[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006019059A1 - 熱電冷却装置 - Google Patents

熱電冷却装置 Download PDF

Info

Publication number
WO2006019059A1
WO2006019059A1 PCT/JP2005/014848 JP2005014848W WO2006019059A1 WO 2006019059 A1 WO2006019059 A1 WO 2006019059A1 JP 2005014848 W JP2005014848 W JP 2005014848W WO 2006019059 A1 WO2006019059 A1 WO 2006019059A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling device
thermoelectric
layer
metal layer
thermoelectric cooling
Prior art date
Application number
PCT/JP2005/014848
Other languages
English (en)
French (fr)
Inventor
Yoshinori Nakamura
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to US11/573,789 priority Critical patent/US20080308140A1/en
Priority to JP2006531767A priority patent/JPWO2006019059A1/ja
Publication of WO2006019059A1 publication Critical patent/WO2006019059A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a large-sized and high-performance thermoelectric cooling device including a thermoelectric element composed of a plurality of pairs of p-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements.
  • thermoelectric element is generally produced by connecting a p-type thermoelectric semiconductor element and an n-type thermoelectric semiconductor element in series by a metal electrode to form a pn junction pair.
  • the thermoelectric element generates electric power by applying a current to the pn junction pair to cool one side of the junction and generate heat at the other junction, and a temperature difference between the junction pair.
  • There is a zeck effect and it is used as a cooling device or power generation device.
  • thermoelectric element of an integral structure is obtained.
  • the p-type thermoelectric semiconductor elements also referred to as elements
  • the n-type thermoelectric semiconductor elements are alternately arranged in the vertical and horizontal directions. Accordingly, elements that are generally rectangular parallelepipeds can be arranged with the highest density.
  • the density of element arrangement refers to the ratio of the sum of the bottom area of the element to the area of the thermoelectric element substrate.
  • the electrodes of the connection portion appear alternately on the high temperature side substrate and the low temperature side substrate, by arranging the elements as described above, the length of the wiring by the electrodes is minimized, and the width is Since it can be maximized, the electrical resistance of the electrode is minimized.
  • the electrode pattern is the simplest, the soldering for connecting the element and the electrode has the advantage that the short circuit due to the bridge between the adjacent electrode is hardly caused.
  • FIG. 10 is a diagram for explaining a conventional TEC equipped with a ceramic substrate.
  • the conventional TEC includes a plurality of pairs of p-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements 102 each having an element electrode metal layer, and an electric circuit metal layer forming a ⁇ -type series electric circuit. 106, a bonding layer 103 for bonding the electric circuit metal layer and the element electrode metal layer, and a ceramic substrate. It is powered by plate 110. That is, in the conventional TEC, the upper and lower portions of the thermoelectric semiconductor element 102 are formed so as to be sandwiched between the ceramic substrates 110 on which circuits are formed.
  • FIG. 11 is a diagram for explaining a conventional TEC equipped with a separator.
  • This type of TEC called a skeleton, does not have ceramic substrates above and below the thermoelectric semiconductor element 102, as shown in FIG.
  • the TEC having this structure uses an insulating plate called a separator 105 in the middle part of the thermoelectric semiconductor element 102 to maintain a predetermined shape.
  • the separator In order to support a large number of thermoelectric semiconductor elements 102, the separator needs to have a certain thickness.
  • FIG. 12 is a diagram for explaining a conventional TEC provided with a ceramic substrate only on one side.
  • This TEC is called a Neuf skeleton with a ceramic substrate only on one side.
  • the performance of the TEC depends on the height of the element, and high performance is achieved by reducing the height of the element.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-22657
  • the TEC dissipates and absorbs heat when energized
  • the ceramic substrate expands due to this temperature difference, and shear stress concentrates on the thermoelectric semiconductor element.
  • the size of 30-40 mm square is generally the limit.
  • the ceramic substrate accounts for a large proportion of the material cost of the TEC price. Two ceramic substrates are required for one TEC.
  • the separator In the conventional TEC equipped with the separator shown in Fig. 11, the force expected to improve the performance by thinning the element, as described above, the separator needs to have a certain thickness.
  • the thickness of the element becomes the limit of the element height, and there is a limit in improving the performance. Since there is no ceramic substrate, the circuit is exposed. Furthermore, since nothing exists between the circuits, there is a possibility that the thermal interface (silicon grease) may flow in, and when it flows, there is a problem that the performance deteriorates.
  • the electrodes are independent, it is necessary to widen the gap between the electrodes to prevent a short circuit. Accordingly, there is a problem in that the area of the electrode that conducts heat is reduced and the thermal resistance is increased.
  • the thermal resistance of the ceramic substrate is large, and the use of a ceramic substrate increases the cost.
  • an object of the present invention is to relieve stress applied to the thermoelectric semiconductor element, to narrow the electrode interval and to increase the heat transfer area, and to achieve high performance and large size at low cost and low thermal resistance. It is to provide a possible thermoelectric cooling device.
  • thermoelectric cooling device that can reduce the thickness of the semiconductor element, has a narrow electrode interval, is inexpensive, and has a high performance and a large size.
  • thermoelectric cooling device of the present invention is at least one layer provided with an electrical connection region existing in a predetermined pattern.
  • thermoelectric semiconductor element comprising a plurality of P-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements arranged corresponding to the electrical connection region;
  • thermoelectric cooling provided with an electric circuit metal layer disposed on the opposite side of the resin substrate with respect to the thermoelectric semiconductor element and in which the thermoelectric semiconductor elements are electrically connected in series via a bonding layer in the electric connection region Device.
  • thermoelectric cooling device of the present invention the electrical connection region is formed of a through hole, and the filled metal layer that fills the through hole and performs heat and electrical conduction includes the bonding layer and the bonding layer.
  • a thermoelectric cooling device further provided between the electric circuit metal layers.
  • thermoelectric cooling device of the present invention the filling metal layer and the bonding layer are It is a thermoelectric cooling device with different types of material power.
  • thermoelectric cooling device of the present invention is a thermoelectric cooling device in which the filling metal layer and the bonding layer have the same kind of material force and are integrally formed.
  • thermoelectric cooling device of the present invention is a thermoelectric cooling device in which the electrical connection region is formed of an opening.
  • thermoelectric cooling device of the present invention is a thermoelectric cooling device in which a cross-sectional shape of the opening is larger than a cross-sectional shape of the thermoelectric semiconductor element.
  • thermoelectric cooling device of the present invention is the thermoelectric cooling device in which a cross-sectional shape of the opening is not larger than a cross-sectional shape of the thermoelectric semiconductor element.
  • thermoelectric cooling device of the present invention is a thermoelectric cooling device comprising a Ni plating layer on the thermoelectric semiconductor element junction side of the electric circuit metal layer.
  • thermoelectric cooling device of the present invention is a thermoelectric cooling device comprising a Ni plating layer on the thermoelectric semiconductor element bonding side of the filled metal layer.
  • the at least one layer of the resin substrate has a two-layer resin substrate force arranged so as to sandwich the thermoelectric semiconductor element. It is a thermoelectric cooling device in which the electric circuit metal layer of the pair is arranged so as to sandwich the two layers of the resin substrate.
  • thermoelectric cooling device of the present invention is further provided with another substrate, wherein the at least one layer of the resin substrate comprises one layer, and one of the thermoelectric semiconductor elements is provided.
  • the surface is connected to the corresponding electric circuit metal layer via a bonding layer, and the other surface of the thermoelectric semiconductor element is connected to the electric circuit metal layer disposed on the thermoelectric semiconductor element side of the other substrate. It is a cooling device.
  • thermoelectric cooling device of the present invention a pair of the filled metal layers are formed so as to sandwich each of the thermoelectric semiconductor elements, and the thermoelectric semiconductor elements pass through the corresponding filled metal layers.
  • thermoelectric cooling device of the present invention is a thermoelectric cooling device in which the bonding layer is supplied by printing, a dispenser or the like.
  • the bonding layer is preliminarily formed by plating or the like. It is a thermoelectric cooling device provided on the surface of the filled metal layer.
  • thermoelectric cooling device of the present invention is the thermoelectric cooling device in which the resin substrate has a flexible substrate force made of polyimide, glass epoxy or aramid.
  • thermoelectric cooling device of the present invention is a thermoelectric cooling device in which an insulating layer is formed on the outer surface of the electric circuit layer.
  • thermoelectric cooling device of the present invention is the thermoelectric cooling device in which the another substrate is formed of a soaking plate or a base plate of a heat radiation fin.
  • thermoelectric cooling device of the present invention is a thermoelectric cooling device in which the outer peripheral portions of the upper and lower substrates are joined.
  • thermoelectric cooling device of the present invention is the thermoelectric cooling device in which an upper surface of the filling metal layer protrudes toward the thermoelectric semiconductor element side from an upper surface of the resin substrate.
  • thermoelectric cooling device of the present invention is the thermoelectric cooling device in which the filling metal layer filled in the through hole is filled with a material having low heat and electric resistance.
  • the TEC of the present invention has a structure that does not use a ceramic substrate having poor thermal conductivity, the thermal resistance can be minimized. Since a ceramic substrate is used, the structure is V, so the stress due to strain accompanying the increase in the TEC area is weak and high reliability can be obtained. Since it has a stress relaxation structure that does not use a ceramic substrate, it can be made larger. The through hole can relieve stress applied to the element.
  • the structure has no separator, it is possible to achieve high performance without the lower limit of the element height. Since the circuit is formed on the substrate, the distance between the electrodes can be reduced, the heat transfer area can be increased, and high performance can be achieved. Since the circuit and the element are separated from the resin substrate, a high yield is obtained with a low probability of short-circuiting during soldering. Since there is an insulating resin between the circuits, it has the effect of preventing the inflow of heat transfer grease and can reduce performance variations due to assembly. Since it is a resin substrate, it can be used flexibly. Brief Description of Drawings
  • FIG. 1 is a schematic cross-sectional view for explaining a thermoelectric cooling device of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the substrate structure of the present invention.
  • FIG. 3 is a schematic cross-sectional view illustrating another embodiment of the thermoelectric cooling device of the present invention.
  • FIG. 4 is a diagram for explaining the relationship between the opening formed in the resin substrate and the electric circuit metal layer.
  • FIG. 5 is a cross-sectional view of FIG.
  • FIG. 6 is a schematic cross-sectional view illustrating a thermoelectric cooling device that does not include a filled metal layer.
  • FIG. 7 is a diagram for explaining a thermoelectric cooling device in which outer peripheral portions of a resin substrate are joined.
  • FIG. 8 is a sectional view thereof.
  • FIG. 9 is a partially enlarged view of FIG.
  • FIG. 10 is a diagram for explaining a conventional TEC provided with a ceramic substrate.
  • FIG. 11 is a diagram for explaining a conventional TEC equipped with a separator.
  • FIG. 12 is a diagram for explaining a conventional TEC provided with a ceramic substrate only on one side. Explanation of symbols
  • thermoelectric cooling device of the present invention will be described in detail with reference to the drawings.
  • thermoelectric cooling device of the present invention at least one layer of a flexible resin substrate having an electrical connection region existing in a predetermined pattern, and a plurality of P-type thermoelectrics arranged corresponding to the electrical connection region.
  • a thermoelectric semiconductor element comprising a semiconductor element and an n-type thermoelectric semiconductor element; and disposed on the opposite side of the resin substrate with respect to the thermoelectric semiconductor element, wherein the thermoelectric semiconductor element is electrically connected in series via a bonding layer in the electrical connection region
  • thermoelectric cooling device including an electric circuit metal layer coupled to the electric circuit metal layer.
  • the electrical connection region also has, for example, a through hole and an opening force.
  • thermoelectric semiconductor element may be composed of a plurality of pairs of P-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements.
  • the above-mentioned at least one layer of the resin substrate is composed of two layers of resin substrates arranged so as to sandwich the thermoelectric semiconductor element, and a pair of electric circuit metal layers sandwich the two layers of resin substrate. It may be arranged.
  • FIG. 1 is a schematic cross-sectional view for explaining a thermoelectric cooling device of the present invention.
  • two flexible resin substrates having through holes as electrical connection regions are used, and the thermoelectric semiconductor element and the electric circuit metal layer are arranged separated by the resin substrate.
  • the thermoelectric semiconductor element and the electric circuit metal layer are connected by a filled metal layer filled in the through hole. That is, as shown in FIG. 1, the resin substrates 3-1 and 3-2 having through holes 4-1 and 4-2 in a predetermined pattern are arranged so that the thermoelectric semiconductor element 2 is sandwiched between them. Filling the holes with metal forms the filled metal layers 7-1 and 7-2. Filling metal layer 7 1, 7-2 is formed by stacking, for example, Cu plating on electrical circuit metal layer 6-1, 6-2 To do.
  • thermoelectric semiconductor element 2 is bonded onto the filling metal layer formed in this way via the bonding layers 5-1, 5-2.
  • the electric circuit layer is disposed on the surface of the resin substrate opposite to the side where the thermoelectric semiconductor element is located. In other words, a resin substrate is used, and through holes are formed in it with a predetermined pattern to conduct heat and electricity.
  • the filling metal layer and the bonding layer may have different types of material forces as described above, or the filling metal layer and the bonding layer may have the same type of material forces.
  • copper plating may be used as the filling metal layer
  • solder may be used as the bonding layer
  • solder may be used for both the filling metal layer and the bonding layer.
  • Insulating layers 8-1 and 8-2 are formed on the outer surfaces of the electric circuit metal layer, respectively.
  • the electric circuit metal layer may be covered with an insulating film depending on the application. For example, a foil with grease may be used. When covering with an insulating film, the film needs to be thin and excellent in thermal conductivity, which can reduce the thermal resistance.
  • the filling metal layer is bonded via the bonding layer so that the plurality of pairs of the p-type thermoelectric semiconductor element 2 and the n-type thermoelectric semiconductor element 2 are sandwiched from above and below, and the through hole is filled with the metal layer.
  • a fat substrate is fixedly arranged relative to each other, and an electric circuit layer is further arranged on the outer side of the resin substrate. In this way, a plurality of pairs of p-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements are electrically connected in series by the electric circuit metal layer via the filling metal layer.
  • thermoelectric semiconductor element includes a resin substrate, a filled metal layer filled in the through hole, Since the electric circuit metal layer placed outside the resin substrate is fixed from both the upper and lower sides, there is nothing that mechanically limits the thickness of the thermoelectric semiconductor element. Accordingly, the performance of the thermoelectric cooling device can be improved.
  • FIG. 2 is a schematic cross-sectional view illustrating the substrate structure of the present invention.
  • the two substrate structures shown in Fig. 2 are used so as to sandwich the thermoelectric semiconductor element.
  • the substrate structure shown in FIG. 2 may be used in combination with another substrate (for example, as described later, a soaking plate, a base plate of a heat radiation fin, or a ceramic substrate).
  • an electric circuit metal layer 6-2 is placed on one surface of a resin substrate 3-2 having a through hole.
  • a metal having excellent heat and electrical conductivity such as Cu is filled on the electric circuit metal layer to form a filled metal layer 7-2.
  • the through holes 42 are arranged in a predetermined pattern corresponding to the arrangement of the thermoelectric semiconductor elements.
  • the filled metal layer is formed by stacking Cu plating as described above. The height of the upper surface of the filling metal layer protrudes above the upper surface of the resin substrate.
  • the bonding layer 5-2 is formed so as to cover the entire filling metal layer.
  • thermoelectric semiconductor element and the filling metal layer act as the bonding layer. Connected through.
  • the electric circuit metal layer and the thermoelectric semiconductor element are disposed with the resin substrate being spaced apart, the probability of a short circuit is reduced during solder bonding, and a high yield can be obtained.
  • the electrode spacing can be reduced and the heat transfer area can be increased.
  • there is an insulating resin between the electric circuits it has the effect of preventing the inflow of heat transfer grease, and the variation in performance due to assembly can be reduced.
  • thermoelectric cooling device of the present invention is formed by sandwiching the thermoelectric semiconductor element by the pair of substrate structures shown in FIG. At this time, as described above, most of the portions located on the upper surfaces of the filling metal layers 7-1 and 7-2 of the bonding layers 5-1 and 5-2 move in the horizontal direction, and the thermoelectric semiconductor element 2. And the filled metal layer 7-1 and 7-1 are connected through the bonding layers 5-1 and 5-2.
  • FIG. 3 is a schematic cross-sectional view for explaining another embodiment of the thermoelectric cooling device of the present invention.
  • the thermoelectric cooling device of this aspect is a device using a resin substrate on one side and another substrate on the other side. That is, the filled metal layer 7-1 is formed by filling the through hole of the resin substrate 3-1 provided with the through hole 4-1 with the predetermined pattern as described above.
  • the filling metal layer 7-1 is formed by stacking, for example, Cu plating on the electric circuit metal layer 6-1.
  • the thermoelectric semiconductor element 2 is bonded onto the filling metal layer formed in this way via the bonding layer 5-1.
  • a soaking plate having an insulating layer formed on its surface On the opposite side of the resin substrate, for example, a soaking plate having an insulating layer formed on its surface is provided.
  • the electric circuit metal layer 6-2 is formed on the soaking plate through the insulating layer.
  • the thermoelectric semiconductor element 2 is connected to the electric circuit metal layer through a bonding layer.
  • a radiating fin base plate having an insulating layer formed on the surface thereof may be used.
  • An insulating layer 8-1 is formed on the outer surface of the electric circuit metal layer 6-1. That is, a filled metal layer is bonded to a plurality of pairs of the P-type thermoelectric semiconductor element and the n-type thermoelectric semiconductor element 2 from above via a bonding layer, and a resin substrate having a metal layer filled in a through hole is fixed together with the filled metal layer.
  • the electric circuit layer is disposed outside the resin substrate.
  • a plurality of pairs of P-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements 2 are connected to an element electrode metal layer formed on the electric circuit metal layer from below through a bonding layer, and the electric circuit metal layer Is disposed on a soaking plate having an insulating layer formed on the surface thereof. In this way, a plurality of pairs of p-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements are electrically connected in series by the electric circuit metal layer via the filling metal layer.
  • thermoelectric cooling device using a resin substrate on one side as shown in Fig. 3 the above-described effects can be expected in the upper half. That is, most of the portion of the bonding layer located on the upper surface of the filling metal layer moves in the horizontal direction, and the thermoelectric semiconductor element and the filling metal layer are connected via the bonding layer.
  • the electric circuit metal layer and the thermoelectric semiconductor element are separated from each other by the resin substrate, the probability of a short circuit is reduced at the time of soldering, and a high yield can be obtained.
  • the electric circuit is formed on the resin substrate, the distance between the electrodes can be reduced and the heat transfer area can be increased.
  • there is an insulating resin between the electrical circuits it has the effect of preventing the inflow of heat transfer grease and can reduce performance variations due to assembly.
  • Ni plating layer may be provided on the element bonding side of the above-described filling metal layer. This prevents the surface of the filled metal layer from changing with time, and improves the wettability during soldering.
  • the bonding layer described above may be provided on the surface of the filling metal layer in advance by a force supplied by printing, a dispenser, or the like, or by a texture or the like. By supplying the bonding layer in advance, it is possible to save labor during assembly.
  • thermoelectric cooling device of the present invention is a thermoelectric semiconductor element having a predetermined pattern.
  • a flexible resin substrate having at least one layer having an opening larger than a cross-sectional shape; a plurality of pairs of P-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements arranged corresponding to the openings; and the resin substrate.
  • an electric circuit metal layer in which a plurality of pairs of P-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements are electrically connected in series via a bonding layer.
  • the p-type thermoelectric semiconductor element and the n-type thermoelectric semiconductor element that are not provided with the filling metal layer are connected to the electric circuit metal layer through the bonding layer.
  • the sectional shape of the opening may be larger than the sectional shape of the thermoelectric semiconductor element, and the sectional shape of the opening may be smaller than the sectional shape of the thermoelectric semiconductor element.
  • the opening is filled with solder and has the same function as the above-described through hole.
  • FIG. 4 is a view for explaining the relationship between the opening formed in the resin substrate and the electric circuit metal layer.
  • FIG. 5 is a sectional view thereof.
  • a flexible resin substrate 13 such as polyimide is provided with a plurality of openings 17 with a predetermined pattern.
  • the openings 17 correspond to the positions of a plurality of pairs of p-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements that are arranged.
  • the electric circuit metal layer 16 is disposed outside the resin substrate 13, and, as will be described later, a plurality of pairs of p-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements are electrically connected in series via the bonding layer. Concatenated
  • FIG. 6 is a schematic cross-sectional view illustrating a thermoelectric cooling device that does not include a filled metal layer.
  • the resin substrates 13-1 and 13-2 having openings 17-1 and 17-2 in a predetermined pattern are arranged so as to sandwich the thermoelectric semiconductor element 12.
  • the thermoelectric semiconductor elements 12 are arranged in the opening portions 17-1, 17-2, and are joined to the electric circuit layers 16-1, 16-2 through the joining layers 15-1, 15-2, respectively.
  • the electric circuit layers 16-1 and 16-2 are disposed on the surfaces of the resin substrates 13-1 and 13-2 opposite to the side where the thermoelectric semiconductor elements 12 are located.
  • the thermoelectric semiconductor element is bonded to the electric circuit layer via the bonding layers 15-1 and 15-2 without forming the filling metal layer in the opening. In this way, multiple pairs of P-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements are electrically connected via the bonding layer. They are electrically connected in series by a gas circuit metal layer.
  • a Ni plating layer may be provided on the element bonding side of the electric circuit metal layer described above.
  • the surface of the electric circuit metal layer can be prevented from changing over time, and the wettability during soldering can be improved.
  • the bonding layer described above may be provided on the surface of the filling metal layer in advance by a force supplied by printing, a dispenser, or the like, or by a texture or the like. By supplying the bonding layer in advance, it is possible to save labor during assembly.
  • thermoelectric cooling device of this aspect since it is not necessary to pile up, for example, a plating as a filling metal layer in the through hole, the processing cost can be kept low and the number of steps can be reduced.
  • thermoelectric cooling device of the present invention the outer peripheral portions of the upper and lower resin substrates are joined by an adhesive or solder.
  • FIG. 7 is a diagram for explaining a thermoelectric cooling device in which the outer peripheral portion of the resin substrate is joined.
  • FIG. 8 is a sectional view thereof.
  • Fig. 9 is a partially enlarged view.
  • thermoelectric semiconductor elements 12 are disposed in the openings 17-1 and 17-2, and are joined to the electric circuit layers 16-1 and 16-2 via the joining layers 15-1 and 15-2, respectively.
  • the electric circuit layers 16-1 and 16-2 are disposed on the surface of the resin substrates 13-1 and 13-2 opposite to the side where the thermoelectric semiconductor element 12 is located.
  • a plurality of pairs of p-type thermoelectric semiconductor elements and n-type thermoelectric semiconductor elements are electrically connected in series by an electric circuit metal layer via a junction layer. Further, the outer peripheral portions of the resin substrates 13-1 and 13-2 are joined by an adhesive or solder as shown by circles in FIG.
  • the outer peripheral portions 20-1, 20-2 of the upper and lower resin substrates 13-1, 13-2 are joined by an adhesive. Furthermore, as shown in Fig. 9 (b), the outer peripheral parts 20-1, 20-2 of the upper and lower resin substrates 13-1, 13-2 are framed with the same material as the electric circuit metal layer. 2 can be joined by soldering.
  • thermoelectric semiconductor element By joining the outer periphery of two flexible resin substrates, the outside air blocking structure
  • the dew condensation prevention structure for the thermoelectric semiconductor element can be easily formed.
  • thermoelectric semiconductor element or the n-type thermoelectric semiconductor element is not limited to a Bi-Te-based semiconductor alloy as long as it has thermoelectric element characteristics. It may be.
  • the electric circuit metal layer (that is, the metal electrode) is a metal selected from Cu, Cr, Ni, Ti, Al, Au, Ag, and Si, or an alloy thereof, or a laminate of these.
  • the electrical circuit metal layer must have excellent electrical conductivity and excellent thermal conductivity.
  • the electric circuit metal layer can be formed by a method such as wet plating, sputtering, vacuum deposition, or ion plating, for example.
  • the resin substrate is preferably a flexible polyimide, glass epoxy, or aramid resin.
  • the thickness of the resin substrate is preferably 10 ⁇ m to 200 ⁇ m, but these materials or When the substrate is heated or cooled within the range of manufacturing conditions and usage conditions that are not limited to thickness, or when there is a temperature difference between the upper and lower substrates, the thermoelectric semiconductor element or bonding layer Any substrate can be used as long as it can relieve stress applied to the plating layer, the electric circuit metal layer, and the like.
  • the filled metal layer is preferably a material with low heat and electrical resistance, such as copper that conducts electricity and heat.
  • the device electrode metal layer is one element selected from Cu, Ti, Cr, W, Mo, Pt, Zr, Ni, Si, Pd and C, an alloy thereof, or a multilayer of these elements But it ’s okay.
  • the element electrode metal layers are formed on both sides of the P-type and n-type thermoelectric semiconductor elements.
  • wet plating, sputtering, vacuum deposition, ion plating, V, and displacement can be used alone or in combination.
  • the bonding layer has a function for bonding the thermoelectric semiconductor element on which the element electrode metal layer is formed to the electric circuit metal layer.
  • the bonding layer should be a brazing material that can be bonded at 300 ° C or less. Any element of Au, Ag, Ge, In, P, Si, Sn, Sb, Pb, Bi, Zn, and Cu, or these elements Alloys containing are preferred That's right.
  • solder metals such as the system, can be used as materials for joining with solder.
  • the bonding layer can be formed by a method such as paste printing, wet plating, sputtering, or vacuum deposition.
  • thermoelectric cooling device can be provided, which has high industrial utility value.

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

所定パターンで存在する電気接続領域を備えた少なくとも1層の柔軟な樹脂基板と、電気接続領域に対応して配置される複数のp型熱電半導体素子およびn型熱電半導体素子からなる熱電半導体素子と、電気接続領域において熱電半導体素子が少なくとも接合層を介して直列に電気的に連結される電気回路金属層とを備えた熱電冷却装置であり、電気接続領域は例えばスルーホール、開口部等からなっており、複数の熱電半導体素子は、複数対のp型熱電半導体素子およびn型熱電半導体素子からなっている。

Description

明 細 書
熱電冷却装置
技術分野
[0001] 本発明は、複数対の p型熱電半導体素子および n型熱電半導体素子からなる熱電 素子を備えた大型で高性能な熱電冷却装置に関する。
背景技術
[0002] 熱電素子は、一般に p型の熱電半導体素子と n型の熱電半導体素子を金属電極 により直列に接続し、 pn接合対を形成することにより作成される。熱電素子は、 pn接 合対に電流を流すことにより、接合部の一方で冷却、他方の接合部では発熱を発生 するペルチヱ効果と、接合対の間に温度差を与えることにより電力を発生するゼ一べ ック効果があり、冷却装置又は発電装置として利用される。
[0003] 通常は、 pn接合対を数十個から数百個直列に接続し、金属電極を表面に備えた 2 枚の基板間に挟んで配列することにより、一体的構造体の熱電素子として利用される ここで、 p型の熱電半導体素子 (エレメントともいう)と n型の熱電半導体素子は、縦 および横方向に沿ってそれぞれ交互に配置されるのが最も望ましい。それによつて、 一般に直方体であるエレメントを、最も高密度に配置できる。ここでエレメントの配置 の密度とは、熱電素子基板の面積に対するエレメントの底面積の和の比を指す。
[0004] また、接続部の電極が高温側基板と低温側基板に交互に現れることになるので、ェ レメントを上述したように配置することにより、電極による配線の長さが最短となり、幅 は最大にできるので、電極の電気抵抗が最小になる。また、電極のパターンが最も単 純になるので、エレメントと電極の接続のためのハンダ付けがしゃすぐ隣の電極との ブリッジによる短絡が最も起こり難 、と 、う利点もある。
[0005] 図 10は、セラミック基板を備えた従来の TECを説明する図である。図 10に示すよう に、従来の TECは、それぞれ素子電極金属層を備えた複数対の p型熱電半導体素 子および n型熱電半導体素子 102と、 π型直列電気回路を形成する電気回路金属 層 106と、電気回路金属層と素子電極金属層を接合する接合層 103と、セラミック基 板 110と力らなっている。即ち、従来の TECにおいては、熱電半導体素子 102の上 下を、その上に回路が形成されたセラミック基板 110で挟むように形成されて!ヽる。
[0006] 図 11は、セパレータを備えた従来の TECを説明する図である。スケルトンと称され るこのタイプの TECは、図 11に示すように、熱電半導体素子 102の上下にセラミック 基板を備えていない。この構造の TECは、熱電半導体素子 102の中間部にセパレ ータ 105と呼ばれる絶縁板が用いられて、所定の形状を保持している。多数の熱電 半導体素子 102を支えるために、セパレータはある程度の厚みが必要である。
[0007] 図 12は、片側だけにセラミック基板を備えた従来の TECを説明する図である。
この TECは、片側だけにセラミック基板を備えたノヽーフスケルトンと称される。
何れの場合も、 TECの性能は素子の高さに依存し、素子の高さを低くすることによ つて高性能化が行われる。
特許文献 1:特開平 7— 22657号公報
発明の開示
発明が解決しょうとする課題
[0008] TECは通電することによって放熱および吸熱をするので、図 10に示したセラミック 基板を備えた従来の TECにおいては、この温度差によってセラミック基板が膨張し、 熱電半導体素子にせん断応力が集中し、信頼性の確保が難しい。このため一般に 3 0〜40mm角の大きさが限界とされる。更に、高性能化のため熱電半導体素子の高 さを低くすると、大きさの限界が更に低下するという問題点がある。更に、 TECの価格 の材料費でセラミック基板が占める割合が大きぐ 1つの TECにセラミック基板が 2枚 必要になる。
[0009] 図 11に示したセパレータを備えた従来の TECにおいては、素子を薄くすることによ つて高性能化が期待される力 上述したようにセパレータはある程度の厚さが必要で あり、セパレータの厚みが素子高さの限界となり、高性能化に限界がある。セラミック 基板がないので、回路が露出した状態になる。更に、回路間には何も存在しないの で、サーマルインターフェース (シリコングリス)の流入の可能性があり、流入したとき には、性能が低下するという問題点がある。
[0010] 更に、電極が独立しているので、電極間隔を広くして短絡を防止する必要がある。 従って、熱を伝える電極の面積が小さくなり熱抵抗が大きくなるという問題点がある。 図 12に示す片側だけにセラミック基板を備えた従来の TECにおいては、セラミック基 板の熱抵抗が大きぐ更に、セラミック基板を使用するので、コストが高くなる。更に、 電極間隔を広くして短絡を防止する必要がある。従って、熱を伝える電極の面積が 小さくなり熱抵抗が大きくなる。
[0011] 従って、この発明の目的は、熱電半導体素子に力かる応力を緩和し、電極間隔を 狭くして伝熱面積を大きくすることができ、安価で熱抵抗の小さい高性能かつ大型化 が可能な熱電冷却装置を提供することにある。
課題を解決するための手段
[0012] 本発明者は、上述した従来技術の問題点を解決すべく鋭意研究を重ねた。その結 果、セラミック基板の代わりに、所定の電気接続領域 (例えば、スルーホール、開口部 等)を備えた 1対の榭脂基板を用い、スルーホールに熱および電気伝導性に優れた 金属を充填して充填金属層を形成し、電気回路金属層を榭脂基板の外側に配置し 、熱電半導体素子のそれぞれの面を充填金属層を介して電気回路金属層と接続す ることによって、熱電半導体素子の厚さを薄くすることができ、電極間隔の狭い、安価 で、高性能の大型化が可能な熱電冷却装置を得ることができることが判明した。
[0013] この発明は、上述した研究成果に基づいてなされたものであって、この発明の熱 電冷却装置の第 1の態様は、所定パターンで存在する電気接続領域を備えた少なく とも 1層の柔軟な榭脂基板と、
前記電気接続領域に対応して配置される複数の P型熱電半導体素子および n型熱 電半導体素子からなる熱電半導体素子と、
前記熱電半導体素子に関して前記榭脂基板の反対側に配置され、前記電気接続 領域において前記熱電半導体素子が接合層を介して直列に電気的に連結される電 気回路金属層とを備えた熱電冷却装置である。
[0014] この発明の熱電冷却装置の第 2の態様は、前記電気接続領域がスルーホールから なっており、前記スルーホールに充填され熱および電気伝導を行う充填金属層を前 記接合層と前記電気回路金属層の間に更に備えている熱電冷却装置である。
[0015] この発明の熱電冷却装置の第 3の態様は、前記充填金属層および前記接合層が 異なる種類の材料力 なっている熱電冷却装置である。
[0016] この発明の熱電冷却装置の第 4の態様は、前記充填金属層および前記接合層が 同一種類の材料力もなつており一体的に形成されている熱電冷却装置である。
[0017] この発明の熱電冷却装置の第 5の態様は、前記電気接続領域が開口部からなって いる熱電冷却装置である。
[0018] この発明の熱電冷却装置の第 6の態様は、前記開口部の断面形状が前記熱電半 導体素子の断面形状より大きい熱電冷却装置である。
[0019] この発明の熱電冷却装置の第 7の態様は、前記開口部の断面形状が前記熱電半 導体素子の断面形状以下の大きさである熱電冷却装置である。
[0020] この発明の熱電冷却装置の第 8の態様は、前記電気回路金属層の熱電半導体素 子接合側に、 Niメツキ層を備えて 、る熱電冷却装置である。
[0021] この発明の熱電冷却装置の第 9の態様は、前記充填金属層の熱電半導体素子接 合側に、 Niメツキ層を備えて 、る熱電冷却装置である。
[0022] この発明の熱電冷却装置の第 10の態様は、前記少なくとも 1層の榭脂基板が、前 記熱電半導体素子を挟むように配置された 2層の榭脂基板力 なっており、 1対の前 記電気回路金属層が前記 2層の榭脂基板を挟むように配置されている熱電冷却装 置である。
[0023] この発明の熱電冷却装置の第 11の態様は、更に別の基板を備えており、前記少な くとも 1層の榭脂基板が 1層からなっており、前記熱電半導体素子の一方の面は接合 層を介して対応する前記電気回路金属層と接続し、前記熱電半導体素子の他方の 面は前記別の基板の熱電半導体素子側に配置された電気回路金属層と接続してい る熱電冷却装置である。
[0024] この発明の熱電冷却装置の第 12の態様は、個々の前記熱電半導体素子を挟むよ うに 1対の前記充填金属層が形成され、前記熱電半導体素子が対応する前記充填 金属層を介して前記電気回路金属層に接合されて!ヽる熱電冷却装置である。
[0025] この発明の熱電冷却装置の第 13の態様は、前記接合層が、印刷、ディスペンサー 等によって供給される熱電冷却装置である。
[0026] この発明の熱電冷却装置の第 14の態様は、前記接合層が、メツキ等によって予め 前記充填金属層の表面に備えられている熱電冷却装置である。
[0027] この発明の熱電冷却装置の第 15の態様は、前記榭脂基板がポリイミド、ガラスェポ キシまたはァラミドからなる柔軟な基板力 なっている熱電冷却装置である。
[0028] この発明の熱電冷却装置の第 16の態様は、前記電気回路層の外表面に絶縁層が 形成されて!ヽる熱電冷却装置である。
[0029] この発明の熱電冷却装置の第 17の態様は、前記別の基板が均熱板または放熱フ インのベースプレートからなっている熱電冷却装置である。
[0030] この発明の熱電冷却装置の第 18の態様は、上下の前記基板の外周部を接合した 熱電冷却装置である。
[0031] この発明の熱電冷却装置のその他の態様は、前記充填金属層の上面は、前記榭 脂基板の上面よりも前記熱電半導体素子側に突出している、熱電冷却装置である。
[0032] この発明の熱電冷却装置のその他の態様は、前記スルーホールに充填される充填 金属層は、熱および電気抵抗の少ない材料によって充填されている、熱電冷却装置 である。
発明の効果
[0033] 従来のセラミックを用いた基板に比べ、安価な絶縁性榭脂を用いるので、 TECより 安価に製造することができる。この発明の TECは、熱伝導率の悪いセラミック基板を 用いない構造であるので、熱抵抗を最小限に抑えることができる。セラミック基板を用 V、な 、構造であるので、 TEC面積の大型化に伴う歪による応力が弱く高 、信頼性を 得ることができる。セラミック基板を用いない応力緩和構造となっているため、大型化 が可能である。スルーホールは素子に力かる応力を緩和することができる。
[0034] セパレータがない構造であるので、素子高さの下限制約がなぐ高性能化が可能に なる。基板上での回路形成であるので、電極間隔を狭くすることができ、伝熱面積を 大きくすることができ、高性能化が可能になる。回路と素子は榭脂基板を隔てている ため、はんだ接合の際にショートの確率が少なぐ高い歩留まりが得られる。回路の 間は絶縁樹脂があるので、熱伝グリスの流入を防ぐ効果があり、組みつけによる性能 ばらつきを少なくすることができる。榭脂基板なのでフレキシブルな使用が可能であ る。 図面の簡単な説明
[0035] [図 1]図 1は、この発明の熱電冷却装置を説明する模式断面図である。
[図 2]図 2は、この発明の基板構造を説明する模式断面図である。
[図 3]図 3は、この発明の熱電冷却装置の他の 1つの態様を説明する模式断面図で ある。
[図 4]図 4は、榭脂基板に形成された開口部と、電気回路金属層の関係位置を説明 する図である。
[図 5]図 5は、図 4の断面図である。
[図 6]図 6は、充填金属層を備えていない熱電冷却装置を説明する模式断面図であ る。
[図 7]図 7は、榭脂基板の外周部を接合した熱電冷却装置を説明する図である。
[図 8]図 8は、その断面図である。
[図 9]図 9はその部分拡大図である。
[図 10]図 10は、セラミック基板を備えた従来の TECを説明する図である。
[図 11]図 11は、セパレータを備えた従来の TECを説明する図である。
[図 12]図 12は、片側だけにセラミック基板を備えた従来の TECを説明する図である。 符号の説明
[0036] 1 この発明の熱電冷却装置
2、 12 熱電半導体素子
3- 1, 3- 2, 13- 1, 13 - 2 榭脂基板
4— 1, 4— 2 スノレーホ一ノレ
5— 1、 5— 2、 15— 1、 15— 2 接合層
6— 1、 6— 2、 16— 1、 16— 2 電気回路金属層
7- 1, 7- 2 充填金属層
8— 1、 8— 2 絶縁層
10 均熱板
17— 1、 17- 2 開口部
20— 1、 20— 2 榭脂基板の外周部 21— 1、 21 - 2 枠
102 熱電半導体素子
103 接合層
105 セパレータ
106 電気回路金属層
110 セラミック基板
発明を実施するための最良の形態
[0037] この発明の熱電冷却装置を図面を参照しながら詳細に説明する。
この発明の熱電冷却装置の iつの態様は、所定パターンで存在する電気接続領域 を備えた少なくとも 1層の柔軟な榭脂基板と、前記電気接続領域に対応して配置され る複数の P型熱電半導体素子および n型熱電半導体素子からなる熱電半導体素子と 、前記熱電半導体素子に関して前記榭脂基板の反対側に配置され、前記電気接続 領域において前記熱電半導体素子が接合層を介して直列に電気的に連結される電 気回路金属層とを備えた熱電冷却装置である。電気接続領域は、例えば、スルーホ ール、開口部等力もなつている。
上述した熱電半導体素子は複数対の P型熱電半導体素子および n型熱電半導体素 子からなっていてもよい。
上述した少なくとも 1層の榭脂基板が、熱電半導体素子を挟むように配置された 2 層の榭脂基板からなっており、 1対の電気回路金属層が 2層の榭脂基板を挟むように 配置されていてもよい。
[0038] 図 1は、この発明の熱電冷却装置を説明する模式断面図である。この態様におい ては、電気接続領域としてスルーホールを備えた 2枚の柔軟な榭脂基板を用い、熱 電半導体素子と電気回路金属層が榭脂基板によって分離されて配置されている。熱 電半導体素子と電気回路金属層とは、スルーホールに充填された充填金属層によつ て接続されている。即ち、図 1に示すように、所定のパターンでスルーホール 4—1、 4 —2を備えた榭脂基板 3— 1、 3— 2を、熱電半導体素子 2を挟むように配置し、スル 一ホールに金属を充填して充填金属層 7— 1、 7— 2を形成している。充填金属層 7 1、 7— 2は電気回路金属層 6— 1、 6— 2の上に例えば Cuメツキを積み上げて形成 する。このように形成された充填金属層の上に接合層 5— 1、 5— 2を介して熱電半導 体素子 2が接合される。電気回路層は、熱電半導体素子の位置する側と反対側の榭 脂基板の表面上に配置されている。即ち、榭脂基板を使用し、その中に所定のバタ ーンでスルーホールを設けて、熱と電気の伝導を行って!/、る。
[0039] なお、充填金属層および接合層が上述したように異なる種類の材料力 なっていて もよいし、充填金属層および接合層が同一種類の材料力もなつていてもよい。例えば 、充填金属層として銅メツキを使用し、接合層としてハンダを使用してもよぐまた、充 填金属層、接合層の何れもハンダを使用してもよい。
[0040] 電気回路金属層の外側の面には、それぞれ絶縁層 8— 1、 8— 2が形成される。電 気回路金属層は用途に応じて絶縁皮膜で覆ってもよぐ更に、例えば、榭脂付箔を 使用してもよい。絶縁皮膜で覆う場合には、皮膜は薄く熱伝導性に優れていることが 必要で、これによつて熱抵抗を小さくすることができる。
上述したように、複数対の p型熱電半導体素子および n型熱電半導体素子 2を上下 から挟むように接合層を介して充填金属層が接合され、それと共にスルーホールに 金属層が充填された榭脂基板が相対して固定配置され、榭脂基板の外側に更に相 対して電気回路層が配置されている。このように複数対の p型熱電半導体素子およ び n型熱電半導体素子が充填金属層を介して電気回路金属層によって直列に電気 的に連結されている。
[0041] 図 1から明らかなように、この発明においては、従来のようにセパレータが使用され ることがなく、熱電半導体素子は、榭脂基板、そのスルーホールに充填された充填金 属層、榭脂基板の外側に配置された電気回路金属層によって、上下の両面から固 定されるので、熱電半導体素子の厚さを機械的に制限するものは無ぐ熱電半導体 素子の厚さを薄くすることができ、それに伴って、熱電冷却装置の高性能化が可能に なる。
[0042] 図 2は、この発明の基板構造を説明する模式断面図である。基本的には、図 2に示 す基板構造が熱電半導体素子を挟むように 2枚相対して使用される。更に図 2に示 す基板構造を、別の基板 (例えば、後述するように、均熱板、放熱フィンのベースプレ ート、セラミック基板)と組み合わせて用いてもよい。 図 2に示すように、スルーホールを備えた榭脂基板 3— 2の一方の面に電気回路金 属層 6— 2が重ね合わされて配置されて!、る。榭脂基板 3 - 2のスルーホール 4— 2に は、 Cu等の熱および電気伝導性に優れた金属が電気回路金属層の上に充填され て充填金属層 7— 2を形成している。スルーホール 4 2は、熱電半導体素子の配置 に対応した所定のパターンで配置されて 、る。充填金属層は上述したように Cuメツキ を積み上げて形成する。充填金属層の上面の高さは、榭脂基板の上面よりも上方に 突出している。
[0043] 充填金属層の上には、充填金属層の全体を覆うように接合層 5— 2が形成される。
図 2で示した接合層 5— 2の充填金属層の上面に位置する部分は、図 1で示すように 、大部分が水平方向に移動して、熱電半導体素子と充填金属層が接合層を介して 接続される。このように、電気回路金属層と熱電半導体素子とは、榭脂基板を隔てて 配置されているので、はんだ接合の際にショートの確率が少なくなり、高い歩留まりが 得られる。更に、図 2に示すように、榭脂基板上に電気回路を形成するので、電極間 隔を狭くすることができ、伝熱面積を大きくすることができる。更に、電気回路の間は 絶縁樹脂があるので、熱伝グリスの流入を防ぐ効果があり、組みつけによる性能のば らっきを少なくすることができる。
[0044] 図 2に示す 1対の基板構造によって、熱電半導体素子を挟むようにして、この発明 の熱電冷却装置が形成される。この際、上述したように、接合層 5— 1、 5— 2の充填 金属層 7— 1、 7— 2の上面に位置する部分は、大部分が水平方向に移動して、熱電 半導体素子 2と充填金属層 7— 1、 7— 1が接合層 5— 1、 5— 2を介して接続される。
[0045] 図 3は、この発明の熱電冷却装置の他の 1つの態様を説明する模式断面図である 。この態様の熱電冷却装置は、片面に榭脂基板を用い、他の面に別の基板を用いた 装置である。即ち、上述した所定のパターンでスルーホール 4—1を備えた榭脂基板 3— 1のスルーホールに金属を充填して充填金属層 7— 1を形成している。充填金属 層 7— 1は電気回路金属層 6— 1上に例えば Cuメツキを積み上げて形成する。このよ うに形成された充填金属層の上に接合層 5— 1を介して熱電半導体素子 2が接合さ れる。
[0046] 榭脂基板と反対側には、その表面に絶縁層を形成した例えば均熱板を備えており 、絶縁層を介して均熱板の上に電気回路金属層 6— 2が形成されている。熱電半導 体素子 2は、接合層を介して、電気回路金属層に接続されている。なお、均熱板の 代わりに、その表面に絶縁層を形成した放熱フィンベースプレートであってもよい。
[0047] 電気回路金属層 6—1の外側の面には、絶縁層 8—1が形成される。即ち、複数対 の P型熱電半導体素子および n型熱電半導体素子 2には、上方から接合層を介して 充填金属層が接合され、それと共にスルーホールに金属層が充填された榭脂基板 が固定配置され、榭脂基板の外側に電気回路層が配置されている。更に、複数対の P型熱電半導体素子および n型熱電半導体素子 2には、下方から接合層を介して、 電気回路金属層の上に形成された素子電極金属層が接続され、電気回路金属層は 、その表面に絶縁層を形成した均熱板の上に配置される。このように複数対の p型熱 電半導体素子および n型熱電半導体素子が充填金属層を介して電気回路金属層に よって直列に電気的に連結されて ヽる。
[0048] 図 3に示す、片面に榭脂基板を用いた熱電冷却装置においても、上半分において 、上述したような効果が期待できる。即ち、接合層の充填金属層の上面に位置する 部分は、大部分が水平方向に移動して、熱電半導体素子と充填金属層が接合層を 介して接続される。このように、電気回路金属層と熱電半導体素子とは、榭脂基板を 隔てているので、はんだ接合の際にショートの確率が少なくなり、高い歩留まりが得ら れる。更に、榭脂基板上に電気回路を形成するので、電極間隔を狭くすることができ 、伝熱面積を大きくすることができる。更に、電気回路の間は絶縁樹脂があるので、 熱伝グリスの流入を防ぐ効果があり、組みつけによる性能のばらつきを少なくすること ができる。
[0049] なお、上述した充填金属層の素子接合側に、 Niメツキ層を備えて 、てもよ 、。これ によって、充填金属層の表面の経時変化を防ぎ、ハンダ付け時のぬれ性を良くする ことができる。
更に、上述した接合層が、印刷、ディスペンサー等によって供給される力、または、 メツキ等によって予め前記充填金属層の表面に備えられていてもよい。接合層を予 め供給することによって、組み立て時の手間を省くことができる。
[0050] この発明の熱電冷却装置の他の 1つの態様は、所定のパターンで熱電半導体素子 断面形状より大きな開口部を備えた少なくとも 1層の柔軟な榭脂基板と、前記開口部 に対応して配置された複数対の P型熱電半導体素子および n型熱電半導体素子と、 前記榭脂基板の外側に配置され複数対の P型熱電半導体素子および n型熱電半導 体素子が接合層を介して直列に電気的に連結される電気回路金属層とを備えた熱 電冷却装置である。即ち、この態様においては、充填金属層を備えることなぐ p型熱 電半導体素子および n型熱電半導体素子が接合層を介して電気回路金属層に連結 される。
[0051] なお、上述したように、開口部の断面形状が熱電半導体素子の断面形状より大きくて もよぐ開口部の断面形状が熱電半導体素子の断面形状以下の大きさであってもよ い。開口部の断面形状が熱電半導体素子の断面形状以下の大きさの場合には、開 口部にハンダが充填されて上述したスルーホールと同じような機能を備えている。
[0052] 図 4は、榭脂基板に形成された開口部と、電気回路金属層の関係位置を説明する 図である。図 5はその断面図である。
図 4および図 5に示すように、例えばポリイミド等の柔軟な榭脂基板 13には、所定の ノ ターンで複数の開口部 17が設けられている。開口部 17は、配置される複数対の p 型熱電半導体素子および n型熱電半導体素子の位置に対応して ヽる。電気回路金 属層 16は、榭脂基板 13の外側に配置されて、後述するように、複数対の p型熱電半 導体素子および n型熱電半導体素子が接合層を介して直列に電気的に連結される
[0053] 図 6は、充填金属層を備えていない熱電冷却装置を説明する模式断面図である。
図 6に示すように、所定のパターンで開口部 17—1、 17— 2を備えた榭脂基板 13— 1、 13— 2を、熱電半導体素子 12を挟むように配置する。熱電半導体素子 12は、開 口部 17— 1、 17— 2に配置され、それぞれ接合層 15— 1、 15— 2を介して電気回路 層 16— 1、 16— 2に接合される。なお、電気回路層 16— 1、 16— 2は、熱電半導体 素子 12の位置する側と反対側の榭脂基板 13 - 1, 13- 2の表面上に配置されて ヽ る。上述したように、この態様においては、開口部に充填金属層が形成されることなく 、接合層 15— 1、 15— 2を介して熱電半導体素子が電気回路層に接合される。この ように複数対の P型熱電半導体素子および n型熱電半導体素子が接合層を介して電 気回路金属層によって直列に電気的に連結されている。
[0054] 更に、上述した電気回路金属層の素子接合側に、 Niメツキ層を備えていてもよい。
これによつて、電気回路金属層の表面の経時変化を防ぎ、ハンダ付け時のぬれ性を 良くすることができる。
更に、上述した接合層が、印刷、ディスペンサー等によって供給される力、または、 メツキ等によって予め前記充填金属層の表面に備えられていてもよい。接合層を予 め供給することによって、組み立て時の手間を省くことができる。
[0055] この態様の熱電冷却装置によると、スルーホールに充填金属層として例えばメツキ の積み上げが必要でな 、ので、加工費を低く抑えることができると共に工程が少なく なる。
更に、この発明の熱電冷却装置の他の 1つの態様においては、上下の上述した榭 脂基板の外周部を、粘着材またはハンダによって接合して 、る。
[0056] 図 7は、榭脂基板の外周部を接合した熱電冷却装置を説明する図である。図 8は、 その断面図である。図 9はその部分拡大図である。
図 7および図 8に示すように、所定のパターンで開口部 17—1、 17— 2を備えた榭 脂基板 13— 1、 13— 2を、熱電半導体素子 12を挟むように配置する。熱電半導体素 子 12は、開口部 17— 1、 17— 2に配置され、それぞれ接合層 15— 1、 15— 2を介し て電気回路層 16— 1、 16— 2に接合される。なお、電気回路層 16— 1、 16— 2は、 熱電半導体素子 12の位置する側と反対側の榭脂基板 13— 1、 13— 2の表面上に配 置されている。複数対の p型熱電半導体素子および n型熱電半導体素子は、接合層 を介して電気回路金属層によって直列に電気的に連結されている。更に、榭脂基板 13— 1、 13— 2の外周部は、図 8において〇で囲んで示しているように、粘着材また はハンダによって接合されて 、る。
[0057] 図 9 (a)に示すように、上下の榭脂基板 13— 1、 13— 2の外周部 20— 1、 20— 2を 接着材によって接合している。更に、図 9(b)に示すように、上下の榭脂基板 13— 1、 13— 2の外周部 20—1、 20— 2に電気回路金属層と同じ材質の枠 21— 1、 21— 2を 設けをノ、ンダによって接合してもよ 、。
このように、 2枚の柔軟な榭脂基板の外周部を接合することによって、外気遮断構 造にすることができ、熱電半導体素子の結露防止構造を容易に形成することができ る。
[0058] p型熱電半導体素子又は n型熱電半導体素子は、熱電素子特性を有するものであ れば良ぐ Bi— Te系半導体合金に限定されるものでなくどのような熱電素子特性を 有する合金であっても良い。
[0059] 電気回路金属層(即ち、金属電極)は、 Cu, Cr, Ni, Ti, Al, Au, Ag及び Siから 選択された金属又はこれらの合金またはこれらを多層に積層したものである。電気回 路金属層は、導電性に優れ、熱伝導性に優れている必要がある。
電気回路金属層は、例えば、湿式メツキ、スパッタリング、真空蒸着、イオンプレー ティング等の方法によって形成することができる。
[0060] 榭脂基板は、柔軟性のあるポリイミド、ガラスエポキシ、またはァラミド榭脂が望まし い。これらの材料が基板として電気回路や素子を支持でき、かつ柔軟性を持っため には、榭脂基板の厚さは 10 μ m〜200 μ mであることが望ましいが、これらの材質ま たは厚さに限定されるものではなぐ製造条件や使用条件の範囲内で基板が加熱ま たは冷却されたとき、または、上下の基板に温度差がついたときに、熱電半導体素子 や、接合層、メツキ層、電気回路金属層等にカゝかる応力を緩和することのできる基板 であれば良い。
充填金属層は、電気導通及び熱伝導を行う銅などの熱、電気抵抗の少ない材料で あることが好ましい。
[0061] 素子電極金属層は、 Cu、 Ti, Cr, W, Mo, Pt, Zr, Ni, Si, Pd及び Cから選択し た一つの元素、これらの合金、またはこれらを多層に積層したものでも良い。素子電 極金属層は、 P型および n型の熱電半導体素子の両面に形成される。
素子電極金属層の作製方法としては、湿式メツキ、スパッタリング、真空蒸着、ィォ ンプレーティング、 V、ずれの方法を単独もしくは組み合わせて使用することができる。
[0062] 接合層は、素子電極金属層が形成された熱電半導体素子を電気回路金属層に接 着させるための機能を有するものである。
接合層は、 300°C以下で接合できるロウ材であれば良ぐ Au, Ag, Ge, In, P, Si , Sn, Sb, Pb, Bi, Zn及び Cuの何れかの元素又はこれらの元素を含む合金が好ま しい。
また、はんだにより接合する場合の材料としては、 Sn— Sb系、 Sn— Cu系、 Sn— A g系、 Sn— Ag— Bi— Cu系、 Sn— Zn系、 Sn— Pb系、 Au— Sn系などの各種のはん だ金属を利用することができる。
接合層は、例えば、ペーストの印刷、湿式メツキ、スパッタリング、真空蒸着等の方 法によって形成することができる。
この発明〖こよると、素子にカゝかる応力を緩和し、電極間隔を狭くして伝熱面積を大 きくすることができ、安価で熱抵抗の小さ!、高性能かつ大型化が可能な熱電冷却装 置を提供することができ、産業上利用価値が高い。

Claims

請求の範囲
[I] 所定パターンで存在する電気接続領域を備えた少なくとも 1層の柔軟な榭脂基板と 前記電気接続領域に対応して配置される複数の P型熱電半導体素子および n型熱 電半導体素子からなる熱電半導体素子と、
前記熱電半導体素子に関して前記榭脂基板の反対側に配置され、前記電気接続 領域において前記熱電半導体素子が接合層を介して直列に電気的に連結される電 気回路金属層とを備えた熱電冷却装置。
[2] 前記電気接続領域がスルーホールカゝらなっており、前記スルーホールに充填され熱 および電気伝導を行う充填金属層を前記接合層と前記電気回路金属層の間に更に 備えている、請求項 1に記載の熱電冷却装置。
[3] 前記充填金属層および前記接合層が異なる種類の材料からなっている、請求項 2に 記載の熱電冷却装置。
[4] 前記充填金属層および前記接合層が同一種類の材料力 なっており一体的に形成 されている、請求項 2に記載の熱電冷却装置。
[5] 前記電気接続領域が開口部力 なって 、る、請求項 1に記載の熱電冷却装置。
[6] 前記開口部の断面形状が前記熱電半導体素子の断面形状より大きい、請求項 5に 記載の熱電冷却装置。
[7] 前記開口部の断面形状が前記熱電半導体素子の断面形状以下の大きさである、請 求項 5に記載の熱電冷却装置。
[8] 前記電気回路金属層の熱電半導体素子接合側に、 Niメツキ層を備えている請求項
2から 7の何れか 1項に記載の熱電冷却装置。
[9] 前記充填金属層の熱電半導体素子接合側に、 Niメツキ層を備えている請求項 2また は 3に記載の熱電冷却装置。
[10] 前記少なくとも 1層の榭脂基板が、前記熱電半導体素子を挟むように配置された 2層 の榭脂基板からなっており、 1対の前記電気回路金属層が前記 2層の榭脂基板を挟 むように配置されて 、る、請求項 1から 9の何れか 1項に記載の熱電冷却装置。
[II] 更に別の基板を備えており、前記少なくとも 1層の榭脂基板が 1層からなっており、前 記熱電半導体素子の一方の面は接合層を介して対応する前記電気回路金属層と接 続し、前記熱電半導体素子の他方の面は前記別の基板の熱電半導体素子側に配 置された電気回路金属層と接続している、請求項 1から 9の何れ力 1項に記載の熱電 冷却装置。
[12] 個々の前記熱電半導体素子を挟むように 1対の前記充填金属層が形成され、前記 熱電半導体素子が対応する前記充填金属層を介して前記電気回路金属層に接合 されている、請求項 2から 4、 8から 10の何れか 1項に記載の熱電冷却装置。
[13] 前記接合層が、印刷、ディスペンサー等によって供給される、請求項 1から 7の何れ 力 1項に記載の熱電冷却装置。
[14] 前記接合層が、メツキ等によって予め前記充填金属層の表面に備えられている、請 求項 2から 4の何れか 1項に記載の熱電冷却装置。
[15] 前記榭脂基板がポリイミド、ガラスエポキシまたはァラミドからなる柔軟な基板力もなつ ている、請求項 1から 14の何れか 1項に記載の熱電冷却装置。
[16] 前記電気回路層の外表面に絶縁層が形成されている、請求項 1から 15の何れか 1 項に記載の熱電冷却装置。
[17] 前記別の基板が均熱板または放熱フィンのベースプレートからなっている、請求項 1
1に記載の熱電冷却装置。
[18] 上下の前記基板の外周部を接合した、請求項 1から 17の何れか 1項に記載の熱電 冷却装置。
PCT/JP2005/014848 2004-08-17 2005-08-12 熱電冷却装置 WO2006019059A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/573,789 US20080308140A1 (en) 2004-08-17 2005-08-12 Thermo-Electric Cooling Device
JP2006531767A JPWO2006019059A1 (ja) 2004-08-17 2005-08-12 熱電冷却装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-236923 2004-08-17
JP2004236923 2004-08-17
JP2005-091834 2005-03-28
JP2005091834 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006019059A1 true WO2006019059A1 (ja) 2006-02-23

Family

ID=35907447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014848 WO2006019059A1 (ja) 2004-08-17 2005-08-12 熱電冷却装置

Country Status (3)

Country Link
US (1) US20080308140A1 (ja)
JP (1) JPWO2006019059A1 (ja)
WO (1) WO2006019059A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114622A (ja) * 2004-10-13 2006-04-27 Okano Electric Wire Co Ltd 熱電変換モジュール
JP2007266084A (ja) * 2006-03-27 2007-10-11 Yamaha Corp サーモモジュール用基板、サーモモジュールおよびサーモモジュールの製造方法
JP2007299780A (ja) * 2006-04-27 2007-11-15 Furukawa Electric Co Ltd:The サーモモジュールおよびその製造方法
JP2016012613A (ja) * 2014-06-27 2016-01-21 日立化成株式会社 熱電変換装置
WO2017036149A1 (zh) * 2015-08-31 2017-03-09 华为技术有限公司 一种热电制冷模组、光器件及光模组
US9947853B2 (en) 2013-12-17 2018-04-17 International Business Machines Corporation Thermoelectric device
JP2019525454A (ja) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー 熱電テープ
JP2019525455A (ja) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー フレキシブル熱電モジュール
JP2019216175A (ja) * 2018-06-12 2019-12-19 ヤマハ株式会社 熱電変換モジュール

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631042B1 (ko) 2007-08-21 2016-06-24 더 리전트 오브 더 유니버시티 오브 캘리포니아 고성능 열전 속성을 갖는 나노구조체
US20110114146A1 (en) * 2009-11-13 2011-05-19 Alphabet Energy, Inc. Uniwafer thermoelectric modules
US9240328B2 (en) 2010-11-19 2016-01-19 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
US8736011B2 (en) 2010-12-03 2014-05-27 Alphabet Energy, Inc. Low thermal conductivity matrices with embedded nanostructures and methods thereof
EP2707884A2 (en) * 2011-05-09 2014-03-19 Sheetak, Inc. Improved thermoelectric energy converters with reduced interface interface losses and manufacturing method thereof
AT511647B1 (de) * 2011-07-08 2013-11-15 Univ Wien Tech Kühl-/heiz-vorrichtung
AU2013212087A1 (en) 2012-01-25 2014-08-07 Alphabet Energy, Inc. Modular thermoelectric units for heat recovery systems and methods thereof
US9051175B2 (en) 2012-03-07 2015-06-09 Alphabet Energy, Inc. Bulk nano-ribbon and/or nano-porous structures for thermoelectric devices and methods for making the same
JP2014007376A (ja) * 2012-05-30 2014-01-16 Denso Corp 熱電変換装置
US9257627B2 (en) 2012-07-23 2016-02-09 Alphabet Energy, Inc. Method and structure for thermoelectric unicouple assembly
US9082930B1 (en) 2012-10-25 2015-07-14 Alphabet Energy, Inc. Nanostructured thermolectric elements and methods of making the same
US9065017B2 (en) 2013-09-01 2015-06-23 Alphabet Energy, Inc. Thermoelectric devices having reduced thermal stress and contact resistance, and methods of forming and using the same
WO2015157161A1 (en) * 2014-04-07 2015-10-15 Alphabet Energy, Inc. Flexible lead frame for multi-leg package assembly
WO2015157501A1 (en) 2014-04-10 2015-10-15 Alphabet Energy, Inc. Ultra-long silicon nanostructures, and methods of forming and transferring the same
EP3747546B1 (en) 2016-09-01 2022-04-13 Roche Diagnostics GmbH Assembly, instrument for performing a temperature-dependent reaction and method for performing a temperature-dependent reaction in an assembly
JP2018143056A (ja) * 2017-02-28 2018-09-13 トヨタ自動車株式会社 熱電発電装置
DE102017217123A1 (de) * 2017-09-26 2019-03-28 Mahle International Gmbh Verfahren zum Herstellen eines thermoelektrischen Wandlers
US10865702B2 (en) * 2017-12-20 2020-12-15 Marelli Europe S.P.A. Intercooler provided with a thermoelectric generator for a turbocharged internal combustion heat engine
FR3133105A1 (fr) * 2022-02-02 2023-09-01 Valeo Systemes Thermiques Module thermoélectrique et échangeur thermique associé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324922A (ja) * 2001-04-24 2002-11-08 Mitsubishi Electric Corp サーモモジュール
JP2002353525A (ja) * 2001-05-24 2002-12-06 Daikin Ind Ltd 熱電変換装置及びその製造方法
JP2004104041A (ja) * 2002-09-13 2004-04-02 Sony Corp 熱電変換装置及びその製造方法
JP2004119833A (ja) * 2002-09-27 2004-04-15 Toshiba Corp 熱電素子モジュール及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH329746A (fr) * 1956-04-16 1958-05-15 Bobst Fils Sa J Presse travaillant une matière en feuilles transportées par une paire de chaînes sans fin
EP0455051B1 (en) * 1990-04-20 1998-12-23 Matsushita Electric Industrial Co., Ltd. Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel
JPH0997930A (ja) * 1995-07-27 1997-04-08 Aisin Seiki Co Ltd 熱電冷却モジュール及びその製造方法
JPH10190071A (ja) * 1996-12-20 1998-07-21 Aisin Seiki Co Ltd 多段電子冷却装置
US6855880B2 (en) * 2001-10-05 2005-02-15 Steve Feher Modular thermoelectric couple and stack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324922A (ja) * 2001-04-24 2002-11-08 Mitsubishi Electric Corp サーモモジュール
JP2002353525A (ja) * 2001-05-24 2002-12-06 Daikin Ind Ltd 熱電変換装置及びその製造方法
JP2004104041A (ja) * 2002-09-13 2004-04-02 Sony Corp 熱電変換装置及びその製造方法
JP2004119833A (ja) * 2002-09-27 2004-04-15 Toshiba Corp 熱電素子モジュール及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114622A (ja) * 2004-10-13 2006-04-27 Okano Electric Wire Co Ltd 熱電変換モジュール
JP2007266084A (ja) * 2006-03-27 2007-10-11 Yamaha Corp サーモモジュール用基板、サーモモジュールおよびサーモモジュールの製造方法
JP2007299780A (ja) * 2006-04-27 2007-11-15 Furukawa Electric Co Ltd:The サーモモジュールおよびその製造方法
US9947853B2 (en) 2013-12-17 2018-04-17 International Business Machines Corporation Thermoelectric device
JP2016012613A (ja) * 2014-06-27 2016-01-21 日立化成株式会社 熱電変換装置
WO2017036149A1 (zh) * 2015-08-31 2017-03-09 华为技术有限公司 一种热电制冷模组、光器件及光模组
JP2019525454A (ja) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー 熱電テープ
JP2019525455A (ja) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー フレキシブル熱電モジュール
JP2019216175A (ja) * 2018-06-12 2019-12-19 ヤマハ株式会社 熱電変換モジュール

Also Published As

Publication number Publication date
JPWO2006019059A1 (ja) 2008-05-08
US20080308140A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
WO2006019059A1 (ja) 熱電冷却装置
JP4768961B2 (ja) 薄膜基板を有する熱電モジュール
EP1505662B1 (en) Thermoelectric device
US7119432B2 (en) Method and apparatus for establishing improved thermal communication between a die and a heatspreader in a semiconductor package
JP3927784B2 (ja) 熱電変換部材の製造方法
US9318421B2 (en) Power semiconductor chip with a metallic moulded body for contacting thick wires or strips and method for the production thereof
US9891247B2 (en) U-shaped vertical shunt resistor for Power Semiconductor module
JPH1093017A (ja) 多層構造方式での高実装密度の半導体パワーモジュール
JP2005507157A5 (ja)
US20140182644A1 (en) Structures and methods for multi-leg package thermoelectric devices
JP5249662B2 (ja) 熱電変換モジュール及びその製造方法
JP2020080348A (ja) 半導体装置
JP3641232B2 (ja) インバータ装置及びその製造方法
US20120060889A1 (en) Thermoelectric modules and assemblies with stress reducing structure
KR101508793B1 (ko) 열전소자 모듈을 이용한 열교환기의 제조방법
KR101388492B1 (ko) 골격형 열전 모듈 제조방법 그리고 골격형 열전 모듈이 적용된 열전 유닛 및 그 제조방법
US10833237B2 (en) Thermoelectric module
WO2021200264A1 (ja) 熱電変換モジュール
CN107710428B (zh) 热电模块
JP2007035907A (ja) 熱電モジュール
KR20200021842A (ko) 열전 모듈
JP2001156343A (ja) 熱電素子およびその製造方法
JP2020145375A (ja) 熱電モジュールおよびその製造方法
WO2021200265A1 (ja) 熱電変換モジュール
JP4579855B2 (ja) 電子冷熱モジュールおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580027183.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006531767

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11573789

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase