component that rotates or slides,
  • An abnormality diagnosis apparatus comprising: a signal processing unit that compares and collates components with a variable tolerance, and determines the presence / absence of an abnormality of a component and an abnormal part based on the collation result.
  • An abnormality diagnosis device used in machinery equipment equipped with rotating parts, which performs frequency analysis of the waveform of the electrical signal with at least one detection unit that outputs the signal generated from the machinery equipment as an electrical signal!
  • the frequency component of the measured spectrum data obtained by frequency analysis and the frequency component caused by the rotating parts are compared and verified with an allowable range, and the presence or absence and abnormal part of the rotating parts are determined based on the verification result.
  • An abnormality diagnosis device comprising:
  • the allowable width is the upper limit calculated from the rotational speed of the rotating part and the design dimensions of the rotating part.
  • a region having a value and a lower limit value is divided into at least one region, a center value of each divided region is obtained, and at least one allowable width of an arbitrary size given to the center value.
  • An abnormality diagnosis device characterized by comparing and collating frequency components of measured spectrum data with frequency components caused by rotating parts for each at least one allowable width
  • the permissible width is given in at least one of a case where the rotating part includes a plurality of rotating parts having different design dimension specifications and a case where the rotational speed of the rotating part fluctuates ( The abnormality diagnosis device according to 18).
  • At least one detection unit that outputs the signal generated from the mechanical equipment as an electrical signal, and the frequency analysis of the waveform of the electrical signal!
  • the frequency component of the measured spectrum data obtained by the frequency analysis and the above components A signal processing unit that compares and matches frequency components, and determines the presence / absence of an abnormality of a part and an abnormal part based on the comparison result,
  • a reference value used for comparison and collation is calculated based on a limited frequency range of measured spectrum data.
  • An abnormality diagnosing device used for mechanical equipment having at least one component that rotates or slides,
  • the frequency component of the measured spectrum data obtained by frequency analysis and the frequency caused by the component A signal processing unit that compares and compares the components and determines the presence / absence and abnormal part of the part based on the comparison result;
  • a storage unit for storing the diagnosis result diagnosed by the signal processing unit, an output unit for outputting the diagnosis result in a predetermined format
  • a report creation unit that creates a report on the output result output by the output unit based on at least one program
  • An abnormality diagnosis apparatus comprising:
  • the detection unit has at least one of a temperature sensor that detects the temperature of the mechanical equipment and a rotational speed sensor that detects the rotational speed of rotating parts.
  • the abnormality diagnosis device according to any one of (11) to (24), characterized in that the sensor has an integrated sensor housed in the housing.
  • the abnormality diagnosis device according to any one of (1) to (26), further including data transmission means for transmitting a determination result by the signal processing unit.
  • the abnormality diagnosing device according to any one of (1) to (27), characterized by comprising a microphone computer that performs processing by the signal processing unit and processing for outputting the determination result to the control system. .
  • the peak value of the spectrum is larger than the reference value calculated based on the spectrum obtained in the analysis process. And comparing and comparing the frequency between the peaks and the frequency component resulting from component damage calculated based on the rotation speed signal or the movement speed signal;
  • An abnormality diagnosis method comprising:
  • An abnormality diagnosis method for use in a mechanical facility provided with at least one component that rotates or slides,
  • An abnormality diagnosis method comprising: a step of detecting the presence or absence of.
  • an area having an upper limit value and a lower limit value calculated from the rotational speed of the rotating part and the design dimensions of the rotating part is divided into at least one area. Determining at least one tolerance having an arbitrary size given to the center value;
  • An abnormality diagnosis method comprising:
  • An abnormality diagnosis method characterized in that a reference value used for comparison and collation is calculated based on a limited frequency range of measured spectrum data.
  • An abnormality diagnosis method comprising:
  • the invention's effect [0023]
  • vibration and temperature information associated with the rotating state of the rotating component or the sliding state of the sliding component are simultaneously detected, and the measurement result by the vibration system sensor and the temperature sensor are used. Based on the combination with the measurement results, the presence / absence of an abnormality and the degree of damage are judged at the same time, so it is possible to judge the degree of damage using the characteristics of the abnormal form of rotation or sliding parts related to vibration and temperature. .
  • the peak of the spectrum that is larger than the reference value calculated based on the spectrum obtained by frequency analysis is extracted, and the frequency between the peaks and the rotational speed signal or moving speed are extracted.
  • the frequency component resulting from damage of the rotating or sliding component calculated based on the signal is compared and verified, and the presence or absence and abnormality location of the component are determined based on the verification result, so the actual rotational speed is directly captured. If the rotation speed data used in the calculation does not match the actual rotation speed, It is possible to accurately identify the presence or absence of abnormalities and abnormal parts.
  • the frequency component of the measured spectrum data obtained by frequency analysis and the frequency component caused by a rotating or sliding part have a variable allowable range. Since the comparison and verification were performed, and the presence or absence of parts and the abnormal part were determined based on the result of the comparison, the actual rotation speed data used in the calculation was actually not available when the actual rotation speed could not be directly captured. Even if there is a deviation from the rotational speed of! /, It is possible to accurately identify the presence or absence of an abnormality and the location of the abnormality.
  • At least one region having an upper limit value and a lower limit value calculated from the rotational speed of the rotating component and the design dimension of the rotating component is provided. Are divided into two, the center value of each divided area is obtained, and comparison and verification is performed with at least one allowable width of an arbitrary size given to the center value. Even when a number of rotating parts are incorporated in an arbitrary part or when the rotational speed of the rotating part fluctuates, it is possible to identify the presence or absence of an abnormality and the part of the abnormality.
  • the frequency component and rotation or! is calculated based on the limited frequency range of the measured spectrum data when comparing and collating frequency components caused by sliding parts.
  • the diagnosis accuracy can be improved by making it difficult to receive, and whether there is an abnormality. And abnormal sites can be identified.
  • diagnostic results such as the presence / absence of an abnormality, the location of the abnormality, and a spectrum waveform at the time of diagnosis (actual spectrum data) are output in a predetermined format. Since the output result is generated based on at least one program, it is easy to create a report based on the diagnosis result.
  • FIG. 1 is a schematic diagram of an abnormality diagnosis device in which a diagnosis object according to a first embodiment of the present invention is a rolling bearing device for a vehicle equipped with a double row tapered roller bearing.
  • FIG. 2 is a block diagram of a signal processing system of the abnormality diagnosis apparatus.
  • FIG. 3 is a graph showing the change over time in vibration value when bearing seizure abnormality occurs.
  • FIG. 4 is a graph showing the change over time in the temperature of the outer peripheral surface of the outer ring when a bearing seizure abnormality occurs.
  • FIG. 5 A diagram showing the relationship between a scratched part of a rolling bearing and the frequency of vibration generated due to the scratch.
  • FIG. 6 is a diagram for explaining a relational expression of an abnormal vibration frequency generated by gear meshing.
  • FIG. 7 is a block diagram of a signal processing system of an abnormality diagnosis device according to a second embodiment of the present invention.
  • FIG. 8 is a flowchart showing a processing flow of a rotation state determination unit according to the second embodiment.
  • FIG. 9 is a flowchart showing a processing flow of a rotation state determination unit of the abnormality diagnosis device according to the third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an abnormality diagnosis apparatus according to a fourth embodiment of the present invention.
  • FIG. 11 is a block diagram of the signal processing unit in FIG.
  • FIG. 12 is a flowchart showing a processing flow of the abnormality diagnosis method according to the fourth embodiment of the present invention. Is.
  • FIG. 15 is a schematic diagram of an abnormality diagnosis apparatus according to a seventh embodiment of the present invention.
  • FIG. 17 is a schematic view of an abnormality diagnosis apparatus according to an eighth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of a railway vehicle bearing device that is a mechanical facility in which a detection unit of the abnormality diagnosis device is incorporated.
  • FIG. 19 is a schematic diagram of an abnormality diagnosis apparatus in which the eighth embodiment and the seventh embodiment of the present invention are combined.
  • FIG. 20 is a schematic diagram of an abnormality diagnosis apparatus according to a ninth embodiment of the present invention.
  • FIG. 21 is a block diagram of the abnormality diagnosis module shown in FIG.
  • FIG. 22 is a flowchart showing a processing flow of the abnormality diagnosis module shown in FIG. ⁇ 23] It is a figure for explaining the processing waveform of the abnormality diagnosis of the ninth embodiment of the present invention. ⁇ 24] It is a block diagram of an abnormality diagnosis module according to a tenth embodiment of the present invention. 25] FIG. 25 is an explanatory diagram of the malfunction of the abnormality diagnosis module shown in FIG.
  • ⁇ 26 It is a block diagram of an abnormality diagnosis module according to an eleventh embodiment of the present invention.
  • FIG. 27 is a diagram showing processing waveforms of the digital processing unit shown in FIG. 26.
  • FIG. 27 is a diagram showing processing waveforms of the digital processing unit shown in FIG. 26.
  • ⁇ 28 A graph showing a vibration waveform by the vibration sensor when the motor is not energized in Test 2 according to the second embodiment of the present invention.
  • FIG. 31 For explaining the abnormality diagnosis of Example 3 of Test 4 according to the fourth embodiment of the present invention.
  • FIG. 32 A diagram for explaining the abnormality diagnosis of Example 4 of Test 4 according to the fourth embodiment.
  • FIG. 33 A diagram for explaining the abnormality diagnosis of Example 5 of Test 4 according to the fourth embodiment.
  • FIG. 34 A diagram for explaining an abnormality diagnosis of test 5 according to the fifth embodiment of the present invention. ⁇ 35] A diagram for explaining a conventional abnormality diagnosis in test 5 according to the fifth embodiment.
  • ⁇ 36 A diagram for explaining an abnormality diagnosis of test 6 according to the sixth embodiment of the present invention.
  • ⁇ 37 Another view for explaining abnormality diagnosis of test 6 according to the sixth embodiment.
  • FIG. 38 is a diagram for explaining an abnormality diagnosis of test 7 according to the sixth embodiment.
  • FIG. 39 is a diagram for explaining an abnormality diagnosis of test 8 according to the seventh embodiment of the present invention.
  • FIG. 40 is a diagram for explaining a conventional abnormality diagnosis in test 8 according to the seventh embodiment.
  • Vibration sensor Vibration sensor
  • the rolling force for rolling stock which is a mechanical facility to which the abnormality diagnosis device is applied
  • ⁇ bearing device 10 consists of a double-row tapered roller bearing 11, which is a rotating component, and part of a rolling stock for a rolling stock.
  • a bearing box 12 which is a stationary member constituting the.
  • the abnormality diagnosis device detects a signal generated from the rolling bearing device 10 and a state of abnormality of the double-row tapered roller bearing 11 from the electric signal output from the detection unit 31.
  • a controller 80 including a signal processing unit 81 and a control unit 84 that drives and controls the rolling bearing device 10 and an output device 90 such as a monitor 93 and an alarm device 94 are provided.
  • the double-row tapered roller bearing 11 rotatably supports an axle 13 of a railway vehicle that is a rotating shaft that is rotationally driven by a driving motor 13a that is a driving device, and is inclined like a tapered outer surface on an outer peripheral surface.
  • a pair of inner rings 14, 14 with inner ring raceway surfaces 15, 15, and a conical inner surface A single outer ring 16 having a pair of outer ring raceway surfaces 17 and 17 inclined in a plane, and a double row between inner ring raceway surfaces 15 and 15 of inner rings 14 and 14, and outer ring raceway surfaces 17 and 17 of outer ring 16
  • Tapered rollers 18 and 18, which are multiple rolling elements, annular punching cages 19 and 19 that hold the tapered rollers 18 and 18 in a freely rolling manner, and both ends of the outer ring 16 in the axial direction are mounted.
  • a pair of seal members 20 and 20 are provided.
  • the drive motor 13a is repeatedly energized (ON) and de-energized (OFF), and the double-row tapered roller bearing 11 rotates together with the axle 13 when the drive motor 13a is not energized.
  • the bearing box 12 includes a housing 21 that constitutes a side frame of a railcar bogie.
  • the housing 21 is formed in a cylindrical shape so as to cover the outer peripheral surface of the outer ring 16.
  • a front lid 22 is disposed on the front end side in the axial direction of the housing 21, and a rear lid 23 is disposed on the rear end side in the axial direction of the housing 21.
  • An inner ring spacer 24 is disposed between the pair of inner rings 14 and 14.
  • An axle 13 is press-fitted into the pair of inner rings 14 and 14 and the inner ring spacer 24, and the outer ring 16 is fitted in the housing 21.
  • the double-row tapered roller bearing 11 is loaded with a radial load due to the weight of various members and an arbitrary axial load, and the upper portion of the outer ring 16 in the circumferential direction is a load zone.
  • the load zone refers to a region where a load is applied to the rolling elements.
  • One seal member 20 disposed on the front end side of the axle 13 is assembled between the outer end portion of the outer ring 16 and the front lid 22, and the other seal member 20 disposed on the rear end side. Is assembled between the outer end of the outer ring 16 and the rear lid 23.
  • a double row circle on the outer peripheral portion of the housing 21 is formed at a substantially central position in the axial direction of the roller bearing 11, and a through hole 26 penetrating in the radial direction is formed.
  • the detection unit 31 constituting the unit is fixed in a state of being accommodated in a single casing 27.
  • the detection unit 31 includes a vibration system sensor capable of detecting at least one vibration of a vibration sensor, an AE (acoustic emission) sensor, an acoustic sensor, and an ultrasonic sensor, and a temperature sensor integrated in a housing 27.
  • 1 includes a vibration sensor 32 and a temperature sensor 33.
  • the vibration sensor 32 is a vibration measuring element such as a piezoelectric element.
  • the vibration sensor 32 detects peeling of the inner and outer ring raceway surfaces 15, 15, 17, 17 of the double-row tapered roller bearing 11, missing gears, flat wear of the wheels, and the like. detection Used to do.
  • the vibration sensor 32 is installed in a mechanical facility that has a lot of noise if it can generate vibrations, such as acceleration, speed, or displacement type, it is better to use an insulation type. It is preferable because it is not affected.
  • the acoustic sensor it is more preferable for the acoustic sensor to collect sound when a microphone having a microphone port that can collect sound generated from an axle portion or the like as sound waves and convert it into an electric signal is used.
  • the temperature sensor 33 is a non-contact type temperature measuring element such as a thermistor temperature measuring element, a platinum resistance thermometer, or a thermocouple, and is disposed in the vicinity of the outer peripheral surface of the outer ring 16 in the housing 27.
  • a temperature fuse that does not conduct when the ambient temperature exceeds a specified value and the bimetal contact is separated or the contact is blown can be used. In that case, when the temperature of the rolling bearing device 10 exceeds a specified value, the temperature fuse is cut off and a temperature abnormality is detected.
  • the detection unit 31 is attached to the load area of the radial load of the bearing box 12 that is fitted to the non-rotating side raceway of the double row tapered roller bearing 11. For this reason, for example, when the bearing track surface is damaged, the impact force generated when the rolling element passes through the damaged portion is larger in the load zone than in the no-load zone. Abnormal vibration can be detected with high sensitivity.
  • the detecting unit 31 can detect the vibration and temperature of gears and wheels (both not shown) according to the configuration of the mechanical equipment. it can.
  • a rotational speed sensor 40 such as an encoder that detects the rotational speed of the double row tapered roller bearing 11 is provided.
  • the signal processing unit 81 amplifies the vibration signal from the vibration sensor 32 and then outputs the amplified signal to the abnormality determination unit 42 via the vibration measurement value analysis unit 50 and at the same time uses the temperature sensor 33. After amplification of the temperature signal, it is output to the abnormality determination unit 42 via the temperature measurement value analysis unit 51. Tapered roller bearing 11 is checked for abnormality and degree of damage.
  • each measured value may be an effective value or a peak value at an arbitrary time.
  • Fig. 3 shows a change with time of vibration until a seizure abnormality occurs in the bearing
  • Fig. 4 shows a change with time in temperature until a seizure abnormality occurs in the bearing.
  • the vibration and temperature measured values at points A, B, and C or the rate of change with time are obtained, and these values are set in advance.
  • the presence or absence of abnormality and the degree of damage of the double row tapered roller bearing 11 are judged by comparing with the value.
  • the vibration information from the vibration sensor 32 is subjected to a frequency analysis by applying a filter process to the vibration waveform and then performing an envelope process to determine whether there is damage such as a scratch on the bearing and a damaged part.
  • the reliability of abnormality diagnosis is assured by making it possible to identify the error.
  • the vibration signal generated by the vibration sensor 32 is transferred to the filter unit 35 after amplification and AZD conversion via a wired or wireless signal transmission means 34.
  • the filter unit 35 Based on the natural frequency of the double row tapered roller bearing 11 stored in the natural frequency storage unit 36, the filter unit 35 extracts only a predetermined frequency band corresponding to the natural frequency from the vibration signal. .
  • the vibration signal amplification and AZD conversion may be performed before transmission. The order of amplification and AZD conversion may be reversed.
  • This natural frequency is obtained by subjecting the double-row tapered roller bearing 11 to the object to be measured and applying vibration by the striking method, and frequency-analyzing the sound generated by the vibration detector attached to the object to be measured or striking. And can be obtained more easily.
  • the object to be measured is a double row tapered roller bearing
  • the natural frequency due to any of the inner ring, outer ring, rolling element, cage, etc. is given.
  • the envelope processing unit 37 performs an absolute value detection process for detecting the absolute value of the waveform for the predetermined frequency band extracted by the filter unit 35. Further, the frequency analysis unit 38 performs waveform frequency analysis processing, and the actual measurement data is transferred to the comparison / verification unit 39.
  • the theoretical frequency calculation unit 41 calculates the frequency that is calculated based on the rotation speed information from the rotation speed sensor 40 and that is caused by damage to rotating parts such as bearing separation, gear loss, and wheel flatness.
  • the value data is transferred to the comparison / verification unit 39.
  • the calculated value data is frequency data resulting from damage to the inner ring, outer ring, rolling element, and cage as shown in FIG. Further, when the rotating component is a gear, the frequency data is caused by scratches as shown in FIG.
  • the comparison / verification unit 39 compares the comparison between the actual measurement value data and the calculated value data, and the abnormality determination unit 42 determines the presence / absence of abnormality, the identification of the abnormal part, and the degree of damage.
  • the output device 90 outputs judgment results such as the presence / absence of abnormality of the double-row tapered roller bearing 11, the degree of damage, identification of the abnormal part, etc., and if an abnormality is detected, it issues an alarm or other warning.
  • the result is taken into the storage unit.
  • the information transfer from the abnormality determination unit 42 to the output device 90 is performed by a data transmission unit 92 such as wired or wireless.
  • the determination result may be output to the control unit 84 that controls the operation of the drive mechanism of the rolling bearing device 10, and a control signal corresponding to the determination result may be fed back.
  • vibration signal processing after amplification performs various data processing and calculations, and for example, a computer or a dedicated microchip can be used. It is also possible to perform arithmetic processing after the detected signal is stored in a storage means such as a memory.
  • vibration and temperature information associated with the rotation state of the double row tapered roller bearing 11 that is a rotating component is simultaneously detected, and a vibration sensor, an acoustic sensor, an ultrasonic sensor, or an AE sensor is detected.
  • Measurement results by vibration system sensors and temperature sensor Therefore, it is possible to determine the degree of damage using the characteristics of the abnormal form of the double-row tapered roller bearing 11 with respect to vibration and temperature.
  • the presence or absence of abnormality is diagnosed and determined a plurality of times by combining vibration and temperature measurement values or rate of change.
  • the vibration information is filtered and enveloped into a frequency component resulting from damage to the double-row tapered roller bearing 11 calculated based on the rotational speed signal and the vibration waveform of the signal detected by the vibration sensor 32.
  • a frequency component resulting from damage to the double-row tapered roller bearing 11 calculated based on the rotational speed signal and the vibration waveform of the signal detected by the vibration sensor 32.
  • the signal processing unit 81 determines the inertial rotation state within the predetermined rotation speed region of the double row tapered roller bearing 11 when the drive motor 13a (see Fig. 1) is not energized. Detection is based on the OFF signal of the sensor 40 and the drive motor 13a, and at the time of detection, double row circular! / And abnormality of the roller bearing 11 are diagnosed based on detection signals from the vibration sensor 32 and the temperature sensor 33.
  • the vibration signal generated by the vibration sensor 32 and the temperature signal generated by the temperature sensor 33 are transferred to the rotation state determination unit 52 after amplification and AZD conversion via the signal transmission means 34. Is done. Note that the vibration signal amplification and AZD conversion may be performed before transmission, and the order of amplification and AZD conversion may be reversed.
  • the rotation state determination unit 52 drives the drive motor 13a within a predetermined rotation speed region. Thereafter, it is determined whether or not the inertial rotation region force is obtained when the drive motor 13a is de-energized. For example, as shown in the processing flow of FIG. 8, the rotation state determination unit 52 determines whether or not the driving motor side OFF signal is being output (step S11), and the rotation speed sensor 40 also outputs a duplicate. It is determined whether or not the rotational speed information of the row tapered roller bearing 11 is within a predetermined rotational speed range set in advance (step S12).
  • an OFF signal (non-energized) on the drive motor side is not output, or the rotational speed information of the double row tapered roller bearing 11 from the rotational speed sensor 40 is not within a predetermined rotational speed region set in advance. If so, return to step S11 to repeat the process.
  • the OFF signal on the drive motor side is output to the rotation state determination unit 52 and the rotation speed information of the double-row tapered roller bearing 11 from the rotation speed sensor 40 is within a predetermined rotation speed region set in advance. Detects the vibration signal and temperature signal at that time, and transfers them to the filter unit 35 and the temperature measurement value analysis unit 51 (step S13).
  • the rotational state determination unit 52 When the rotational speed information of the double row tapered roller bearing 11 is confirmed to be within a predetermined rotational speed region, the rotational state determination unit 52 outputs an OFF signal of the drive motor. Based on this, the vibration signal and the temperature signal may be detected. Alternatively, if it is determined that the drive motor 13a is not energized by the transition of the rotational speed information from the rotational speed sensor 40, the rotational speed detection signal from the rotational speed sensor 40 and the vibration or temperature from the detection unit 31 are detected. An abnormality of the rotating part may be diagnosed in conjunction with the detection signal.
  • the vibration information is processed in the same manner as in the first embodiment, as shown in FIG. 7, and the abnormality determination unit 42 performs double-row tapered rollers. Existence of abnormal vibration of bearing 11 and identification of abnormal part.
  • the output device 90 performs an abnormality determination of the double-row tapered roller bearing 11 and outputs a specific result of the abnormal part, and an alarm such as an alarm is issued or the determination result is taken into the storage unit.
  • the temperature signal detected when the OFF signal on the drive motor side is output and the rotational speed information of the double-row tapered roller bearing 11 is within a predetermined rotational speed range set in advance is After being processed by the measurement value analysis unit 51, it is output to the abnormality determination unit 42.
  • the abnormality determination unit 42 determines whether or not a preset threshold value is exceeded, and does not exceed the threshold value. If it exceeds the threshold value, it is determined that an abnormality such as seizure has occurred in the bearing, and the output device 90 determines the abnormality of the double row tapered roller bearing 11. Is output, and an alarm such as an alarm is issued.
  • the signal processing unit 81 is the vibration sensor 32 in the inertial rotation state within the predetermined rotation speed region of the double row tapered roller bearing 11 when the drive motor 13a is not energized. And double row circles based on detection signals from the temperature sensor 33! /, So as to diagnose the abnormality of the roller bearings 11, the double row circles and the roller bearings 11 are incorporated. It is possible to diagnose abnormalities in double-row tapered roller bearings 11 in actual operation without disassembling the rolling bearing device 10 and to suppress electrical disturbance noise such as electromagnetic noise when driving the drive motor 13a. This makes it possible to detect signals with high sensitivity and high signal-to-noise ratio (signal-to-noise ratio), and to perform highly reliable abnormality diagnosis.
  • the influence of electrical disturbance noise such as electromagnetic noise is greater in the vibration sensor 32 than in the temperature sensor 33.
  • the means 34 may be transferred to the rotation state determination unit 52, and the signal transmission means 34 may be transferred from the temperature sensor 33 to the temperature measurement value analysis unit 51 without passing through the rotation state determination unit 52.
  • the rotation state determination unit 52 receives the rotation speed information of the double-row tapered roller bearing 11 from the rotation speed sensor 40. There determines a force whether it is LOOmin- 1 or 1500min _1 following rotational speed region (step S21). Then, when the rotational speed information of the double row tapered roller bearing 11 is one or more 1500min _1 less speed range outside lOOmin- may repeat the process returns to step S21.
  • the rotational state determination unit 52 in FIG. 7 does not use the output of the OFF signal of the drive motor 13a, and the double-row tapered roller bearing 11 is lOOmin ⁇ 1 or more. configured to determine whether the 1500min _1 following rotational speed region.
  • the rotational state determination unit 52 force using the output of the OFF signal of the drive motor 13a or the rotational speed information by the rotational speed sensor 40 It may be determined that the drive motor 13a is in a non-energized state based on the transition of. Therefore, when inertial rotation with double row tapered roller bearing 11 is LOOmin- 1 or more 1500min _1 following rotational speed region, in a child detecting vibration signals and temperature signal, the influence of the electromagnetic component at the time of driving the motor 13a energized This makes it possible to diagnose abnormalities with higher accuracy.
  • the double-row tapered roller bearing 11 is diagnosed for an abnormality, so that the double-row tapered roller bearing 11 is incorporated and the rolling bearing device 10 for a railway vehicle is installed without disassembling.
  • Abnormalities of the double-row tapered roller bearing 11 can be diagnosed in the operating state, and the excitation force caused by damage such as separation of the double-row tapered roller bearing 11 or flat wear of the wheels is not affected by disturbance noise, etc. Detection is possible at a high signal-to-noise ratio, and as a result, a reliable abnormality diagnosis can be performed.
  • the double row tapered roller bearing 11 rotates within the above rotational speed range.
  • the gear train may be intermittently engaged using a clutch mechanism or the like, and in addition to the second and third embodiments, the gear train may be engaged by the clutch.
  • the mechanical gear train noise and noise are detected. It is not affected by electrical noise, and an abnormality diagnosis with a high signal-to-noise ratio is possible. Note that the efficiency of diagnosis can be improved by outputting a signal to the drive motor when the gear train is disengaged and performing vibration and temperature signal detection and abnormality diagnosis after the drive motor is de-energized.
  • the abnormality diagnosis device detects a state of abnormality of rotating parts of the mechanical facility 60 from the detection unit 70 that detects a signal generated from the mechanical facility 60 and the electric signal output from the detection unit 70.
  • a controller 80 including a signal processing unit 82 for determining and a control unit 84 for driving and controlling the mechanical equipment 60, and an output device 90 such as a monitor 93 and an alarm device 94 are provided.
  • the mechanical equipment 60 is provided with a rolling bearing 62 that is a rotating part.
  • the rolling bearing 62 is an inner ring 64 that is a rotating ring that is externally fitted to a rotating shaft (not shown).
  • An outer ring 66 that is a fixed ring fitted in a housing (not shown), a ball 68 that is a plurality of rolling elements arranged between the inner ring 64 and the outer ring 66, and the ball 68 can roll freely.
  • a retainer (not shown) for retaining.
  • the detection unit 70 includes a sensor 72 that detects vibrations generated from the mechanical equipment 60 during operation.
  • the sensor 72 is fixed in the vicinity of the outer ring of the housing by bolt fixing, bonding, bolt fixing and bonding, or embedding with a molding material. In the case of bolt fixation, a rotation stop function may be provided. Further, when the sensor 72 is molded, the waterproofness is achieved and the vibration proofing against external vibration is improved, so that the reliability of the sensor 72 itself can be drastically improved.
  • the sensor 72 may be any vibration system sensor capable of detecting vibrations.
  • a Any device that can electrically transmit vibration such as an E (acoustic emission) sensor, an ultrasonic sensor, a shock pulse sensor, or the like, acceleration, speed, strain, stress, displacement type, or the like may be used.
  • E acoustic emission
  • ultrasonic sensor acoustic sensor
  • shock pulse sensor or the like
  • acceleration, speed, strain, stress, displacement type, or the like may be used.
  • an insulation type when installing on mechanical equipment with a lot of noise, it is preferable to use an insulation type because it is less affected by noise.
  • the sensor 72 uses a vibration detecting element such as a piezoelectric element, this element may be molded into plastic or the like.
  • the mechanical equipment 60 of the present embodiment can detect vibrations of gears, wheels (not shown) and the like by the sensor 72 in addition to the rolling bearing 62.
  • the detection unit 70 has a single sensor 72 for detecting vibrations generated from the mechanical equipment, and a single temperature sensor or rotational speed sensor for detecting the temperature of the mechanical equipment. It may be an integrated sensor housed in the housing. In this case, it is preferable that the integrated sensor is fixed to a flat portion of a bearing box for fixing the rolling S bearing 62 (see FIG. 18).
  • the temperature sensor may be a temperature fuse of a type in which when the temperature reaches a certain specified value, the bimetal contact is released, and the contact is blown to cause no conduction. As a result, if a temperature higher than a specified value is detected, the thermal fuse will not conduct, and an abnormality can be detected.
  • the controller 80 including the signal processing unit 82 and the control unit 84 is configured by a microcomputer (IC chip, CPU, MPU, DSP, etc.), and from the sensor 72 via the data transmission means 74. Receive the electrical signal.
  • a microcomputer IC chip, CPU, MPU, DSP, etc.
  • the signal processing unit 82 includes a data storage / distribution unit 100, a rotation analysis unit 102, a filter processing unit 104, a vibration analysis unit 106, a comparison determination unit 108, and an internal data storage unit 110.
  • the data storage / distribution unit 100 receives and temporarily stores the electrical signal from the sensor 72 and the electrical signal related to the rotational speed, and distributes the signal to one of the analysis units 102 and 106 according to the type of the signal. It has a collection and distribution function.
  • Various signals are AZD converted into digital signals by AD conversion (not shown) before being sent to the data storage / distribution unit 100, amplified by an amplifier (not shown), and then sent to the data storage / distribution unit 100. Note that the order of AZD conversion and amplification may be reversed.
  • the rotation analysis unit 102 calculates the rotation speed of the inner ring 64, that is, the rotation shaft, based on an output signal from a sensor (not shown) that detects the rotation speed, and compares the calculated rotation speed with the comparison determination unit 10. Send to 8.
  • the detection element is composed of an encoder attached to the inner ring 64, a magnet and a magnetic detection element attached to the outer ring 66
  • the signal output from the detection element is the shape and rotational speed of the encoder. It becomes a pulse signal according to.
  • the rotation analysis unit 102 has a predetermined conversion function or conversion table corresponding to the shape of the encoder, and calculates the rotation speeds of the inner ring 64 and the rotating shaft from the noise signal according to the function or table.
  • the filter processing unit 104 extracts only a predetermined frequency band corresponding to the natural frequency from the vibration signal based on the natural frequency of the rolling bearing 62 that is a rotating part, a gear, a wheel, or the like, and is unnecessary. Remove frequency band.
  • This natural frequency can be easily obtained by vibrating the rotating part as an object to be measured and applying vibration by the striking method and analyzing the frequency of the vibration detector attached to the object to be measured or the sound generated by the striking. .
  • the object to be measured is a rolling bearing
  • the natural frequency due to any of the inner ring, outer ring, rolling element, cage, etc. is given.
  • the vibration analysis unit 106 Based on the output signal from the sensor 72, the vibration analysis unit 106 performs frequency analysis of vibration generated in the bearing 62, gears, and wheels. Specifically, the vibration analysis unit 106 is an FFT calculation unit that calculates a frequency spectrum of a vibration signal, and calculates a frequency spectrum of vibration based on an FFT algorithm. The calculated frequency spectrum is transmitted by the comparison / determination unit 108. Further, the vibration analysis unit 106 may perform absolute value processing and envelope processing as preprocessing for performing FFT, and convert only to frequency components necessary for diagnosis. The vibration analysis unit 106 outputs the envelope data after the envelope processing to the comparison determination unit 108 as necessary.
  • the comparison / determination unit 108 compares the frequency spectrum of the vibration by the vibration analysis unit 106 with a reference value used for abnormality diagnosis for calculating the frequency spectrum force, and extracts a peak component whose frequency spectrum force is larger than the reference value. Then, the frequency value between the peaks is calculated.
  • a reference value used for abnormality diagnosis for calculating the frequency spectrum force is extracted from the relational expressions shown in FIG. 5 and FIG.
  • the frequency component of the vibration generated by the rotating parts due to the abnormality of each rotating part that is, the bearing flaw component Sx (inner ring flaw component Si, outer ring flaw component So , Rolling element scratch component Sb and cage component Sc), scratch component Sg corresponding to gear squeezing
  • the wear and unbalance component Sr of the rotating body such as a wheel is obtained, and the frequency value between the vibration generating frequency component and the peak is compared.
  • the comparison / determination unit 108 specifies the presence / absence of an abnormality and an abnormal part based on the determination result.
  • the calculation of the vibration generation frequency component is stored in the internal data storage unit 110 when the same diagnosis is performed before it can be performed, and the data is used. It's good.
  • the design specification data of each rotating part used for calculation is input and stored in advance.
  • the determination result in the comparison determination unit 108 may be stored in the internal data storage unit 110 such as a memory or HDD, or may be transmitted to the output device 90 via the data transmission unit 92. .
  • the determination result may be output to the control unit 84 that controls the operation of the drive mechanism of the mechanical equipment 60, and a control signal corresponding to the determination result may be fed back.
  • the output device 90 may display the determination result on a monitor or the like in real time! When an abnormality is detected, an alarm device such as a light or a buzzer is used to notify the abnormality. You can do it.
  • the data transmission means 74 and 92 may be a good wire as long as signals can be transmitted and received accurately, or wireless considering the network may be used.
  • the sensor 72 detects the vibration of each rotating component (step S101).
  • the detected vibration signal is converted into a digital signal by AZD conversion (step S102), amplified by a predetermined amplification rate (step S103), and then converted to the natural vibration frequency of the rotating component by the filter processing unit 104.
  • Filter processing for extracting only the corresponding predetermined frequency band is performed (step S104).
  • the vibration analysis unit 106 performs envelope processing on the digital signal after filtering (step S 105), and obtains a frequency spectrum of the digital signal after envelope processing (step S 106).
  • the rolling element scratch component Sb and the cage component Sc) the scratch component Sg corresponding to the meshing of the gears, and the wear and unbalance component Sr) of the rotating body such as the wheel are obtained (step S107).
  • a reference value for example, sound pressure level or voltage level
  • the reference value may be an effective value or a peak value of a digital signal of actually measured spectrum data at an arbitrary time, or may be calculated based on these values.
  • step S109 a peak component larger than the reference value calculated in step S108 is extracted from the frequency spectrum obtained in step S106, and a frequency value between peaks is calculated (step S109). Then, the frequency value between the peaks and the vibration component frequency component of the rotating component in step S107 are compared (step S110), and if all the components do not match, it is determined that there is no abnormality in the rotating component (step S111). . On the other hand, if any of the components match, it is determined that there is an abnormality and the abnormal part is identified (step S112), and the comparison result is output to an output device such as the control unit 84, the monitor 93, or the alarm 94. Output to 90 (step S113).
  • a peak of a spectrum that is larger than the reference value calculated based on the spectrum obtained by frequency analysis is extracted, and the rotational component calculated based on the frequency between the peaks and the rotation speed signal is extracted.
  • the frequency component caused by damage is compared and verified, and the presence or absence and abnormal part of the rotating parts are identified based on the result of the comparison. If the actual rotational speed cannot be directly captured, the rotation used in the calculation Even if the speed data deviates from the actual rotational speed, it is possible to accurately identify the presence or absence of an abnormality and the location of the abnormality.
  • abnormality diagnosis device and abnormality diagnosis method of the present invention it is possible to identify the presence or absence of an abnormality and the location of the abnormality without disassembling the mechanical equipment incorporating the rotating component with a simple configuration. It is possible to reduce the time and effort required for disassembling and assembling the apparatus, and to prevent damage to the parts due to disassembling and assembling.
  • the signal processing unit is configured by the microphone computer, so the signal processing unit is unitized, and the abnormality diagnosis device is compact. And modularity can be achieved.
  • the processing in the comparison / determination unit 108 of the signal processing unit 82 is different from that of the fourth embodiment.
  • the comparison / determination unit 108 in the present embodiment compares and collates the frequency component caused by the rolling bearing 62, the tooth wheel, and the wheel with the frequency component of the measured spectrum data of vibration by the vibration analysis unit 106 with a variable tolerance.
  • the comparison determination unit 108 calculates a measured spectrum data force reference value (for example, a sound pressure level or a voltage level), while using the relational expressions shown in FIGS. Calculate the frequency (vibration generation frequency) due to gear flaws, and extract the sound pressure level (or voltage level) in the range where a variable tolerance is given to these vibration generation frequencies. Comparison with reference value.
  • the comparison / determination unit 108 identifies the presence / absence of an abnormality and an abnormal part based on the determination result.
  • the calculation of the vibration generation frequency is stored in the internal data storage unit 110 when the same diagnosis is performed prior to this, as in the fourth embodiment.
  • the data may be used.
  • the design specification data of each rotating part used for calculation is input and stored in advance.
  • variable tolerance in the comparison and collation is set so that the frequency component becomes larger as the harmonic component becomes higher. It is possible to cope with changes (changes due to wheel wear in railway vehicles, etc.).
  • steps S 201 to S 206 Similar to steps S 101 to S 106 in the fourth embodiment are performed.
  • the vibration generation frequency generated due to the abnormality of each rotating part is obtained based on the rotation speed signal (step S207), and variable with respect to the obtained frequency.
  • Sound pressure level in the abnormal frequency band of each rotating part with a wide tolerance in the case of the rolling bearing 62, the bearing flaw component Sx, that is, the inner ring flaw component Si, the outer ring flaw component So, the rolling element flaw Step Sb and cage component Sc, in the case of gears, the gear scratch component Sg corresponding to the meshing, and in the case of rotating bodies such as wheels, determine the wear and unbalance component Sr of the rotating body (step) S 208).
  • a reference value for example, a sound pressure level or a voltage level used for abnormality diagnosis is calculated from the frequency spectrum obtained by the vibration analysis unit 106 (step S 209).
  • step S210 (Or voltage level) and the reference value calculated in step S209 are divided in order for each rotating component having a different design specification (step S210). If all the components do not match, it is determined that there is no abnormality in the rotating part (step S211). On the other hand, if any of the components match, it is determined that there is an abnormality and the abnormal part is identified (step S212), and the comparison result is also displayed on the control unit 84, the monitor 93, the alarm 94, etc. Is output to the output device 90 (step S213).
  • the frequency component of the measured spectrum data obtained by frequency analysis and the frequency component caused by the rotating component are compared and collated with a variable tolerance, and the rotation is performed based on the collation result. Since the presence / absence of parts and abnormal parts are determined, even if the actual rotational speed cannot be directly imported, the rotational speed data used for calculation may be different from the actual rotational speed. In addition, it is possible to accurately identify the presence / absence of an abnormality and an abnormal part.
  • the processing in the comparison / determination unit 108 of the signal processing unit 82 is different from that of the fifth embodiment. Also in the present embodiment, as shown in the processing flow of FIG. 14, steps S301 to S306 are performed in the same manner as steps S101 to S106 of the fourth embodiment.
  • the vibration generation frequency generated due to the abnormality of each rotating component is obtained based on the rotation speed signal (step S307). Then, an allowable width that is an area having the upper limit frequency and the lower limit frequency of the damage component of the rotating component in each specification calculated from the rotational speed of the rotating component and the design dimension specification of the rotating component, and the center frequency of the width. Calculate the number (step S308).
  • step S308 if necessary, the allowable width is divided into one or more widths, a center frequency for each width is obtained, and an allowable width having an arbitrary width is obtained for the center frequency. give. Note that this tolerance may be set to increase corresponding to the frequency band.
  • step S307 the sound pressure level in the abnormal frequency band of the rotating component having an allowable range for the frequency obtained in step S307 (in the case of the rolling bearing 62, the bearing flaw component Sx, that is, the inner ring flaw component Si, Outer ring scratch component So, rolling element scratch component Sb and cage component Sc, in the case of gears, gear scratch component Sg corresponding to squeezing, and in the case of rotating bodies such as wheels, wear and unloading of the rotating body A balance component Sr) is obtained (step S309).
  • the bearing flaw component Sx that is, the inner ring flaw component Si, Outer ring scratch component So, rolling element scratch component Sb and cage component Sc, in the case of gears, gear scratch component Sg corresponding to squeezing, and in the case of rotating bodies such as wheels, wear and unloading of the rotating body A balance component Sr
  • the frequency spectrum obtained by the vibration analysis unit 106 also calculates a reference value (for example, a sound pressure level or a voltage level) used for abnormality diagnosis (step) S310), comparing the sound pressure level (or voltage level) of the abnormal frequency band of each rotating component calculated in step S309 with the reference value calculated in step S310 for each rotating component with different design specifications.
  • the steps are performed in order (step S311).
  • step S311 the frequency tolerance is repeated for the number of times divided.
  • step S312 If all the components do not match, it is determined that there is no abnormality in the rotating component (step S312). On the other hand, if any of the components match, it is determined that there is an abnormality and the abnormal part is identified (step S313), and the comparison result is output to the control unit 84, the monitor 93, the alarm 94, etc. Output to the device 90 (step S314).
  • step S308 If there is an abnormality in the rotating component, when the allowable width is divided in step S308, it may be determined that there is an abnormality in any of the divided allowable widths. For this reason, for example, when performing diagnosis for two allowable widths, in step S311, the diagnosis with the second width is not performed when it is determined that there is an abnormality as a result of the diagnosis with the first width. It is also possible to diagnose in the second width after diagnosing normality in the first width. [0116]
  • the vibration generation frequency generated due to the abnormality of each rotating part in step S309 is given by the rotational speed and the design dimension as shown in the relational expressions in Figs. Differences in design dimensions and specifications hinder accurate diagnosis. For this reason, setting the allowable width as in step S308 can be done when the rotating part has multiple rotating parts with different design dimensions, or when the actual rotational speed signal cannot be directly captured. This is effective when the rotational speed of the motor fluctuates.
  • the allowable width is divided as necessary, a center frequency for each divided width is obtained, an allowable width having an arbitrary width is provided for the center frequency, and the divided allowable width is set.
  • At least one region having an upper limit value and a lower limit value calculated from the rotational speed of the rotating component and the design dimension specifications of the rotating component is provided. Dividing into two areas, finding the center value of each of the divided areas, and comparing and collating with at least one allowable width of any size given to the center value, the design dimensions are different from each other Even when multiple rotating parts are installed in an arbitrary part or when the rotational speed of the rotating part fluctuates, the presence or absence of an abnormality and the part of the abnormality can be reliably identified, enabling highly accurate diagnosis. In addition, as a result, parts with the same specifications must be incorporated as before, and labor can be saved, and even when parts with different specifications are incorporated, diagnosis is possible and work efficiency is improved. Therefore, effective maintenance becomes possible.
  • the abnormality diagnosis of this embodiment is also effective in the case of mechanical equipment in which the rotating parts have a plurality of rotating parts having different design dimension specifications and the rotational speed of the rotating parts varies. It is.
  • each frequency component shown in Fig. 5 is an integer of the rotation frequency. Therefore, when the bearing specifications are known in advance, it is possible to obtain the center frequency without calculating the lower limit and the upper limit frequency accompanying the rotational speed fluctuation.
  • the abnormality diagnosis of the present embodiment is any method for diagnosing the presence / absence of a frequency component resulting from damage to rotating parts from rotational speed information that is not applied only to the frequency spectrum subjected to envelope processing. Is also applicable.
  • the abnormality diagnosis device detects a state of an abnormality of the mechanical facility 60 from a detection unit 70 that detects a signal generated from the mechanical facility 60 and an electric signal output from the detection unit 70.
  • the controller 80 includes a signal processing unit 82 having the same configuration as that shown in FIG. Device 90.
  • the comparison / determination unit 108 of the signal processing unit 82 compares and collates the frequency component caused by the rolling bearing 62, the gears, and the wheels with the frequency component of the measured spectrum data of vibration by the vibration analysis unit 106.
  • the comparison / determination unit 108 calculates a reference value (for example, a sound pressure level or a voltage level) from a limited frequency range of the measured spectrum data, while rolling using the relational expressions shown in FIGS.
  • the frequency (vibration generation frequency) due to the scratches on the bearings and gears is calculated, the measured spectral data force, the sound pressure level at the vibration generation frequency is extracted, and compared with the reference value.
  • the comparison / determination unit 108 specifies the presence / absence of an abnormality and an abnormal part based on the determination result.
  • the calculation of the vibration generation frequency may be stored in the internal data storage unit 110 and used when the same diagnosis is performed prior to this. . Further, design specification data of each rotating part used for calculation is input and stored in advance.
  • the determination result in the comparison determination unit 108 may be stored in the internal data storage unit 110 such as a memory or HDD, or may be transmitted to the output device 90 via the data transmission unit 92. .
  • the determination result is also used as a control unit 84 that controls the operation of the drive mechanism of the mechanical equipment 60. And a control signal corresponding to the determination result may be fed back.
  • the output device 90 may display the determination result on the monitor 93 or the like in real time, and when an abnormality is detected, the alarm device 94 such as a light or a buzzer is used to notify the abnormality. It may be.
  • the output device 90 includes a storage unit 96 that stores the diagnosis results obtained by the signal processing unit 82, such as the presence / absence of an abnormality, the site of the abnormality, and the spectrum waveform at the time of diagnosis (actual spectrum data).
  • the report creation unit 95 can easily create a report based on the diagnosis result.
  • the predetermined format is a format required for the report creation unit 95 to check. Note that all the target data may be output and selected and selected by the report creation unit 95, or may be output after selecting and selecting the target data by the data output unit 97. .
  • steps S401 to S406 are performed in the same manner as steps S101 to S106 of the fourth embodiment.
  • the vibration generation frequency generated due to the abnormality of each rotating part is obtained based on the rotation speed signal (step S407), and each frequency corresponding to the obtained frequency is obtained.
  • Sound pressure level of abnormal frequency band of rotating parts In the case of rolling bearing 62, bearing flaw component Sx, that is, inner ring flaw component Si, outer ring flaw component So, rolling element flaw component Sb and cage component Sc, In this case, the gear flaw component Sg corresponding to the squeeze and, in the case of a rotating body such as a wheel, wear and unbalance component Sr) of the rotating body are obtained (step S408).
  • a reference value for example, a sound pressure level or a voltage level used for abnormality diagnosis is also calculated for the frequency spectrum force obtained by the vibration analysis unit 106 (step S409).
  • the reference value of the present embodiment is calculated using a limited frequency range of the measured spectrum data at an arbitrary time. That is, the reference value is spectrum data in a predetermined frequency range.
  • the effective value calculated using the spectrum obtained by removing multiple spectra for example, top 10 and bottom 10) ( Square root of the mean square of the frequency spectrum) or calculated based on the following formulas (1) and (2) based on the effective value!
  • the average value of the measured spectrum data at an arbitrary time may be calculated using the peak value.
  • step S410 (Or voltage level) and the reference value calculated in step S409 are compared in turn for each rotating component having a different design specification (step S410). If all the components do not match, it is determined that there is no abnormality in the rotating part (step S411). On the other hand, if any of the components match, it is determined that there is an abnormality and the abnormal part is identified (step S412), and the comparison result is output from the control unit 84, the monitor 93, the alarm 94, etc. Output to the device 90 (step S413). In step S413, the diagnosis results obtained in steps S411 and S412 are stored in the storage unit 96 of the output device 90.
  • the diagnosis result stored in the storage unit 96 is sent to the data output unit 97, and the data output unit 97 selects'selects target data from the sent data (step S414). Further, the selected target data is sent to a report creation unit 95 having a report creation program to create a report based on the diagnosis result (step S415).
  • the reference value used for the comparison and verification is the frequency limited by the measured spectrum data. Since it is calculated based on the effective value, average value, or peak value based on the range, it is difficult to be affected by noise such as DC components, and the diagnostic accuracy can be improved. Can be identified.
  • the presence / absence of abnormality, the portion of abnormality, the spectrum waveform at the time of diagnosis (measured spectrum Based on at least one program, the storage unit 96 for storing the diagnosis results, the data output unit 97 for outputting the diagnosis results in a predetermined format, and the output result output by the data output unit 97
  • a report creation unit 95 that creates reports, so that it is possible to easily create reports by outputting a large amount of accumulated diagnostic results in a predetermined format as needed. it can.
  • the storage unit 96 for storing the diagnosis result is provided in the output device 90.
  • the storage unit 96 is provided in the controller 80, and the diagnosis result is displayed when the report is generated.
  • the data may be transmitted to the data output unit 97 via the data transmission means 92.
  • the abnormality diagnosis device for mechanical equipment 120 including a plurality of rolling bearings 62, 62 a single unit that combines a detection unit including a sensor 72 and a signal processing unit including a microcomputer 130 is used.
  • This processing unit 140 is incorporated in the bearing device of the rolling bearing 62.
  • the abnormality diagnosis device can be managed and managed, enabling efficient monitoring.
  • This single processing unit may be incorporated in the machine equipment for compactness, or a single processing unit may be configured for a plurality of rolling bearings.
  • the railroad vehicle bearing device shown in Fig. 18 rotates the axle 13 with respect to the bearing box 12 constituting a part of the railcar bogie via the double row tapered roller bearing 62 (11).
  • the detectors 70 (31) and 70 (31) are fixed to the radial load area of the bearing housing 12 and the vibration of the bearing housing 12 is detected to perform abnormality diagnosis. Yes. Even in such a case, it is possible to process the electrical signals of the detection units 70 (31) and 70 (31) with the single processing unit 140.
  • FIG. 19 shows an example in which the present embodiment is applied to the seventh embodiment.
  • one railcar 200 is supported by two front and rear chassis, and four wheels 204 are attached to each chassis.
  • a vibration sensor 201 as a detection unit having a piezoelectric acceleration sensor or the like is attached to the bearing box of each wheel 204, and outputs vibration acceleration in a direction perpendicular to the ground.
  • a vibration sensor for measuring vibration acceleration in the traveling direction of the railway vehicle 200 and the axial direction of the wheels may be further attached.
  • the output of the vibration sensor 201 is processed by the abnormality diagnosis module 202 which is a signal processing unit installed on the control panel of the vehicle 200.
  • the abnormality diagnosis module 202 includes a digital processing module 205 and performs abnormality diagnosis by digital processing.
  • the vibration waveform detected by the vibration sensor 201 is converted into a discrete value by an AD converter (ADC) 208 via a low-pass filter (LPF) 207 and input to the CPU 211.
  • ADC AD converter
  • LPF low-pass filter
  • the frequency of vibration generated from the flat which is an abnormality of the wheel 204, is concentrated in a frequency band lower than 1 kHz and spreads over a range higher than 1 kHz.
  • the low-pass filter 207 attenuates a frequency of 1 kHz or more, which has a large noise component, and improves the SZN ratio.
  • the pulse signal detected by the rotation speed sensor 206 such as an encoder is pulse-shaped by the waveform shaping circuit 209, and pulse-counted by the timer 'counter (TCNT) 210, so that the rotation speed signal force SCPU211 CPU211 executes abnormality diagnosis based on vibration waveform and rotation speed signal.
  • TCNT timer 'counter
  • the diagnosis result diagnosed by the CPU 211 is transmitted to the communication line 203 via the line driver 214 from the serial interface (SIO) 213 such as USB, for example, based on the communication protocol IP212 constituting the transmission means.
  • the AD processor 208, the timer counter 210, the CPU 211, the communication protocol IP 212, the serial interface 213, and the line driver 214 constitute the digital processing module 205.
  • CPU 211 is substantially constant at a constant speed rotational speed signal detected by the rotational speed sensor 206 (in this embodiment, 185 ⁇ 370min _ 1) when it is, the sampling frequency, the sampling speed Ns constant
  • the processed waveform block data is processed to detect the flatness of the wheel 204.
  • the block data interval length is 1 sec.
  • the flatness is detected by comparing the number of times that the vibration waveform pulse due to the flat is counted per second and the number of times the wheel 204 is rotated per second from the vehicle speed detected by the rotational speed sensor 206.
  • the vibration acceleration in the state where the flatness is generated in the wheel 204 is large.
  • the value of the vibration acceleration caused by the vibration of the normal vehicle is often smaller than that.
  • the vibration at the rail joint becomes a level of vibration acceleration equivalent to or greater than that of the flat.
  • the level of vibration acceleration resulting from the friction between the rail and the wheel 204 on the rail curve is equivalent to that due to the flat or rail joint.
  • an algorithm that repeatedly performs diagnosis processing on the same wheel 204 using the sensors 201 and 206 mounted on the vehicle 200 and the abnormality diagnosis module 202 is designed to count the number of pulses. Improve the reliability of abnormality diagnosis using statistical judgment methods that take into account the number variation and the effects of noise.
  • the signal detected by the vibration sensor 201 is converted into a digital signal by the AD converter 208 (step S500), and the rotation speed signal is input from the rotation speed sensor 206.
  • Abnormality diagnosis of the present embodiment because it runs in the section traveling at a substantially constant rate of definitive during rotation speeds force Sl85 ⁇ 370min _ 1, times the interval length of the data It is determined whether the rotation speed has changed by 15% or more due to sudden acceleration / deceleration (step S501). If it changes by 15% or more, the internal output “N” is output and abnormality diagnosis is not performed (step S 502).
  • the digital signal converted by the AD converter 208 is converted into an absolute value (step S503), and the threshold value is set.
  • the excess data is held at a value exceeding the threshold for a certain time ( ⁇ ) by the peak hold process (step S504).
  • This holding time ( ⁇ ) is determined by the rotational speed of the wheel, and is set to a value shorter than that of one wheel rotation.
  • the peak hold process in which the absolute value is held for a certain time enables stable peak measurement.
  • step S505 the number of times the pulse has exceeded the threshold is counted as an event count process (step S505), and it is determined whether or not the count matches the number of rotations of the wheel (step S506). If it is recognized that the count number matches the rotation speed of the wheel, it is determined that there is a flat and the internal output "F" (Flat) is output (step S507). If it does not match, it is determined that there is no flat. And “G” (Good) is output externally (step S508). In this embodiment, since the rail joint may be affected, it is assumed that the count number of (wheel rotation speed + 1) also matches the wheel rotation speed.
  • FIG 23 (a) is illustrates how three shock wave in one second waveform is generated Yes.
  • the peak retention time ⁇ is set to 30 ms, and once the absolute value of the shock wave exceeds the threshold, it is maintained at a value exceeding the threshold for 3 Oms regardless of the original data. The same process is repeated when 30 ms have passed since the first time the threshold was exceeded, and when the data reaches 1 second, the number of times the converted waveform (threshold holding waveform) force also exceeded the threshold is counted.
  • the waveform in Fig. 23 (b) is obtained by performing absolute value processing and peak hold processing on the waveform in Fig. 23 (a).
  • step S509 in order to obtain a highly reliable diagnosis result, the above output obtained once per second is used, for example, simple statistical analysis based on one of the following conditions: A determination is made (step S509).
  • step S510 If it falls under (1) or (2), it is determined that the wheel is surely flat, and finally "F” is output as an external output (step S510), (1), In cases other than (2), "G” is output as an external output (step S511).
  • step S510 If "F” is output as an external output in step S510, an abnormal signal is output from the serial interface 213 and line driver 214 through the communication line 203, and the output device power of an alarm device, etc. Alarms for abnormal occurrences such as wheel flats.
  • the vibration acceleration waveform by the vibration sensor 201 attached to the bearing box of the wheel 204 and the rotation speed of the wheel 204 by the rotation speed sensor 206 From the signal, if the vibration acceleration waveform per unit time filtered by low-pass filtering during the N rotation time of the wheel 204 exceeds a preset threshold value, the threshold value is set for a certain time according to the rotation speed. In the waveform that keeps the state exceeding, the number of times the threshold is exceeded is counted, and by detecting that the number of counts matches the number of rotations of the wheel, an alarm for occurrence of an abnormality such as the occurrence of a flat wheel is performed. With relatively simple circuitry and software, it is possible to accurately identify abnormalities in rotating parts.
  • an abnormality diagnosis is performed based on the full-wave rectified waveform converted to an absolute value without converting a flat waveform into an envelope detection waveform, so that the amount of calculation is small and a simple diagnosis is performed. I can refuse.
  • the LPF 207 is an LC filter.
  • a digital filter can be provided in the digital processing module 205. In that case, the digital filter can also be realized as CPU software.
  • the diagnostic module 220 of the tenth embodiment has a configuration in which an analog processing envelope circuit 215 is inserted between the vibration sensor 201 and the ADC 208.
  • the envelope circuit 215 includes a low-pass filter, a full-wave rectifier 217 as an absolute value circuit, an analog peak hold circuit 218, and the like.
  • step S500 the absolute value processing and the peak hold processing in step S503 and step S504 are performed before AZD conversion (step S500), and the digital processing unit 219 performs steps S501, The same processing as S502, S505 to S511 is performed! /, And the number of times the threshold value is exceeded within a certain time is counted, and if it is a value corresponding to the rotational speed of the wheel, a warning signal is output as flat.
  • the wheel flat has an impact waveform having a band up to about 1 kHz
  • a sampling rate of about 2 kHz is taken if the waveform is just passed through the low-pass filter 207 as in the ninth embodiment. Otherwise, there is a concern that the peak of the impact acceleration will drop, but if the peak hold circuit 218 is inserted in the analog circuit in the previous stage of the AD converter 208 as in this embodiment, sampling at about 200 Hz is possible. Sufficient speed can be set for detecting wheel flats.
  • the time constant ( ⁇ ) of the peak hold circuit 218 in this case is also appropriately selected according to the vehicle speed range between several ms to several tens of ms.
  • the waveform detected by the envelope by the full-wave rectifier circuit 217 also includes a low-pass filter 207 before the AD converter 208. It is desirable to cut the size.
  • a high-pass filter (HPF) 216 is provided in the previous stage of the envelope circuit 215.
  • the high-pass filter 216 is inserted in order to remove the DC component and a very low frequency component close to it, and may be a simple AC coupling capacitor. This high-pass filter 216 can suppress ripples due to the DC component of the envelope waveform.
  • V crosses V at the time of rising, and then V that is set lower than V at the time of falling
  • the envelope circuit in the tenth embodiment is replaced by digital processing. Note that parts that are the same as those in the tenth embodiment are given the same reference numerals, and descriptions thereof are omitted or simplified.
  • the digital processing unit 231 at the subsequent stage of the AD converter 208 is composed of a high-speed processor such as a DSP, and a digital high-pass filter (HPF) 235 removes low-frequency components, and uses the amplitude demodulator 234 to calculate the square root of the sum of squares from the complex signal of the real part and imaginary part by the Herbert transform filter 233 of the envelope processing circuit 232.
  • a line waveform is obtained, noise remaining by the digital LPF 236 is cut, the number of times is counted by the threshold count 237, and the diagnosis unit 238 determines whether or not there is a wheel flat.
  • the digital processing unit 231 of the present embodiment configured as described above executes software for obtaining an envelope waveform using a high-speed processor such as a DSP in real time without affecting the diagnosis time. Is possible.
  • a high-speed processor such as a DSP
  • FIG. 27B shows a waveform force obtained by generating an envelope waveform by the envelope processing 232 and removing noise by the low-pass filter 236 with respect to the input waveform shown in FIG.
  • the threshold count 237 and the diagnosis unit 238 perform determination processing such as a wheel flat on the waveform processed in this manner, as in the tenth embodiment.
  • the waveform shown in Fig. 27 (b) shows that three shock waves are generated per second.
  • the mechanical equipment of the present invention includes a rolling stock bearing device, a windmill bearing device, a machine tool main shaft bearing device, etc., as long as it is equipped with a rotating or sliding part that is an object of abnormality diagnosis.
  • the rotating or sliding parts may be damaged by rotating parts such as rolling bearings, gears, axles, wheels, ball screws, and sliding parts such as linear guides and linear ball bearings. Any component that generates periodic vibrations may be used.
  • a rotational speed signal is used as a speed signal for calculating a frequency component resulting from damage to a rotating part, but a moving speed signal is used as a speed signal in the case of a sliding part.
  • the outer ring of the rolling bearing fixed to the bearing housing is included in a part of the rolling bearing that is a component that rotates or slides relative to the stationary member.
  • the signals detected by the detection unit include sound, vibration, ultrasonic (AE), stress, displacement, distortion, etc., and these signals may indicate a defect in mechanical equipment including rotating or sliding parts.
  • AE ultrasonic
  • stress e.g., stress, displacement, distortion
  • a signal component indicating the defect or abnormality is included.
  • the abnormality diagnosis of the rolling bearing was performed twice using the abnormality diagnosis apparatus according to the first embodiment of the present invention.
  • a ball bearing having an outer diameter of 62 mm, an inner diameter of 30 mm, a width of 16 mm, and a number of balls of 7 is used, and the vibration sensor is fixed to the bearing box, and the temperature sensor is The shaft was attached to the outer peripheral surface of the outer ring of the bearing. The inner ring is rotated at 3000min- 1 and the bearing is loaded with a radial load.
  • Table 1 and Table 2 show the measured values of vibration and temperature at the measurement points A, B, and J corresponding to Fig. 3 and Fig. 4 in Example 1, and the rate of change with time (magnification with respect to the previous measured value).
  • Table 3 and Table 4 show the measured values of vibration and temperature at each measurement point A, B, and C in Example 2 and the rate of change with time.
  • Tables 1 to 4 show the envelope analysis of vibration waveforms along with measured values (Tables 1 and 3) and specified values (set values) for the rate of change (Tables 2 and 4). Resulting force Indicates the presence or absence of frequency components due to bearing damage (peeling).
  • Example 1 As shown in Table 1, the vibration measurement values at points B and C exceed the specified values, and the temperature measurement values at point C also exceed the specified values. Furthermore, since there is no damage component of the bearing due to vibration, it can be seen that this bearing has a seizure anomaly and needs to be replaced urgently. In Example 1, the change rate power in Table 2 is also determined in the same manner. Togashi.
  • Example 2 As shown in Table 3, the vibration measurement values at points B and C exceeded the reference value, but the temperature was strong without any change. In addition, since the damage component of the bearing is present in the vibration, it can be seen that this bearing has a peeling abnormality. In Example 2, the same determination can be made from the rate of change in Table 4.
  • the presence or absence of abnormality is diagnosed and determined multiple times by combining vibration and temperature measurement values or rate of change. Even if it rises, it will not be judged as abnormal, and it will be more reliable than before, making it possible to diagnose abnormalities.
  • the signal was detected by a piezoelectric insulation type acceleration sensor attached to Uzing, and the amplified signal was compared by frequency analysis (envelope analysis).
  • Fig. 28 shows the vibration of the housing when the bearing is rotated by inertia when the inner ring of the bearing reaches 150min- 1 and the drive motor that transmits rotation to the bearing is de-energized (OFF state).
  • An example of the result of analysis (envelope analysis) is shown.
  • Fig. 29 shows frequency analysis of the vibration of the housing when the bearing is driven to rotate when the inner ring of the bearing reaches 150 min_1 with the drive motor that transmits rotation to the bearing in the energized state (ON state). It shows an example of the result of the envelope analysis.
  • the vibration waveform when the drive motor is deenergized (OFF state) and the bearing is rotated inertially has a plurality of frequency components due to damage to the outer ring.
  • the vibration waveform when the drive motor is energized (ON state) and the bearing is rotated the influence of the electromagnetic component due to the drive motor driving is large and the above-mentioned remarkable noise component is generated! I understand.
  • the rotation state determination unit performs vibration within the inertial rotation region when the rotation drive device is not operating. By detecting the motion, it can be seen that an abnormality diagnosis with a high signal-to-noise ratio is possible without being affected by disturbance noise caused by the above vibration.
  • Whether or not defects can be detected was determined from the presence or absence of the appearance of characteristic frequency components due to outer ring defects at each rotational speed, calculated using the formula in Fig. 5, in the frequency analysis results after envelope analysis.
  • FIG. 30 the inner ring of the bearing 50min- lOOmin "1, 150mm” 1 , 300mm “1, 650min _ lOOOmin” 1, 1500min _1, and turn in 1600min one 1! /, This is an example of the result of frequency analysis (envelope analysis) of U-no-ji's nookingu.
  • the solid line is the envelope frequency spectrum based on the actually measured vibration data
  • the dotted line represents the frequency component resulting from the outer ring damage based on the design specifications of the bearing shown in FIG.
  • Table 5 summarizes the determination results for the presence or absence of abnormality based on the above analysis for each rotational speed. ⁇ indicates the case where the characteristic frequency component due to the outer ring defect appears in the above analysis, and X indicates the case where it does not appear.
  • FIG. 31 shows the results of frequency analysis after envelope processing of housing vibration when rotating a single-row deep groove bearing with a defective outer ring raceway at 1500 min- 1 as Example 3. .
  • the solid line shows the envelope frequency spectrum based on the actually measured vibration data
  • the dotted line shows the reference value.
  • FIG. 32 shows the results of frequency analysis after envelope processing of housing vibration when a normal single-row deep groove bearing was rotated at 1500 min- 1 as Example 4.
  • FIG. 32 shows the results of frequency analysis after envelope processing of housing vibration when a normal single-row deep groove bearing was rotated at 1500 min- 1 as Example 4.
  • FIG. 33 shows the results of frequency analysis after envelope processing of housing vibration when a single-row deep groove bearing with a defect on the outer ring raceway surface actually rotates at 2430min- 1 as Example 5.
  • the rotational speed data used for the calculation is 2400min- 1, which is different from the actual rotational speed
  • the alternate long and short dash line indicates the frequency component due to the outer ring damage based on the rotational speed 2400min- 1 .
  • FIG. 34 shows the result of frequency analysis after envelope processing of housing vibration when a single row deep groove bearing with a defect on the outer ring raceway surface actually rotates at 2430 min- 1 .
  • the rotation speed data used for the calculation is 2400min- 1 , which causes a deviation from the actual rotation speed.
  • the solid line indicates the envelope frequency vector based on the actually measured vibration data
  • the dotted line indicates the reference value.
  • each shaded area shows the frequency component and its harmonics resulting from the outer ring damage based on the rotational speed of 2400m in- 1 , and the allowable range for comparison and matching is increased corresponding to the frequency band.
  • FIG. 35 shows a case where the allowable range for comparison and collation is fixed (1 Hz) under the same conditions as in FIG.
  • the peak exceeding the reference value does not coincide with the frequency component caused by the outer ring damage, so there is a risk of determining that there is no abnormality.
  • the difference between the actual rotational speed and the rotational speed used for diagnosis is large, a large deviation occurs in the harmonic components of the generated frequency, which affects the diagnostic accuracy.
  • A, B, C tapered roller bearings with the same inner and outer diameter dimensions (bearing outer diameter: 220mm, bearing inner diameter: 120mm, bearing width: 150mm) but different internal design specifications Prepared, the outer ring raceway surface of these bearings was made defective, and the individual bearings were incorporated into the nose and the wing. Then, detected by piezoelectric Isolated acceleration sensor attached to Nono Ujingu the vibration generated when rotating the inner ring at 200 min _1, frequency analysis of the signal after amplification (Envelope analysis) and compared based on the processing flow in the sixth embodiment.
  • envelope analysis frequency analysis of the signal after amplification
  • Fig. 36 shows the result of frequency analysis after envelope processing of housing vibration when three types of bearings are rotated.
  • the solid line is the envelope frequency spectrum based on the measured vibration data
  • the dotted line shows the reference value.
  • each background pattern forming area is rotational speed 200 min _1 three types (A, B, C) lower limit frequency of the frequency component caused in the outer ring damage based on the internal specifications of the bearing of the upper limit frequency
  • A, B, C lower limit frequency of the frequency component caused in the outer ring damage based on the internal specifications of the bearing of the upper limit frequency
  • the permissible width and its harmonic width are shown, and the permissible width for comparison and matching is increased corresponding to the frequency band.
  • CL1 Allowable width ⁇ for CL1. Also, the permissible width ⁇ is set to 2 Hz, and this permissible width is set to be large corresponding to the frequency band.
  • FIG. 37 shows a case where the abnormality diagnosis of the sixth embodiment is applied to a normal bearing that is not damaged.
  • the specifications of this bearing are the same as those of bearing A.
  • FIG. 38 with a defect in the outer ring raceway surface of the tapered roller bearing, detected by piezoelectric Isolated acceleration sensor attached vibrations to Nono Ujingu occurring when rotating the inner ring 200 min _1 and 170mi n _1
  • each shaded range is the upper limit of the rotational speed fluctuation and the upper limit.
  • the tolerance for the center frequency of the frequency component due to damage to the outer ring based on the bearing internal specifications corresponding to the rotational speed limit and its harmonic width are shown, and the tolerance for comparison is increased corresponding to the frequency band. Yes.
  • This shaded area depends on the rotational speed fluctuation range, and the rotational fluctuation range is set to be large! /, So that the shaded area is widened.
  • abnormality diagnosis may be performed based on the presence / absence of components included in the shaded range.
  • the shaded range is widened, frequency components other than bearing damage components are also included, and thus the diagnostic accuracy may be deteriorated. There is. Therefore, in this test, the corresponding shaded area is divided into two areas (A, B), and the center frequency (f, f) corresponding to the area width is calculated.
  • a tolerance for the center frequency is provided.
  • tolerance ⁇ is a 2 Hz
  • the frequency of this tolerance Set a large value corresponding to the bandwidth.
  • Figure 39 shows the results of frequency analysis of the vibration of the housing when the noise enters the tapered roller bearing with a defective during rotation at 200 min _1 to the outer ring raceway surface after envelope processing.
  • the solid line shows the envelope frequency spectrum based on the measured vibration data
  • the dotted line is the reference value (effective value +6 dB in this case)
  • the alternate long and short dash line is due to the outer ring damage based on the rotational speed 200min- 1
  • the frequency components (f to f) are shown.
  • FIG. 40 shows a case where the frequency range used for calculating the reference value is the entire region with respect to the result of the frequency analysis obtained under the same conditions as in FIG. .
  • the frequency component due to the outer ring damage does not exceed the reference value, so there is a risk of determining that there is no abnormality. Therefore, from the results of FIGS. 39 and 40, it is confirmed that a highly accurate diagnosis that is hardly affected by noise is possible by calculating a range force with a limited range of measured spectrum data as a reference value used for comparison and collation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

 静止部材に対して相対的に回転或いは摺動する部品を備えた機械設備に用いられる異常診断装置は、回転或いは摺動する部品又は静止部材に固定され、振動センサ32と温度センサ33とを有する検出部31と、検出部31の出力した検出信号から部品の状態を判定する信号処理部81と、を備える。信号処理部81は、振動センサ32による計測結果と温度センサ33による計測結果との組み合わせに基づいて、部品の異常の有無、或いは異常の有無及び損傷の程度を判定する。

Description

明 細 書
異常診断装置及び異常診断方法
技術分野
[0001] 本発明は、例えば、鉄道車両の車軸やギアボックス或いは発電用風車の減速機の ような、機械設備に用いられる回転或いは摺動する部品の異常診断装置及び異常 診断方法に関し、特に、該部品の異常の有無や前兆、或いはその異常部位を特定 する異常診断装置及び異常診断方法に関する。
背景技術
[0002] 従来、鉄道車両や発電用風車等の回転部品は、一定期間使用した後に、軸受ゃ その他の回転部品について、損傷や摩耗等の異常の有無が定期的に検査される。 この定期的な検査は、回転部品が組み込まれた機械設備を分解することにより行わ れ、回転部品に発生した損傷や摩耗は、担当者の目視による検査により発見するよう にしている。そして、検査で発見される主な欠陥としては、軸受の場合、異物の嚙み 込み等によって生ずる圧痕、転がり疲れによる剥離、その他の摩耗等、歯車の場合 には、歯部の欠損や摩耗等、車輪の場合には、フラット等の摩耗があり、いずれの場 合も新品にはない凹凸や摩耗等が発見されれば、新品に交換される。
[0003] しかしながら、上記機械設備全体を分解して、担当者が目視で検査する方法では、 装置から回転部品ゃ摺動部品を取り外す分解作業や、検査済みの回転部品ゃ摺動 部品を再度装置に組込み直す組込み作業に多大な労力がかかり、装置の保守コスト に大幅な増大を招くという問題があった。
[0004] また、組立て直す際に検査前にはな力つた打痕を回転部品ゃ摺動部品につけてし まう等、検査自体が回転部品ゃ摺動部品の欠陥を生む原因となる可能性があった。 また、限られた時間内で多数の軸受を目視で検査する場合、欠陥を見落とす可能性 が残るという問題もあった。さらに、この欠陥の程度の判断も個人差があり実質的には 欠陥がなくても部品交換が行われるため、無駄なコストがかかることにもなる。
[0005] そこで、回転部品が組み込まれた機械設備を分解することなぐ実稼動状態で回転 部品の異常診断を行う様々な方法が提案されている (例えば、特許文献 1〜7参照。 ) o最も一般的なものとしては、特許文献 1に記載されるように、軸受部に加速度計を 設置し、軸受部の振動加速度を計測し、更に、この信号に FFT (高速フーリエ変換) 処理を行って振動発生周波数成分の信号を抽出して診断を行う方法が知られている
[0006] 特許文献 2に記載の装置では、鉄道車両において軸受箱に温度センサを装着し、 検出温度が基準値以上に上昇した時に異常信号を運転台に発するか、又は地上側 力 温度を計測して軸受の異常監視を行っている。また、特許文献 3に記載の装置 では、一般の機械設備において、軸受の状態を振動または温度センサで常時監視し 、各値が基準値以上に上昇した場合に、異常警報を出力したり、装置の稼動を停止 させたりする。
[0007] また、鉄道車両の車輪の転動面において、ブレーキの誤動作などによる車輪のロッ クゃ滑走によるレールとの摩擦'摩耗によって生じるフラットと呼ぶ平坦部の検出方法 としても種々提案されている(例えば、特許文献 8〜12参照。 )0特許文献 8では、振 動センサや回転測定装置等により鉄道車両車輪、及び列車が通過する線路の欠陥 状態を検出する装置にっ 、て提案して 、る。
特許文献 1 :特開 2002— 22617号公報
特許文献 2 :特開平 9 79915号公報
特許文献 3:特開平 11— 125244号公報
特許文献 4:特開 2003 - 202276号公報
特許文献 5 :欧州特許出願公開第 1338873号明細書 (特許文献 4の対応欧州特許 出願公開公報)
特許文献 6:特開 2004— 257836号公報
特許文献 7 :欧州特許出願公開第 1548419号明細書 (特許文献 6の対応欧州特許 出願公開公報)
特許文献 8:特表平 9 - 500452号公報
特許文献 9:米国特許第 5433111号明細書 (特許文献 8の対応米国特許公報) 特許文献 10:特開平 4 148839号公報
特許文献 11:特表 2003— 535755号公報 特許文献 12:国際公開第 01Z94175号パンフレット (特許文献 11の対応国際出願 公開公報)
発明の開示
発明が解決しょうとする課題
[0008] ところで、特許文献 3に記載の装置では、温度センサ及び振動センサのうちの何れ か一方のセンサしか設置されていないため、異常が検知された場合には既に回転部 品の損傷の程度が酷くなつていて継続して使用することが不可能なことが多ぐ機械 設備を緊急に停止させなければならないという問題がある。この問題は、軸受の温度 が基準値以上に上昇した力否かで異常の有無を判定している特許文献 2に記載の 装置でも同様である。
[0009] 具体的に、特許文献 3に記載の装置では、温度センサ及び振動センサのうちの何 れか一方のセンサによる信号に基づき回転部品の異常の有無を判定するため、例え ば、軸受の焼付き異常の場合、温度上昇を起こして過熱する前に異常を捉えること が困難であり、また、突発的な外乱ノイズ等の影響で誤動作が生じて異常警報を発し たりする等、安定稼動が妨げられるという問題がある。カロえて、この装置では、異常警 報が発せられて機械設備の稼動が停止しても、異常の部位の特定をすることができ ないという問題がある。
[0010] また、特許文献 3に記載の装置では、回転部品が組み込まれる装置には該回転部 品に回転駆動力を伝達するためのモータ等の回転駆動手段が装着されている。この ため、モータ駆動時に電磁音等の電気的な外乱ノイズが突発的に発生して、異常診 断に対する SN比 (信号対雑音比)が悪くなり、誤診断により異常警報を発する等、安 定稼動が妨げられるという問題がある。
[0011] 回転部品が組み込まれる装置は、使用される回転速度も低速から高速まで幅広い 領域で使用されることが多い。例えば、鉄道車両の車軸用軸受においては、輪軸試 験などで定期的に低速回転で検査することがある。この場合、軸受が組み込まれる ハウジングの剛性が高いため、例えば、軸受の軌道面に損傷があっても、その損傷 の上をころ等の転動体が通過することによる衝突力が小さぐ軸受の損傷を見逃して しまう可能性がある。一方、高速の場合には回転駆動手段など力もの音や振動等が 大きくなるため異常診断に対する SN比が悪くなり、低速時と同様に軸受の損傷を見 逃してしまう可能性がある。
[0012] また、特許文献 1に記載の異常診断方法でも、判断基準値の設定の仕方によって はノイズ等の影響で診断精度が悪くなり、誤診断により異常警報を発する等、安定稼 動が妨げられる問題がある。
[0013] さらに、特許文献 1に記載の異常診断方法では、回転速度に基づき振動発生周波 数成分を算出しているが、実際の回転速度を直接取り込むことができない場合に、算 出に用いた回転速度データが実際の回転速度とずれを生じていると、診断精度が悪 くなるという問題がある。
[0014] また、回転部品として多数の軸受を使用している機械設備では、軸受の内外径、幅 寸法が同じであれば、内部の設計寸法諸元が異なっていても使用することがある。こ の場合、軸受の設計寸法諸元が異なると軸受の異常診断に使用される設定値も異 なり、診断が複雑になる。このため、特定の部位に同じ設計寸法諸元の部品を組み 込むようにすることもあり、組み立て時の作業効率が悪くなるという問題がある。
[0015] さらに、上述したような異常診断方法では、診断結果が大量に蓄積されることになり 、この大量の診断結果に基づ 、てレポートを作成することは過度の負担となる。
[0016] また、特許文献 8に記載の欠陥状態の検出装置では、鉄道車両で異常振動を示す 欠陥状態が車輪のフラットによるもの力、車軸軸受によるの力、あるいは線路又は他 の異常によるものなのかを識別できな 、と 、う問題がある。
[0017] 本発明は、上述した事情に鑑みてなされたものであり、その目的は回転或いは摺 動する部品が組み込まれて ヽる機械設備を分解することなく実稼動状態で、診断精 度を確保しながら回転或いは摺動する部品の異常を診断する異常診断装置及び異 常診断方法を提供することにある。
[0018] 特に、本発明の第 1の目的は、回転或いは摺動する部品が組み込まれている機械 設備を分解することなく実稼動状態で部品の異常の有無と損傷の程度を同時に診断 することができると共に、突発的な外乱ノイズ等の影響による誤診断を防止して高 SN 比で信頼性の高い異常診断を行うことができる異常診断装置を提供することにある。
[0019] 本発明の第 2の目的は、実際の回転速度を直接取り込むことができない場合でも、 診断精度を確保しつつ、異常の有無や異常の部位を特定することができる異常診断 装置及び異常診断方法を提供することにある。
本発明の第 3の目的は、設計寸法諸元が互いに異なる複数の回転部品が任意の 部位に組み込まれても異常の有無や異常の部位を特定することができる異常診断装 置を提供することにある。
[0020] 本発明の第 4の目的は、診断結果のレポート作成の負担を軽減することができる異 常診断装置及び異常診断方法を提供することにある。
[0021] 本発明の第 5の目的は、鉄道車両における車輪のフラット等の部品の異常が発生 している状態を正確に検出して、その車輪を特定することができる異常診断装置及 び異常診断方法を提供することにある。
課題を解決するための手段
[0022] 本発明の目的は、下記の構成により達成される。
(1) 静止部材に対して相対的に回転或いは摺動する部品を備えた機械設備に用 V、られる異常診断装置であって、
回転或いは摺動する部品又は静止部材に固定され、振動センサ、音響センサ、超 音波センサ及び AEセンサの少なくとも一つの振動系センサと温度センサとを有する 検出部と、
検出部の出力した電気信号力 部品の状態を判定する信号処理部と、 を備え、
信号処理部は、振動系センサによる計測結果と温度センサによる計測結果との組 み合わせに基づいて、部品の異常の有無、或いは異常の有無及び損傷の程度を判 定することを特徴とする異常診断装置。
(2) 振動系センサ及び温度センサによる計測値又は計測値の時間に対する変化 率が少なくとも一回求められ、
信号処理部は、計測値又は変化率と予め設定してぉ 、た各規定値とを比較するこ とにより、部品の異常の有無、或いは異常の有無及び損傷の程度を判定する異常判 定部を有することを特徴とする(1)に記載の異常診断装置。
(3) 静止部材に対して相対的に回転或いは摺動する部品を備えた機械設備に用 V、られる異常診断装置であって、
回転或いは摺動する部品を駆動する駆動装置と、
部品又は静止部材に固定され、振動センサ、音響センサ、超音波センサ及び AE センサの少なくとも一つの振動系センサと温度センサの少なくとも一つを有する検出 部と、
駆動装置の非通電時における部品の所定の速度領域内での慣性移動時に、検出 部による振動又は温度の検出信号に基づいて部品の異常を診断することを特徴とす る異常診断装置。
(4) 静止部材に対して相対的に回転する部品を備えた機械設備に用いられる異 常診断装置であって、
部品を回転駆動する駆動装置と、
部品又は静止部材に固定され、振動センサ、音響センサ、超音波センサ及び AE センサの少なくとも一つの振動系センサと温度センサの少なくとも一つを有する検出 部とを備え、
部品が lOOmin—1以上 1500min_1以下の回転速度領域内で回転する時、検出部 による振動又は温度の検出信号に基づいて部品の異常を診断することを特徴とする 異常診断装置。
(5) 駆動装置の非通電時における部品の回転速度領域内での慣性回転時に、 検出部による振動又は温度の検出信号に基づいて部品の異常を診断することを特 徴とする (4)に記載の異常診断装置。
(6) 駆動装置は通電及び非通電を繰り返して用いられると共に、駆動装置の非通 電時に部品が慣性移動可能であることを特徴とする(3)又は (5)に記載の異常診断 装置。
(7) 駆動装置の非通電時の部品の慣性移動状態を駆動装置の OFF信号に基づ
V、て検出することを特徴とする (3) , (5)及び (6)の 、ずれかに記載の異常診断装置
(8) 駆動装置の回転速度を検出する回転速度センサを備え、回転速度センサに よる回転速度の検出信号とセンサによる振動又は温度の検出信号とを連動して部品 の異常を診断することを特徴とする(3)〜(7)の ヽずれかに記載の異常診断装置。
(9) 信号処理部は、回転速度信号に基づき算出した部品の損傷に起因した周波 数成分と振動系センサにより検出された信号に基づく実測データの周波数成分とを 比較する比較照合部と、比較照合部での比較結果に基づき、部品の異常の有無の 判定や損傷部位を特定する異常判定部とを備えて 、ることを特徴とする(1)〜 (8)の いずれかに記載の異常診断装置。
(10) 信号処理部は、振動系センサにより検出された信号波形から不要な周波数 帯域を除去するフィルタ処理部と、フィルタ処理部から転送されたフィルタ処理後の 波形の絶対値を検波するエンベロープ処理部と、エンベロープ処理部力 転送され た波形の周波数を分析する周波数分析部と、を備えていることを特徴とする (9)に記 載の異常診断装置。
(11) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断装置であって、
機械設備から発生する信号を電気信号として出力する少なくとも一つの検出部と、 電気信号の波形の周波数分析を行!ヽ、周波数分析で得られたスペクトルに基づき 算出した基準値より大きい該スペクトルのピークを抽出し、ピーク間の周波数と回転 速度信号或いは移動速度信号に基づき算出した部品の損傷に起因する周波数成 分とを比較照合し、その照合結果に基づき部品の異常の有無及び異常部位を判定 する信号処理部と、
を備えたことを特徴とする異常診断装置。
(12) 信号処理部は、検出された信号に増幅処理とフィルタ処理の少なくとも一方 を施し、その処理された波形にエンベロープ処理を行うことを特徴とする(11)に記載 の異常診断装置。
(13) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断装置であって、
機械設備から発生する信号を電気信号として出力する少なくとも一つの検出部と、 電気信号の単位時間当たりの波形が閾値を越えた衝撃波の頻度と、回転速度信 号或いは移動速度信号に基づき、部品の異常の有無及び異常部位を判定する信号 処理部と、
を備えたことを特徴とする異常診断装置。
(14) 信号処理部は、電気信号の波形をフィルタ処理し、全波整流波形に変換し た波形に対して、閾値を越えるたびに、回転速度信号に応じた所定の時間、閾値を 越える値に保持するように変換した波形を構成し、波形が所定の回転数あたりに閾 値を越える回数によって部品に異常を生じた可能性を知らせることを特徴とする(13 )に記載の異常診断装置。
(15) 信号処理部は、閾値を保持するように変換した波形が所定の回転数あたり に閾値を越える回数によって部品に異常を生じた可能性の真偽を、複数回の統計的 判断で判断することを特徴とする(14)に記載の異常診断装置。
(16) 信号処理部は、部品の回転速度が略一定の場合に実行されることを特徴と する(11)〜(15)のいずれかに記載の異常診断装置。
(17) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断装置であって、
機械設備から発生する信号を電気信号として出力する少なくとも一つの検出部と、 電気信号の波形の周波数分析を行!ヽ、周波数分析で得られた実測スペクトルデー タの周波数成分と部品に起因した周波数成分とを可変な許容幅を持って比較照合し 、その照合結果に基づき部品の異常の有無及び異常部位を判定する信号処理部と を備えることを特徴とする異常診断装置。
(18) 回転部品を備えた機械設備に用いられる異常診断装置であって、 機械設備から発生する信号を電気信号として出力する少なくとも一つの検出部と、 電気信号の波形の周波数分析を行!ヽ、周波数分析で得られた実測スペクトルデー タの周波数成分と回転部品に起因した周波数成分とを許容幅を持って比較照合し、 その照合結果に基づき回転部品の異常の有無及び異常部位を判定する信号処理 部と、
を備える異常診断装置であって、
許容幅は、回転部品の回転速度と回転部品の設計寸法諸元とから算出される上限 値と下限値を有する領域を少なくとも一つの領域に分割し、各分割領域の中心値を 求め、中心値に対して与えられる任意の大きさの少なくとも一つの許容幅であり、 信号処理部は、実測スペクトルデータの周波数成分と回転部品に起因した周波数 成分とを、少なくとも一つの許容幅毎に比較照合することを特徴とする異常診断装置
(19) 許容幅は、回転部品が互いに異なる設計寸法諸元を有する複数の回転部 品を備える場合と、回転部品の回転速度が変動した場合の少なくとも一方において、 与えられることを特徴とする(18)に記載の異常診断装置。
(20) 許容幅は、周波数成分が高調波成分となるにつれて大きくなることを特徴と する(17)〜(19)のいずれかに記載の異常診断装置。
(21) 許容幅は、周波数成分の周波数帯域に応じて増減することを特徴とする(1 7)から(20)の 、ずれかに記載の異常診断装置。
(22) 許容幅は、回転速度に応じて増減することを特徴とする(17)または(18)に 記載の異常診断装置。
(23) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断装置であって、
機械設備から発生する信号を電気信号として出力する少なくとも一つの検出部と、 電気信号の波形の周波数分析を行!ヽ、周波数分析で得られた実測スペクトルデー タの周波数成分と前記部品に起因した周波数成分とを比較照合し、その照合結果に 基づき部品の異常の有無及び異常部位を判定する信号処理部と、を備え、
比較照合に用いられる基準値は、実測スペクトルデータの限定した周波数範囲に 基づいて算出されることを特徴とする異常診断装置。
(24) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断装置であって、
機械設備から発生する信号を電気信号として出力する少なくとも一つの検出部と、 電気信号の波形の周波数分析を行!ヽ、周波数分析で得られた実測スペクトルデー タの周波数成分と部品に起因した周波数成分とを比較照合し、その照合結果に基づ き部品の異常の有無及び異常部位を判定する信号処理部と、 信号処理部にて診断された診断結果を記憶する記憶部と、 診断結果を所定の形式で出力する出力部と、
出力部によって出力される出力結果を、少なくとも一つのプログラムに基づいてレポ ートを作成するレポート作成部と、
を備えることを特徴とする異常診断装置。
(25) 検出部は、機械設備から発生する振動を検出するセンサに加えて、機械設 備の温度を検出する温度センサと回転部品の回転速度を検出する回転速度センサ との少なくとも一方が単一の筐体内に収容される一体型センサを有していることを特 徴とする(11)〜(24)の 、ずれかに記載の異常診断装置。
(26) 機械設備は、回転部品である軸受及び該軸受を固定する軸受箱を備え、 一体型センサは、軸受箱の平坦部に固定されることを特徴とする(25)に記載の異 常診断装置。
(27) 信号処理部による判定結果を伝送するデータ伝送手段を有することを特徴 とする(1)〜(26)の 、ずれかに記載の異常診断装置。
(28) 信号処理部による処理、及び判定結果を制御系に出力する処理を行なうマ イク口コンピュータを具備したことを特徴とする(1)〜(27)の 、ずれかに記載の異常 診断装置。
(29) 機械設備は鉄道車両用軸受装置であることを特徴とする(1)〜(28)の ヽず れかに記載の異常診断装置。
(30) 機械設備は風車用軸受装置であることを特徴とする(1)〜(28)の 、ずれか に記載の異常診断装置。
(31) 機械設備は工作機械主軸用軸受装置であることを特徴とする(1)〜 (28)の いずれかに記載の異常診断装置。
(32) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断方法であって、
機械設備から発生する信号を検出して電気信号として出力する工程と、 検出された信号の波形の周波数を分析する工程と、
分析工程で得られたスペクトルに基づき算出した基準値より大きい該スペクトルのピ ークを抽出し、ピーク間の周波数と回転速度信号或いは移動速度信号に基づき算出 した部品の損傷に起因する周波数成分とを比較照合する工程と、
比較工程での照合結果に基づき部品の異常の有無及び異常部位を判定する工程 と、
を備えることを特徴とする異常診断方法。
(33) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断方法であって、
機械設備から発生する信号を検出して電気信号として出力する工程と、 電気信号の単位時間当たりの波形が閾値を越えた衝撃波の頻度と、回転速度信 号或いは移動速度信号に基づき、部品の異常の有無を検出する工程と、 を備えたことを特徴とする異常診断方法。
(34) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断方法であって、
機械設備から発生する信号を検出して電気信号として出力する工程と、 検出された信号の波形の周波数を分析する工程と、
分析工程で得られた実測スペクトルデータの周波数成分と部品に起因した周波数 成分とを可変な許容幅を持って比較照合する工程と、
比較工程での照合結果に基づき部品の異常の有無及び異常部位を判定する工程 と、を備えることを特徴とする異常診断方法。
(35) 回転部品を備えた機械設備に用いられる異常診断方法であって、 機械設備から発生する信号を検出して電気信号として出力する工程と、 検出された信号の波形の周波数を分析する工程と、
回転部品に起因した周波数成分に対して、回転部品の回転速度と回転部品の設 計寸法諸元とから算出される上限値と下限値を有する領域を少なくとも一つの領域 に分割し、各分割領域の中心値を求め、中心値に対して与えられる任意の大きさを 持った少なくとも一つの許容幅を設定する工程と、
周波数分析で得られた実測スペクトルデータの周波数成分と回転部品に起因した 周波数成分とを少なくとも一つの許容幅毎に比較照合する工程と、 比較工程での照合結果に基づき回転部品の異常の有無及び異常部位を判定する 工程と、
を備えることを特徴とする異常診断方法。
(36) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断方法であって、
機械設備から発生する信号を検出して電気信号として出力する工程と、 検出された信号の波形の周波数を分析する工程と、
分析工程で得られた実測スペクトルデータの周波数成分と部品に起因した周波数 成分とを比較照合する工程と、
比較工程での照合結果に基づき部品の異常の有無及び異常部位を判定する工程 と、
を備え、
比較照合に用いられる基準値は、実測スペクトルデータの限定した周波数範囲に 基づいて算出されることを特徴とする異常診断方法。
(37) 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる 異常診断方法であって、
機械設備から発生する信号を検出して電気信号として出力する工程と、 検出された信号の波形の周波数を分析する工程と、
分析工程で得られた実測スペクトルデータの周波数成分と部品に起因した周波数 成分とを比較照合する工程と、
比較工程での照合結果に基づき部品の異常の有無及び異常部位を判定する工程 と、
分析、比較、判定工程の少なくとも一つにて得られる診断結果を記憶する工程と、 診断結果を所定の形式で出力する工程と、
出力工程によって出力される出力結果を、少なくとも一つのプログラムに基づいて レポートを作成する工程と、
を備えることを特徴とする異常診断方法。
発明の効果 [0023] (1)の発明によれば、回転部品の回転状態或いは摺動部品の摺動状態に伴う振 動及び温度の情報を同時に検出し、振動系センサによる計測結果と温度センサによ る計測結果との組み合わせに基づいて、異常の有無と損傷の程度を同時に判定す るので、振動と温度に関する回転或いは摺動部品の異常形態の特徴を利用した損 傷の程度の判定が可能となる。また、突発的な外乱ノイズ等の影響による誤診断を防 止して信頼性の高い異常診断を行うことができる。更に、回転或いは摺動する部品が 組み込まれている機械設備を分解することなく実稼動状態で回転部品の異常の有無 と損傷の程度を同時に検査することができ、回転部品の最適な交換時期が分かり、 効率的なメンテナンスを可能にすることができる。
[0024] (3)の発明によれば、駆動装置の非通電時における回転或いは摺動する部品の所 定の速度領域内での慣性運転時に、センサによる振動又は温度の検出信号に基づ V、て部品の異常を診断するようにして!/、るので、回転或 、は摺動する部品が組み込 まれている機械設備を分解することなく実稼動状態で部品の異常を診断することが できると共に、駆動装置の電気的な外乱ノイズを抑制することにより、高感度で高 SN 比 (信号対雑音比)での信号の検出が可能となり、信頼性の高い異常診断を行うこと ができる。
[0025] また、(4)の発明によれば、回転部品が lOOmin—1以上 1500min_1以下の回転速 度領域内で回転する時、センサによる振動又は温度の検出信号に基づいて回転部 品の異常を診断するようにしているので、回転部品が組み込まれている機械設備を 分解することなく実稼動状態で回転部品の異常を診断することができると共に、軸受 の剥離や車輪のフラット摩耗等の損傷による加振力を高 SN比で検出可能となり、信 頼性の高!、異常診断を行うことができる。
[0026] (11)及び(32)の発明によれば、周波数分析で得られたスペクトルに基づき算出し た基準値より大きいスペクトルのピークを抽出し、ピーク間の周波数と回転速度信号 或いは移動速度信号に基づき算出した回転或いは摺動する部品の損傷に起因する 周波数成分とを比較照合し、その照合結果に基づき該部品の異常の有無及び異常 部位を判定するので、実際の回転速度を直接取り込むことができないような場合に、 算出に用いた回転速度データが実際の回転速度とずれを生じているとしても、異常 の有無や異常部位の特定を精度良く行うことができる。また、簡単な構成で回転或い は摺動する部品が組み込まれている機械設備を分解することなぐ異常の有無と異 常の部位を特定することができ、装置の分解や組立にかかる手間を軽減できると共 に、分解や組立に伴う該部品への損傷を防止することができる。
[0027] また、(13)及び (33)の発明によれば、機械設備から発生する信号から出力された 電気信号の単位時間当たりの波形が閾値を越えた衝撃波の頻度と、回転速度信号 或いは移動速度信号に基づき、部品の異常の有無及び異常部位を判定するので、 鉄道車両における車輪のフラット等の部品の異常が発生している状態を正確に検出 して、その車輪を特定することができる。
[0028] (17)及び(34)の発明によれば、周波数分析で得られた実測スペクトルデータの周 波数成分と回転或いは摺動する部品に起因した周波数成分とを可変な許容幅を持 つて比較照合し、その照合結果に基づき部品の異常の有無及び異常部位を判定す るようにしたので、実際の回転速度を直接取り込むことができないような場合に、算出 に用いた回転速度データが実際の回転速度とずれを生じて!/、るとしても、異常の有 無や異常部位の特定を精度良く行うことができる。また、簡単な構成で回転或いは摺 動する部品が組み込まれている機械設備を分解することなぐ異常の有無と異常の 部位を特定することができ、装置の分解や組立にかかる手間を軽減できると共に、分 解や組立に伴う該部品への損傷を防止することができる。
[0029] また、(18)及び(35)の発明によれば、回転部品の回転速度と回転部品の設計寸 法諸元とから算出される上限値と下限値を有する領域を少なくとも一つの領域に分 割し、該各分割領域の中心値を求め、中心値に対して与えられる任意の大きさの少 なくとも一つの許容幅を持って比較照合するので、設計寸法諸元が互いに異なる複 数の回転部品が任意の部位に組み込まれる場合や回転部品の回転速度が変動し た場合でも異常の有無や異常の部位を特定することができる。
[0030] (23)及び(36)の発明によれば、実測スペクトルデータの周波数成分と回転或!、 は摺動する部品に起因した周波数成分とを比較照合する際、比較照合に用いられる 基準値は、実測スペクトルデータの限定した周波数範囲に基づいて算出されるように したので、ノイズの影響を受け難くして診断精度を上げることができ、異常の有無及 び異常部位を特定することができる。また、簡単な構成で回転或いは摺動する部品 が組み込まれている機械設備を分解することなぐ異常の有無と異常の部位を特定 することができ、装置の分解や組立にカゝかる手間を軽減できると共に、分解や組立に 伴う該部品への損傷を防止することができる。
[0031] さらに、(24)及び(37)の発明によれば、異常の有無、異常の部位、診断時のスぺ タトル波形 (実測スペクトルデータ)のような診断結果を所定の形式で出力し、この出 力結果を少なくとも一つのプログラムに基づいてレポートを作成するので、診断結果 に基づくレポートの作成作業が容易となる。 図面の簡単な説明
[0032] [図 1]本発明の第 1実施形態に係る診断対象を複列円すいころ軸受を備えた鉄道車 両用転がり軸受装置とした異常診断装置の概略図である。
[図 2]異常診断装置の信号処理系統のブロック図である。
[図 3]軸受の焼付き異常発生時の振動値の経時変化を示すグラフである。
[図 4]軸受の焼付き異常発生時の外輪外周面の温度の経時変化を示すグラフである
[図 5]転がり軸受の傷の部位と、傷に起因して発生する振動発生周波数との関係を示 す図である。
[図 6]歯車の嚙み合いで発生する異常振動周波数の関係式を説明するための図で ある。
[図 7]本発明の第 2実施形態に係る異常診断装置の信号処理系統のブロック図であ る。
[図 8]第 2実施形態に係る回転状態判定部の処理フローを示すフローチャートである
[図 9]本発明の第 3実施形態に係る異常診断装置の回転状態判定部の処理フローを 示すフローチャートである。
[図 10]本発明の第 4実施形態に係る異常診断装置の概略図である。
[図 11]図 10の信号処理部のブロック図である。
[図 12]本発明の第 4実施形態に係る異常診断方法の処理フローを示すフローチヤ一 トである。
圆 13]本発明の第 5実施形態に係る異常診断方法の処理フローを示すフローチヤ一 トである。
圆 14]本発明の第 6実施形態に係る異常診断方法の処理フローを示すフローチヤ一 トである。
[図 15]本発明の第 7実施形態に係る異常診断装置の概略図である。
圆 16]本発明の第 7実施形態に係る異常診断方法の処理フローを示すフローチヤ一 トである。
[図 17]本発明の第 8実施形態に係る異常診断装置の概略図である。
[図 18]異常診断装置の検出部が組み込まれた機械設備である鉄道車両用軸受装置 の断面図である。
圆 19]本発明の第 8実施形態と第 7実施形態が組み合わされた異常診断装置の概 略図である。
[図 20]本発明の第 9実施形態に係る異常診断装置の概略図である。
[図 21]図 20に示す異常診断モジュールのブロック図である。
[図 22]図 20に示す異常診断モジュールの処理フローを示すフローチャートである。 圆 23]本発明の第 9実施形態の異常診断の処理波形を説明するための図である。 圆 24]本発明の第 10実施形態に係る異常診断モジュールのブロック図である。 圆 25]図 24に示す異常診断モジュールの誤動作の説明図である。
圆 26]本発明の第 11実施形態に係る異常診断モジュールのブロック図である。
[図 27]図 26に示すデジタル処理部の処理波形を示す図である。
圆 28]本発明の第 2実施形態に係る試験 2のモータ非通電時の振動センサによる振 動波形を示すグラフである。
圆 29]第 2実施形態に係る試験 2のモータ通電時の振動センサによる振動波形を示 すグラフである。
圆 30]本発明の第 3実施形態に係る試験 3の回転速度を変化させた時のハウジング の振動を周波数分析したグラフである。
圆 31]本発明の第 4実施形態に係る試験 4の実施例 3の異常診断を説明するための 図である。
圆 32]第 4実施形態に係る試験 4の実施例 4の異常診断を説明するための図である。 圆 33]第 4実施形態に係る試験 4の実施例 5の異常診断を説明するための図である。 圆 34]本発明の第 5実施形態に係る試験 5の異常診断を説明するための図である。 圆 35]第 5実施形態に係る試験 5における従来の異常診断を説明するための図であ る。
圆 36]本発明の第 6実施形態に係る試験 6の異常診断を説明するための図である。 圆 37]第 6実施形態に係る試験 6の異常診断を説明するための他の図である。
圆 38]第 6実施形態に係る試験 7の異常診断を説明するための図である。
圆 39]本発明の第 7実施形態に係る試験 8の異常診断を説明するための図である。 圆 40]第 7実施形態に係る試験 8における従来の異常診断を説明するための図であ る。
符号の説明
10 転がり軸受装置 (機械設備)
11 複列円すいころ軸受(回転部品)
12 軸受箱 (静止部材)
31, 70 検出部
32 振動センサ (振動系センサ)
33 温度センサ
35 フィルタ処理部
37 エンベロープ処理部
38 周波数分析部
39 比較照合部
42 異常判定部
52 回転状態判定部
60, 120 機械設備
62 転がり軸受(回転部品)
72 センサ 80 制御器
81, 82 信号処理部
84 制御部
90 出力装置
93 モニタ
94 警報機
95 レポート作成部
96 記憶部
97 データ出力部
100 データ蓄積分配部
102 回転分析部
104 フィルタ処理部
106 振動分析部
108 比較判定部
110 内部データ保存部
200 鉄道車両 (機械設備)
201 振動センサ
202、 220、 230 異常診断モジュール 203 通信回線
204 車輪 (回転或いは摺動する部品)
205 デジタル処理モジュール
206 回転速度センサ
207、 236 LPF
208 ADC
209 波形整形回路
210 TCNT
211 CPU
212 通信プロトコル IP 214 ラインドライノ
215 エンベロープ回路
216、 235 HPF
217 全波整流回路
218 ピークホーノレド
219、 231 デジタル処理部
232 エンベロープ処理
233 ヒルベルト変換
234 振幅復調
237 閾値カウント
238 診断部
発明を実施するための最良の形態
[0034] 以下、本発明の各実施形態に係る異常診断装置及び異常診断方法について、図 面を参照して詳細に説明する。
[0035] (第 1実施形態)
まず、図 1〜図 6を参照して、本発明の第 1実施形態に係る異常診断装置について 説明する。
図 1に示されるように、異常診断装置が適用される機械設備である鉄道車両用の転 力 ^軸受装置 10は、回転部品である複列円すいころ軸受 11と、鉄道車両用台車の 一部を構成する静止部材である軸受箱 12とを備える。また、異常診断装置は、転が り軸受装置 10から発生する信号を検出する検出部 31と、検出部 31の出力した電気 信号から複列円すいころ軸受 11の異常等の状態を判定するための信号処理部 81 及び転がり軸受装置 10を駆動制御する制御部 84とを備えた制御器 80と、モニタ 93 や警報機 94等の出力装置 90とを備える。
[0036] 複列円すいころ軸受 11は、駆動装置である駆動モータ 13aにより回転駆動される 回転軸である鉄道車両の車軸 13を回転可能に支持しており、外周面に円すい外面 状に傾斜した内輪軌道面 15, 15を有する一対の内輪 14, 14と、内周面に円すい内 面状に傾斜した一対の外輪軌道面 17, 17を有する単一の外輪 16と、内輪 14, 14 の内輪軌道面 15, 15と外輪 16の外輪軌道面 17, 17との間に複列で複数配置され た転動体である円すいころ 18, 18と、円すいころ 18, 18を転動自在に保持する環状 の打ち抜き保持器 19, 19と、外輪 16の軸方向の両端部にそれぞれ装着された一対 のシール部材 20, 20とを備える。なお、駆動モータ 13aは通電(ON)及び非通電(O FF)を繰り返して用いられると共に、駆動モータ 13aの非通電時には複列円すいころ 軸受 11が車軸 13と共に慣性回転する。
[0037] 軸受箱 12は、鉄道車両用台車の側枠を構成するハウジング 21を備えており、この ハウジング 21は外輪 16の外周面を覆うように円筒状に形成されている。また、ハウジ ング 21の軸方向の前端部側には前蓋 22が配置され、ハウジング 21の軸方向の後端 部側には後蓋 23が配置されている。
[0038] 一対の内輪 14, 14の間には、内輪間座 24が配置されている。一対の内輪 14, 14 及び内輪間座 24には車軸 13が圧入されており、外輪 16はハウジング 21に嵌合され ている。複列円すいころ軸受 11には、種々部材の重量等によるラジアル荷重と任意 のアキシアル荷重とが負荷されており、外輪 16の周方向の上側部が負荷圏になって いる。ここで、負荷圏とは、転動体に対して荷重が負荷される領域をいう。
[0039] 車軸 13の前端部側に配置された一方のシール部材 20は、外輪 16の外側端部と 前蓋 22との間に組み付けられ、後端部側に配置された他方のシール部材 20は、外 輪 16の外側端部と後蓋 23との間に組み付けられている。
[0040] ハウジング 21の外周部の複列円す 、ころ軸受 11の軸方向の略中央部位置には径 方向に貫通する貫通穴 26が形成され、この貫通穴 26には異常診断装置の一部を 構成する検出部 31が単一の筐体 27に収容された状態で固定されている。
[0041] 検出部 31は、振動センサ、 AE (acoustic emission)センサ、音響センサ、超音波セ ンサの少なくとも 1つの振動を検出可能な振動系センサと温度センサとを一体に筐体 27内に収納固定した複合一体型センサである。なお、図 1の検出部 31は、振動セン サ 32と温度センサ 33を備える。
[0042] 振動センサ 32は、圧電素子等の振動測定素子であり、複列円すいころ軸受 11の 内外輪軌道面 15, 15, 17, 17の剥離や、歯車の欠損、車輪のフラット摩耗等を検出 するのに用いられる。なお、振動センサ 32は、加速度、速度或いは変位型等、振動 を電気信号ィ匕できるものであればよぐノイズが多いような機械設備に取付ける際に は、絶縁型を使用する方がノイズの影響を受けることがないので好ましい。また、音響 センサは、車軸部等から発生する音を音波として集音して、電気信号化できるマイク 口ホンを用いてもよぐマイクロホンは指向性を有した方が集音により好適である。
[0043] 温度センサ 33は、サーミスタ温度測定素子や白金測温抵抗体や熱電対等の非接 触タイプの温度測定素子であり、筐体 27内で外輪 16の外周面近傍に配置されてい る。また、温度センサ 33としては、雰囲気温度が規定値を越えると、バイメタルの接点 が離れたり、接点が溶断したりすることで導通しなくなる温度ヒューズを用いることがで きる。その場合、転がり軸受装置 10の温度が規定値を超えたとき、温度ヒューズの導 通が遮断されることによって温度異常が検出される。
[0044] また、検出部 31は、複列円すいころ軸受 11の非回転側軌道輪に嵌合している軸 受箱 12のラジアル荷重の負荷圏領域に取り付けている。このため、例えば、軸受軌 道面に損傷が発生した場合、その損傷部を転動体が通過する際に生じる衝突力は 無負荷圏よりも負荷圏の方が大きぐ軸受負荷圏側の方が感度良く異常振動を検出 することができる。
なお、検出部 31は、複列円すぃ軸受 11のような転がり軸受の他に、機械設備の構 成に応じて、歯車や車輪 (共に図示せず)の振動及び温度を検出することができる。
[0045] また、本実施形態では、複列円すいころ軸受 11の回転速度を検出するエンコーダ 等の回転速度センサ 40 (図 2参照)が設けられている。
[0046] 信号処理部 81は、図 2に示すように、振動センサ 32による振動信号を増幅後に振 動計測値分析部 50を介して異常判定部 42に出力すると同時に、温度センサ 33によ る温度信号を増幅後に温度計測値分析部 51を介して異常判定部 42に出力し、異 常判定部 42が振動と温度の各計測値又は時間に対する各変化率の組合せに基づ いて、複列円すいころ軸受 11の異常の有無及び損傷の程度を判定する。ここで、各 計測値は、任意の時間における実効値でもピーク値でもよ 、。
[0047] 即ち、軸受軌道面に剥離損傷が発生した場合には、その損傷部を転動体が通過 するごとに衝撃が生じるため振動値の変化が大きくなるが、その前兆または直後では 温度はほとんど変化しない。一方、軸受に焼付き異常が生じると、その前兆として計 測時間に対する振動と温度の変化が大きくなるという特徴がある。このように、本実施 形態では、異常の種類によって振動と温度の変化の仕方が異なるという回転部品の 異常形態の特徴を利用したものであり、振動と温度の各計測値又は時間に対する各 変化率を組み合わせることにより、複列円すいころ軸受 11の異常の有無及び損傷の 程度を判定することができる。
[0048] 図 3は、軸受に焼付き異常が生じるまでの振動の経時変化を示し、図 4は、軸受に 焼付き異常が生じるまでの温度の経時変化を示す。
[0049] 図 3及び図 4より、軸受に焼付きが発生する前兆として、 A点力 振動が急激に増加 しているが、温度変化はほとんどない。その後、 B点力も振動がさらに増加し、この時 点から温度が上昇している。振動はさらに増加後、 C点で焼付きが生じ、焼付き後の 温度はさらに上昇して過熱して 、ることがわ力る。
[0050] 従って、図 3及び図 4に示した計測結果に基づき、 A, B, C点における振動と温度 の計測値又は時間に対する変化率を求め、これらの値を予め設定しておいた規定値 と比較することにより複列円すいころ軸受 11の異常の有無及び損傷の程度を判定す る。
[0051] 更に、本実施形態では、振動センサ 32による振動の情報について、振動波形にフ ィルタ処理後、エンベロープ処理を施して周波数分析を行い、軸受の傷等の損傷の 有無の判定及び損傷部位の特定を行えるようにして異常診断の信頼性を確実なもの としている。
[0052] 即ち、図 2に示すように、振動センサ 32が発生した振動信号は、有線または無線の 信号伝送手段 34を介して増幅及び AZD変換後にフィルタ部 35に転送される。フィ ルタ部 35は、固有振動数記憶部 36に記憶された、複列円すいころ軸受 11の固有振 動数に基づいて、振動信号からその固有振動数に対応する所定の周波数帯域のみ を抽出する。なお、振動信号の増幅及び AZD変換は、伝送前に行なわれてもよぐ 増幅、 AZD変換の順序は逆であってもよい。
[0053] この固有振動数は、複列円すいころ軸受 11を被測定物として、打撃法により加振し 、被測定物に取付けた振動検出器又は打撃により発生した音響を周波数分析するこ とにより容易に求めることができる。なお、被測定物が複列円すいころ軸受の場合に は、内輪、外輪、転動体、保持器等のいずれかに起因する固有振動数が与えられる 。一般的に、機械部品の固有振動数は複数存在し、また固有振動数での振幅レべ ルは高くなるため測定の感度がょ 、。
[0054] その後、エンベロープ処理部 37では、フィルタ部 35にて抽出された所定の周波数 帯域に対して、波形の絶対値を検波する絶対値検波処理が行われる。さらに、周波 数分析部 38で波形の周波数の分析処理が行われ、実測値データが比較照合部 39 へ転送される。
[0055] 一方、理論周波数計算部 41において、回転速度センサ 40からの回転速度情報に 基づき算出された、軸受の剥離、歯車の欠損、車輪のフラット等、回転部品の損傷に 起因した周波数の計算値データが比較照合部 39に転送される。なお、回転部品が 転がり軸受の場合には、計算値データは、図 5に示されるような、内輪、外輪、転動体 、保持器の損傷に起因した周波数データとなる。また、回転部品が歯車の場合には 、図 6に示されるような、傷に起因する周波数データとなる。
[0056] そして、比較照合部 39で実測値データと計算値データとが比較照合され、異常判 定部 42にて異常の有無、異常部位の特定、損傷の程度の判定が行われる。出力装 置 90は、複列円すいころ軸受 11の異常の有無、損傷の程度、異常部位の特定等の 判定結果を出力し、異常が検出された場合にはアラーム等の警報を発したり、判定 結果を記憶部に取り込む。ここで、異常判定部 42から出力装置 90への情報転送は 、有線や無線等のデータ伝送手段 92によって行われる。また、この判定結果を、転 力 Sり軸受装置 10の駆動機構の動作を制御する制御部 84へ出力し、この判定結果に 応じた制御信号をフィードバックするようにしてもょ ヽ。
[0057] なお、増幅後の振動信号処理は、各種データ処理と演算を行うもので、例えば、コ ンピュータ或いは専用マイクロチップ等を用いることが可能である。また、検出した信 号をメモリ等の記憶手段に格納後に、演算処理を行うようにしても良 ヽ。
[0058] このように本実施形態では、回転部品である複列円すいころ軸受 11の回転状態に 伴う振動及び温度の情報を同時に検出し、振動センサ、音響センサ、超音波センサ 、或いは、 AEセンサ等の振動系センサによる計測結果と温度センサによる計測結果 との組み合わせに基づいて、異常の有無と損傷の程度を同時に判定するので、振動 と温度に関する複列円すいころ軸受 11の異常形態の特徴を利用した損傷の程度の 判定が可能となる。また、突発的な外乱ノイズ等の影響による誤診断を防止して信頼 性の高い異常診断を行うことができる。更に、複列円すいころ軸受 11が組み込まれ ている鉄道車両用転がり軸受装置 10を分解することなく実稼動状態で複列円すいこ ろ軸受 11の異常の有無と損傷の程度を同時に検査することができ、この結果、複列 円す 、ころ軸受 11の最適な交換時期が分かり、効率的なメンテナンスを可能にする ことができる。特に、本発明では、振動と温度の計測値または変化率を組み合わせる ことで異常の有無を複数回診断して判定して 、る。
[0059] また、振動の情報については、回転速度信号に基づき算出した複列円すいころ軸 受 11の損傷に起因した周波数成分と振動センサ 32により検出された信号の振動波 形にフィルタ処理及びエンベロープ処理を施して得られた実測データの周波数成分 とを比較することにより、複列円すいころ軸受 11の異常の有無の判定や損傷部位を 特定することもでき、異常診断の信頼性をより確実なものとすることができる。
[0060] (第 2実施形態)
次に、本発明の第 2実施形態に係る異常診断装置について、図 7及び図 8を参照し て詳細に説明する。なお、第 1実施形態と同等部分については、同一符号を付して 説明を省略或いは簡略化する。
[0061] 本実施形態では、信号処理部 81は、駆動モータ 13a (図 1参照)の非通電時にお ける複列円すいころ軸受 11の所定の回転速度領域内での慣性回転状態を回転速 度センサ 40及び駆動モータ 13aの OFF信号に基づいて検出し、該検出時に、振動 センサ 32及び温度センサ 33による検出信号に基づ 、て複列円す!/、ころ軸受 11の 異常を診断する。
[0062] まず、図 7に示すように、振動センサ 32が発生した振動信号、温度センサ 33が発生 した温度信号は、信号伝送手段 34を介して増幅及び AZD変換後に回転状態判定 部 52に転送される。なお、振動信号の増幅及び AZD変換は伝送前に行なわれても よぐまた、増幅と AZD変換の順序は逆であっても良い。
[0063] 回転状態判定部 52は、駆動モータ 13aを所定の回転速度領域内で駆動運転した 後、駆動モータ 13aを非通電とした慣性回転領域力どうかを判定する。例えば、図 8 の処理フローに示すように、回転状態判定部 52は、駆動モータ側の OFF信号が出 力されている力否かを判定する (ステップ S11)と共に、回転速度センサ 40からの複 列円すいころ軸受 11の回転速度情報が予め設定された所定の回転速度領域内で ある力否かを判定する (ステップ S 12)。そして、駆動モータ側の OFF信号 (非通電) が出力されておらず、或いは回転速度センサ 40からの複列円すいころ軸受 11の回 転速度情報が予め設定された所定の回転速度領域内ではない場合は、ステップ S1 1に戻って処理を繰り返す。一方、駆動モータ側の OFF信号が回転状態判定部 52 に出力され、且つ回転速度センサ 40からの複列円すいころ軸受 11の回転速度情報 が予め設定された所定の回転速度領域内である場合には、その時点の振動信号及 び温度信号を検出し、フィルタ部 35、温度計測値分析部 51に転送する (ステップ S1 3)。
[0064] なお、回転状態判定部 52は、複列円すいころ軸受 11の回転速度情報が所定の回 転速度領域内であることが確認されている場合には、駆動モータの OFF信号の出力 に基づいて振動信号及び温度信号を検出するようにしてもよい。或いは、回転速度 センサ 40による回転速度情報の推移によって駆動モータ 13aが非通電時であること を判断するようにすれば、回転速度センサ 40による回転速度の検出信号と、検出部 31による振動又は温度の検出信号とを連動させて、回転部品の異常を診断するよう にしてもよい。
[0065] なお、駆動モータ 13aが非通電時である場合には、振動の情報は、図 7に示すよう に、第 1実施形態と同様に処理され、異常判定部 42は、複列円すいころ軸受 11の振 動異常の有無、異常部位の特定を行う。出力装置 90は複列円すいころ軸受 11の異 常判定と異常部位の特定の結果の出力を行い、アラーム等の警報が発せられたり、 判定結果が記憶部に取り込まれる。
[0066] 一方、駆動モータ側の OFF信号が出力され、且つ複列円すいころ軸受 11の回転 速度情報が予め設定された所定の回転速度領域内である場合に検出された温度信 号は、温度計測値分析部 51にて処理された後、異常判定部 42に出力される。
[0067] 該異常判定部 42では予め設定した閾値を超えるか否かを判定し、閾値を超えない 場合は軸受に異常は発生していないと判断し、閾値を超えた場合は焼付き等の異常 が軸受に発生したと判断して、出力装置 90で複列円すいころ軸受 11の異常判定の 結果の出力が行われ、アラーム等の警報が発せられる。
[0068] このように本実施形態では、信号処理部 81は、駆動モータ 13aの非通電時におけ る複列円すいころ軸受 11の所定の回転速度領域内での慣性回転状態において、振 動センサ 32及び温度センサ 33による検出信号に基づ 、て複列円す!/、ころ軸受 11 の異常を診断するようにして 、るので、複列円す 、ころ軸受 11が組み込まれて 、る 鉄道車両用転がり軸受装置 10を分解することなく実稼動状態で複列円すいころ軸 受 11の異常を診断することができると共に、駆動モータ 13a駆動時の電磁音等、電 気的な外乱ノイズを抑制することにより、高感度で高 SN比 (信号対雑音比)での信号 の検出が可能となり、信頼性の高い異常診断を行うことができる。
[0069] 本実施形態にぉ 、て、駆動モータ 13a駆動時、電磁音等の電気的な外乱ノイズの 影響は振動センサ 32の方が温度センサ 33より大きいので、少なくとも振動センサ 32 力もの信号伝達手段 34が回転状態判定部 52に転送され、温度センサ 33から回転 状態判定部 52を通らずに温度計測値分析部 51に信号伝送手段 34が転送されるよ うにしてもよい。
なお、その他の構成及び作用については、第 1実施形態のものと同様である。
[0070] (第 3実施形態)
次に、本発明の第 3実施形態に係る異常診断装置について、図 9を参照して説明 する。なお、第 2実施形態と同等部分については、同一符号を付して説明を省略或 いは簡略化する。
[0071] 本実施形態の異常診断装置では、図 9のフローチャートに示すように、回転状態判 定部 52 (図 7参照)は、回転速度センサ 40からの複列円すいころ軸受 11の回転速度 情報が lOOmin—1以上 1500min_1以下の回転速度領域内である力否かを判定する (ステップ S21)。そして、複列円すいころ軸受 11の回転速度情報が lOOmin—1以上 1500min_1以下の回転速度領域外である場合は、ステップ S21に戻って処理を繰り 返す。一方、複列円すいころ軸受 11の回転速度情報が lOOmin—1以上 1500min_1 以下の回転速度領域内である場合には、その時点の振動信号及び温度信号を検出 し、フィルタ部 35、温度計測値分析部 51に転送する (ステップ S22)。
[0072] 従って、本実施形態の異常診断装置では、図 7の回転状態判定部 52は、駆動モ ータ 13aの OFF信号の出力を用いずに、複列円すいころ軸受 11が lOOmin—1以上 1500min_1以下の回転速度領域内であるかどうかを判定するように構成される。
[0073] ただし、本実施形態の異常診断装置でも、第 2実施形態と同様に、回転状態判定 部 52力 駆動モータ 13aの OFF信号の出力を用いて、或いは、回転速度センサ 40 による回転速度情報の推移によって駆動モータ 13aが非通電時であることを判断す るようにしても良い。従って、複列円すいころ軸受 11が lOOmin—1以上 1500min_1 以下の回転速度領域内で慣性回転する時に、振動信号及び温度信号を検出するこ とで、駆動モータ 13a通電時の電磁成分の影響がなくなり、より高精度な異常診断が 可能となる。
[0074] 従って、本実施形態の異常診断装置によれば、複列円すいころ軸受 11が lOOmin _1以上 1500min_1以下の回転速度領域内で回転する時、振動センサ 32及び温度 センサ 33による検出信号に基づいて複列円すいころ軸受 11の異常を診断するよう にして 、るので、複列円す!/、ころ軸受 11が組み込まれて 、る鉄道車両用転がり軸受 装置 10を分解することなく実稼動状態で複列円すいころ軸受 11の異常を診断する ことができると共に、複列円すいころ軸受 11の剥離や車輪のフラット摩耗等の損傷に よる加振力を外乱ノイズ等の影響を受けることなく高 SN比で検出可能となり、その結 果、信頼性の高い異常診断を行うことができる。
特に、外径が φ 200mm (内径 φ 100mm、幅 150mm)以上の複列円すいころ軸 受 11が組み込まれる鉄道車両用転がり軸受装置 10において、複列円すいころ軸受 11が上記回転速度領域内で回転する場合に異常診断を行うことで、信頼性の高 、 異常診断が可能である。
その他の構成及び作用については、第 2実施形態のものと同様である。
[0075] なお、機械設備によってはクラッチ機構等を用いて歯車列の嚙合いが間欠的に行 われる場合があり、上記第 2及び第 3実施形態に加えて、クラッチによる歯車列の嚙 合いが離れた時に振動センサ 32及び温度センサ 33による検出信号に基づいて複 列円すいころ軸受 11の異常を診断することにより、機械的な歯車列の嚙合いノイズと 電気的なノイズの影響を受けることがなくなり、さらに高 SN比な異常診断が可能とな る。なお、歯車列の嚙み合いが離れた時に駆動モータ側に信号を出力し、駆動モー タの非通電状態後に振動や温度の信号検出及び異常診断を行うと、診断の効率ィ匕 が図れる。
[0076] 更に、鉄道車両用においては、上記第 2及び第 3実施形態に加えて、線路の繋ぎ 目やポイント等がなぐ且つ直線走行時に、振動センサ 32及び温度センサ 33による 検出信号に基づいて複列円すいころ軸受 11の異常を診断することによつても同様の 作用効果を得ることができる、この場合、例えば、直線走行になる場所を通過した時 に運転席側または駆動モータ側に信号を出力し、駆動モータの非通電状態後に振 動や温度の信号検出及び異常診断を行うと診断の効率化が図れる。
[0077] (第 4実施形態)
次に、図 10〜12を参照して、第 4実施形態の異常診断装置について説明する。図 10に示されるように、異常診断装置は、機械設備 60から発生する信号を検出する検 出部 70と、検出部 70の出力した電気信号から機械設備 60の回転部品の異常等の 状態を判定するための信号処理部 82及び機械設備 60を駆動制御する制御部 84と を備えた制御器 80と、モニタ 93や警報機 94等の出力装置 90とを備える。
[0078] 機械設備 60には、 1例として回転部品である転がり軸受 62が設けられており、転が り軸受 62は、回転軸(図示せず)に外嵌される回転輪である内輪 64と、ハウジング( 図示せず)に内嵌される固定輪である外輪 66と、内輪 64及び外輪 66との間に配置 された複数の転動体である玉 68と、玉 68を転動自在に保持する保持器(図示せず) とを備える。
[0079] 検出部 70は、運転中に機械設備 60から発生する振動を検出するセンサ 72を備え る。センサ 72は、ボルト固定、接着、ボルト固定と接着、或いはモールド材による埋め 込み等によってハウジングの外輪近傍に固定されている。なお、ボルト固定の場合に は、回り止め機能を備えるようにしてもよい。また、センサ 72をモールドする場合には 、防水性が図られると共に、外部からの加振に対する防振性が向上するため、センサ 72自体の信頼性を飛躍的に向上することができる。
[0080] また、センサ 72は、振動を検出可能な振動系センサであればよぐ振動センサ、 A E (acoustic emission)センサ、超音波センサ、及びショックパルスセンサ等や、加速度 、速度、歪み、応力、変位型等、振動を電気信号ィ匕できるものであればよい。また、ノ ィズが多いような機械設備に取り付ける際には、絶縁型を使用する方がノイズの影響 を受けることが少ないので好ましい。さらに、センサ 72が、圧電素子等の振動検出素 子を使用する場合には、この素子をプラスチック等にモールドして構成してもよい。加 えて、本実施形態の機械設備 60は、転がり軸受 62の他に、歯車や車輪 (共に図示 せず)等の振動をセンサ 72によって検出することができる。
[0081] また、検出部 70は、図 1の検出部 31と同様に、機械設備から発生する振動を検出 するセンサ 72と、機械設備の温度を検出する温度センサや回転速度センサが単一 の筐体内に収容される一体型センサであってもよい。この場合、一体型センサは、転 力 Sり軸受 62を固定する軸受箱の平坦部に固定されることが好ましい(図 18参照。)。 温度センサは、温度がある規定値になると、バイメタルの接点が離れる力、接点が溶 断することで導通しなくなる方式の温度ヒューズであってもよい。これにより、ある規定 値以上の温度が検出されると、温度ヒューズが導通しなくなるので、異常を検出する ことができる。
[0082] 信号処理部 82及び制御部 84とを備える制御器 80は、マイクロコンピュータ (ICチッ プ, CPU, MPU, DSP等)によって構成されており、データ伝送手段 74を介してセ ンサ 72からの電気信号を受け取る。
[0083] 信号処理部 82は、図 11に示されるように、データ蓄積分配部 100、回転分析部 10 2、フィルタ処理部 104、振動分析部 106、比較判定部 108、内部データ保存部 110 を備える。データ蓄積分配部 100は、センサ 72からの電気信号及び回転速度に関 する電気信号を受け取り一時的に蓄積すると共に、信号の種類に応じて各分析部 1 02, 106の何れかに信号を振り分ける収集および分配機能を有している。各種信号 は、データ蓄積分配部 100に送られる以前に、図示しない AD変翻によりデジタル 信号に AZD変換され、図示しない増幅器によって増幅された後にデータ蓄積分配 部 100に送られる。なお、 AZD変換と増幅は、順序が逆であっても構わない。
[0084] 回転分析部 102は、回転速度を検出するセンサ(図示せず)からの出力信号を基 に、内輪 64、即ち回転軸の回転速度を算出し、算出した回転速度を比較判定部 10 8に送信する。なお、上記検出素子が、内輪 64に取り付けられたエンコーダと外輪 6 6に取り付けられた磁石及び磁気検出素子で構成されている場合には、検出素子が 出力する信号は、エンコーダの形状と回転速度に応じたパルス信号となる。回転分 析部 102は、エンコーダの形状に応じた所定の変換関数又は変換テーブルを有して おり、関数またはテーブルに従って、ノ ルス信号から内輪 64及び回転軸の回転速度 を算出する。
[0085] フィルタ処理部 104は、回転部品である転がり軸受 62や歯車や車輪等の固有振動 数に基づいて、振動信号からその固有振動数に対応する所定の周波数帯域のみを 抽出し、不要な周波数帯域を除去する。この固有振動数は、回転部品を被測定物と して、打撃法により加振し、被測定物に取付けた振動検出器又は打撃により発生した 音響を周波数分析することにより容易に求めることができる。なお、被測定物が転がり 軸受の場合には、内輪、外輪、転動体、保持器等のいずれかに起因する固有振動 数が与えられる。一般的に、機械部品の固有振動数は複数存在し、また固有振動数 での振幅レベルは高くなるため測定の感度がよい。
[0086] 振動分析部 106は、センサ 72からの出力信号を基に、軸受 62、歯車、車輪に発生 している振動の周波数分析を行う。具体的には、振動分析部 106は、振動信号の周 波数スペクトルを算出する FFT計算部であり、 FFTのアルゴリズムに基づいて、振動 の周波数スペクトルを算出する。算出された周波数スペクトルは、比較判定部 108〖こ 送信される。また、振動分析部 106は、 FFTを行う前処理として、絶対値処理ゃェン ベロープ処理を行い、診断に必要な周波数成分のみに変換してもよい。振動分析部 106は、必要に応じて、エンベロープ処理後のエンベロープデータも併せて比較判 定部 108に出力する。
[0087] 比較判定部 108は、振動分析部 106による振動の周波数スペクトルと、この周波数 スペクトル力 算出される異常診断に用いられる基準値とを比較し、周波数スペクトル 力も基準値より大きいピーク成分を抽出して、ピーク間の周波数値を算出する。一方 で、図 5及び図 6に示す関係式から、各回転部品の異常時に起因して発生する回転 部品の振動発生周波数成分、即ち、軸受の傷成分 Sx (内輪傷成分 Si、外輪傷成分 So、転動体傷成分 Sb及び保持器成分 Sc)、歯車の嚙み合いに対応する傷成分 Sg 、車輪等の回転体の摩耗やアンバランス成分 Srを求め、この振動発生周波数成分と ピーク間の周波数値を比較する。さらに、比較判定部 108は、判定結果に基づき、異 常の有無及び異常部位の特定を行う。
[0088] なお、振動発生周波数成分の演算は、これより前に行ってもよぐ以前に同様の診 断を行っている場合には、内部データ保存部 110に記憶し、そのデータを用いてもよ い。また、算出に用いる各回転部品の設計諸元データは事前に入力記憶させておく
[0089] そして、比較判定部 108での判定結果は、メモリや HDD等の内部データ保存部 1 10に保存されても良いし、データ伝送手段 92を介して出力装置 90へ伝送されても よい。また、この判定結果を、機械設備 60の駆動機構の動作を制御する制御部 84 へ出力し、この判定結果に応じた制御信号をフィードバックするようにしてもよい。
[0090] また、出力装置 90は、判定結果をモニタ等にリアルタイムに表示してもよ!/ヽし、異常 が検出された場合にはライトやブザー等の警報機を使って異常の通知を行なっても よい。なお、データ伝送手段 74, 92は、的確に信号を送受信可能であれば良ぐ有 線でも良 、し、ネットワークを考慮した無線を利用しても良 、。
[0091] 次に、図 12を参照して、振動信号を基にした異常診断の処理フローの具体例につ いて説明する。
[0092] まず、センサ 72は各回転部品の振動を検出する (ステップ S101)。検出された振 動信号は、 AZD変翻によりデジタル信号に変換され (ステップ S102)、所定の増 幅率で増幅された後 (ステップ S103)、フィルタ処理部 104により回転部品の固有振 動数に対応した所定の周波数帯域のみを抽出するフィルタ処理が行われる (ステツ プ S104)。その後、振動分析部 106では、フィルタ処理後のデジタル信号に対して エンベロープ処理を施し (ステップ S 105)、エンベロープ処理後のデジタル信号の周 波数スペクトルを求める(ステップ S 106)。
[0093] 次に、図 5及び図 6に示す関係式から、回転速度信号に基づき各回転部品の異常 に起因して発生する周波数成分 (軸受の傷成分 Sx (内輪傷成分 Si、外輪傷成分 So 、転動体傷成分 Sb及び保持器成分 Sc)、歯車の嚙み合いに対応する傷成分 Sg、車 輪等の回転体の摩耗やアンバランス成分 Sr)を求める (ステップ S 107)。 [0094] 一方、振動分析部 106で得られた周波数スペクトル力も異常診断に用いられる基 準値 (例えば、音圧レベル或いは電圧レベル)を算出する (ステップ S108)。なお、こ の基準値は、任意の時間における実測スペクトルデータのデジタル信号の実効値や ピーク値であってもよぐまたこれらの値を基に算出したものであってもよい。
[0095] 次!、で、ステップ S 106で得られた周波数スペクトルから、ステップ S 108で計算され た基準値より大きいピーク成分を抽出し、ピーク間の周波数値を算出する (ステップ S 109)。そして、ピーク間の周波数値と、ステップ S107における回転部品の振動発生 周波数成分とを比較し (ステップ S 110)、全ての成分が一致しない時は回転部品に 異常なしとして判断する (ステップ S 111)。一方、いずれかの成分が一致する場合に は、異常有りと判断してその異常部位を特定する (ステップ S112)と共に、その照合 結果を制御部 84や、モニタ 93や警報機 94等の出力装置 90に出力する (ステップ S 113)。
[0096] このように本実施形態では、周波数分析で得られたスペクトルに基づき算出した基 準値より大きいスペクトルのピークを抽出し、ピーク間の周波数と回転速度信号に基 づき算出した回転部品の損傷に起因する周波数成分とを比較照合し、その照合結 果に基づき回転部品の異常の有無及び異常部位を特定するので、実際の回転速度 を直接取り込むことができない場合に、算出に用いた回転速度データが実際の回転 速度とずれを生じているとしても、異常の有無や異常部位の特定を精度良く行うこと ができる。
[0097] また、本発明の異常診断装置及び異常診断方法によれば、簡単な構成で回転部 品が組み込まれている機械設備を分解することなぐ異常の有無と異常の部位を特 定することができ、装置の分解や組立にカゝかる手間を軽減できると共に、分解や組立 に伴う該部品への損傷を防止することができる。
[0098] さらに、本実施形態の異常診断装置及び異常診断方法によれば、信号処理部をマ イク口コンピュータで構成するようにしたので、信号処理部がユニット化され、異常診 断装置の小型化やモジュールィ匕を図ることができる。
[0099] (第 5実施形態)
次に、図 13を参照して、第 5実施形態の異常診断装置について説明する。なお、 第 4実施形態と同等部分については、同一符号を付して説明を省略或いは簡略ィ匕 する。
[0100] 本実施形態では、信号処理部 82の比較判定部 108における処理において第 4実 施形態のものと異なる。本実施形態における比較判定部 108は、転がり軸受 62、歯 車、車輪に起因した周波数成分と振動分析部 106による振動の実測スペクトルデー タの周波数成分とを可変な許容幅を持って比較照合する。本実施形態では、比較判 定部 108は、実測スペクトルデータ力 基準値 (例えば、音圧レベル或いは電圧レべ ル)を算出する一方、図 5及び図 6に示す関係式を用いて転がり軸受ゃ歯車の傷に 起因する周波数 (振動発生周波数)を計算し、実測スぺ外ルデータ力 これら振動 発生周波数に可変な許容幅を与えた範囲での音圧レベル (又は電圧レベル)を抽出 して、基準値と比較している。さらに、比較判定部 108は、判定結果に基づき、異常 の有無及び異常部位の特定を行う。
[0101] なお、振動発生周波数の演算は、第 4実施形態同様、これより前に行ってもよぐ以 前に同様の診断を行っている場合には、内部データ保存部 110に記憶し、そのデー タを用いてもよい。また、算出に用いる各回転部品の設計諸元データは事前に入力 記憶させておく。
[0102] また、比較照合における可変な許容幅は、周波数成分が高調波であるほど大きくな るように設定することにより、対象とする周波数帯域や回転速度に連動させれば、実 回転速度の変化 (鉄道車両における車輪の摩耗の影響による変化等)に対応するこ とが可能となる。
[0103] 図 13を参照して、振動信号を基にした異常診断の処理フローの具体例について説 明する。
[0104] まず、本実施形態においても、第 4実施形態のステップ S101〜ステップ S106と同 様な処理 (ステップ S 201〜ステップ S 206)が行われる。
[0105] 次に、図 5及び図 6に示す関係式から、回転速度信号に基づき各回転部品の異常 に起因して発生する振動発生周波数を求め(ステップ S207)、求めた周波数に対し て可変な許容幅を持った各回転部品の異常周波数帯域の音圧レベル (転がり軸受 6 2の場合には、軸受傷成分 Sx、即ち、内輪傷成分 Si、外輪傷成分 So、転動体傷成 分 Sb及び保持器成分 Sc、歯車の場合には、嚙み合いに対応する歯車傷成分 Sg、 及び車輪等の回転体の場合には、回転体の摩耗やアンバランス成分 Sr)を求める( ステップ S 208)。
[0106] 一方、第 4実施形態と同様、振動分析部 106で得られた周波数スペクトルから異常 診断に用いられる基準値 (例えば、音圧レベル或いは電圧レベル)を算出する (ステ ップ S 209)。
[0107] 次いで、ステップ S208で算出された各回転部品の異常周波数帯域の音圧レベル
(又は電圧レベル)とステップ S209で計算された基準値との比較を設計諸元の異な る各回転部品毎に分けて順番に行う(ステップ S210)。全ての成分が一致しない時 は回転部品に異常なしとして判断する (ステップ S211)。一方、いずれかの成分が一 致する場合には、異常有りと判断してその異常部位を特定する (ステップ S212)と共 に、その照合結果を制御部 84や、モニタ 93や警報機 94等の出力装置 90に出力す る(ステップ S 213)。
[0108] このように本実施形態では、周波数分析で得られた実測スペクトルデータの周波数 成分と回転部品に起因した周波数成分とを可変な許容幅を持って比較照合し、その 照合結果に基づき回転部品の異常の有無及び異常部位を判定するようにしたので、 実際の回転速度を直接取り込むことができない場合に、算出に用いた回転速度デー タが実際の回転速度とずれを生じているとしても、異常の有無や異常部位の特定を 精度良く行うことができる。
その他の構成及び作用については、第 4実施形態のものと同様である。
[0109] (第 6実施形態)
次に、図 14を参照して、本発明の第 6実施形態に係る異常診断装置及び異常診 断方法について詳細に説明する。なお、第 5実施形態と同等部分については、同一 符号を付して説明を省略あるいは簡略ィ匕する。
[0110] 本実施形態では、信号処理部 82の比較判定部 108における処理において第 5実 施形態のものと異なる。本実施形態においても、図 14の処理フローに示されるように 、ステップ S301〜ステップ S306は、第 4実施形態のステップ S101〜ステップ S106 と同様に行われる。 [0111] 次に、図 5及び図 6に示す関係式から、回転速度信号に基づき各回転部品の異常 に起因して発生する振動発生周波数を求める (ステップ S307)。そして、回転部品の 回転速度と回転部品の設計寸法諸元とから算出される各諸元での回転部品の損傷 成分の上限周波数と下限周波数を有する領域である許容幅と、その幅の中心周波 数を計算する (ステップ S308)。また、ステップ S308では、必要に応じて、許容幅を 一つ以上の幅に分割し、該各幅に対する中心周波数を求め、該中心周波数に対し て任意の大きさの幅を持った許容幅を与える。なお、この許容幅は、周波数帯域に 対応して大きくなるように設定してもよ 、。
[0112] その後、ステップ S307で求めた周波数に対して許容幅を持った回転部品の異常 周波数帯域の音圧レベル (転がり軸受 62の場合には、軸受傷成分 Sx、即ち、内輪 傷成分 Si、外輪傷成分 So、転動体傷成分 Sb及び保持器成分 Sc、歯車の場合には 、嚙み合いに対応する歯車傷成分 Sg、及び車輪等の回転体の場合には、回転体の 摩耗やアンバランス成分 Sr)を求める(ステップ S309)。
[0113] 一方、第 5実施形態と同様に、振動分析部 106で得られた周波数スペクトルカも異 常診断に用いられる基準値 (例えば、音圧レベル或いは電圧レベル)を算出し (ステ ップ S310)、ステップ S309で算出された各回転部品の異常周波数帯域の音圧レべ ル (又は電圧レベル)とステップ S310で計算された基準値との比較を設計諸元の異 なる各回転部品毎に分けて順番に行う(ステップ S311)。そして、このステップ S311 では、周波数の許容幅を分割した回数分繰り返す。
[0114] そして、全ての成分が一致しない時は回転部品に異常なしとして判断する (ステツ プ S312)。一方、いずれかの成分が一致する場合には、異常有りと判断してその異 常部位を特定する (ステップ S313)と共に、その照合結果を制御部 84や、モニタ 93 や警報機 94等の出力装置 90に出力する (ステップ S314)。
[0115] なお、回転部品に異常がある場合、ステップ S308にて許容幅を分割した際には、 分割された許容幅のいずれかにおいて、異常有りと判定されることがある。このため、 例えば、 2つの許容幅数分の診断を行う場合、ステップ S311では、第 1の幅での診 断の結果、異常有りと判定した時点で、第 2の幅での診断を行わないことも可能であ り、第 1の幅で正常と診断した後に、第 2の幅での診断を行っている。 [0116] ステップ S309における各回転部品の異常に起因して発生する振動発生周波数は 、図 5や図 6の関係式に示すように、回転速度や設計寸法諸元によって与えられるた め、回転変動や設計寸法諸元の違いは高精度な診断の妨げとなる。このため、ステ ップ S308のように許容幅を設定することは、回転部品が互いに異なる設計寸法諸元 を有する複数の回転部品を備える場合や、実際の回転速度信号が直接取り込めず、 回転部品の回転速度が変動する場合において有効である。
[0117] 例えば、実際の回転速度信号が直接取り込めない場合でも、一定の回転速度で回 転している際の回転速度の変動幅がわ力 ている場合がある。この場合、下限回転 速度と上限回転速度をもとに、回転部品の損傷に起因した特徴周波数成分を算出し て許容幅を求めるが、許容幅が大きいと該回転部品の損傷成分以外の周波数成分 を多く含み、診断精度が悪くなる。このため、許容幅は必要に応じて分割され、各分 割された幅に対する中心周波数を求め、該中心周波数に対して任意の大きさの幅を 持った許容幅を設け、この分割された許容幅数分の比較照合を行って、回転速度変 動の影響を受けることなぐ高精度な診断を可能とする。
[0118] 従って、本実施形態の異常診断装置及び異常診断方法によれば、回転部品の回 転速度と回転部品の設計寸法諸元とから算出される上限値と下限値を有する領域を 少なくとも一つの領域に分割し、該各分割領域の中心値を求め、中心値に対して与 えられる任意の大きさの少なくとも一つの許容幅を持って比較照合するので、設計寸 法諸元が互いに異なる複数の回転部品が任意の部位に組み込まれる場合や回転部 品の回転速度が変動した場合でも異常の有無や異常の部位を確実に特定すること ができ、高精度な診断が可能となる。また、これにより、従来のように同じ諸元の部品 を組み込まなければならな ヽと 、う手間が省け、異なる諸元の部品を組み込んだ場 合でも、診断が可能であるため作業効率が向上し、効果的なメンテナンスが可能とな る。
[0119] なお、本実施形態の異常診断は、回転部品が互いに異なる設計寸法諸元を有す る複数の回転部品を備え、且つ、回転部品の回転速度が変動する機械設備の場合 においても有効である。
また、軸受の異常診断において、図 5に示す各周波数成分は回転周波数の整数 倍であるため、予め軸受諸元が既知の場合には、回転速度変動に伴う下限と上限周 波数を計算せずに中心周波数を求めることも可能である。
さらに、本実施形態の異常診断は、エンベロープ処理が行われた周波数スペクトル に対してのみ適用されるものでなぐ回転速度情報から回転部品の損傷に起因した 周波数成分の有無を診断するいずれの手法にも適用可能である。
[0120] (第 7実施形態)
次に、図 15及び 16を参照して、第 7実施形態の異常診断装置について説明する。 なお、第 4実施形態と同等部分については同一符号を付して、説明を省略或いは簡 略化する。
[0121] 図 15に示されるように、異常診断装置は、機械設備 60から発生する信号を検出す る検出部 70と、検出部 70の出力した電気信号から機械設備 60の異常等の状態を 判定するために図 11と同様な構成を有する信号処理部 82及び機械設備 60を駆動 制御する制御部 84とを備えた制御器 80と、モニタ 93や警報機 94やレポート作成部 95等の出力装置 90とを備える。
[0122] 信号処理部 82の比較判定部 108は、転がり軸受 62、歯車、車輪に起因した周波 数成分と振動分析部 106による振動の実測スペクトルデータの周波数成分とを比較 照合する。本実施形態では、比較判定部 108は、実測スペクトルデータの限定した 周波数範囲から基準値 (例えば、音圧レベル或いは電圧レベル)を算出する一方、 図 5及び図 6に示す関係式を用いて転がり軸受ゃ歯車の傷に起因する周波数 (振動 発生周波数)を計算し、実測スペクトルデータ力 振動発生周波数での音圧レベル を抽出して、基準値と比較している。さらに、比較判定部 108は、判定結果に基づき 、異常の有無及び異常部位の特定を行う。
[0123] なお、振動発生周波数の演算は、これより前に行ってもよぐ以前に同様の診断を 行っている場合には、内部データ保存部 110に記憶し、そのデータを用いてもよい。 また、算出に用いる各回転部品の設計諸元データは事前に入力記憶させておく。
[0124] そして、比較判定部 108での判定結果は、メモリや HDD等の内部データ保存部 1 10に保存されても良いし、データ伝送手段 92を介して出力装置 90へ伝送されても よい。また、この判定結果を、機械設備 60の駆動機構の動作を制御する制御部 84 へ出力し、この判定結果に応じた制御信号をフィードバックするようにしてもよい。
[0125] また、出力装置 90は、判定結果をモニタ 93等にリアルタイムに表示してもよいし、 異常が検出された場合にはライトやブザー等の警報機 94を使って異常の通知を行 なってもよい。
[0126] さらに、出力装置 90は、信号処理部 82で得られる、異常の有無、異常の部位、診 断時のスペクトル波形 (実測スペクトルデータ)のような診断結果を記憶する記憶部 9 6と、診断結果を所定の形式で出力するデータ出力部 97と、データ出力部 97によつ て出力される出力結果を、少なくとも一つのプログラムに基づいてレポートを作成する レポート作成部 95と、を備える。これにより、レポート作成部 95は、診断結果に基づく レポートの作成作業を容易に行うことができる。
ここで、所定の形式とは、レポート作成部 95でカ卩ェするために要求されている形式 のことである。なお、対象データをすベて出力してレポート作成部 95で選定'選択す るようにしてもょ ヽし、データ出力部 97で対象データを選定'選択するようにしてから 出力してもよい。
[0127] 次に、図 16を参照して、振動信号を基にした異常診断の処理フローの具体例につ いて説明する。
[0128] 本実施形態においても、図 16の処理フローに示されるように、ステップ S401〜ステ ップ S406は、第 4実施形態のステップ S101〜ステップ S106と同様に行われる。
[0129] 次に、図 5及び図 6に示す関係式から、回転速度信号に基づき各回転部品の異常 に起因して発生する振動発生周波数を求め(ステップ S407)、求めた周波数に対応 する各回転部品の異常周波数帯域の音圧レベル (転がり軸受 62の場合には、軸受 傷成分 Sx、即ち、内輪傷成分 Si、外輪傷成分 So、転動体傷成分 Sb及び保持器成 分 Sc、歯車の場合には、嚙み合いに対応する歯車傷成分 Sg、及び車輪等の回転 体の場合には、回転体の摩耗やアンバランス成分 Sr)を求める (ステップ S408)。
[0130] 一方、振動分析部 106で得られた周波数スペクトル力も異常診断に用いられる基 準値 (例えば、音圧レベル或いは電圧レベル)を算出する (ステップ S409)。ここで、 本実施形態の基準値は、任意の時間における実測スペクトルデータの限定した周波 数範囲を用いて算出される。即ち、基準値は、所定の周波数範囲のスペクトルデータ 、例えば、 DC成分等のノイズの影響を小さくするため、得られた周波数範囲から複 数のスペクトル (例えば、上位 10個と下位 10個)を除いたものを用いて算出された実 効値 (周波数スペクトルの自乗平均の平方根)であってもよぐあるいは、実効値を基 に、次式(1)や(2)に基づき算出されたものであってもよ!、。
(基準値) = (実効値) + α - . . (I)
(基準値) = (実効値) X - . . (2)
a , j8:データの種類によって可変な所定の値
また、実効値の代わりに、任意の時間における実測スペクトルデータの平均値ゃピ 一ク値を用いて算出してもよ 、。
[0131] 次いで、ステップ S408で算出された各回転部品の異常周波数帯域の音圧レベル
(或いは電圧レベル)とステップ S409で計算された基準値との比較を設計諸元の異 なる各回転部品毎に分けて順番に行う(ステップ S410)。全ての成分が一致しない 時は回転部品に異常なしとして判断する (ステップ S411)。一方、いずれかの成分が 一致する場合には、異常有りと判断してその異常部位を特定する (ステップ S412)と 共に、その照合結果を制御部 84や、モニタ 93、警報機 94等の出力装置 90に出力 する(ステップ S413)。また、ステップ S413では、ステップ S411, S412で得られた 診断結果が出力装置 90の記憶部 96に記憶される。そして、レポートを作成する場合 には、記憶部 96に記憶された診断結果をデータ出力部 97に送り、データ出力部 97 は送られたデータから対象データを選定'選択する (ステップ S414)。さらに、選択さ れた対象データを、レポート作成プログラムを有するレポート作成部 95に送って、診 断結果に基づくレポートを作成する (ステップ S415)。
[0132] このように本実施形態では、実測スペクトルデータの周波数成分と部品に起因した 周波数成分とを比較照合する際、比較照合に用いられる基準値は、実測スぺ外ル データの限定した周波数範囲に基づいた実効値、平均値、あるいはピーク値により 算出されるようにしたので、 DC成分等のノイズの影響を受け難くして診断精度を上げ ることができ、異常の有無及び異常部位を特定することができる。
[0133] さらに、本実施形態の異常診断装置及び異常診断方法によれば、信号処理部 82 で得られる、異常の有無、異常の部位、診断時のスペクトル波形 (実測スペクトルデ ータ)のような診断結果を記憶する記憶部 96と、診断結果を所定の形式で出力する データ出力部 97と、データ出力部 97によって出力される出力結果を、少なくとも一 つのプログラムに基づいてレポートを作成するレポート作成部 95と、を備えるので、 大量に蓄積された診断結果を、必要に応じて対象となる箇所のデータを所定の形式 で出力して、簡単にレポートを作成することができる。
その他の構成及び作用については、第 4実施形態のものと同様である。
[0134] なお、本実施形態では、診断結果を記憶する記憶部 96を出力装置 90内に設けて いるが、記憶部 96を制御器 80内に設けて、レポートを作成する際に診断結果をデー タ伝送手段 92を介してデータ出力部 97に送信してもよい。
[0135] (第 8実施形態)
次に、図 17〜19を参照して、本発明の第 8実施形態に係る異常診断装置及び異 常診断方法について詳細に説明する。なお、第 4実施形態と同等部分については、 同一符号を付して説明を省略あるいは簡略ィ匕する。
[0136] 本実施形態は、複数の転がり軸受 62, 62を備えた機械設備 120の異常診断装置 において、センサ 72を含んだ検出部とマイクロコンピュータ 130からなる信号処理部 とを組み合わせた、単一の処理ユニット 140を転がり軸受 62の軸受装置内に組み込 んでいる。これにより、異常診断装置は管理^^中して行えるため、効率的な監視が 可能である。また、単一の処理ユニットを軸受装置内に組み込むことで、装置全体が コンパクトになるといったメリットがあり好ましい。なお、この単一の処理ユニットは、機 械設備内に組み込んでコンパクトィ匕を図っても良ぐまた、複数の転がり軸受に対し て単一の処理ユニットを構成するようにしても良 、。
[0137] 例えば、図 18に示される鉄道車両用軸受装置は、複列円錐ころ軸受 62 (11)を介 して車軸 13を鉄道車両用台車の一部を構成する軸受箱 12に対して回転自在に支 持しており、検出部 70 (31) , 70 (31)を軸受箱 12のラジアル荷重の負荷圏領域に 固定して、軸受箱 12の振動を検出することで異常診断を行っている。このような場合 にも、各検出部 70 (31) , 70 (31)力もの電気信号を単一の処理ユニット 140にて処 理可能である。
その他の構成および作用については、第 4実施形態のものと同様であり、第 5〜第 7実施形態のものにも適用される。なお、図 19は、本実施形態を第 7実施形態に適 用した例を示すものである。
[0138] (第 9実施形態)
次に、図 20〜図 23を参照して、本発明の第 9実施形態に係る異常診断装置及び 異常診断方法について詳細に説明する。
[0139] 図 20に示すように、一両の鉄道車両 200は前後 2つの車台によって支持され、各 車台には 4個の車輪 204が取り付けられている。各車輪 204の軸受箱には、圧電式 加速度センサ等力 なる検出部としての振動センサ 201が取り付けられ、地面に垂直 方向の振動加速度を出力する。なお、鉄道車両 200の進行方向や車輪の軸方向の 振動加速度を測定する振動センサをさらに取り付けてもよい。
[0140] 振動センサ 201の出力は車両 200の制御盤に設置された信号処理部である異常 診断モジュール 202により処理される。図 21に示すように、異常診断モジュール 202 は、デジタル処理モジュール 205を備えてデジタル処理により異常診断を行うもので ある。振動センサ 201により検出される振動波形は、ローパスフィルタ (LPF) 207を 介して、 AD変 (ADC) 208により離散値に変換され、 CPU211に入力される。 ここで、車輪 204の異常であるフラットより発生する振動の周波数は、 1kHzよりも低い 周波数帯域にパワーが集中するとともに 1kHzよりも高い範囲にも広がる。ローパスフ ィルタ 207は、ノイズ成分が大きい 1kHz以上の周波数を減衰させ、 SZN比を向上さ せている。
[0141] また、エンコーダ等の回転速度センサ 206により検出されたパルス信号は、波形整 形回路 209によってパルス整形され、タイマ'カウンタ(TCNT) 210によりパルスカウ ントを行うことで、回転速度信号力 SCPU211へ入力され、 CPU211は、振動波形と 回転速度信号をもとに異常診断を実行する。
[0142] また、 CPU211により診断された診断結果は、伝送手段を構成する通信プロトコル IP212に基づき、例えば、 USB等のシリアルインターフェース(SIO) 213より、ライン ドライバ 214を介して通信回線 203へ伝送される。従って、本実施形態では、 AD変 ^^208、タイマ'カウンタ 210、 CPU211、通信プロトコル IP212、シリアルインター フェース 213、ラインドライバ 214がデジタル処理モジュール 205を構成する。 [0143] CPU211は、回転速度センサ 206により検出された回転速度信号が略一定の所 定速度 (本実施形態では、 185〜370min_ 1)であるときに、サンプリング周波数 と 、サンプリング数 Nsを一定にした波形ブロックデータを処理して、車輪 204のフラット の検出を行う。具体的には、 fs = 2kHz、 Ns = 2000、とすると、ブロックデータの区 間長 = lsecである。この 1秒間にフラットによる振動波形パルスをカウントした回数と 、回転速度センサ 206で検出した車速から 1秒間に車輪 204が回転する回数とを比 較することでフラットの検出を行っている。
[0144] 車輪 204でフラットが発生している状態での振動加速度は大きぐ通常の車両の振 動で起きる振動加速度の値は、それよりも小さいことが多い。また、レール継ぎ目の 振動は、フラットと同等、若しくは、それよりも大きい振動加速度のレベルとなる。さら に、レールのカーブにおけるレールと車輪 204の摩擦からくる振動加速度のレベルも 、フラットやレール継ぎ目によるものと同等である。
[0145] 一方、フラットは 1回転で 1回の衝撃が起るのに対して、レールの継ぎ目による衝撃 の場合は、より長い周期で発生し、レール摩擦による衝撃の場合は、不規則に発生 する。そこで、本実施形態では、フラット特有の振動加速度の閾値を越える衝撃 (パ ルス)発生の規則性に着目して、ほぼ一定速度における単位時間あたりの衝撃波回 数をカウントし、そのカウント数がほぼ車輪の回転数に一致していれば、フラットが発 生している可能性が高い、として異常診断を行う。
[0146] 更に、本実施形態では、車両 200に搭載されたセンサ 201、 206と異常診断モジュ ール 202を用いて、同じ車輪 204について繰り返し診断処理を行うアルゴリズムを設 計し、パルス数のカウント数のバラツキやノイズの影響等を考慮した、統計的判断手 法により異常診断の信頼性を向上させる。
[0147] このような処理を行う異常診断方法について、図 22のフローチャートを参照して詳 細に説明する。
[0148] まず、振動センサ 201によって検出された信号は、 AD変換器 208によってデジタ ル信号に変換されるとともに (ステップ S500)、回転速度センサ 206から回転速度信 号が入力される。本実施形態の異常診断は、回転速度力 Sl85〜370min_ 1の間に おける略一定速度で走行中の区間に実行されるため、データの区間長における回 転速度が急な加減速により 15%以上変化しているかどうか判断する (ステップ S501 )。そして、 15%以上変化する場合には、内部出力" N"を出力して異常診断は行わ ない(ステップ S 502)。
[0149] 一方、略一定速度で走行していると判断される場合は、 AD変換器 208によって変 換されたデジタル信号を絶対値ィ匕して全波整流波形とし (ステップ S503)、閾値を超 えたデータをピークホールド処理により一定時間( τ )だけ閾値を超えた値に保持す る (ステップ S504)。この保持時間( τ )は、車輪の回転速度によって決まり、車輪 1回 転分よりも短 、値にする。この絶対値ィ匕して一定時間保持するピークホールド処理は 、安定なピーク計測を可能とする。
[0150] そして、パルスが閾値を越えた回数をイベントカウント処理としてカウントして (ステツ プ S505)、カウント数が車輪の回転数と一致するかどうか判断する (ステップ S506)。 カウント数が、車輪の回転数と一致していると認められる場合、フラット有りと判定して 内部出力" F" (Flat)を出力し (ステップ S507)、一致しない場合は、フラット無しと判 定して" G" (Good)を外部出力する (ステップ S508)。なお、本実施形態では、レー ル継目の影響を受けることもあるので、(車輪回転数 + 1)のカウント数も車輪回転数 に一致したものとみなす。
[0151] 例えば、車輪の回転速度は略一定の 185min_1、即ち、毎秒約 3回転であって、図 23 (a)は 1秒間の波形で 3回の衝撃波が発生している様子を示している。この異常診 断では、ピーク保持時間 τを 30msとし、衝撃波の絶対値が一旦、閾値を越えたら 3 Omsの間は、元のデータに係らず、閾値を越える値に保持している。最初に閾値を 越えた時点から 30msを過ぎたら同じ処理を繰り返し、データが 1秒分に達したら変 換された波形 (閾値保持波形)力も閾値を越えた回数をカウントする。図 23 (a)の波 形に対して、絶対値処理とピークホールド処理を行ったものが図 23 (b)の波形である
[0152] さらに、本実施形態では、信頼性の高い診断結果が得られるように、 1秒に 1回得ら れる上記出力を用いて、例えば、次のいずれかの条件に基づく簡単な統計的判断を 行う(ステップ S 509)。
(1)、連続 3回の" F"を出力した。 (2)、過去 10回の有効データの内、 6回以上" F"を出力した。
この(1)、 (2)に該当する場合は、確実にフラットを発生している車輪と判断して、最 終的に外部出力として" F"を出力し (ステップ S510)、(1)、(2)以外の場合は外部 出力として" G"を出力する (ステップ S511)。
[0153] なお、フラットを起こしていないのに" F"を出力する場合があるのは、車輪のレール 摩擦音などの雑音の影響や、フラットを起こしている車輪から車軸、又はレールを通 して正常な車輪に伝播する影響による場合等である。この場合は、フラットを起こして いる車輪に比べて" F"を出力する頻度は少ないので、上記(1)、 (2)のような複数回 の統計処理によって正確な判別が可能である。
[0154] また、ステップ S510で、外部出力として" F"が出力された場合には、シリアルインタ 一フェース 213、ラインドライバ 214から通信回線 203を通じて異常信号が出力され、 警報機等の出力装置力 車輪のフラット等の異常発生の警報を行う。
[0155] 従って、本実施形態の異常診断装置及び異常診断方法によれば、車輪 204の軸 受箱に取り付けられた振動センサ 201による振動加速度の波形と回転速度センサ 20 6による車輪 204の回転速度信号から、車輪 204が N回転する時間に、低域通過フィ ルタリングされた単位時間当たりの振動加速度の波形において、あら力じめ設定され た閾値を越えたら、回転速度に応じてある時間だけ閾値を越えた状態を保持した波 形において、閾値を越えた回数をカウントし、そのカウント回数が車輪の回転数に一 致したと認識することによって車輪のフラット発生等の異常発生の警報を行うので、比 較的簡単な回路やソフトで、回転部品の異常を正確に特定することができる。
[0156] また、本実施形態では、フラットの波形を包絡線検波波形に変換せずに、絶対値化 した全波整流波形に基づいて、異常診断が行われるので、演算量が少なく簡単に診 断することができる。
[0157] なお、本実施形態では、ローパスフィルタ(LPF) 207を振動センサ 201と AD変換 器 208との間に挿入した力 センサ内に LPFを内蔵しているタイプでは、この LPF20 7は LCフィルタ等で簡単に構成することができ、更に、フラット以外の周波数成分を 抑える場合には、デジタル処理モジュール 205内にデジタルフィルタを設けることも できる。その場合、デジタルフィルタは CPUのソフトとして実現することも可能である。 [0158] (第 10実施形態)
次に、本発明の第 10実施形態の異常診断装置と異常診断方法について図 24及 び図 25を参照して詳細に説明する。第 9実施形態では、 AZD変換処理後のデシタ ル信号にビット処理によるピークホールドを行ったのに対して、本実施形態では AZ D変換処理前のアナログ信号段階でピークホールド処理が行われる。なお、第 9実施 形態と同等部分については同一符号を付して、説明を省略あるいは簡略ィ匕する。
[0159] 第 10実施形態の診断モジュール 220は、図 24の診断モジュールのブロック図に示 すように、振動センサ 201と ADC208の間に、アナログ処理のエンベロープ回路 21 5を入れた構成である。エンベロープ回路 215は、ローパスフィルタ、絶対値回路とし ての全波整流器 217と、アナログ用のピークホールド回路 218等により構成されてい る。
[0160] 従って、本実施形態では、ステップ S503及びステップ S504の絶対値処理及びピ ークホールド処理は、 AZD変換 (ステップ S500)前に行われ、デジタル処理部 219 は、第 9実施形態のステップ S501、 S502、 S505〜S511と同様の処理を行!/、、一 定時間内の閾値を越えた回数をカウントして、車輪の回転速度に応じた値であれば 、フラットとして警告信号を出力する。
[0161] 本実施形態では、第 9実施形態に比較して、アナログ回路が別途必要になるが、デ ジタルイ匕した後の処理が簡単になり、ピークホールド回路を入れた AD変 208に おける AZD変換のサンプリングレートも低く済ませることができる。
[0162] 車輪フラットでは、 1kHz程度までの帯域を有する衝撃波形であるから、第 9実施形 態のようにローパスフィルタ 207を通過させただけの波形であると、 2kHz位のサンプ リングレートを取らないと、衝撃加速度のピークが下がってしまうことが懸念されるが、 本実施形態のように AD変換器 208の前段のアナログ回路でピークホールド回路 21 8を入れておけば、 200Hz程度のサンプリングでも車輪フラットの検出には、十分な 速度とすることができる。
[0163] この場合のピークホールド回路 218の時定数( τ )も、数 ms〜数十 msの間の車速 範囲に合わせて適切に選択される。なお、全波整流回路 217によりエンベロープ検 波される波形に対しても、 AD変換器 208の前段にローパスフィルタ 207を入れてノィ ズをカットするのが望ましい。
[0164] また、本実施形態では、エンベロープ回路 215の前段にハイパスフィルタ(HPF) 2 16が設けられている。ハイパスフィルタ 216を入れるのは、 DC成分とそれにごく近い 低周波成分を取り除くためであって、単なる ACカップリング'コンデンサでも構わない 。このハイパスフィルタ 216によってエンベロープ波形の DC成分によるリップルを抑 えることができる。
[0165] また、図 25の点線で示すような波形では、リップルの影響により閾値を越える回数 のカウントに誤動作を生ずる場合があるが、閾値を立上がり V と、立ち下がり Vのよ
H L
うに閾値の高さを変えておくことにより、これを避けることができる。本実施形態では、 図 25のように、立上がり時に Vを横切り、次に Vよりも低く設定した Vを立下がり時
H H L
に横切ったら、初めて 1回のカウントとすれば、点線のような波形においても正確に力 ゥントすることができる。勿論、このような処理はハードでカウントしても等価である。 なお、その他の構成及び作用については第 9実施形態のものと同様である。
[0166] (第 11実施形態)
次に、本発明の第 11実施形態の異常診断装置と異常診断方法について、図 26を 参照して詳細に説明する。本実施形態は、第 10実施形態におけるエンベロープ回 路をデジタル処理にて置き換えたものである。なお、第 10実施形態と同等部分につ いては同一符号を付して、説明を省略あるいは簡略ィ匕する。
[0167] 第 11実施形態の診断モジュール 230は、図 26に示すように、 AD変換器 208の後 段のデジタル処理部 231は DSP等の高速プロセッサで構成され、デジタル ·ハイパ スフィルタ(HPF) 235により低周波成分を除去して、エンベロープ処理回路 232のヒ ルベルト変換フィルタ 233による実数部、虚数部の複素信号から、 2乗和の平方根の 演算を行う振幅復調 234により振幅を復調して包絡線波形を得て、更に、デジタル L PF236により残存するノイズをカットして、閾値カウント 237により回数カウントを行い 、診断部 238で車輪フラットの有無の判定を行う。
[0168] 以上のように構成された本実施形態のデジタル処理部 231は、 DSP等の高速プロ セッサを使用して包絡線波形を得るソフトウェアを、診断時間に支障を与えずにリア ルタイムに実行することが可能である。前段のハイパスフィルタ 235により低周波成分 を除去した図 27 (a)に示す入力波形に対して、エンベロープ処理 232により包絡線 波形を発生させ、ローパスフィルタ 236によりノイズ除去を行った波形力 図 27 (b)の 波形である。このように処理された波形に対して閾値カウント 237と診断部 238により 、第 10実施形態と同様に車輪フラット等の判定処理を行う。具体的に、図 27 (b)に示 す波形により、 1秒間に 3回の衝撃波が発生しているのがわかる。
なお、その他の構成及び作用については第 10実施形態のものと同様である。
[0169] なお、本発明は上記実施形態に限定されるものでなぐ本発明の要旨を逸脱しな V、範囲にお 、て適宜変更可能である。
本発明の機械設備は、異常診断対象である回転或いは摺動する部品を備えたもの であればよぐ鉄道車両用軸受装置、風車用軸受装置、工作機械主軸用軸受装置 等を含む。
[0170] また、回転或いは摺動する部品としては、転がり軸受、歯車、車軸、車輪、ボールね じ等の回転部品や、リニアガイド、リニアボールベアリング等の摺動部品であってもよ ぐ損傷によって周期的な振動を発生する部品であれば良い。また、回転部品の損 傷に起因する周波数成分を算出するための速度信号としては、回転速度信号が用 いられたが、摺動部品の場合の速度信号としては、移動速度信号が用いられる。 なお、軸受箱に固定される転がり軸受の外輪は、静止部材に対して相対的に回転 或いは摺動する部品である転がり軸受の一部に含まれる。
[0171] さらに、検出部によって検出される信号は、音、振動、超音波 (AE)、応力、変位、 歪み等を含み、これらの信号では、回転或いは摺動部品を含む機械設備に欠陥ま たは異常がある場合に、その欠陥または異常を示す信号成分を含む。
[0172] また、上記実施形態は、種々の実施形態を適宜組み合わせて実施することができ る。
実施例
[0173] (試験 1)
以下、本発明の第 1実施形態に係る異常診断装置を用いて、転がり軸受の異常診 断を二度行った。実施例 1及び 2の転がり軸受としては、外径 62mm,内径 30mm, 幅 16mm,玉数 7の玉軸受が使用され、振動センサが軸受箱に固定され、温度セン サが軸受の外輪外周面に取付けられた。内輪は 3000min— 1で回転され、軸受にはラ ジアル荷重が負荷されて 、る。
[0174] 表 1及び表 2は、実施例 1における図 3及び図 4に対応する各計測点 A, B,じでの 振動と温度の計測値及び時間に対する変化率 (前回の計測値に対する倍率)を示し 、表 3及び表 4は、実施例 2における各計測点 A, B, Cでの振動と温度の計測値及 び時間に対する変化率を示す。また、表 1〜表 4は、振動と温度の計測値 (表 1,表 3 )及び変化率 (表 2,表 4)に対する規定値 (設定値)と併せて、振動波形をェンベロー プ分析した結果力 軸受の損傷 (剥離)に起因する周波数成分の有無を示す。
[0175] [表 1]
Figure imgf000050_0001
[0176] [表 2]
Figure imgf000050_0002
[0177] [表 3]
Figure imgf000050_0003
[0178] [表 4]
Figure imgf000050_0004
実施例 1では、表 1に示すように、 B点, C点ともに振動の計測値が規定値を超え、 且つ C点では温度の計測値も規定値を超えている。さらに、振動には軸受の損傷成 分が無いことから、この軸受は焼付き異常が生じていることがわかり、緊急に交換する 必要があることがわかる。なお、実施例 1は、表 2の変化率力もも同様の判定を行うこ とがでさる。
[0180] また、実施例 2では、表 3に示すように、 B点, C点ともに振動の計測値が基準値を 超えているが、温度に変化は認められな力つた。また、振動には軸受の損傷成分が 存在していることから、この軸受は剥離異常が発生していることがわかる。なお、実施 例 2は、表 4の変化率からも同様の判定を行うことができる。
[0181] 従って、本実施例では、振動と温度の計測値または変化率を組み合わせることで 異常の有無を複数回診断して判定するため、従来のような突発的なノイズにより急激 に計測値が上昇しても異常と判定せず、従来よりも信頼度の高!、異常診断が可能と なる。
[0182] (試験 2)
ここで、本発明の第 2実施形態の異常診断装置を用いた場合の診断結果の信頼性 を確認するため、以下の試験 2を行った。試験 2は、外輪軌道面に欠陥がある円すい ころ軸受(外径 = 245mm,内径 = 130mm,幅 = 170mm)を軸受箱のハウジングに 組み込み、 Ιδθπΰη 1で内輪を回転させた時に発生する振動をノヽウジングに取り付け た圧電式絶縁型加速度センサにより検出し、増幅後の信号を周波数分析 (ェンベロ ープ分析)して比較した。
[0183] 図 28は、軸受の内輪が 150min— 1になった時に、軸受に回転を伝達する駆動モー タを非通電状態 (OFF状態)として軸受を慣性回転させたときのハウジングの振動を 周波数分析 (エンベロープ分析)した結果の一例を示したものである。また、図 29は、 軸受の内輪が 150min_1になった時に、軸受に回転を伝達する駆動モータを通電状 態 (ON状態)として軸受を回転駆動させたときのハウジングの振動を周波数分析 (ェ ンべロープ分析)した結果の一例を示したものである。
[0184] 図 28及び図 29から、駆動モータを非通電状態 (OFF状態)として軸受を慣性回転 させたときの振動波形には外輪損傷に起因した複数の周波数成分が顕著に存在し ているが、駆動モータを通電状態 (ON状態)として軸受を回転駆動させたときの振動 波形には、駆動モータの駆動による電磁成分の影響が大きく前述した顕著なノイズ 成分が発生して!/、るのが判る。
[0185] 従って、回転状態判定部により回転駆動装置の非運転時の慣性回転領域内で振 動を検出することにより、上記振動による外乱ノイズの影響を受けることなく高 SN比 な異常診断が可能となることが分かる。
[0186] (試験 3)
次に、本発明の第 3実施形態の異常診断装置を用いた場合の診断結果の信頼性 を確認するため、以下の試験 3を行った。試験 3は、外輪軌道面に欠陥がある円すい ころ軸受(外径 = 208mm,内径 = 130mm,幅 = 152mm)を軸受箱のハウジングに 組み込み、 50〜2000min— 1で内輪を回転させた時に発生する振動をノヽウジングの 負荷圏に取り付けた圧電式絶縁型加速度センサにより検出し、増幅後の信号を周波 数分析 (エンベロープ分析)した。
[0187] 欠陥検知の可否は、エンベロープ分析後の周波数分析結果において、図 5の式を 用いて算出された、各回転速度毎の外輪欠陥に起因した特徴周波数成分の出現の 有無から判定した。
[0188] 図 30は、軸受の内輪が 50min— lOOmin"1, 150mm"1, 300mm"1, 650min _ lOOOmin"1, 1500min_1, 1600min一1で回 して!/、る U寺のノヽクジングの を周波数分析 (エンベロープ分析)した結果の例である。
[0189] ここで、実線は実測した振動データに基づくエンベロープ周波数スペクトルであり、 点線は図 5に示した軸受の設計諸元に基づく外輪損傷に起因した周波数成分を表 している。 この結果より、内輪を 50min_ 1, ΙδΟΟπώ 1で回転させた時には実測ス ベクトルに顕著なピークが存在していないが、 lOOmin―1〜 1500min_1では、外輪 損傷に起因した周波数成分上に顕著なピークが存在しており、外輪が損傷している ことがわかる。
[0190] 表 5は、上記分析に基づく異常の有無の判定結果を回転速度毎にまとめたもので ある。 〇は、上記分析において外輪欠陥に起因した特徴周波数成分が出現した場 合を、 Xは、出現していない場合を示している。
[0191] [表 5] 回転速度 (m i n - 1 )
50 100 150 250 350 450 550 650 1000 1500 1600 2000 診断結果 X o o o 〇 o o O 〇 o X X [0192] 以上の分析結果より、回転速度が lOOmin―1〜 1500min_1時の振動波形には外 輪損傷に起因した複数の周波数成分が顕著に出現しているが、この回転速度領域 以外の振動波形には、特徴周波数成分が出現していないことがわかる。
従って、円すいころ軸受が上記回転速度領域内で回転する時に振動を検出するこ とで、外乱ノイズ等の影響を受けることなく高 SN比で異常診断を行うことができる。
[0193] (試験 4)
以下、本発明の第 4実施形態に係る異常診断装置及び方法を用いた回転部品の 異常診断につ!、て具体例を示す。
[0194] 図 31は、実施例 3として、外輪軌道面に欠陥をつけた単列深溝軸受を 1500min— 1 で回転させた時のハウジングの振動をエンベロープ処理後に周波数分析を行った結 果を示す。図において、実線は、実測した振動データに基づくエンベロープ周波数 スペクトルを示し、点線は基準値を示している。
[0195] 図 31の結果から、周波数スペクトルには基準値を越えているピーク成分が存在し、 そのピーク間の周波数値は、外輪損傷に起因した周波数成分 (64. 4Hz)と一致して V、ることから、軸受の外輪が損傷して 、ると診断することができる。
[0196] 図 32は、実施例 4として、正常の単列深溝軸受を 1500min— 1で回転させた時のハウ ジングの振動をエンベロープ処理後に周波数分析を行った結果を示す。この結果、 周波数スペクトルには基準値を越えるピーク成分は存在せず、軸受に異常がないこ とがわかる。
[0197] 図 33は、実施例 5として、外輪軌道面に欠陥をつけた単列深溝軸受が 2430min— 1 で実際に回転する場合のハウジングの振動をエンベロープ処理後に周波数分析を 行った結果を示す。ただし、算出に用いる回転速度データが 2400min— 1で、実際の 回転速度とズレを生じており、一点鎖線は、回転速度 2400min— 1に基づく外輪損傷 に起因した周波数成分を示して 、る。
[0198] 図 33に見られるように、実回転速度と診断に用いた回転速度との差異が大きいと 発生周波数の高調波成分に大きなズレが生じ、診断精度に影響を与えることがわか る。し力しながら、本発明の診断装置及び方法を適用すれば、ピーク間の周波数値 を用いて、異常の有無及び部位の特定を行うので、実回転速度とのズレの影響を小 さくし、精度の良い診断が行われることがわかる。
[0199] (試験 5)
以下、本発明の第 5実施形態に係る異常診断装置及び方法を用いた回転部品の 異常診断につ!、て具体例を示す。
[0200] 図 34は、外輪軌道面に欠陥をつけた単列深溝軸受が 2430min— 1で実際に回転す る場合のハウジングの振動をエンベロープ処理後に周波数分析を行った結果を示す 。ただし、算出に用いる回転速度データが 2400min— 1で、実際の回転速度とズレを生 じている。図において、実線は、実測した振動データに基づくエンベロープ周波数ス ベクトルを示し、点線は基準値を示している。さらに、各網掛範囲は回転速度 2400m in— 1に基づく外輪損傷に起因した周波数成分とその高調波を示しており、周波数帯 域に対応して比較照合の許容幅を大きくしている。この結果、基準値を越えるピーク が可変な許容幅を持った外輪損傷に起因した周波数成分と一致していることから、 軸受の外輪が損傷していると診断することができる。
[0201] 一方、図 35は、図 34の場合と同条件で比較照合の許容幅を固定(1Hz)にした場 合を示している。この結果、基準値を越えるピークが外輪損傷に起因した周波数成 分と一致していないため、異常なしと判断してしまう虞がある。つまり、実際の回転速 度と診断に用いた回転速度の差異が大きいと発生周波数の高調波成分に大きなズ レが生じ、診断精度に影響を与えることが分力る。
これらの結果より、第 5実施形態に基づく異常診断を行うことで、回転部品の異常の 有無や異常部位の特定を精度良く行うことができることがわかる。
[0202] (試験 6)
次に、本発明の第 6実施形態に係る異常診断装置及び方法を用いた回転部品の 異常診断につ!、て具体例を示す。
回転部品として、内外径寸法が同一(軸受外径: 220mm、軸受内径: 120mm、軸 受幅: 150mm)であるが内部設計諸元が異なる 3種類 (A, B, C)の円すいころ軸受 を用意し、これらの軸受の各外輪軌道面に欠陥をつけ、個々の軸受をノ、ウジングに 組み込んだ。そして、 200min_1で内輪を回転させた時に発生する振動をノヽウジング に取り付けた圧電式絶縁型加速度センサにより検出し、増幅後の信号を周波数分析 (エンベロープ分析)し、第 6実施形態における処理フローをもとに比較した。
[0203] 図 36は、 3種類の軸受を回転させた時のハウジングの振動についてエンベロープ 処理後周波数分析を行った結果である。ここで、実線は測定した振動データに基づ くエンベロープ周波数スペクトルであり、点線は基準値を示している。
[0204] さらに、各網掛範囲は回転速度 200min_1と 3種類 (A, B, C)の軸受の内部諸元 に基づく外輪損傷に起因した周波数成分の下限周波数と上限周波数との中心周波 数に対する許容幅とその高調波幅を示しており、周波数帯域に対応して比較照合の 許容幅を大きくしている。
[0205] この試験では、軸受諸元に基づく外輪損傷に起因した周波数成分を図 5より算出し 、この下限周波数と上限周波数との中心周波数 f を求め、さらに、中心周波数 f
CL1 CL1 に対する許容幅 Δίを設ける。また、許容幅 Δίを 2Hzとし、この許容幅を周波数帯域 に対応して大きく設定して 、る。
[0206] これらの結果より、いずれの軸受においても周波数は異なるが基準値を越えるピー クが複数出現しており、また、それらのピークは網掛範囲で示した外輪損傷に起因し た周波数に含まれて 、ることから、諸元が異なる 、ずれの軸受も外輪が損傷して 、る と診断することがでさる。
[0207] 一方、図 37は、損傷がない正常な軸受に第 6実施形態の異常診断を適用した場 合を示している。なお、この軸受の諸元は、軸受 Aと同様である。
この図 37に示す結果から、正常な軸受においては、基準値を越える顕著なピーク が網掛範囲で示した外輪損傷に起因した周波数に含まれていないため、外輪には 損傷がな!、と診断することができる。
[0208] (試験 7)
次に、内部設計諸元が同一であるが回転速度が僅かに変動する場合に、第 6実施 形態の処理フローを用いて試験を行う。
[0209] 図 38は、円すいころ軸受の外輪軌道面に欠陥をつけ、内輪を 200min_1と 170mi n_1で回転させた時に発生する振動をノヽウジングに取り付けた圧電式絶縁型加速度 センサにより検出し、増幅後の信号を周波数分析 (エンベロープ分析)し比較した結 果である。また、図 38において、各網掛範囲は回転速度変動の下限回転速度と上 限回転速度に対応した軸受内部諸元に基づく外輪損傷に起因した周波数成分の中 心周波数に対する許容幅とその高調波幅を示しており、周波数帯域に対応して比較 照合の許容差を大きくしている。また、この網掛範囲は回転速度の変動幅に依存し ており、回転変動幅が大き!/、と網掛範囲が広くなるように設定されて!、る。
[0210] この状態で網掛範囲に含まれる成分の有無により異常診断を行ってもよいが、網掛 範囲が広くなると、軸受損傷成分以外の周波数成分も多く含まれるため、診断精度 が悪くなる可能性がある。このため、本試験では、この対応した網掛範囲を 2つの領 域 (A, B)に分割し、その領域幅に対応する中心周波数 (f , f )を算出し、さらに
CLA CLB
その中心周波数に対する許容幅 を設ける。
[0211] 具体的に、本試験では、 170〜200min_1の回転速度の変動幅に基づいて、下限 及び上限周波数とその中心周波数を求めており、許容幅 Δίは 2Hzとし、この許容幅 を周波数帯域に対応して大きく設定して 、る。
[0212] この結果、回転速度が 200min_1の場合には、領域 Aには損傷に起因したピーク は出現していないが、領域 Bにピークが出現しているため外輪損傷と判定することが できる。一方、回転速度が 170min_1の場合には、領域 Aに損傷に起因したピークが 出現しているため、領域 Bにピークが出現していなくても外輪損傷と判定することがで きる。
[0213] (試験 8)
次に、本発明の第 7実施形態に係る異常診断装置及び方法を用いた回転部品の 異常診断につ!、て具体例を示す。
[0214] 図 39は、外輪軌道面に欠陥をつけた円すいころ軸受を 200min_1で回転中にノイズ が入った時のハウジングの振動をエンベロープ処理後に周波数分析を行った結果を 示す。図において、実線は、実測した振動データに基づくエンベロープ周波数スぺク トルを示し、点線は基準値 (ここでは、実効値 +6dB)、一点鎖線は回転速度 200min —1に基づく外輪損傷に起因した周波数成分 (f 〜f )を示している。さらに、網掛範囲
1 5
は基準値を算出するために用いた周波数範囲を示しており、ここでは、 f 3Hz〜f
1 5
+ 3Hzである。この結果より、基準値を越えるピークが外輪損傷に起因した周波数成 分と一致していることから、軸受の外輪が損傷していると判断することができる。 [0215] 一方、図 40は、図 39の場合と同条件で得られた周波数分析の結果に対して、基準 値を算出するために用いた周波数範囲を全領域にした場合を示して 、る。図 40では 、外輪損傷に起因した周波数成分が基準値を超えていないため、異常なしと判断し てしまう虞がある。 従って、図 39及び図 40の結果から、比較照合に用いる基準値を 実測スペクトルデータの限定した範囲力 算出することにより、ノイズの影響を受け難 ぐ精度の良い診断が可能であることが確認される。
[0216] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 9月 13日出願の日本特許出願 (特願 2004— 265009)、 2004年 9月 13日出願の日本特許出願(特願 2004— 265219)、
2005年 1月 11日出願の日本特許出願(特願 2005— 004128)、
2005年 1月 26日出願の日本特許出願(特願 2005— 018338)、
2005年 1月 26日出願の日本特許出願(特願 2005— 018339)、
2005年 1月 26日出願の日本特許出願(特願 2005— 018340)、
2005年 6月 8日出願の日本特許出願(特願 2005— 168204)、
2005年 6月 16日出願の日本特許出願(特願 2005— 176505)、
2005年 6月 16日出願の日本特許出願 (特願 2005— 176507)、に基づくものであり、そ の内容はここに参照として取り込まれる。
産業上の利用可能性
[0217] 鉄道車両の車軸やギアボックス或いは発電用風車の減速機のような、機械設備に 用いられる回転或いは摺動する部品の異常を、機械設備を分解することなく実稼動 状態で、診断精度を確保しながら診断することができる。

Claims

請求の範囲
[1] 静止部材に対して相対的に回転或いは摺動する部品を備えた機械設備に用いら れる異常診断装置であって、
前記回転或いは摺動する部品又は前記静止部材に固定され、振動センサ、音響 センサ、超音波センサ及び AEセンサの少なくとも一つの振動系センサと温度センサ とを有する検出部と、
該検出部の出力した検出信号力 前記部品の状態を判定する信号処理部と、 を備え、
該信号処理部は、前記振動系センサによる計測結果と前記温度センサによる計測 結果との組み合わせに基づいて、前記部品の異常の有無、或いは該異常の有無及 び損傷の程度を判定することを特徴とする異常診断装置。
[2] 前記振動系センサ及び前記温度センサによる計測値又は該計測値の時間に対す る変化率が少なくとも一回求められ、
前記信号処理部は、前記計測値又は前記変化率と予め設定してお!、た各規定値 とを比較することにより、前記部品の異常の有無、或いは該異常の有無及び損傷の 程度を判定する異常判定部を有することを特徴とする請求項 1に記載の異常診断装 置。
[3] 静止部材に対して相対的に回転或いは摺動する部品を備えた機械設備に用いら れる異常診断装置であって、
前記回転或いは摺動する部品を駆動する駆動装置と、
前記部品又は前記静止部材に固定され、振動センサ、音響センサ、超音波センサ 及び AEセンサの少なくとも一つの振動系センサと温度センサの少なくとも一つを有 する検出部と、
該検出部の出力した検出信号力 前記部品の状態を判定する信号処理部と、 を備え、
該信号処理部は、前記駆動装置の非通電時における前記部品の所定の速度領域 内での慣性移動時に、前記検出部による振動又は温度の検出信号に基づいて前記 部品の異常を診断することを特徴とする異常診断装置。
[4] 静止部材に対して相対的に回転する部品を備えた機械設備に用いられる異常診 断装置であって、
前記部品を回転駆動する駆動装置と、
前記部品又は前記静止部材に固定され、振動センサ、音響センサ、超音波センサ 及び AEセンサの少なくとも一つの振動系センサと温度センサの少なくとも一つを有 する検出部と、
該検出部の出力した検出信号力 前記部品の状態を判定する信号処理部と、 を備え、
該信号処理部は、前記部品が lOOmin—1以上 1500min_1以下の回転速度領域 内で回転する時、前記検出部による振動又は温度の検出信号に基づいて前記部品 の異常を診断することを特徴とする異常診断装置。
[5] 前記信号処理部は、前記駆動装置の非通電時における前記部品の前記回転速度 領域内での慣性回転時に、前記検出部による振動又は温度の検出信号に基づいて 前記部品の異常を診断することを特徴とする請求項 4に記載の異常診断装置。
[6] 前記駆動装置は通電及び非通電を繰り返して用いられると共に、該駆動装置の非 通電時に前記部品が慣性移動可能であることを特徴とする請求項 3又は 5に記載の 異常診断装置。
[7] 前記駆動装置の非通電時の前記部品の慣性移動状態を該駆動装置の OFF信号 に基づいて検出することを特徴とする請求項 3,5及び 6のいずれかに記載の異常診 断装置。
[8] 前記駆動装置の回転速度を検出する回転速度センサを備え、該回転速度センサ による回転速度の検出信号と前記検出部による振動又は温度の検出信号とを連動し て前記部品の異常を診断することを特徴とする請求項 3〜7のいずれかに記載の異 常診断装置。
[9] 前記信号処理部は、回転速度信号に基づき算出した前記部品の損傷に起因した 周波数成分と前記振動系センサにより検出された信号に基づく実測データの周波数 成分とを比較する比較照合部と、該比較照合部での比較結果に基づき、前記部品 の異常の有無の判定や損傷部位を特定する異常判定部とを備えていることを特徴と する請求項 1〜8のいずれかに記載の異常診断装置。
[10] 前記信号処理部は、前記振動系センサにより検出された信号波形力 不要な周波 数帯域を除去するフィルタ処理部と、前記フィルタ処理部から転送されたフィルタ処 理後の波形の絶対値を検波するエンベロープ処理部と、前記エンベロープ処理部か ら転送された波形の周波数を分析する周波数分析部と、を備えて!/ヽることを特徴とす る請求項 9に記載の異常診断装置。
[11] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断装置であって、
前記機械設備力 発生する信号を電気信号として出力する少なくとも一つの検出 部と、
前記電気信号の波形の周波数分析を行!ヽ、該周波数分析で得られたスペクトルに 基づき算出した基準値より大きい該スペクトルのピークを抽出し、該ピーク間の周波 数と回転速度信号或いは移動速度信号に基づき算出した前記部品の損傷に起因す る周波数成分とを比較照合し、その照合結果に基づき前記部品の異常の有無及び 異常部位を判定する信号処理部と、
を備えたことを特徴とする異常診断装置。
[12] 前記信号処理部は、前記検出された信号に増幅処理とフィルタ処理の少なくとも一 方を施し、その処理された波形にエンベロープ処理を行うことを特徴とする請求項 11 に記載の異常診断装置。
[13] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断装置であって、
前記機械設備力 発生する信号を電気信号として出力する少なくとも一つの検出 部と、
前記電気信号の単位時間当たりの波形が閾値を越えた衝撃波の頻度と、回転速 度信号或いは移動速度信号に基づき、前記部品の異常の有無及び異常部位を判 定する信号処理部と、
を備えたことを特徴とする異常診断装置。
[14] 前記信号処理部は、前記電気信号の波形をフィルタ処理し、全波整流波形に変換 した波形に対して、前記閾値を越えるたびに、前記回転速度信号に応じた所定の時 間、前記閾値を越える値に保持するように変換した波形を構成し、該波形が所定の 回転数あたりに前記閾値を越える回数によって前記部品に異常を生じた可能性を知 らせることを特徴とする請求項 13に記載の異常診断装置。
[15] 前記信号処理部は、前記閾値を保持するように変換した波形が所定の回転数あた りに前記閾値を越える回数によって前記部品に異常を生じた可能性の真偽を、複数 回の統計的判断で判断することを特徴とする請求項 14に記載の異常診断装置。
[16] 前記信号処理部は、前記部品の回転速度が略一定の場合に実行されることを特徴 とする請求項 11〜15のいずれかに記載の異常診断装置。
[17] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断装置であって、
前記機械設備力 発生する信号を電気信号として出力する少なくとも一つの検出 部と、
前記電気信号の波形の周波数分析を行!ヽ、該周波数分析で得られた実測スぺタト ルデータの周波数成分と前記部品に起因した周波数成分とを可変な許容幅を持つ て比較照合し、その照合結果に基づき前記部品の異常の有無及び異常部位を判定 する信号処理部と、
を備えることを特徴とする異常診断装置。
[18] 回転部品を備えた機械設備に用いられる異常診断装置であって、
前記機械設備力 発生する信号を電気信号として出力する少なくとも一つの検出 部と、
前記電気信号の波形の周波数分析を行!ヽ、該周波数分析で得られた実測スぺタト ルデータの周波数成分と前記回転部品に起因した周波数成分とを許容幅を持って 比較照合し、その照合結果に基づき前記回転部品の異常の有無及び異常部位を判 定する信号処理部と、
を備える異常診断装置であって、
前記許容幅は、前記回転部品の回転速度と前記回転部品の設計寸法諸元とから 算出される上限値と下限値を有する領域を少なくとも一つの領域に分割し、該各分 割領域の中心値を求め、該中心値に対して与えられる任意の大きさの少なくとも一つ の許容幅であり、
前記信号処理部は、前記実測スペクトルデータの周波数成分と前記回転部品に起 因した周波数成分とを、前記少なくとも一つの許容幅毎に比較照合することを特徴と する異常診断装置。
[19] 前記許容幅は、前記回転部品が互いに異なる設計寸法諸元を有する複数の回転 部品を備える場合と、前記回転部品の回転速度が変動した場合の少なくとも一方に おいて、与えられることを特徴とする請求項 18に記載の異常診断装置。
[20] 前記許容幅は、前記周波数成分が高調波成分となるにつれて大きくなることを特徴 とする請求項 17〜 19の ヽずれかに記載の異常診断装置。
[21] 前記許容幅は、前記周波数成分の周波数帯域に応じて増減することを特徴とする 請求項 17から 20のいずれかに記載の異常診断装置。
[22] 前記許容幅は、回転速度に応じて増減することを特徴とする請求項 17または 18に 記載の異常診断装置。
[23] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断装置であって、
前記機械設備力 発生する信号を電気信号として出力する少なくとも一つの検出 部と、
前記電気信号の波形の周波数分析を行!ヽ、該周波数分析で得られた実測スぺタト ルデータの周波数成分と前記部品に起因した周波数成分とを比較照合し、その照合 結果に基づき前記部品の異常の有無及び異常部位を判定する信号処理部と、を備 え、
前記比較照合に用いられる基準値は、前記実測スペクトルデータの限定した周波 数範囲に基づいて算出されることを特徴とする異常診断装置。
[24] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断装置であって、
前記機械設備力 発生する信号を電気信号として出力する少なくとも一つの検出 部と、 前記電気信号の波形の周波数分析を行!ヽ、該周波数分析で得られた実測スぺタト ルデータの周波数成分と前記部品に起因した周波数成分とを比較照合し、その照合 結果に基づき前記部品の異常の有無及び異常部位を判定する信号処理部と、 該信号処理部にて診断された診断結果を記憶する記憶部と、
前記診断結果を所定の形式で出力する出力部と、
該出力部によって出力される出力結果を、少なくとも一つのプログラムに基づいて レポートを作成するレポート作成部と、
を備えることを特徴とする異常診断装置。
[25] 前記検出部は、前記機械設備力も発生する振動を検出するセンサに加えて、前記 機械設備の温度を検出する温度センサと前記回転部品の回転速度を検出する回転 速度センサとの少なくとも一方が単一の筐体内に収容される一体型センサを有して V、ることを特徴とする請求項 11〜24の ヽずれかに記載の異常診断装置。
[26] 前記機械設備は、前記回転部品である軸受及び該軸受を固定する軸受箱を備え 前記一体型センサは、前記軸受箱の平坦部に固定されることを特徴とする請求項 2
5に記載の異常診断装置。
[27] 前記信号処理部による判定結果を伝送するデータ伝送手段を有することを特徴と する請求項 1〜26のいずれかに記載の異常診断装置。
[28] 前記信号処理部による処理、及び前記判定結果を制御系に出力する処理を行なう マイクロコンピュータを具備したことを特徴とする請求項 1〜27のいずれかに記載の 異常診断装置。
[29] 前記機械設備は鉄道車両用軸受装置であることを特徴とする請求項 1〜28のいず れかに記載の異常診断装置。
[30] 前記機械設備は風車用軸受装置であることを特徴とする請求項 1〜28のいずれか に記載の異常診断装置。
[31] 前記機械設備は工作機械主軸用軸受装置であることを特徴とする請求項 1〜28の いずれかに記載の異常診断装置。
[32] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断方法であって、
前記機械設備から発生する信号を検出して電気信号として出力する工程と、 該検出された信号の波形の周波数を分析する工程と、
該分析工程で得られたスペクトルに基づき算出した基準値より大きい該スペクトル のピークを抽出し、該ピーク間の周波数と回転速度信号或いは移動速度信号に基づ き算出した前記部品の損傷に起因する周波数成分とを比較照合する工程と、 該比較工程での照合結果に基づき前記部品の異常の有無及び異常部位を判定 する工程と、
を備えることを特徴とする異常診断方法。
[33] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断方法であって、
前記機械設備から発生する信号を検出して電気信号として出力する工程と、 前記電気信号の単位時間当たりの波形が閾値を越えた衝撃波の頻度と、回転速 度信号或いは移動速度信号に基づき、前記部品の異常の有無を検出する工程と、 を備えたことを特徴とする異常診断方法。
[34] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断方法であって、
前記機械設備から発生する信号を検出して電気信号として出力する工程と、 該検出された信号の波形の周波数を分析する工程と、
該分析工程で得られた実測スペクトルデータの周波数成分と前記部品に起因した 周波数成分とを可変な許容幅を持って比較照合する工程と、
該比較工程での照合結果に基づき前記部品の異常の有無及び異常部位を判定 する工程と、を備えることを特徴とする異常診断方法。
[35] 回転部品を備えた機械設備に用いられる異常診断方法であって、
前記機械設備から発生する信号を検出して電気信号として出力する工程と、 該検出された信号の波形の周波数を分析する工程と、
前記回転部品に起因した周波数成分に対して、前記回転部品の回転速度と前記 回転部品の設計寸法諸元とから算出される上限値と下限値を有する領域を少なくと も一つの領域に分割し、該各分割領域の中心値を求め、該中心値に対して与えられ る任意の大きさを持った少なくとも一つの許容幅を設定する工程と、
該周波数分析で得られた実測スペクトルデータの周波数成分と前記回転部品に起 因した周波数成分とを前記少なくとも一つの許容幅毎に比較照合する工程と、 該比較工程での照合結果に基づき前記回転部品の異常の有無及び異常部位を 判定する工程と、
を備えることを特徴とする異常診断方法。
[36] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断方法であって、
前記機械設備から発生する信号を検出して電気信号として出力する工程と、 該検出された信号の波形の周波数を分析する工程と、
該分析工程で得られた実測スペクトルデータの周波数成分と前記部品に起因した 周波数成分とを比較照合する工程と、
該比較工程での照合結果に基づき前記部品の異常の有無及び異常部位を判定 する工程と、
を備え、
前記比較照合に用いられる基準値は、前記実測スペクトルデータの限定した周波 数範囲に基づいて算出されることを特徴とする異常診断方法。
[37] 回転或いは摺動する少なくとも一つの部品を備えた機械設備に用いられる異常診 断方法であって、
前記機械設備から発生する信号を検出して電気信号として出力する工程と、 該検出された信号の波形の周波数を分析する工程と、
該分析工程で得られた実測スペクトルデータの周波数成分と前記部品に起因した 周波数成分とを比較照合する工程と、
該比較工程での照合結果に基づき前記部品の異常の有無及び異常部位を判定 する工程と、
前記分析、比較、判定工程の少なくとも一つにて得られる診断結果を記憶するェ 程と、 前記診断結果を所定の形式で出力する工程と、
該出力工程によって出力される出力結果を、少なくとも一つのプログラムに基づい てレポートを作成する工程と、
を備えることを特徴とする異常診断方法。
PCT/JP2005/016845 2004-09-13 2005-09-13 異常診断装置及び異常診断方法 WO2006030786A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/586,996 US7860663B2 (en) 2004-09-13 2005-09-13 Abnormality diagnosing apparatus and abnormality diagnosing method
JP2006515429A JPWO2006030786A1 (ja) 2004-09-13 2005-09-13 異常診断装置及び異常診断方法
CN200580001831XA CN1906473B (zh) 2004-09-13 2005-09-13 故障诊断装置

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2004-265219 2004-09-13
JP2004265219 2004-09-13
JP2004265009A JP2006077938A (ja) 2004-09-13 2004-09-13 異常診断装置
JP2004-265009 2004-09-13
JP2005004128A JP4581693B2 (ja) 2004-09-13 2005-01-11 異常診断装置
JP2005-004128 2005-01-11
JP2005-018340 2005-01-26
JP2005-018338 2005-01-26
JP2005018338 2005-01-26
JP2005018340 2005-01-26
JP2005-018339 2005-01-26
JP2005018339 2005-01-26
JP2005-168204 2005-06-08
JP2005168204A JP2006234784A (ja) 2005-01-26 2005-06-08 機械設備の異常診断装置及び異常診断方法
JP2005176507A JP4581860B2 (ja) 2005-01-26 2005-06-16 機械設備の異常診断装置及び異常診断方法
JP2005-176505 2005-06-16
JP2005-176507 2005-06-16
JP2005176505A JP2006234785A (ja) 2005-01-26 2005-06-16 機械設備の異常診断装置及び異常診断方法

Publications (1)

Publication Number Publication Date
WO2006030786A1 true WO2006030786A1 (ja) 2006-03-23

Family

ID=36060037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016845 WO2006030786A1 (ja) 2004-09-13 2005-09-13 異常診断装置及び異常診断方法

Country Status (2)

Country Link
US (1) US7860663B2 (ja)
WO (1) WO2006030786A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141695A2 (de) * 2007-03-30 2008-11-27 Uwe Rehwald Anordnung und verfahren zur erfassung und/oder auswertung von schwingungen bewegter und/oder einen antrieb aufweisender körper und/oder strukturen
JP2010079903A (ja) * 2008-09-26 2010-04-08 General Electric Co <Ge> Usb振動データの取得
WO2012011534A1 (ja) * 2010-07-21 2012-01-26 日立建機株式会社 軸受の損傷検出方法
CN102428270A (zh) * 2009-05-21 2012-04-25 歌美飒创新技术公司 风力涡轮机自我诊断系统和程序
CN102507186A (zh) * 2011-11-01 2012-06-20 西安交通大学 一种基于特色参数的行星齿轮箱状态监测与故障辨识方法
JP2012172623A (ja) * 2011-02-23 2012-09-10 Ntn Corp 転がり軸受および風力発電装置
CN103383306A (zh) * 2013-07-04 2013-11-06 银川威力减速器有限公司 风力发电偏航减速器的仿真模拟实验装置及其方法
CN103383305A (zh) * 2013-07-04 2013-11-06 银川威力减速器有限公司 风力发电变桨减速器的仿真模拟实验装置
KR101579282B1 (ko) * 2014-07-23 2015-12-21 한국과학기술연구원 베어링의 내구성을 시험하기 위한 베어링의 시험 장치
CN105547129A (zh) * 2014-10-13 2016-05-04 斯凯孚公司 用于确定滚动元件的间距的方法和数据处理设备
EP2131177A4 (en) * 2007-03-26 2016-09-21 Nippon Steel & Sumitomo Metal Corp METHOD AND DEVICE FOR ABNORMITY DIAGNOSIS FOR AN EXTREMELY SLOW ROTATING MACHINE
JP2016200523A (ja) * 2015-04-13 2016-12-01 ファナック株式会社 主軸の劣化状態の検査機能を有する工作機械
JP2017032467A (ja) * 2015-08-04 2017-02-09 日本精工株式会社 異常診断装置、軸受、機械装置及び車両
JP1570114S (ja) * 2016-06-24 2017-02-20
JP2017133919A (ja) * 2015-12-30 2017-08-03 上銀科技股▲分▼有限公司 センサー
JP2018028512A (ja) * 2016-08-19 2018-02-22 オークマ株式会社 回転軸を有する機械
CN109773588A (zh) * 2019-03-01 2019-05-21 山东大学 一种机床数字孪生模型性能测试方法及装置
DE102008014000B4 (de) * 2007-03-14 2019-08-08 Technofan Zac Du Grand Noble Ventilator mit Verschleißüberwachungsmitteln
KR20200082896A (ko) * 2018-12-31 2020-07-08 주식회사 일진글로벌 고장 진단 장치 및 이러한 고장 진단 장치를 구비하는 차량용 휠베어링
JP2020163515A (ja) * 2019-03-29 2020-10-08 株式会社 神崎高級工機製作所 歯車加工装置
JP2020204555A (ja) * 2019-06-18 2020-12-24 日立Geニュークリア・エナジー株式会社 回転機械の異常診断方法
JP2021018106A (ja) * 2019-07-18 2021-02-15 Ntn株式会社 軸受異常予知装置および軸受異常予知方法
US11085489B2 (en) 2017-05-12 2021-08-10 Iain Kenton EPPS Bearing monitoring method and system
JP2021128468A (ja) * 2020-02-12 2021-09-02 川崎重工業株式会社 昇温検知センサ、昇温検知システム、及び昇温検知ユニット
US11175264B2 (en) * 2014-08-20 2021-11-16 Vibrant Corporation Part evaluation based upon system natural frequency
CN113795735A (zh) * 2019-05-31 2021-12-14 Abb瑞士股份有限公司 用于监测旋转装置的方法以及状态监测设备
JP2022032631A (ja) * 2020-08-13 2022-02-25 ルネサスエレクトロニクス株式会社 異常検知機能が組み込まれた制御システムおよびその異常検知方法
JPWO2022085425A1 (ja) * 2020-10-21 2022-04-28
CN114735045A (zh) * 2022-06-14 2022-07-12 成都铁安科技有限责任公司 一种轮对检测设备的故障自诊断方法及系统
US11536627B2 (en) 2018-08-03 2022-12-27 Fanuc Corporation Abnormality monitoring device, abnormality monitoring method, and control device

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820468B2 (ja) * 2005-08-04 2011-11-24 ボッシュ株式会社 検出信号伝送装置
JP5063005B2 (ja) * 2006-02-01 2012-10-31 株式会社ジェイテクト 音又は振動の異常診断方法及び音又は振動の異常診断装置
US8044778B2 (en) * 2007-07-12 2011-10-25 Henry Schein, Inc. Injection device and case with reporting ability
ITMO20060267A1 (it) * 2006-09-05 2008-03-06 Sicam Srl Macchina equilibratrice perfezionata per ruote di veicoli
EP1972793B1 (de) * 2007-03-23 2010-07-14 Grundfos Management A/S Verfahren zur Detektion von Fehlern in Pumpenaggregaten
US7693673B2 (en) * 2007-06-06 2010-04-06 General Electric Company Apparatus and method for identifying a defect and/or operating characteristic of a system
JP5003331B2 (ja) * 2007-07-26 2012-08-15 株式会社ジェイテクト ハブユニットの評価装置およびハブユニットの評価方法
DE102007036271A1 (de) * 2007-07-31 2009-02-05 Baumer Hübner GmbH Drehgeber mit Überwachung des Lagerverschleißes sowie Verfahren hierzu
DE102008010885A1 (de) 2008-02-25 2009-08-27 Krones Ag Vorrichtung und Verfahren zum Überwachen der Betriebsfähigkeit einer Behälterbehandlungsvorrichtung
WO2009109200A1 (en) * 2008-03-05 2009-09-11 Ab Skf Device for attachment to a rotating part of a railway axle
EP2131178B1 (de) * 2008-06-02 2011-04-06 Siemens Aktiengesellschaft Diagnoseverfahren für zumindest ein Kugellager, insbesondere für ein Schrägkugellager, korrespondierendes Diagnosesystem sowie Verwendung eines derartigen Diagnosesystems
TWI474023B (zh) * 2008-12-10 2015-02-21 Ind Tech Res Inst 馬達故障診斷方法及其診斷裝置
US8155808B2 (en) * 2009-04-01 2012-04-10 Taiwan Nano-Technology Application Corp. System for monitoring track transportation
US20120330578A1 (en) * 2011-06-22 2012-12-27 Honeywell International Inc. Severity analysis apparatus and method for shafts of rotating machinery
US8229682B2 (en) * 2009-08-17 2012-07-24 General Electric Company Apparatus and method for bearing condition monitoring
JP5725833B2 (ja) * 2010-01-04 2015-05-27 Ntn株式会社 転がり軸受の異常診断装置、風力発電装置および異常診断システム
EP2513501B1 (de) * 2010-03-01 2015-08-26 Siemens Aktiengesellschaft Lagermodul mit sensoreinrichtung
DK2543977T3 (da) * 2010-03-03 2019-06-11 Asahi Kasei Eng Corporation Diagnostisk fremgangsmåde og diagnostisk indretning til et glideleje
EP2407368B1 (de) 2010-07-16 2014-01-29 Siemens Aktiengesellschaft Achsgetriebe eines Schienenfahrzeugs
JP5693102B2 (ja) * 2010-08-31 2015-04-01 三菱重工業株式会社 風力発電装置の異常振動検出装置
US8803698B1 (en) * 2010-11-23 2014-08-12 Fluke Corporation Removable stand alone vibration monitor with automatically configured alarm thresholds
EP2498076A1 (en) 2011-03-11 2012-09-12 Hexagon Technology Center GmbH Wear-Monitoring of a Gearbox in a Power Station
JP2012233855A (ja) * 2011-05-09 2012-11-29 Matsushima Kikai Kenkyusho:Kk 回転数計測装置
WO2012156496A2 (de) * 2011-05-19 2012-11-22 W & H Dentalwerk Bürmoos GmbH Medizinisches, insbesondere dentales, instrument mit einer temperaturmessvorrichtung
EP3210564B1 (de) 2011-05-19 2020-07-29 W & H Dentalwerk Bürmoos GmbH Medizinisches, insbesondere dentales, handstück mit temperaturmessvorrichtung
CN102288286B (zh) * 2011-06-16 2012-10-03 中国科学院沈阳自动化研究所 一种振动加速度传感器齿轮箱测点精度分析与评价方法
JP5732325B2 (ja) 2011-06-16 2015-06-10 オークマ株式会社 振動判別方法、及び振動判別装置
US8880359B2 (en) * 2011-09-29 2014-11-04 Schaeffler Technologies Gmbh & Co. Kg Transmission sensing and measurement system
EP2626683B1 (en) * 2012-02-07 2014-07-16 Siemens Aktiengesellschaft Wind turbine, comprising a number of bearings
WO2013133002A1 (ja) 2012-03-08 2013-09-12 Ntn株式会社 状態監視システム
US10046815B2 (en) * 2012-03-27 2018-08-14 Wearpro Incorporated Wear monitoring device and method of monitoring undercarriage and roller wear
JP5904663B2 (ja) * 2012-03-27 2016-04-13 株式会社Isowa 段ボール機械の自動点検装置、および自動点検機能を有する段ボール機械
EP2805159A1 (de) * 2012-04-12 2014-11-26 Siemens Aktiengesellschaft Sensorelement mit einem acoustic-emission-sensor
CN104285139A (zh) * 2012-04-24 2015-01-14 Skf公司 轴承监测方法以及系统
CN104303036A (zh) * 2012-04-24 2015-01-21 Skf公司 测量机械轴承振动的方法以及装置
US20130297257A1 (en) * 2012-05-04 2013-11-07 Jun Yang Energy Separation System, Method, and Program Product for Detecting Faulty Bearings
DE102012216762A1 (de) * 2012-09-19 2014-03-20 Schaeffler Technologies AG & Co. KG Lager
CN102928224A (zh) * 2012-10-24 2013-02-13 西北工业大学 一种检测风力发电机组轴承故障的方法
FR2998019B1 (fr) * 2012-11-12 2016-07-22 Skf Aerospace France Roulement, boitier comprenant un ensemble de roulement(s), procede et programme d'ordinateur associes
WO2014090305A1 (en) * 2012-12-12 2014-06-19 Aktiebolaget Skf Detecting irregularities in a rotation of roller bodies in a roller bearing
JP6196093B2 (ja) 2012-12-25 2017-09-13 Ntn株式会社 軸受装置の振動解析方法、軸受装置の振動解析装置、および転がり軸受の状態監視装置
FR3000798B1 (fr) * 2013-01-10 2015-04-17 Ntn Snr Roulements Systeme de diagnostic de l'etat structurel d'une unite de roulement d'un engin a roues.
US9341512B2 (en) * 2013-03-15 2016-05-17 Fluke Corporation Frequency response of vibration sensors
WO2014161588A1 (en) * 2013-04-05 2014-10-09 Aktiebolaget Skf Method for processing data obtained from a condition monitoring system
WO2014161589A1 (en) * 2013-04-05 2014-10-09 Aktiebolaget Skf Method for processing data obtained from a condition monitoring system
WO2014161587A1 (en) 2013-04-05 2014-10-09 Aktiebolaget Skf Method for processing data obtained from a condition monitoring system
US10222296B2 (en) * 2013-09-13 2019-03-05 Aktiebolaget Skf Obtaining data concerning factors influencing a residual life of a bearing
JP6413642B2 (ja) * 2013-11-05 2018-10-31 日本精工株式会社 軸受状態検知装置及び軸受状態検知方法
JP5896983B2 (ja) * 2013-12-27 2016-03-30 三菱重工業株式会社 油圧機械の診断方法及び油圧機械用の診断装置
US9856967B2 (en) * 2014-04-11 2018-01-02 Cnh Industrial America Llc Torque estimation for work machine power train
GB2526543A (en) * 2014-05-26 2015-12-02 Skf Ab Wireless sensor module
EP3163074B1 (en) 2014-06-24 2020-04-22 NTN Corporation Condition monitoring system and wind power generation system using same
CN105318961B (zh) * 2014-07-29 2019-05-31 上海宝钢工业技术服务有限公司 驱动输送皮带的高压电机振动状态在线监测方法
EP3176427A4 (en) * 2014-07-29 2018-03-14 NTN Corporation State monitoring system and wind power generation system provided with same
CN106687353A (zh) * 2014-09-12 2017-05-17 Ntn株式会社 铁路车辆用轴承的异常检测系统
US9933337B2 (en) 2014-09-12 2018-04-03 Hendrikson USA, L.L.C. Wheel end sensor for heavy-duty vehicles
JP6190343B2 (ja) * 2014-09-12 2017-08-30 株式会社神戸製鋼所 回転機の異常診断装置、回転機の異常診断方法、及び、回転機
GB2530093B (en) * 2014-09-15 2017-02-01 Ge Aviat Systems Ltd Assembly and method of component monitoring
JP5943357B2 (ja) * 2014-09-17 2016-07-05 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 検出装置、検出方法、およびプログラム
GB2531258A (en) 2014-10-13 2016-04-20 Skf Ab Method and data processing device for detecting a load distribution in a roller bearing
EP3207256B1 (en) * 2014-10-15 2023-11-29 Grundfos Holding A/S Method and system for detection of faults in pump assembly via handheld communication device
GB201419214D0 (en) * 2014-10-29 2014-12-10 Rolls Royce Plc Bearing apparatus
JP6183346B2 (ja) 2014-12-10 2017-08-23 日本精工株式会社 異常診断装置、軸受、回転装置、産業機械及び車両
US20150159349A1 (en) * 2015-02-16 2015-06-11 Caterpillar Inc. Lubricant testing assembly
US10259572B2 (en) * 2015-04-16 2019-04-16 Bell Helicopter Textron Inc. Torsional anomalies detection system
US10240972B2 (en) 2015-08-05 2019-03-26 Lovejoy Controls Corporation Doppler ultrasonic velocity probe
DE102015010491A1 (de) * 2015-08-17 2017-02-23 Senvion Gmbh Verfahren zum Betrieb einer Windenergieanlage, Windenergieanlage und Computerprogrammprodukt
CN105067248B (zh) * 2015-08-17 2018-04-27 安徽容知日新科技股份有限公司 设备转速和振动数据采集方法、装置和监测系统
US9824511B2 (en) * 2015-09-11 2017-11-21 GM Global Technology Operations LLC Vehicle diagnosis based on vehicle sounds and vibrations
US10448583B2 (en) * 2015-10-05 2019-10-22 Deere & Company Disc saw felling head for a feller buncher
US10410439B1 (en) * 2015-10-09 2019-09-10 United Services Automobile Association (Usaa) Determining and assessing post-accident vehicle damage
AT517886B1 (de) * 2015-11-05 2018-05-15 Engel Austria Gmbh Vorrichtung zum Überprüfen eines Zustandes eines Maschinenteils
JP6676982B2 (ja) * 2016-01-27 2020-04-08 株式会社ジェイテクト 転がり軸受装置および転がり軸受の異常の検出方法
CN108700492B (zh) * 2016-02-23 2020-08-11 Ntn株式会社 异常诊断装置和异常诊断方法
CN105841792B (zh) * 2016-03-16 2018-12-11 重庆大学 基于微型传感器的齿轮压力角方向局域振动信号获取方法
CN109073505A (zh) 2016-03-30 2018-12-21 Ntn株式会社 齿轮装置的状态监视系统以及状态监视方法
WO2017175276A1 (ja) * 2016-04-04 2017-10-12 三菱電機株式会社 レール破断検知装置
US11327475B2 (en) 2016-05-09 2022-05-10 Strong Force Iot Portfolio 2016, Llc Methods and systems for intelligent collection and analysis of vehicle data
US20180284741A1 (en) 2016-05-09 2018-10-04 StrongForce IoT Portfolio 2016, LLC Methods and systems for industrial internet of things data collection for a chemical production process
US11774944B2 (en) 2016-05-09 2023-10-03 Strong Force Iot Portfolio 2016, Llc Methods and systems for the industrial internet of things
KR101764540B1 (ko) * 2016-06-21 2017-08-02 두산중공업 주식회사 풍력발전기 진동 상태감시 및 진단 시스템
JP6595416B2 (ja) * 2016-08-09 2019-10-23 ファナック株式会社 サーボ制御装置、サーボ制御装置を用いた主軸故障検出方法及びコンピュータプログラム
JP6665062B2 (ja) * 2016-08-31 2020-03-13 Ntn株式会社 状態監視装置
US10417837B2 (en) * 2016-09-22 2019-09-17 Ford Global Technologies, Llc Arrangements for collecting diagnostic information regarding vibrations of wheel-tire assembly and drive-line components of a wheeled vehicle
EP3309530A1 (en) * 2016-10-11 2018-04-18 ABB Schweiz AG Detection of bearing fault
JP6496298B2 (ja) * 2016-11-28 2019-04-03 ファナック株式会社 振動機能及び振動検出機能を備えた可搬式操作盤
WO2018109993A1 (ja) 2016-12-15 2018-06-21 三菱電機株式会社 動力伝達機構の異常診断装置および動力伝達機構の異常診断方法
US10788395B2 (en) * 2017-02-10 2020-09-29 Aktiebolaget Skf Method and device of processing of vibration sensor signals
JP6867826B2 (ja) 2017-02-23 2021-05-12 三菱重工エンジニアリング株式会社 異常監視装置、異常監視方法およびプログラム
US10816437B2 (en) * 2017-03-22 2020-10-27 General Electric Company Contactless rotor state/speed measurement of x-ray tube
US10495693B2 (en) * 2017-06-01 2019-12-03 General Electric Company Wind turbine fault detection using acoustic, vibration, and electrical signals
JP7101952B2 (ja) * 2017-06-07 2022-07-19 中村留精密工業株式会社 故障予知機能を備えた複合加工機械
JP6944285B2 (ja) * 2017-06-29 2021-10-06 川崎重工業株式会社 回転部材を有する装置の異常原因特定システム
US11131989B2 (en) 2017-08-02 2021-09-28 Strong Force Iot Portfolio 2016, Llc Systems and methods for data collection including pattern recognition
US10488372B2 (en) * 2017-08-16 2019-11-26 General Electric Company Systems and methods for detecting damage in rotary machines
JP6476250B1 (ja) * 2017-08-29 2019-02-27 三菱重工業株式会社 風力発電装置の診断方法及び診断システム
US10539200B2 (en) 2017-09-27 2020-01-21 Robert Bosch Gmbh Sound-based brake wear detection for vehicle braking systems
KR102474355B1 (ko) * 2017-10-30 2022-12-05 현대자동차 주식회사 차량 제어 통합 관리 시스템 및 이와 통신을 통해 연결된 중앙 인공지능 서버
JP6657162B2 (ja) 2017-10-31 2020-03-04 三菱重工業株式会社 異常検出装置、異常検出方法、プログラム
TWI672483B (zh) * 2018-03-28 2019-09-21 崑山科技大學 振動故障分析系統
US11105712B2 (en) * 2018-04-06 2021-08-31 Raytheon Technologies Corporation Integrated vibe/ODM fusion and trending analysis for prognostic health management of engine bearing
JP7357294B2 (ja) * 2018-06-19 2023-10-06 パナソニックIpマネジメント株式会社 診断システム、診断方法、プログラム
CN108645634B (zh) * 2018-08-06 2020-10-27 珠海大横琴科技发展有限公司 一种轨道车辆故障诊断装置
US11333577B2 (en) * 2018-08-23 2022-05-17 Nsk Ltd. Method and device for diagnosing abnormality in rolling bearing
WO2020090479A1 (ja) * 2018-10-29 2020-05-07 日本精工株式会社 ボールねじの予圧低下検出方法及び直動駆動装置
EP3882591A4 (en) * 2018-11-14 2021-12-29 Panasonic Intellectual Property Management Co., Ltd. Sound state display method, sound state display apparatus, and sound state display system
EP3663011A1 (de) * 2018-12-05 2020-06-10 Primetals Technologies Austria GmbH Erfassen und übertragen von daten eines lagers eines stahl- oder walzwerks
TWI698586B (zh) * 2019-01-23 2020-07-11 旺玖科技股份有限公司 風扇運作狀態診斷裝置及其方法
US11428735B1 (en) * 2019-03-14 2022-08-30 Maxim Integrated Products, Inc. System for monitoring and controlling an integrated circuit testing machine
US11460006B2 (en) 2019-07-31 2022-10-04 General Electric Company Systems and methods for detecting damage in rotary machines
US11714028B2 (en) * 2019-09-05 2023-08-01 Simmonds Precision Products, Inc. System and method for health monitoring of a bearing system
EP4043856B1 (en) * 2019-10-02 2024-08-07 NTN Corporation Vibration analysis device and vibration measurement system
US11513031B2 (en) * 2019-10-28 2022-11-29 Aktiebolaget Skf Conformance test apparatus, sensor system, and processes
JP7262380B2 (ja) * 2019-12-20 2023-04-21 住友重機械工業株式会社 診断装置
KR102592987B1 (ko) * 2020-03-03 2023-10-24 주식회사 일진글로벌 휠베어링의 진단방법
JP7379241B2 (ja) * 2020-03-25 2023-11-14 三菱重工業株式会社 回転機の診断監視装置及び方法
US11739746B2 (en) * 2020-09-25 2023-08-29 Cornell Pump Company LLC Mounting pocket for remote equipment monitoring device
GB2601147A (en) * 2020-11-19 2022-05-25 Tribosonics Ltd An ultrasonic sensor arrangement
EP4012209A1 (en) * 2020-12-14 2022-06-15 Siemens Aktiengesellschaft System, apparatus and method for estimating remaining useful life of at least one bearing
JP2022100163A (ja) * 2020-12-23 2022-07-05 トヨタ自動車株式会社 音源推定サーバ、音源推定システム、音源推定装置、音源推定方法
CN112504677B (zh) * 2021-02-05 2021-04-30 天津飞旋科技有限公司 保护轴承磨损数据检测方法和装置
AT526568A1 (de) * 2022-09-28 2024-04-15 Andritz Ag Maschf Sensor, dessen verwendung und verfahren zur erfassung des verschleisses einer komponente

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500452A (ja) * 1994-05-05 1997-01-14 ゼネラル・エレクトリック・カンパニイ 鉄道車輛の車輪及び軌道の欠陥状態を検出する装置と方法
JPH09113416A (ja) * 1995-10-17 1997-05-02 Nippon Steel Corp ころがり軸受の損傷診断方法
JP2002022617A (ja) * 2000-07-05 2002-01-23 Mitsubishi Electric Corp 軸受診断装置
JP2003202276A (ja) * 2000-12-06 2003-07-18 Nsk Ltd 機械設備又は機器の異常診断方法
JP2004093256A (ja) * 2002-08-30 2004-03-25 Nsk Ltd 異常診断システム
JP2004150974A (ja) * 2002-10-31 2004-05-27 Nippon Densan Corp 動作評価方法および動作評価装置
JP2004184400A (ja) * 2002-11-21 2004-07-02 Nsk Ltd 機械設備の監視システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523432A (en) 1978-08-09 1980-02-19 Toshiba Corp Abnormality diagnostic unit for rotary machine
JPS6138426A (ja) 1984-07-31 1986-02-24 Japan Tobacco Inc 機械設備異常診断装置
JPS62270820A (ja) 1986-05-16 1987-11-25 Nippon Kokan Kk <Nkk> 振動音による軸受異常診断方法及びその装置
JPH01221633A (ja) 1988-03-01 1989-09-05 Agency Of Ind Science & Technol 軸受故障検知用複合センサー
JPH0658298B2 (ja) 1988-03-10 1994-08-03 光洋精工株式会社 軸受の異常診断装置
JPH04148839A (ja) 1990-10-12 1992-05-21 Kinki Nippon Tetsudo Kk 車輪踏面の異常検出装置
JPH0979915A (ja) 1995-09-14 1997-03-28 East Japan Railway Co 車両軸受け温度異常検知システム
JP3449194B2 (ja) 1997-01-28 2003-09-22 松下電工株式会社 回転機器の異常診断方法およびその装置
JPH11125244A (ja) 1997-10-24 1999-05-11 Daido Steel Co Ltd 貨物列車の車軸過熱警報装置
US6199018B1 (en) * 1998-03-04 2001-03-06 Emerson Electric Co. Distributed diagnostic system
JP2001159586A (ja) 1999-12-02 2001-06-12 Suzuki Motor Corp 音評価方法及び装置並びに音評価用プログラムを記憶した記憶媒体
IT1320400B1 (it) 2000-06-06 2003-11-26 Skf Ind Spa Metodo ed apparecchiatura per rilevare difetti di rotondita'in unaruota di un veicolo ferroviario.
JP4674395B2 (ja) 2000-10-20 2011-04-20 日本電産株式会社 軸受検査方法
WO2002037067A1 (fr) 2000-11-06 2002-05-10 Nsk Ltd. Dispositif et procede diagnostiquant des anomalies pour une installation mecanique
WO2004027370A1 (ja) 2002-08-30 2004-04-01 Nsk Ltd. 機械設備の状態監視方法及び装置ならびに異常診断装置
JP2004257836A (ja) 2003-02-25 2004-09-16 Nsk Ltd 機械装置の異常診断装置
JP3918931B2 (ja) 2002-11-21 2007-05-23 日本精工株式会社 回転体の異常診断方法及び装置
JP3693644B2 (ja) 2002-11-29 2005-09-07 東芝プラントシステム株式会社 設備の運転状態音響監視方法および設備の運転状態音響監視装置
JP2004211813A (ja) 2002-12-27 2004-07-29 Nsk Ltd 鉄道車両の車軸用軸受装置
JP2004233284A (ja) 2003-01-31 2004-08-19 Nsk Ltd 転がり軸受ユニットの診断装置及び診断方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500452A (ja) * 1994-05-05 1997-01-14 ゼネラル・エレクトリック・カンパニイ 鉄道車輛の車輪及び軌道の欠陥状態を検出する装置と方法
JPH09113416A (ja) * 1995-10-17 1997-05-02 Nippon Steel Corp ころがり軸受の損傷診断方法
JP2002022617A (ja) * 2000-07-05 2002-01-23 Mitsubishi Electric Corp 軸受診断装置
JP2003202276A (ja) * 2000-12-06 2003-07-18 Nsk Ltd 機械設備又は機器の異常診断方法
JP2004093256A (ja) * 2002-08-30 2004-03-25 Nsk Ltd 異常診断システム
JP2004150974A (ja) * 2002-10-31 2004-05-27 Nippon Densan Corp 動作評価方法および動作評価装置
JP2004184400A (ja) * 2002-11-21 2004-07-02 Nsk Ltd 機械設備の監視システム

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008014000B4 (de) * 2007-03-14 2019-08-08 Technofan Zac Du Grand Noble Ventilator mit Verschleißüberwachungsmitteln
EP2131177A4 (en) * 2007-03-26 2016-09-21 Nippon Steel & Sumitomo Metal Corp METHOD AND DEVICE FOR ABNORMITY DIAGNOSIS FOR AN EXTREMELY SLOW ROTATING MACHINE
WO2008141695A2 (de) * 2007-03-30 2008-11-27 Uwe Rehwald Anordnung und verfahren zur erfassung und/oder auswertung von schwingungen bewegter und/oder einen antrieb aufweisender körper und/oder strukturen
WO2008141695A3 (de) * 2007-03-30 2009-02-26 Uwe Rehwald Anordnung und verfahren zur erfassung und/oder auswertung von schwingungen bewegter und/oder einen antrieb aufweisender körper und/oder strukturen
JP2010079903A (ja) * 2008-09-26 2010-04-08 General Electric Co <Ge> Usb振動データの取得
CN102428270A (zh) * 2009-05-21 2012-04-25 歌美飒创新技术公司 风力涡轮机自我诊断系统和程序
WO2012011534A1 (ja) * 2010-07-21 2012-01-26 日立建機株式会社 軸受の損傷検出方法
JP2012172623A (ja) * 2011-02-23 2012-09-10 Ntn Corp 転がり軸受および風力発電装置
CN102507186A (zh) * 2011-11-01 2012-06-20 西安交通大学 一种基于特色参数的行星齿轮箱状态监测与故障辨识方法
CN103383305A (zh) * 2013-07-04 2013-11-06 银川威力减速器有限公司 风力发电变桨减速器的仿真模拟实验装置
CN103383306A (zh) * 2013-07-04 2013-11-06 银川威力减速器有限公司 风力发电偏航减速器的仿真模拟实验装置及其方法
KR101579282B1 (ko) * 2014-07-23 2015-12-21 한국과학기술연구원 베어링의 내구성을 시험하기 위한 베어링의 시험 장치
US9714883B2 (en) 2014-07-23 2017-07-25 Korea Institute Of Science And Technology Bearing test apparatus for testing durability of bearing
US11175264B2 (en) * 2014-08-20 2021-11-16 Vibrant Corporation Part evaluation based upon system natural frequency
CN105547129A (zh) * 2014-10-13 2016-05-04 斯凯孚公司 用于确定滚动元件的间距的方法和数据处理设备
JP2016200523A (ja) * 2015-04-13 2016-12-01 ファナック株式会社 主軸の劣化状態の検査機能を有する工作機械
US10124457B2 (en) 2015-04-13 2018-11-13 Fanuc Corporation Machine tool having inspection function for deteriorated state of spindle
JP2017032467A (ja) * 2015-08-04 2017-02-09 日本精工株式会社 異常診断装置、軸受、機械装置及び車両
JP2017133919A (ja) * 2015-12-30 2017-08-03 上銀科技股▲分▼有限公司 センサー
JP1570114S (ja) * 2016-06-24 2017-02-20
JP2018028512A (ja) * 2016-08-19 2018-02-22 オークマ株式会社 回転軸を有する機械
US11480213B2 (en) 2017-05-12 2022-10-25 Iain Kenton EPPS Bearing monitoring method and system
EP3601990B1 (en) * 2017-05-12 2022-05-25 Epps, Iain A bearing monitoring method and system
US11085489B2 (en) 2017-05-12 2021-08-10 Iain Kenton EPPS Bearing monitoring method and system
US11536627B2 (en) 2018-08-03 2022-12-27 Fanuc Corporation Abnormality monitoring device, abnormality monitoring method, and control device
KR20200082896A (ko) * 2018-12-31 2020-07-08 주식회사 일진글로벌 고장 진단 장치 및 이러한 고장 진단 장치를 구비하는 차량용 휠베어링
KR102503857B1 (ko) * 2018-12-31 2023-02-27 주식회사 일진글로벌 고장 진단 장치 및 이러한 고장 진단 장치를 구비하는 차량용 휠베어링
CN109773588A (zh) * 2019-03-01 2019-05-21 山东大学 一种机床数字孪生模型性能测试方法及装置
JP2020163515A (ja) * 2019-03-29 2020-10-08 株式会社 神崎高級工機製作所 歯車加工装置
JP7267585B2 (ja) 2019-03-29 2023-05-02 株式会社 神崎高級工機製作所 歯車加工装置
CN113795735A (zh) * 2019-05-31 2021-12-14 Abb瑞士股份有限公司 用于监测旋转装置的方法以及状态监测设备
JP2020204555A (ja) * 2019-06-18 2020-12-24 日立Geニュークリア・エナジー株式会社 回転機械の異常診断方法
JP7260410B2 (ja) 2019-06-18 2023-04-18 日立Geニュークリア・エナジー株式会社 回転機械の異常診断方法
JP2021018106A (ja) * 2019-07-18 2021-02-15 Ntn株式会社 軸受異常予知装置および軸受異常予知方法
JP7335743B2 (ja) 2019-07-18 2023-08-30 Ntn株式会社 軸受異常予知装置および軸受異常予知方法
JP2021128468A (ja) * 2020-02-12 2021-09-02 川崎重工業株式会社 昇温検知センサ、昇温検知システム、及び昇温検知ユニット
JP2022032631A (ja) * 2020-08-13 2022-02-25 ルネサスエレクトロニクス株式会社 異常検知機能が組み込まれた制御システムおよびその異常検知方法
JPWO2022085425A1 (ja) * 2020-10-21 2022-04-28
JP7276617B2 (ja) 2020-10-21 2023-05-18 住友電気工業株式会社 モータ監視装置、モータ監視方法及びコンピュータプログラム
CN114735045A (zh) * 2022-06-14 2022-07-12 成都铁安科技有限责任公司 一种轮对检测设备的故障自诊断方法及系统

Also Published As

Publication number Publication date
US7860663B2 (en) 2010-12-28
US20080234964A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
WO2006030786A1 (ja) 異常診断装置及び異常診断方法
JP4117500B2 (ja) 異常診断装置及びこれを有する転がり軸受装置並びに異常診断方法
JP3944744B2 (ja) 異常診断装置及びこれを有する転がり軸受装置
JP5146008B2 (ja) 異常診断装置、及び異常診断方法
US9423290B2 (en) Abnormality diagnostic device for rolling bearing, wind turbine generation apparatus and abnormality diagnostic system
CN1906473B (zh) 故障诊断装置
JP4581693B2 (ja) 異常診断装置
JP6508017B2 (ja) 機械設備の評価方法
JP6714806B2 (ja) 状態監視装置及び状態監視方法
WO2004027370A1 (ja) 機械設備の状態監視方法及び装置ならびに異常診断装置
JP7027782B2 (ja) 転がり軸受の異常診断装置
JP2017219469A (ja) 状態監視装置及び状態監視方法
EP0982579A1 (en) Devices for inspecting bearings of main motors of rolling stock
JP2008292288A (ja) 減速機の軸受診断装置
KR102697028B1 (ko) 구름 베어링의 이상 진단 방법 및 이상 진단 장치
JP2006234785A (ja) 機械設備の異常診断装置及び異常診断方法
JP2018155494A (ja) 軸受異常診断システム及び軸受異常診断方法
JP3871054B2 (ja) 機械設備の状態監視方法及び装置
JP4529602B2 (ja) 異常診断装置及び異常診断方法
JP4581860B2 (ja) 機械設備の異常診断装置及び異常診断方法
JP6714844B2 (ja) 異常診断方法
WO2018088564A1 (ja) 軸受異常診断方法および診断システム
JP2016170085A (ja) 異常診断装置及び異常診断方法
JP2019128179A (ja) 振動センサの脱落検知方法及び異常診断装置
JP2018080924A (ja) 軸受異常診断方法および診断システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001831.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006515429

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10586996

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase