[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005124865A1 - 貼り合わせウェーハの製造方法 - Google Patents

貼り合わせウェーハの製造方法 Download PDF

Info

Publication number
WO2005124865A1
WO2005124865A1 PCT/JP2005/010648 JP2005010648W WO2005124865A1 WO 2005124865 A1 WO2005124865 A1 WO 2005124865A1 JP 2005010648 W JP2005010648 W JP 2005010648W WO 2005124865 A1 WO2005124865 A1 WO 2005124865A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion implantation
layer
wafer
ion
bond
Prior art date
Application number
PCT/JP2005/010648
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Mitani
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/629,074 priority Critical patent/US7601613B2/en
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to EP05749050.0A priority patent/EP1780794B1/en
Publication of WO2005124865A1 publication Critical patent/WO2005124865A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Definitions

  • the present invention relates to a method for manufacturing a bonded wafer, and particularly to a method for manufacturing a bonded wafer using an ion implantation delamination method.
  • an ion implantation delamination method As a method of manufacturing an SOI (Silicon On Insulator) wafer, which is an example of a method of manufacturing a shellfish divination wafer, an ion implantation delamination method is known.
  • hydrogen is ion-implanted so that a peeling ion implantation layer composed of a high-concentration hydrogen layer is formed at a fixed depth position with respect to a bonding surface (hereinafter referred to as a first main surface) of the bond wafer.
  • Bonding wafers are peeled off at the peeling ion-implanted layer after bonding with the base wafer, which is sometimes called a smart cut method (smart cut is a registered trademark) (see, for example, Japanese Patent No.
  • a polysilicon layer or an amorphous silicon layer for heavy metal gettering or the like may be inserted as an additional functional layer directly under or directly above the buried oxide film of the SOI wafer.
  • an additional functional layer is further formed by chemical vapor deposition (CVD) or the like.
  • CVD chemical vapor deposition
  • ion implantation of hydrogen is performed from the side of the additional functional layer so as to reach the inside of the bond wafer to form an ion implantation layer for separation.
  • the additional functional layer on the bond wafer is bonded to the base wafer, and the bond wafer is peeled off by the peeling ion implantation layer to obtain an SOI layer as a remaining bonded semiconductor thin layer.
  • the dose amount of ion implantation for causing delamination in a bond wafer in order to adjust the formation position (depth position) of the first main surface force of the ion implantation layer for stripping according to the required thickness of the SOI layer, the energy of ion implantation must be adjusted. Then, the shallower the ion implanted layer formation position, the smaller the critical dose required for the separation.
  • the surface roughness of the peeled surface is also related to the dose amount of the ion implantation, and if the dose amount can be reduced, the surface roughness of the peeled surface also becomes smaller.
  • the dose of ion implantation is set to be small, and when the dose is small, the surface roughness of the separation surface becomes small, and when the thin SOI layer is formed.
  • the uniformity of the thickness of the SOI layer can be improved.
  • the additional functional layer in order to perform good bonding with a base wafer, the additional functional layer must be formed. Polishing to flatten the surface is required. If the polished surface of the additional function layer is tilted by the planarization polishing, the thickness of the additional function layer becomes non-uniform, and the depth of hydrogen ion implantation into the bond wafer increases the thickness of the additional function layer. Depending on the uniformity, there is a problem that the thickness of the bonded semiconductor thin layer (corresponding to the SOI layer) obtained by ion implantation delamination also becomes non-uniform.
  • One method for solving these problems is to deposit an additional functional layer on the base wafer side and bond the additional functional layer to a bond wafer via an oxide film.
  • the bonding surface comes closer to the SOI layer for forming a device, so that impurities taken into the bonding interface easily affect the device layer, and there is a problem that a thin embedded acid is used.
  • a thin film is required (for example, 100 nm or less)
  • the surface of the thin oxide film becomes a bonding surface, so that a bonding defect occurs and the production yield is immediately lowered.
  • Another solution is to complete the implantation of hydrogen ions before depositing the additional functional layer on the bond side, but the growth temperature required for deposition of the additional functional layer is required. Since the temperature is usually 400 ° C. or higher, a problem arises in that the vicinity of the wafer surface peels during deposition.
  • a first object of the present invention is to perform ion implantation for forming an ion implantation layer for separation separately into two ion implantations sandwiching a deposition step of an additional function layer, thereby reducing the thickness of the additional function layer.
  • An object of the present invention is to provide a method for manufacturing a bonded wafer that does not affect the uniformity of the thickness of a bonded semiconductor thin layer even when uniformity occurs.
  • a second object of the present invention is to provide a method of manufacturing a bonded wafer in which an ion-implanted layer for peeling can be formed at a more accurate position with less energy.
  • a third object of the present invention is to provide a method for manufacturing a bonded wafer that can further reduce the surface roughness of a peeled surface of a peeled ion implantation layer.
  • a method of manufacturing a bonded wafer according to a first invention has a concentration peak at a predetermined depth position in a depth direction ion implantation profile with respect to a bond wafer.
  • the method for manufacturing a bonded wafer which is the first invention, is based on the principle of applying the principle of the ion implantation separation method.
  • the ion implantation is performed in two separate steps, sandwiching the deposition of the additional functional layer. First, the first ion implantation is performed on the bond wafer so as to have a concentration peak at a predetermined depth position in the ion implantation profile in the depth direction.
  • the first ion implantation is performed.
  • the second ion implantation is performed targeting the implantation position. Since the first ion implantation is performed on the bond due to the absence of the additional functional layer, even if the additional functional layer has a non-uniform thickness, it does not affect the uniformity of the SOI layer. .
  • the first ion implantation is performed with an ion implantation amount that does not cause cracks in the bond wafer due to the growth heat history of the additional function layer. It is characterized by. This can prevent a defect that the bond wafer is peeled off in the additional function layer deposition step.
  • a method of manufacturing a bonded wafer wherein the insulating film side force of a bond wafer formed by forming an insulating film on a single crystal silicon substrate is implanted with ions less than a critical dose.
  • a first ion implantation step of forming an ion implantation layer to be peeled having a concentration peak at a predetermined depth position in a depth direction ion implantation profile in the bond wafer, and the insulating film of the bond wafer An additional function layer depositing step of depositing an additional function layer thereon, and the step of depositing the additional function layer from the surface side of the additional function layer at the same depth as that of the ion implantation in the first ion implantation step.
  • a second ion implantation step of forming an interlayer a bonding step of bonding an additional functional layer on the bond wafer on which the separation ion implantation layer is formed, and a base wafer, and a bonding step of bonding the bond wafer to the separation ion implantation layer.
  • a stripping step of stripping with an injection layer is the minimum dose required to generate a cavity called a prestar in the ion-implanted layer when the ion-implanted bond is raised to a temperature of 400 ° C. or higher.
  • the manufacturing method of the bonded wafer according to the third invention basically applies the principle of the ion implantation separation method.
  • the conventional ion implantation separation method it is formed by a single ion implantation.
  • the ion implantation layer for stripping is formed by two ion implantations sandwiching the deposition step of the additional function layer.
  • the ion-implanted layer to be peeled can be accurately formed at a deeper position of the bond wafer with less energy when viewed from the surface of the additional functional layer.
  • the ion implantation step the ion implantation layer to be stripped is changed to a stripping ion implantation layer so that stripping can be performed accurately and reliably at a deeper position in the bond wafer when viewed from the surface of the additional functional layer.
  • the additional functional layer Since the ion-implanted layer to be peeled is formed in the deposited state, the peeled surface of the bond wafer is located at a constant depth at the first main surface force of the bond wafer, and the influence of the non-uniform film thickness of the additional functional layer.
  • the thickness uniformity of the bonded semiconductor thin layer can be maintained without being subjected to the heat.
  • the method for manufacturing a bonded wafer according to a fourth invention is characterized in that the dose of ion implantation in the first ion implantation is greater than the dose of ion implantation in the second ion implantation.
  • the ion force implanted in the second ion implantation step is trapped or pulled into the ion implantation layer to be exfoliated formed by the ion implantation in the first ion implantation step, and the ion Since the implantation layer is formed, the peeling surface of the bond wafer is uniquely determined by the position of the ion implantation layer to be peeled which is formed in the first ion implantation step.
  • a method of manufacturing a bonded wafer according to a fifth invention is characterized in that the dose of ion implantation in the first ion implantation step is 70% or more and 90% or less of the critical dose. .
  • the force that assumes that the dose of the ion implantation in the first ion implantation step is larger than the dose of the ion implantation in the second ion implantation step.
  • the ion-implanted layer to be peeled formed in the first ion-implantation step is drawn into the position where the ions are implanted in the second ion-implantation step.
  • the ion implantation dose in the first ion implantation step is set to be 70% or more and 90% or less, that is, about 80% of the critical dose, and the ion implantation layer to be stripped has the second ion implantation layer. It is effective to avoid being pulled into the ion-implanted position in the process.
  • the sum of the dose of the ion implantation in the first ion implantation step and the dose of the ion implantation in the second ion implantation step is about 100% to 110% of the critical dose.
  • the surface of the deposited additional function layer is polished before or after the second ion implantation step so as to be flattened. It is characterized by including a polishing step. In the flattening and polishing step, the surface of the additional function layer is polished to become a polished surface. Bondueha can be satisfactorily bonded to a base wafer.
  • an activation step for activating the surface of the bond wafer and Z or the surface of the base wafer with plasma is performed before the bonding step. It is characterized by including.
  • the activation bonding step increases the bonding strength of the wafer at room temperature, so that peeling at the peeling ion-implanted layer can be performed by a physical or mechanical method without applying a heat treatment for peeling.
  • the method for manufacturing a bonded wafer according to an eighth invention is characterized in that the peeling step is a step of, after the activation step, peeling by spraying a water laser or a gas on the bond wafer. I do.
  • the surface of the bond wafer is activated in the preceding activation step, so that a high-pressure water is sprayed from a fine nozzle!
  • the bond wafer can be removed simply by spraying.
  • a method for manufacturing a bonded wafer is characterized in that the peeling step is a step of performing a heat treatment on the bond wafer to peel it.
  • the bond wafer is stripped in the stripping ion-implanted layer by heat treatment.
  • a method for manufacturing a bonded wafer is characterized in that the insulating film is a film selected from a silicon oxide film, a silicon nitride film, and a silicon nitride film.
  • the insulating film is formed by thermal oxidation of Bondue, it can easily be formed.
  • an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxide nitride film may be formed by a method such as the CVD method.
  • An eleventh invention a method of manufacturing a bonded wafer, is characterized in that the additional function layer is a layer selected from a polysilicon layer and an amorphous silicon layer.
  • the additional function layer is used as a gettering layer, a polysilicon layer or an amorphous silicon layer is conventionally used.
  • the ion is a hydrogen ion, a helium ion, a neon ion, an argon ion, a krypton ion, or a xenon ion. It is characterized in that it is an ion selected from the following.
  • an inert gas ion of He, Ne, Ar, Kr or Xe in which hydrogen ions are mainly used as an ion to be implanted is also used.
  • the base wafer in the method for manufacturing a bonded wafer, may be a single-crystal silicon substrate with a dielectric film, a single-crystal silicon substrate, an insulating substrate, or a compound semiconductor substrate.
  • the base wafer is made of a single-crystal silicon substrate with an insulating film, a single-crystal silicon substrate, quartz, depending on various conditions such as the device formed on the bonded semiconductor thin layer, the thickness of the insulating film, and the thickness of the additional functional layer. It can be appropriately selected from an insulating substrate such as a substrate or a sapphire substrate, or a compound semiconductor substrate such as GaAs, InP, or SiC.
  • FIG. 1 is a process chart for explaining a method of manufacturing a bonded wafer according to a first embodiment of the present invention, taking a method of manufacturing an SOI wafer as an example.
  • FIG. 2 is a process diagram illustrating a method of manufacturing a bonded wafer according to a second embodiment of the present invention, taking a method of manufacturing an SOI wafer as an example.
  • FIG. 3 is a process chart for explaining a method of manufacturing a bonded wafer according to a reference technology, taking a method of manufacturing an SOI wafer as an example.
  • the non-uniform thickness of the additional function layer is bonded to the semiconductor thin film. This was done so as not to affect the thickness uniformity of the layer.
  • the reason why the thickness of the bonded semiconductor thin layer becomes non-uniform in the manufacturing method of the bonded wafer having the additional function layer described above is referred to.
  • the technology is explained using the manufacturing method of SOI wafer shown in Fig. 3 as an example.
  • Bondueno 101 made of a single crystal silicon substrate is prepared.
  • a bonding surface (hereinafter, referred to as a first main surface) J side of the bond wafer 101 is made of a silicon oxide film.
  • An edge film 102 is formed.
  • the insulating film 102 can be formed by, for example, thermal oxidation such as wet oxidation or dry oxidation, but a method such as a CVD method can also be employed.
  • the thickness of the insulating film 102 is, for example, 2 nm or more and 1 ⁇ m or less. Note that a silicon nitride film, a silicon nitride film, or the like may be formed as the insulating film 102 instead of the silicon nitride film.
  • an additional function layer 103 made of a polysilicon layer is deposited on the insulating film 102 formed on the bond wafer 101 by a CVD method.
  • the thickness of the additional function layer 103 is about 100 to: LOOO nm.
  • the growth temperature of the additional function layer 103 is 600 to 800. It is about C.
  • the surface of the additional functional layer 103 Since the surface of the additional functional layer 103 has a rough surface, it is difficult to bond the additional functional layer 103 to the base wafer 105 (see FIG. 3D) as it is. Therefore, the surface of the additional function layer 103 is planarized (surface roughness rms (root mean square) is less than 0.2 nm per 1 ⁇ m square) by CMP (Chemical Mechanical 1 Planarization) polishing, and the additional The functional layer is 103 ′.
  • the polishing allowance is about 20 to 200 nm. If the polishing allowance is lOOnm, the variation in polishing allowance will be about + Z-5nm in the plane.
  • FIG. 3B illustrates a state where the film thickness non-uniformity of the additional function layer 103 ′ has increased.
  • the non-uniform film thickness of the additional functional layer 103 ′ due to the planarization polishing is described here, the non-uniform film thickness of the additional functional layer 103 ′ is not necessarily limited to the planarization polishing. Absent. That is, in the deposition process of the additional function layer 103, the film thickness may be uneven.
  • hydrogen ions are implanted into the bond wafer 101 from the polished surface (first main surface J) side of the additional functional layer 103 ′, thereby preliminarily determining the ion implantation profile in the depth direction.
  • a stripping ion implantation layer 104 having a concentration peak at the set depth position is formed.
  • Hydrogen ion implantation depth is + Z—In m, the depth of hydrogen ion implantation into the bond wafer 101 depends on the non-uniform film thickness of the intercalated functional layer 103 ′ in the middle.
  • FIG. 3 (c) shows the force from the first major surface J of the bond wafer 101, which is a fixed depth position from the polished surface of the additional function layer 103 ′ due to the non-uniform thickness of the additional function layer 103 ′.
  • FIG. 3 illustrates a state where the separation ion implantation layer 104 is formed at a position other than a fixed depth position. That is, in this state, the first main surface J of the bond wafer 101 is not parallel to the stripping ion implantation layer 104, and the SOI layer 101 to be finally obtained (see FIG. 3 (e)). Becomes uneven!
  • a base wafer 105 made of a single crystal silicon substrate is prepared.
  • an insulating substrate such as a quartz substrate or a sapphire substrate, or a nitride semiconductor substrate such as GaAs, InP, or SiC can be used. It is preferable to use a crystalline silicon substrate.
  • an insulating film 106 made of a silicon oxide film is formed on at least a bonding surface (hereinafter, referred to as a first main surface) K of the base wafer 105.
  • the insulating film 106 can be formed by, for example, a method such as a force CVD method that can be formed by thermal oxidation such as wet oxidation and dry oxidation.
  • the base wafer 105 with the insulating film 106 thus prepared is bonded at room temperature to the additional functional layer 103 'on the ion-implanted bondueno 101 on the insulating film 106 (first main surface K) side. .
  • FIG. 3E shows the ion implantation layer 104 for exfoliation formed at a position other than a constant depth at the first main surface J of the bond due to the non-uniform thickness of the additional functional layer 103 ′. This illustrates an example in which the SOI layer 101 'also has a nonuniform film thickness due to peeling.
  • the surface of the additional function layer 103 of the bonder 101 and the surface of the insulating film 106 of the base wafer 105 or Z are bonded with plasma before bonding. After bonding, bonding is performed, and then a water laser or a gas is blown onto the bonder 101 without applying a temperature, so that the bonder 101 can be separated. It may be separated at the ON injection layer 104.
  • the separation ion-implanted layer 104 is formed by one-time ion implantation.
  • the thickness of the SOI layer 101 ′ becomes uneven due to the uneven thickness of the additional function layer 103 ′.
  • There are problems such as affecting the surface roughness of the peeled surface of the implantation layer 104 and requiring a large amount of energy for hydrogen ion implantation.
  • FIG. 1 is a process diagram illustrating a method of manufacturing a bonded wafer according to a first embodiment of the present invention, taking a method of manufacturing an SOI wafer as an example.
  • a method of manufacturing the bonded wafer according to the first embodiment will be described with reference to FIG.
  • a bond wafer 1 made of a single crystal silicon substrate is prepared, and an insulating film 2 made of a silicon oxide film is formed on at least the first main surface J side of the bond wafer 1.
  • the insulating film 2 may be formed of a silicon nitride film, a silicon nitride film, or the like instead of the silicon nitride film.
  • the insulating film 2 can be formed by, for example, thermal oxidation such as wet oxidation and dry oxidation, but it is also possible to employ a method such as a CVD method.
  • the thickness of the insulating film 2 is, for example, 2 nm or more and 1 ⁇ m or less.
  • the first main surface J side of the bond wafer 1 and the surface of the insulating film 2 in the first embodiment are used as an ion implantation surface, for example, by irradiating a hydrogen ion beam to form hydrogen having a critical dose less than the critical dose.
  • Ions are implanted to form a scheduled ion implantation layer 3 having a concentration peak at a predetermined depth position in an ion implantation profile in the depth direction.
  • the ion implantation layer 3 to be peeled off is formed at a certain depth from the first main surface J as shown in FIG.
  • the ion implantation layer 3 to be stripped is formed in parallel to the first main surface J, and guarantees the uniformity of the thickness of the finally obtained SOI layer 1 ′ (see (fl) in FIG. 1).
  • the dose of ion implantation of hydrogen is kept at a moderately lower level than the critical dose.
  • the critical dose As a guide, after implanting hydrogen ions, raise Bonduewa1 to a temperature of 400 ° C or more, and make it about 80% of the critical dose, which is the minimum dose at which blisters can be formed near the wafer surface.
  • the peeling position of the bond wafer 1 in the subsequent peeling step (fl) does not proceed until the force peeling determined by the depth position of the ion implantation layer 3 to be peeled.
  • hydrogen ions are used as ions for forming the ion implantation layer 3 to be stripped.
  • hydrogen ions instead of hydrogen ions, helium ions, neon ions, argon ions, talipton ions, and xenon ions are used.
  • Activated gas ions can also be used.
  • the ion implantation layer 3 to be stripped is preferably formed so that a hydrogen concentration peak position is formed at a position between 100 nm and 2000 nm when the hydrogen concentration profile in the depth direction of the bond wafer 1 is measured. . If the depth position is less than 100 nm, the SOI layer 1 ′ (see (f 1) in Figure 1) cannot be obtained with a sufficient thickness. If the depth position exceeds 2000 nm, the ion implanter needs to have extremely high energy. . For example, when the average thickness of the SOI layer 1 ′ to be finally obtained is set to about 10 to 5 Onm, the ion implantation layer 3 to be peeled has a hydrogen concentration profile of 100 ⁇ m in the depth direction of the bond wafer 1.
  • the hydrogen concentration be formed at a position of about 500 nm (in the case where the insulating film 2 is formed on the surface, represented by a depth position excluding the insulating film 2) so that a peak position of the hydrogen concentration occurs.
  • the implantation depth of the ions is adjusted by the energy (acceleration voltage) of the ions. For example, when using hydrogen ions, if the thickness of the insulating film 2 is set to 50 nm, the ion implantation layer 3 to be peeled is formed. It is good to adjust the energy of the ion implantation to about 10k-60keV.
  • the amount of implanted hydrogen ions dose Is preferably 2 ⁇ 10 16 Zcm 2 to 1 ⁇ 10 17 Zcm 2 . If it is less than 2 ⁇ 10 16 , normal peeling will not be possible, and if it exceeds 1 ⁇ 10 17 / cm 2 , the amount of ion implantation will be excessively increased, so that the process will be lengthened and the production efficiency will be inevitably reduced.
  • the shallower the ion-implantation layer 3 is formed the smaller the critical dose of ion implantation required for exfoliation is set.
  • the thickness of the insulating film 2 is constant, the formation position of the ion implantation layer 3 to be stripped becomes shallower as the thickness of the SOI layer 1 ′ to be finally obtained becomes thinner, and the dose amount of the ion implantation also becomes smaller. It is set smaller depending on the thickness.
  • the polishing allowance becomes smaller, and the influence of non-uniform polishing allowance is less likely to occur.
  • Both thickness uniformity can be reduced to a sufficiently small level.
  • the uniformity of the film thickness of the SOI layer 1 ′ is, for example, 1.2 nm in terms of the standard deviation of the film thickness in the wafer. The following can be secured.
  • An additional functional layer 4 made of a polysilicon layer is deposited on the insulating film 2 of the bond wafer 1 by a CVD method at a temperature of 600 ° C. or more.
  • the thickness of the additional function layer 4 is about 100 to 1000 nm.
  • the growth temperature of the additional function layer 4 is about 600 to 800 ° C.
  • the additional function layer 4 can be formed of an amorphous silicon layer or the like instead of the polysilicon layer.
  • the growth temperature of the additional functional layer 4 is 600 ° C or more.Since the dose of hydrogen ions is below the critical dose, it is unlikely that peeling or blistering will occur in the ion implantation layer 3 to be peeled. Absent. However, due to the ion implantation into the ion implantation layer 3 to be stripped and the growth temperature of the additional function layer 4, a fine defect layer or a crack layer is generated in the ion implantation layer 3 to be stripped.
  • the first ion is implanted from the surface of the additional functional layer 4 at the same depth position as that of the ion implantation in the first ion implantation step (a 1) (that is, the formation position of the ion implantation layer 3 to be peeled).
  • the ion implantation layer 3 to be stripped is changed to the ion implantation layer 3 'for stripping. More specifically, since the ion implantation layer 3 to be stripped has a concentration peak at a predetermined depth position in the ion implantation profile in the depth direction, the stress field due to the ion implantation can easily form a valley-like potential.
  • Attracting stress for hydrogen ions during the second ion implantation is also easily formed. For this reason, the ions are implanted in the second ion implantation step (cl).
  • the hydrogen ions trapped or drawn into the ion implantation layer 3 to be separated are converged on the ion implantation layer 3 to be separated.
  • a fine defect layer and a crack layer are already formed in the ion implantation layer 3 to be peeled. Therefore, the injected hydrogen ions are further trapped or drawn.
  • the ion implantation layer 3 to be stripped changes to a strippable ion implantation layer 3 ′ that can be stripped.
  • the surface of the additional function layer 4 has a rough surface, it is difficult to bond the surface to the base wafer 5 (see (e1) in FIG. 1) as it is.
  • the surface is flattened (surface roughness rms: less than 0.2 nm per Lm square) to form an additional functional layer 4 'having a polished surface to be a bonding surface in a bonding process (el) at a later stage.
  • the polishing allowance is about 20 to 200 nm. If the polishing allowance is lOOnm, the variation in the polishing allowance will be about + Z-5nm in the plane.
  • FIG. 1 (dl) shows an example of a state in which the film thickness non-uniformity of the additional function layer 4 'has occurred.
  • the second ion implantation step (cl) can be performed after the flattening polishing step (dl).
  • the second ion implantation is performed through the caro-functional layer 4 ′ having a variation in polishing allowance due to planarization polishing.
  • the ions implanted in the second ion implantation are the second ions. Since it is easy to be drawn into the ion-implanted layer 3 to be peeled already formed in the ion implantation 1, the influence of the polishing allowance is small!
  • the sum of the total energy consumed in the first ion implantation step (al) and the total energy consumed in the second ion implantation step (cl) is determined by the second ion implantation step (cl). It is needless to say that the total energy when forming the ion implantation layer 3 ′ for stripping is significantly lower than the total energy when the ion implantation layer 3 ′ for separation is formed. This is because the voltage force for implanting ions into the ion implantation layer 3 to be exfoliated without passing through the additional functional layer 4 in the first ion implantation step (al) This is because the voltage required for forming a layer equivalent to the ion-implanted layer 3 to be peeled off via the additional function layer 4 in 1) becomes lower.
  • the total energy required for ion implantation can be significantly reduced as compared with the case of the reference technology shown in FIG.
  • a base wafer 5 having a single crystal silicon substrate strength is prepared.
  • an insulating substrate such as a quartz substrate or a sapphire substrate, or a compound semiconductor substrate such as GaAs, InP, or SiC can be used. It is preferable to use a single crystal silicon substrate as described above.
  • an insulating film 6 made of a silicon oxide film is formed on at least a bonding surface (hereinafter, referred to as a first main surface) K of the base wafer 5.
  • the insulating film 6 can be formed by, for example, thermal oxidation such as wet oxidation or dry oxidation, but it is also possible to adopt a method such as a CVD method.
  • the base wafer 5 provided with the insulating film 6 thus prepared is bonded at room temperature to the additional functional layer 4 'on the ion-implanted bond 1 on the side of the insulating film 6 (first main surface K).
  • the bond wafer 1 is positioned at approximately the concentration peak position of the ion implantation layer 3 'for peeling. And the portion remaining on the base weno, 5 side becomes the SOI layer 1 '.
  • the separation position is determined as the ion implantation layer 3 to be separated in the first ion implantation step (al). Not affected.
  • the additional functional layer 4 ′ has a non-uniform film thickness, but the SOI layer 1 ′ has a uniform film thickness because the bond wafer 1 is peeled off by the peeling ion implantation layer 3 ′.
  • the peeling heat treatment can be omitted by increasing the ion implantation dose when forming the peeling ion implantation layer 3 ′.
  • the remaining portion of the bonded wafer 1 after peeling can be reused as a bonded wafer or a base wafer again after re-polishing the peeled surface.
  • the bonding step (el) and the peeling step (fl) can be performed by the method described in the reference technology. Good. That is, before the bonding, the surface of the additional functional layer 4 ′ of the bond heater 1 and / or the surface of the insulating film 6 of the base wafer 5 is activated with plasma, and then the bonding is performed. The laser or gas may be blown onto Bondueha 1 to separate it.
  • a bonding heat treatment for firmly bonding the base wafer 5 and the SOI layer 1 ′ via the insulating films 2 and 6 and the additional functional layer 4 after the peeling step (fl) is performed.
  • This bonding heat treatment is usually performed in an oxidizing atmosphere, or in an inert gas such as an argon gas, a nitrogen gas, or a mixed gas thereof at a high temperature of not less than 1000 ° C and not more than 1250 ° C.
  • an oxidizing heat treatment 700 ° C. or more and 1000 ° C. or less
  • for protecting the surface of the SOI layer 1 ′ can be performed at a lower temperature.
  • a planarization heat treatment for further planarizing the peeled surface of the SOI layer 1 ′ or the polished surface formed by polishing the SOI layer 1 ′ can be performed.
  • This flattening heat treatment can be performed at 1100 to 1380 ° C. in an inert gas such as an argon gas, a hydrogen gas, or a mixed gas thereof. Specifically, it can be performed by using a general batch type vertical furnace ⁇ horizontal furnace using a heater heating type heat treatment furnace, or a sheet that completes the heat treatment in a few seconds or several minutes by lamp heating or the like. It can also be performed using a leaf-type RTA (Rapid Thermal Anneal) device. This flattening heat treatment can also be performed concurrently with the above-described bonding heat treatment.
  • the dose amount of the ion implantation also depends on the film thickness. It can be set small and the polishing allowance of the peeled surface of the SOI layer 1 'in the polishing process can be set small. In other words, if the SOI layer 1 ′ is thinner, the formation position of the separation ion implantation layer 3 is shallower, so that the dose of ion implantation is reduced, and the polishing allowance at the time of flattening the separation surface can be reduced. Uniform effects are reduced. As a result, even though the thickness of the SOI layer 1 'is small, it is possible to reduce both the uniformity of the film thickness in the bond wafer 1 and the uniformity of the film thickness between the wafers to a sufficiently small level.
  • the bonding obtained by the ion implantation peeling regardless of whether the thickness of the additional functional layer 4 ′ is uneven or not, the bonding obtained by the ion implantation peeling.
  • the thickness of the combined semiconductor thin layer (SOI layer 1 ′) can be made uniform.
  • FIG. 2 is a process diagram illustrating a method of manufacturing a bonded wafer according to a second embodiment of the present invention, taking a method of manufacturing an SOI wafer as an example.
  • the manufacturing method of the bonded wafer according to the second embodiment is different from the manufacturing method of the bonded wafer according to the first embodiment shown in FIG. It was simply replaced with a base wafer 5 without one. Therefore, the respective steps (a2) to (d2) are the same as the respective steps (al) to (dl) in FIG. 1, and a detailed description thereof will be omitted.
  • a base wafer 5 made of a single crystal silicon substrate is prepared.
  • an insulating substrate such as a quartz substrate or a sapphire substrate, or a compound semiconductor substrate such as GaAs, InP, or SiC can be used.However, in consideration of the increase in diameter and cost, a single crystal silicon substrate is used. It is preferable to use
  • the prepared base wafer 5 is bonded at room temperature to the additional functional layer 4 'on the ion implanted bonder 1 at the first main surface K side.
  • the laminated body bonded in the bonding step (e2) is subjected to a heat treatment at a low temperature of several hundred degrees Celsius, for example, 400 to 600 degrees Celsius, so that the bond wafer 1 has a concentration peak position in the ion implantation layer 3 ′ to be peeled. And the portion remaining on the base wafer 5 side becomes the SOI layer 1 '.
  • the peeling position is determined as the ion implantation layer 3 to be peeled in the first ion implantation step (a2), so that the additional function layer 4 in the subsequent step and the film thickness by flattening and polishing are determined. It is not affected by unevenness.
  • the thickness of the additional function layer 4 ′ is not uniform, but the SOI layer 1 ′ has a uniform thickness because the bond wafer 1 is separated by the separation ion implantation layer 3 ′.
  • the peeling heat treatment can be omitted by increasing the ion implantation dose when forming the peeling ion implantation layer 3 '.
  • the remaining portion of the bond wafer 1 after peeling can be reused as a bond wafer or a base wafer again after re-polishing the peeled surface.
  • the bonding step (e2) and the peeling step (f2) may be the methods described in the reference technology.
  • the surfaces of the additional functional layer 4 ′ of the bond wafer 1 and the surface of the Z or base wafer 5 are activated with plasma before bonding, and then bonding is performed.
  • the separation may be performed by spraying a water laser or a gas onto the bond wafer 1 without applying a temperature to the wafer.
  • the thickness of the bonded semiconductor thin layer (SOI layer 1 ′) obtained by the injection peeling can be made uniform.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 第1のイオン注入工程(a1)で、ボンドウェーハ1の絶縁膜2側から臨界ドーズ量未満のイオンを打ち込むことにより剥離予定イオン注入層3を形成する。付加機能層堆積工程(b2)で、ボンドウェーハ1の絶縁膜2上に付加機能層4を堆積する。第2のイオン注入工程(c1)で、付加機能層4の表面側から第1のイオン注入工程でイオン注入されたのと同じ深さ位置となるように、第1のイオン注入工程でイオン注入されたドーズ量と合わせて臨界ドーズ量以上となるドーズ量のイオンを打ち込むことにより剥離予定イオン注入層3を剥離用イオン注入層3’とする。これにより、剥離用イオン注入層を付加機能層の堆積工程を挟む2回のイオン注入で形成することにより、付加機能層の膜厚不均一が貼り合わせ半導体薄層の膜厚均一性に影響を及ぼさないようにする。

Description

明 細 書
貼り合わせゥ ーハの製造方法
技術分野
[0001] 本発明は貼り合わせゥヱーハの製造方法に関し、特にイオン注入剥離法を用いた 貼り合わせゥ ーハの製造方法に関する。
背景技術
[0002] 貝占り合わせゥエーハの製造方法の一例である SOI (Silicon On Insulator)ゥェーハの 製造方法では、イオン注入剥離法が知られている。これは、ボンドゥエーハの貼り合 わせ面 (第一主表面とする)に対し、一定深さ位置に水素高濃度層でなる剥離用ィォ ン注入層が形成されるように水素をイオン注入し、ベースウェーハとの貼り合わせ後 に該剥離用イオン注入層にてボンドゥエーハを剥離する、というものであり、スマート カット法 (スマートカットは登録商標)と呼ばれることもある(例えば、特許第 3048201 号公報参照)。他方、 SOIゥエーハの埋め込み酸ィ匕膜直下または直上には、付加機 能層として、例えば重金属ゲッタリングなどを目的としたポリシリコン層や非晶質シリコ ン層を挿入することが有り得る。イオン注入剥離法の工程に上記の付加機能層を組 み込むには、具体的には次のような工程変更が必要であると考えられる。すなわち、 ボンドゥエーハ側に埋め込み酸ィ匕膜を形成した後、さらに化学的気相成長法 (CVD ; Chemical Vapor Deposition)等により付加機能層を形成する。次いで、付加機能層 側からボンドゥエーハ内に達するように水素のイオン注入を行なって、剥離用イオン 注入層を形成する。そして、ボンドゥエーハ上の付加機能層をべ一スウェーハに貼り 合わせ、剥離用イオン注入層にてボンドゥエーハを剥離して、残存する貼り合わせ半 導体薄層としての SOI層を得る。
[0003] ところで、イオン注入剥離法においては、ボンドゥエーハに剥離を生じさせるための イオン注入のドーズ量につき、以下のようなことが知られている。すなわち、必要とさ れる SOI層の膜厚に応じて剥離用イオン注入層の第一主表面力 の形成位置 (深さ 位置)を調整するには、イオン注入のエネルギーを調整しなければならない。そして、 剥離用イオン注入層の形成位置が浅いほど、剥離に必要な臨界ドーズ量は少なくな る。他方、剥離面の面粗さも、イオン注入のドーズ量に関係し、ドーズ量が少なくでき れば剥離面の面粗さも小さくなる。従って、剥離用イオン注入層の形成位置が浅くな る場合は、イオン注入のドーズ量を少なく設定し、ドーズ量が少なくなれば、剥離面 の面粗さも小さくなり、薄い SOI層を形成する場合に、該 SOI層の膜厚均一性を向上 させることができる。(例えば、特開 2004— 63730号公報 (第 4頁)参照)
[0004] 上述した SOIゥヱーハの製造方法を一例として説明した貼り合わせゥヱーハの製造 方法では、付加機能層を組み込む場合、ベースウェーハとの貼り合わせを良好に行 なうためには、付加機能層の表面を平坦ィ匕する研磨が必要とされる。その平坦化研 磨により付加機能層の研磨面に面傾きが生じると、付加機能層の膜厚が不均一とな り、ボンドゥエーハ中への水素イオンの注入深さが付加機能層の膜厚不均一に左右 されて、イオン注入剥離によって得られる貼り合わせ半導体薄層(SOI層に相当)の 膜厚も不均一になるという課題がある。
[0005] また、水素イオンの注入を付加機能層側力 ボンドゥエーハ中に行なうので、付カロ 機能層の研磨面の面粗さが剥離用イオン注入層の剥離面の面粗さに影響するという 課題がある。
[0006] さらに、水素イオンの注入を付加機能層を介して行なうので、水素イオンの注入に 多大なエネルギーを要するという課題がある。このため、ボンドゥエーハのあまり深い 位置に剥離用イオン注入層を形成することはできず、付加機能層の研磨面から、例 えば 1 μ m以上深い位置に剥離用イオン注入層を形成することは困難である。
[0007] これらの課題を解決するための一つの方法は、付加機能層をべ一スウェーハ側に 堆積し、酸ィ匕膜を介してボンドゥエーハと貼り合わせることである。しかしながら、この ような方法を採用すると、貼り合わせ面がデバイスを形成するための SOI層に近づく ため、貼り合わせ界面に取り込まれた不純物がデバイス層に影響を及ぼし易くなると いう問題や、薄い埋め込み酸ィ匕膜 (例えば、 lOOnm以下)が必要とされる場合、その 薄い酸ィ匕膜の表面が貼り合わせ面となるため、貼り合わせ不良が発生しやすぐ製 造歩留まりが低下してしまうといった新たな問題点を引き起こす。
[0008] もう 1つの解決法として、付加機能層をボンドゥエーハ側に堆積する前に水素イオン の注入を完了させておくという方法があるが、付加機能層の堆積に必要な成長温度 は、通常の場合、 400°C以上であるため、堆積中にゥエーハ表面近傍が剥離すると いう問題を生じる。
[0009] 本発明の第 1の目的は、剥離用イオン注入層を形成するイオン注入を付加機能層 の堆積工程を挟む 2回のイオン注入に分けて行なうことにより、付加機能層の膜厚不 均一が発生しても、貼り合わせ半導体薄層の膜厚均一性に影響を与えることがない 貼り合わせゥヱーハの製造方法を提供することにある。
[0010] 本発明の第 2の目的は、剥離用イオン注入層を少な 、エネルギーでより正確な位 置に形成することができる貼り合わせゥエーハの製造方法を提供することにある。
[0011] 本発明の第 3の目的は、剥離用イオン注入層の剥離面の面粗さをより減少させるこ とができる貼り合わせゥヱーハの製造方法を提供することにある。
発明の開示
[0012] 上記目的を達成するために、第 1の発明である貼り合わせゥヱーハの製造方法は、 ボンドゥエーハに対して、深さ方向のイオン注入プロファイルにおいて予め定められ た深さ位置に濃度ピークを有するように第 1のイオン注入を行なう第 1のイオン注入ェ 程と、前記ボンドウ ーハのイオン注入面側に付加機能層を堆積する付加機能層堆 積工程と、前記ボンドウ ーハの前記付加機能層側から前記第 1のイオン注入位置 を目標とする第 2のイオン注入を行なう第 2のイオン注入工程と、前記ボンドゥエーハ の前記付加機能層側をべ一スウェーハに貼り合わせる貼り合わせ工程と、前記ボン ドゥエーハを前記第 1のイオン注入位置で剥離する剥離工程とを含むことを特徴とす る。第 1の発明である貼り合わせゥエーハの製造方法は、基本的にはイオン注入剥離 法の原理を応用したものである力 従来のイオン注入剥離法では 1回である剥離のた めのイオン注入を、付加機能層の堆積を挟む 2回のイオン注入に分けて行なうように したものである。まず、深さ方向のイオン注入プロファイルにおいて予め定められた深 さ位置に濃度ピークを有するように第 1のイオン注入をボンドゥエーハに対して行ない 、次に付加機能層を堆積した後に、第 1のイオン注入位置を目標として第 2のイオン 注入を行なう。付加機能層が堆積されていない状態でボンドゥエ一ハに第 1のイオン 注入を行なうため、付加機能層の膜厚不均一が発生しても、 SOI層の膜厚均一性に 影響することがなくなる。 [0013] 第 2の発明である貼り合わせゥエーハの製造方法は、前記第 1のイオン注入が、前 記付加機能層の成長熱履歴で前記ボンドゥエーハに割れが生じることのないイオン 注入量であることを特徴とする。これにより、付加機能層堆積工程でボンドゥエーハが 剥離されてしまうという不具合を未然に防止することができる。
[0014] 第 3の発明である貼り合わせゥエーハの製造方法は、単結晶シリコン基板上に絶縁 膜を形成してなるボンドゥエーハの前記絶縁膜側力 臨界ドーズ量未満のイオンを打 ち込むことにより、前記ボンドゥエーハ中に、深さ方向のイオン注入プロファイルにお いて予め定められた深さ位置に濃度ピークを有する剥離予定イオン注入層を形成す る第 1のイオン注入工程と、前記ボンドゥエーハの前記絶縁膜上に付加機能層を堆 積する付加機能層堆積工程と、前記付加機能層の表面側から前記第 1のイオン注 入工程でイオン注入されたのと同じ深さ位置となるように、前記第 1のイオン注入工程 でイオン注入されたドーズ量と合わせて臨界ドーズ量以上となるドーズ量のイオンを 打ち込むことにより、前記剥離予定イオン注入層を剥離用イオン注入層とする第 2の イオン注入工程と、前記剥離用イオン注入層が形成された前記ボンドウヱーハ上の 付加機能層とベースウェーハとを貼り合わせる貼り合わせ工程と、前記ボンドゥエ一 ハを前記剥離用イオン注入層で剥離する剥離工程とを含むことを特徴とする。ここで 、臨界ドーズ量とは、イオン注入されたボンドゥエーハを 400°C以上の温度に上げた 場合に、イオン注入層にプリスターと呼ばれる空洞を発生させるのに必要な最低ドー ズ量である。通常、臨界ドーズ量未満の注入量のボンドウヱーハをべ一スウェーハと 貼り合わせて熱処理してもイオン注入層での剥離は発生しな 、。第 3の発明である貼 り合わせゥヱーハの製造方法は、基本的にはイオン注入剥離法の原理を応用したも のであるが、従来のイオン注入剥離法では 1回のイオン注入で形成されて 、た剥離 用イオン注入層を、付加機能層の堆積工程を挟む 2回のイオン注入で形成するよう にしたものである。このような工程を採ることにより、第 1のイオン注入工程で付加機能 層の表面から見てボンドゥエーハのより深い位置に少ないエネルギーで正確に剥離 予定イオン注入層を形成することができ、第 2のイオン注入工程で剥離予定イオン注 入層を剥離用イオン注入層に変化せしめて、付加機能層の表面から見てボンドゥエ ーハのより深い位置で正確かつ確実に剥離できるようにする。特に、付加機能層が 堆積されて 、な 、状態で剥離予定イオン注入層が形成されるので、ボンドゥエーハ の剥離面がボンドウ ーハの第一主表面力 一定の深さ位置となり、付加機能層の 膜厚不均一の影響を受けること無ぐ貼り合わせ半導体薄層の膜厚均一性を保つこ とがでさる。
[0015] 第 4の発明である貼り合わせゥエーハの製造方法は、前記第 1のイオン注入工程で のイオン注入のドーズ量力 前記第 2のイオン注入工程でのイオン注入のドーズ量よ り多いことを特徴とする。これにより、第 2のイオン注入工程でイオン注入されたイオン 力 第 1のイオン注入工程でのイオン注入で形成された剥離予定イオン注入層にトラ ップされたり、引き込まれたりして剥離用イオン注入層が形成されるので、ボンドゥエ ーハの剥離面が第 1のイオン注入工程で形成される剥離予定イオン注入層の位置 で一義的に決定されることになる。
[0016] 第 5の発明である貼り合わせゥエーハの製造方法は、前記第 1のイオン注入工程で のイオン注入のドーズ量力 前記臨界ドーズ量の 70%以上、 90%以下であることを 特徴とする。既述したように、第 1のイオン注入工程でのイオン注入のドーズ量が第 2 のイオン注入工程でのイオン注入のドーズ量より多いことが前提となる力 しかし両者 力 Sあまり近い量になると、第 1のイオン注入工程で形成された剥離予定イオン注入層 が第 2のイオン注入工程でイオン注入された位置に引き込まれるおそれがある。した がって、第 1のイオン注入工程でのイオン注入のドーズ量を臨界ドーズ量の 70%以 上、 90%以下、つまり約 80%として、剥離予定イオン注入層が第 2のイオン注入ェ 程でイオン注入された位置に引き込まれな ヽよう〖こすることは有効である。一般的に 、第 1のイオン注入工程でのイオン注入のドーズ量と第 2のイオン注入工程でのィォ ン注入のドーズ量との和が、臨界ドーズ量の 100%〜110%程度であるとすると、第 1のイオン注入工程でのイオン注入のドーズ量と第 2のイオン注入工程でのイオン注 入のドーズ量との差が臨界ドーズ量の 30%以上あることが望ましい。
[0017] 第 6の発明である貼り合わせゥエーハの製造方法は、前記第 2のイオン注入工程の 前段または後段に、前記堆積した付加機能層の表面を研磨することにより平坦ィ匕す る平坦化研磨工程を含むことを特徴とする。この平坦化研磨工程により、付加機能層 の表面が研磨されて研磨面となるので、後の貼り合わせ工程で付加機能層を有する ボンドゥエーハをべ一スウェーハに良好に貼り合わせることができる。
[0018] 第 7の発明である貼り合わせゥ ーハの製造方法は、前記貼り合わせ工程の前段 に、プラズマで前記ボンドウヱーハおよび Zまたは前記べ一スウェーハの表面を活'性 化する活性ィ匕工程を含むことを特徴とする。この活性ィ匕工程により、室温でゥェーハ の結合強度が増すため、剥離のための熱処理を加えずに、物理的、機械的方法によ り剥離用イオン注入層での剥離が可能となる。
[0019] 第 8の発明である貼り合わせゥ ーハの製造方法は、前記剥離工程が、前記活性 化工程後に、水レーザや気体を前記ボンドウヱーハに吹きかけることで剥離する工程 であることを特徴とする。この剥離工程では、前段の活性ィ匕工程でボンドゥエーハの 表面の活性ィ匕が行なわれて ヽるので、高圧水を細!ゾズルから噴射する水レーザ(ゥ オータージェット)や高圧の気体をボンドウヱーハに吹きかけるだけでボンドウヱーハ の剥離を行なうことができる。
[0020] 第 9の発明である貼り合わせゥ ーハの製造方法は、前記剥離工程が、前記ボンド ゥエーハに熱処理を行なって剥離する工程であることを特徴とする。この剥離工程で は、熱処理により剥離用イオン注入層でのボンドゥエーハの剥離を行なわせる。
[0021] 第 10の発明である貼り合わせゥエーハの製造方法は、前記絶縁膜が、シリコン酸 化膜,シリコン窒化膜またはシリコン酸ィ匕窒化膜のいずれかから選択された膜である ことを特徴とする。絶縁膜をボンドゥエ一ハの熱酸化等により形成すれば容易に形成 できることは ヽうまでもな ヽが、貼り合わせ半導体薄層に形成されるデバイスによって はシリコン酸ィ匕膜では十分な特性が得られない場合もある。このような場合には、 CV D法等の方法でシリコン酸ィ匕膜,シリコン窒化膜またはシリコン酸ィ匕窒化膜などでなる 絶縁膜を形成すればよい。
[0022] 第 11の発明である貼り合わせゥエーハの製造方法は、前記付加機能層が、ポリシリ コン層または非晶質シリコン層のいずれかから選択された層でなることを特徴とする。 付加機能層をゲッタリング層として使用する場合、ポリシリコン層または非晶質シリコ ン層は従来力も用いられて 、るものである。
[0023] 第 12の発明である貼り合わせゥヱーハの製造方法は、前記イオンが、水素イオン, ヘリウムイオン,ネオンイオン,アルゴンイオン,クリプトンイオンまたはキセノンイオン の!、ずれかから選択されたイオンであることを特徴とする。イオン注入剥離法では、 注入するイオンとして主に水素イオンが用いられている力 He, Ne, Ar, Krまたは X eの不活性ガスイオンも使用される。
[0024] 第 13の発明である貼り合わせゥヱーハの製造方法は、前記べ一スウェーハが、絶 縁膜付きの単結晶シリコン基板,単結晶シリコン基板,絶縁性基板または化合物半 導体基板の 、ずれかから選択された基板でなることを特徴とする。ベースウェーハは 、貼り合わせ半導体薄層に形成されるデバイス,絶縁膜の膜厚,付加機能層の層厚 等の諸条件に応じて、絶縁膜付きの単結晶シリコン基板,単結晶シリコン基板,石英 基板やサファイア基板などの絶縁性基板,または GaAs, InP, SiCなどの化合物半 導体基板から適宜選択することができる。
図面の簡単な説明
[0025] [図 1]本発明の実施例 1に係る貼り合わせゥエーハの製造方法を、 SOIゥエーハの製 造方法を例にとって説明する工程図。
[図 2]本発明の実施例 2に係る貼り合わせゥエーハの製造方法を、 SOIゥエーハの製 造方法を例にとって説明する工程図。
[図 3]参考技術の貼り合わせゥ ーハの製造方法を、 SOIゥ ーハの製造方法を例 にとつて説明する工程図。
発明を実施するための最良の形態
[0026] 剥離用イオン注入層を形成するためのイオン注入工程を付加機能層の堆積工程を 挟む 2回のイオン注入工程に分けることにより、付加機能層の膜厚不均一が貼り合わ せ半導体薄層の膜厚均一性に影響を及ぼさな 、ようにした。
[0027] まず、本発明の実施例の説明に入る前に、既述した付加機能層を有する貼り合わ せゥヱーハの製造方法において貼り合わせ半導体薄層の膜厚が不均一になる理由 について、参考技術として図 3に示す SOIゥヱーハの製造方法を例にとって説明する
[0028] (a) ポリシリコン層堆積工程
単結晶シリコン基板でなるボンドゥエーノ、 101を準備する。次に、ボンドゥエーハ 10 1の少なくとも貼り合わせ面 (以下、第一主表面という) J側にシリコン酸ィ匕膜でなる絶 縁膜 102を形成する。絶縁膜 102の形成は、例えば、ウエット酸化やドライ酸化など の熱酸ィ匕により形成することができるが、 CVD法等の方法を採用することも可能であ る。絶縁膜 102の膜厚は、例えば、 2nm以上、 1 μ m以下の値とする。なお、絶縁膜 102として、シリコン酸ィ匕膜の代わりに、シリコン窒化膜,シリコン酸ィ匕窒化膜などを形 成することもできる。次に、ボンドゥエーハ 101に形成された絶縁膜 102上に、 CVD 法でポリシリコン層でなる付加機能層 103を堆積する。付加機能層 103の膜厚は、 1 00〜: LOOOnm程度である。付加機能層 103の形成に当たっては、バッチ式および 枚葉式の 2種類の方式があるが、バッチ式での膜厚均一性はゥエーハ内で +Z— 5 %程度、バッチ内で + Z— 10%程度である。また、付加機能層 103の成長温度は、 600〜800。C程度である。
[0029] (b) 平坦化研磨工程
付加機能層 103の表面は面粗さが粗いため、そのままではべ一スウェーハ 105 (図 3の(d)参照)と貼り合わせることが困難である。このため、 CMP(Chemical Mechanica 1 Planarization)研磨により、付加機能層 103の表面の平坦化(面粗さ rms(root mean square)が 1 μ m平方当たり 0.2nm未満)を行ない、研磨面を有する付加機能層 103' とする。研磨代は、 20〜200nm程度である。研磨代を lOOnmとすると、研磨代ばら つきは面内で +Z— 5nm程度となる。付加機能層 103の平坦化研磨により、付加機 能層 103'の膜厚不均一性は、平坦化研磨前に比べて増大する。図 3の (b)は、この ような付加機能層 103'の膜厚不均一が増大した状態を例示している。なお、ここで は、平坦化研磨による付加機能層 103'の膜厚不均一について説明しているが、付 加機能層 103'の膜厚不均一は必ずしも平坦化研磨によるものに限られるわけでは ない。つまり、付加機能層 103の堆積工程で、その膜厚不均一が生じる場合もあるこ とはもちろんである。
[0030] (c) イオン注人工程
ボンドゥエーハ 101中で剥離を行なうため、付加機能層 103'の研磨面 (第一主表 面 J)側から水素イオンをボンドゥエーハ 101中に打ち込むことにより、深さ方向のィォ ン注入プロファイルにおいて予め定められた深さ位置に濃度ピークを有する剥離用 イオン注入層 104を形成する。水素イオンの注入深さは、ゥエーハ面内で +Z— In mに収まるので、ボンドゥエーハ 101中への水素イオンの注入深さは途中にある付カロ 機能層 103'の膜厚不均一に左右される。図 3の(c)は、付加機能層 103'の膜厚不 均一のために、付加機能層 103'の研磨面からは一定の深さ位置である力 ボンドウ エーハ 101の第一主表面 Jからは一定の深さ位置ではない位置に剥離用イオン注入 層 104が形成された状態を例示している。すなわち、この状態では、ボンドゥエーハ 1 01の第一主表面 Jと剥離用イオン注入層 104とが平行になっておらず、最終的に得 るべき SOI層 101,(図 3の(e)参照)の膜厚が不均一になって!/、る。
[0031] (d) 貼り合わせ工程
単結晶シリコン基板でなるベースウェーハ 105を準備する。ベースウェーハ 105とし ては、石英基板やサファイア基板などの絶縁性基板や、 GaAs, InP, SiCなどのィ匕 合物半導体基板を用いることもできるが、大口径化ゃコスト面を考慮すると、単結晶 シリコン基板を用いることが好ましい。次に、ベースウェーハ 105の少なくとも貼り合わ せ面 (以下、第一主表面という) Kにシリコン酸ィ匕膜でなる絶縁膜 106を形成する。絶 縁膜 106の形成は、例えば、ウエット酸ィ匕ゃドライ酸ィ匕などの熱酸ィ匕により形成するこ とができる力 CVD法等の方法を採用することも可能である。このようにして準備され た絶縁膜 106付きのベースウェーハ 105を、絶縁膜 106 (第一主表面 K)側で上記ィ オン注入されたボンドゥエーノ、 101上の付加機能層 103'と室温で貼り合わせる。
[0032] (e) 剥離工程
上記貼り合わせ工程 (d)で貼り合わせた積層体を 500°C以上の温度に上げて、水 素イオンを注入した剥離用イオン注入層 104でボンドゥエーハ 101の剥離を行な!/、、 SOI層 101 'を形成する。図 3の(e)は、付加機能層 103'の膜厚不均一に起因して ボンドゥエーハ 101の第一主表面 J力 一定の深さ位置ではない位置に形成された 剥離用イオン注入層 104で剥離されたために、 SOI層 101 'にも膜厚不均一が発生 した状態を例示している。
[0033] なお、貼り合わせ工程 (d)および剥離工程 (e)では、貼り合わせ前にプラズマでボ ンドゥエーハ 101の付加機能層 103,の表面および Zまたはべ一スウェーハ 105の 絶縁膜 106の表面を活性ィ匕した後に貼り合わせを行い、その後に温度をかけずに水 レーザや気体をボンドゥエーハ 101に吹きかけることでボンドゥエーハ 101を剥離用ィ オン注入層 104で剥離するようにしてもょ 、。
[0034] このように、上述した参考技術の付加機能層を有する貼り合わせゥ ーハの製造方 法では、 1回のイオン注入で剥離用イオン注入層 104を形成するようにして 、るので 、既述したように、付加機能層 103'の膜厚の不均一により SOI層 101 'の膜厚も不均 一になる、付加機能層 103'の研磨面の面粗さの影響が剥離用イオン注入層 104の 剥離面の面粗さに影響する、水素イオンの注入に多大なエネルギーを要する等の課 題が生じる。
[0035] 次に、上述した参考技術の課題を解決することを目的とした、本発明の実施例を図 面を参照しながら詳細に説明する。
[0036] (実施例 1)
図 1は、本発明の実施例 1に係る貼り合わせゥエーハの製造方法を、 SOIゥエーノヽ の製造方法を例にとって説明する工程図である。以下、同図を参照して実施例 1に 係る貼り合わせゥエーハの製造方法を説明する。
[0037] (al) 第 1のイオン注入工程
まず、単結晶シリコン基板でなるボンドゥエーハ 1を準備し、ボンドゥエーハ 1の少な くとも第一主表面 J側にシリコン酸ィ匕膜でなる絶縁膜 2を形成する。なお、絶縁膜 2は 、シリコン酸ィ匕膜の代わりに、シリコン窒化膜,シリコン酸ィ匕窒化膜などで形成すること もできる。絶縁膜 2の形成は、例えば、ウエット酸ィ匕ゃドライ酸ィ匕などの熱酸ィ匕により形 成することができるが、 CVD法等の方法を採用することも可能である。絶縁膜 2の膜 厚は、例えば、 2nm以上、 1 μ m以下の値とする。
[0038] 次に、ボンドゥエーハ 1の第一主表面 J側を、本実施例 1では絶縁膜 2の表面をィォ ン注入面として、例えば水素イオンビームを照射することにより臨界ドーズ量未満の 水素イオンを打ち込み、深さ方向のイオン注入プロファイルにおいて予め定められた 深さ位置に濃度ピークを有する剥離予定イオン注入層 3を形成する。剥離予定ィォ ン注入層 3は、図 1の(al)に示すように、第一主表面 Jから一定の深さ位置に形成さ れる。すなわち、剥離予定イオン注入層 3は、第一主表面 Jに対して平行に形成され 、最終的に得られる SOI層 1 ' (図 1の (fl)参照)の膜厚均一性を保証する。水素ィォ ンのイオン注入のドーズ量は、臨界ドーズ量に比べて適度に低いレベルに留める。 目安は、水素イオンの注入後、ボンドゥエーハ 1を 400°C以上の温度に上げて、ゥェ ーハ表面近傍にブリスターができる最低ドーズ量である臨界ドーズ量の約 80%とす る。これにより、後段の剥離工程 (fl)でのボンドゥエーハ 1の剥離位置は、剥離予定 イオン注入層 3の深さ位置で決定されるようになる力 剥離にまでは進行しない。なお 、剥離予定イオン注入層 3を形成するためのイオンは、本実施例 1では水素イオンを 用いるが、水素イオンに代えて、ヘリウムイオン,ネオンイオン,アルゴンイオン,タリ プトンイオン,キセノンイオンなどの不活性ガスイオンを使用することもできる。
[0039] 剥離予定イオン注入層 3は、ボンドゥエーハ 1の深さ方向の水素濃度プロファイルを 測定したとき、 lOOnm以上、 2000nm以下の位置に水素濃度のピーク位置が生ず るように形成するのがよい。深さ位置が lOOnm未満では、十分な膜厚の SOI層 1 ' ( 図 1の(f 1)参照)が得られず、 2000nmを超えるとイオン注入装置を極めて高工ネル ギー化する必要が生ずる。例えば、最終的に得るべき SOI層 1 'の平均膜厚を 10〜5 Onm程度に設定する場合、剥離予定イオン注入層 3は、ボンドゥエーハ 1の深さ方向 の水素濃度プロファイルを測定したとき、 100〜500nmの位置(ただし、表面に絶縁 膜 2が形成される場合は、その絶縁膜 2を除いた深さ位置で表す)に水素濃度のピー ク位置が生ずるように形成するのがよい。なお、イオンの打ち込み深さは、イオンのェ ネルギー (加速電圧)によって調整し、例えば水素イオンを用いる場合は、絶縁膜 2 の膜厚を 50nmに設定すると、剥離予定イオン注入層 3を形成するためのイオン注入 のエネルギーを 10k〜60keV程度に調整するのがよい。
[0040] また、剥離予定イオン注入層 3、すなわち後述する剥離用イオン注入層 3' (図 1の( dl)参照)でのスムーズで平滑な剥離を行なうには、水素イオンの注入量(ドーズ量) の和が 2 X 1016個 Zcm2〜l X 1017個 Zcm2、とすることが望ましい。 2 X 1016未満で は正常な剥離が不能となり、 1 X 1017個 /cm2を超えるとイオン注入量が過度に増大 するため工程が長時間化し、製造能率の低下が避けがたくなる。
[0041] なお、既に説明した通り、剥離予定イオン注入層 3の形成位置が浅いほど、剥離に 必要なイオン注入の臨界ドーズ量は少なく設定される。絶縁膜 2の膜厚が一定の場 合、剥離予定イオン注入層 3の形成位置は、最終的に得るべき SOI層 1 'の膜厚が薄 くなるほど浅くなり、イオン注入のドーズ量も該膜厚に応じて少なく設定される。従つ て、ドーズ量を抑制して得られる薄い SOI層 1 'の剥離面は面粗さが減少し、剥離面 の平坦ィ匕処理における研磨代を小さく設定することができる。その結果、 SOI層 1 'が 薄くなるほど研磨代が小さくて済むようになり、研磨代不均一の影響が及びにくくなつ て、 SOI層 1,のボンドゥエーハ 1内の膜厚均一性およびゥエーハ間の膜厚均一性の 双方を十分小さいレベルに軽減することが可能となる。例えば、 SOI層 1 'の平均膜 厚が 10〜50nm程度に設定される場合においても、 SOI層 1 'の膜厚均一性を、同 ーゥヱーハ内の膜厚の標準偏差値にて例えば 1. 2nm以下に確保できる。
[0042] (bl) 付加機能層堆積工程
ボンドゥエーハ 1の絶縁膜 2上に、 600°C以上の温度での CVD法でポリシリコン層 でなる付加機能層 4を堆積する。付加機能層 4の膜厚は、 100〜1000nm程度であ る。付加機能層 4の堆積に当たっては、ノ ツチ式および枚葉式の 2種類の方式がある 力 バッチ式では膜厚均一性はゥヱーハ内で +Z— 5%程度、バッチ内で +Z— 10 %程度である。また、付加機能層 4の成長温度は、 600〜800°C程度である。なお、 付加機能層 4は、ポリシリコン層の代わりに、非晶質シリコン層等で形成することもでき る。付加機能層 4の成長温度は 600°C以上である力 水素イオンのドーズ量が臨界ド ーズ量以下であるため、剥離予定イオン注入層 3で剥離が生じたり、ブリスターができ たりすることはない。しかし、剥離予定イオン注入層 3へのイオン注入および付加機 能層 4の成長温度により、剥離予定イオン注入層 3には、微細な欠陥層や亀裂層が 生じること〖こなる。
[0043] (cl) 第 2のイオン注入工程
付加機能層 4の表面から第 1のイオン注入工程 (a 1 )でイオン注入されたのと同じ深 さ位置 (すなわち、剥離予定イオン注入層 3の形成位置)となるように、第 1のイオン注 入工程 (al)でイオン注入されたドーズ量と合わせて臨界ドーズ量以上となるドーズ 量のイオンを打ち込むことにより、剥離予定イオン注入層 3を剥離用イオン注入層 3 ' に変化させる。詳しくは、剥離予定イオン注入層 3は、深さ方向のイオン注入プロファ ィルにおいて予め定められた深さ位置に濃度ピークを有するので、イオン注入による 応力場も谷状のポテンシャルを形成しやすく、第 2のイオン注入時の水素イオンに対 する引き込み応力も形成しやすい。このため、第 2のイオン注入工程 (cl)で注入され た水素イオンは、剥離予定イオン注入層 3にトラップされたり、引き込まれたりして、剥 離予定イオン注入層 3に収束される。また、剥離予定イオン注入層 3は、第 1のイオン 注入工程 (al)でのイオン注入および付加機能層堆積工程 (bl)での成長熱履歴に より、すでに微細な欠陥層や亀裂層ができているので、より一層、注入された水素ィ オンをトラップしたり、引き込んだりする。このため、第 1のイオン注入工程 (al)での剥 離予定イオン注入層 3へのイオン注入のドーズ量と第 2のイオン注入工程(cl)での 剥離予定イオン注入層 3へのイオン注入のドーズ量との和が、臨界ドーズ量を超える と、剥離予定イオン注入層 3は、剥離可能な剥離用イオン注入層 3'に変化する。
[0044] (dl) 平坦化研磨工程
付加機能層 4の表面は面粗さが粗いため、そのままではべ一スウェーハ 5 (図 1の(e 1)参照)と貼り合わせることが困難であるので、 CMP研磨により、付加機能層 4の表 面の平坦化(面粗さ rmsが: L m平方当たり 0.2nm未満)を行ない、後段の貼り合わ せ工程 (el)において貼り合わせ面となる研磨面を有する付加機能層 4'とする。研磨 代は、 20〜200nm程度である。研磨代を lOOnmとすると、研磨代ばらつきは面内 で + Z— 5nm程度となる。付加機能層 4の平坦化研磨により、付加機能層 4'の研磨 面の第一主表面 Jに対する面傾きが生じ、付加機能層 4'の膜厚不均一が発生するこ と力ある。図 1の(dl)は、このような付加機能層 4'の膜厚不均一が発生した状態を例 示している。
[0045] なお、第 2のイオン注入工程 (cl)は、平坦化研磨工程 (dl)の後に行なうこともでき る。この場合、第 2のイオン注入は、平坦化研磨による研磨代バラツキを有する付カロ 機能層 4'を通して行なわれることになる力 前述の通り、第 2のイオン注入で注入さ れたイオンは、第 1のイオン注入において既に形成されている剥離予定イオン注入 層 3に引き込まれやす 、ので、研磨代バラツキの影響は小さ!/、。
[0046] また、第 1のイオン注入工程 (al)で消費される総エネルギーと第 2のイオン注入ェ 程 (cl)で消費される総エネルギーとの和が、第 2のイオン注入工程 (cl)だけで剥離 用イオン注入層 3'を形成しょうとしたときの総エネルギーよりも大幅に少なくなること はいうまでもない。それは、第 1のイオン注入工程 (al)で付加機能層 4を介すること なしに剥離予定イオン注入層 3にイオンを打ち込む電圧力 第 2のイオン注入工程 (c 1)で付加機能層 4を介して剥離予定イオン注入層 3と同等の層を形成するのに要す る電圧よりも少なくなるからである。特に、本実施例 1では、第 1のイオン注入工程 (al )で臨界ドーズ量の約 80%のイオンを剥離予定イオン注入層 3に打ち込むようにして いるので、尚更である。このため、本実施例 1では、図 3に示した参考技術の場合に 比べて、イオン注入に要する総エネルギーを大幅に削減することができる。
[0047] (el) 貼り合わせ工程
単結晶シリコン基板力もなるベースウェーハ 5を準備する。ベースウェーハ 5としては、 石英基板やサファイア基板などの絶縁性基板や、 GaAs, InP, SiCなどの化合物半 導体基板を用いることもできるが、大口径化ゃコスト面を考慮すると、本実施例 1のよ うに単結晶シリコン基板を用いることが好ましい。次に、ベースウェーハ 5の少なくとも 貼り合わせ面 (以下、第一主表面という) Kにシリコン酸ィ匕膜でなる絶縁膜 6を形成す る。絶縁膜 6の形成は、例えば、ウエット酸化やドライ酸化などの熱酸化により形成す ることができるが、 CVD法等の方法を採用することも可能である。このようにして準備 された絶縁膜 6付きのベースウェーハ 5を、絶縁膜 6 (第一主表面 K)側で上記イオン 注入されたボンドゥエーハ 1上の付加機能層 4'と室温で貼り合わせる。
[0048] (fl) 剥離工程
貼り合わせ工程 (el)で貼り合わせられた積層体を数 100°C、例えば 400〜600°Cの 低温にて熱処理することにより、ボンドウヱーハ 1は、剥離用イオン注入層 3'の概ね 濃度ピーク位置において剥離し、ベースウェーノ、 5側に残留した部分が SOI層 1 'と なる。剥離位置は、既に説明した通り、第 1のイオン注入工程 (al)で剥離予定イオン 注入層 3として決定されるので、その後の付加機能層 4の堆積や平坦化研磨による 膜厚不均一には影響されない。図 1 (f 1)は、付加機能層 4'は膜厚不均一であるが、 ボンドゥエーハ 1が剥離用イオン注入層 3'で剥離されたために、 SOI層 1 'は膜厚が 均一となっている状態を例示している。なお、剥離用イオン注入層 3'を形成する際の イオン注入のドーズ量を高めることにより、剥離熱処理を省略できる場合もある。また 、剥離後のボンドゥエーハ 1の残余の部分は、剥離面を再研磨後、再びボンドゥエ一 ハまたはべ一スウェーハとして再利用することが可能である。
[0049] なお、貼り合わせ工程 (el)および剥離工程 (fl)は、参考技術に記載した手法でも よい。すなわち、貼り合わせ前にプラズマでボンドゥエーハ 1の付加機能層 4'の表面 および/またはベースウェーハ 5の絶縁膜 6の表面を活性ィ匕した後に貼り合わせを行 い、その後に温度をかけずに水レーザや気体をボンドゥエーハ 1に吹きかけることで 剥離するようにしてもよ ヽ。
[0050] 最終的な SOIゥエーハを得るには、剥離工程 (fl)後、ベースウェーハ 5と SOI層 1 ' とを絶縁膜 2, 6および付加機能層 4を介して強固に結合する結合熱処理が必要であ る。この結合熱処理は、酸化性雰囲気中、あるいはアルゴンガス等の不活性ガスや 窒素ガスまたはこれらの混合ガス中にて、通常 1000°C以上、 1250°C以下の高温で 行なわれる。なお、該結合熱処理に先立って、これよりも低温で、 SOI層 1 'の表面を 保護するための酸ィ匕熱処理(700°C以上、 1000°C以下)を行なうこともできる。
[0051] また、 SOI層 1 'の剥離面を、あるいはこれを研磨により平坦ィ匕した研磨面をさらに 平坦化する平坦化熱処理を行なうことができる。この平坦化熱処理は、アルゴンガス 等の不活性ガスや水素ガスあるいはこれらの混合ガス中にて 1100〜 1380°Cで行な うことができる。具体的には、一般的なバッチ式の縦型炉ゃ横型炉といったヒーター 加熱式の熱処理炉を用いて行なうことができる他、ランプ加熱等により熱処理を数秒 力ゝら数分程度で完結する枚葉式 RTA (Rapid Thermal Anneal)装置を用いて行なうこ ともできる。この平坦化熱処理を、前述の結合熱処理と兼ねて行なうこともできる。
[0052] さらに、例えば、ボンドゥエーハ 1に形成する絶縁膜 2の膜厚を一定とすると、得るベ き SOI層 1,の膜厚が薄くなる場合、イオン注入のドーズ量も該膜厚に応じて小さく設 定し、かつ、研磨処理における SOI層 1 'の剥離面の研磨代を小さく設定することが できる。つまり、 SOI層 1 'が薄くなれば、剥離用イオン注入層 3の形成位置が浅くなる のでイオン注入のドーズ量が減り、剥離面平坦ィ匕の際の研磨代を小さくできるので研 磨代不均一の影響が軽減される。その結果、 SOI層 1 'の膜厚が薄いにもかかわらず 、ボンドゥエーハ 1内の膜厚均一性およびゥエーハ間の膜厚均一性の双方を十分小 さ 、レベルに軽減することが可能となる。
[0053] 以上説明したように、本実施例 1に係る貼り合わせゥ ーハ製造方法によれば、付 加機能層 4'の膜厚不均一のいかんにかかわらず、イオン注入剥離によって得られる 貼り合わせ半導体薄層(SOI層 1 ' )の膜厚を均一にすることができる。 [0054] (実施例 2)
図 2は、本発明の実施例 2に係る貼り合わせゥエーハの製造方法を、 SOIゥエーノヽ の製造方法を例にとって説明する工程図である。本実施例 2に係る貼り合わせゥエー ハの製造方法は、図 1に示した実施例 1に係る貼り合わせゥ ーハの製造方法に対 して、絶縁膜 6付きのベースウェーハ 5を、絶縁膜無しのベースウェーハ 5に置き換え ただけのものである。よって、(a2)ないし (d2)の各工程は、図 1中の(al)ないし(dl )の各工程と同様であるので、それらの詳しい説明を割愛する。
[0055] (e2) 貼り合わせ工程
単結晶シリコン基板からなるベースウェーハ 5を準備する。ベースウェーハ 5としては 、石英基板やサファイア基板などの絶縁性基板や、 GaAs, InP, SiCなどの化合物 半導体基板を用いることもできるが、大口径化ゃコスト面を考慮すると、単結晶シリコ ン基板を用いることが好ましい。準備されたべ一スウェーハ 5を、第一主表面 K側で 上記イオン注入されたボンドゥエーハ 1上の付加機能層 4 'と室温で貼り合わせる。
[0056] (f2) 剥離工程
貼り合わせ工程 (e2)で貼り合わせられた積層体を数 100°C、例えば 400〜600°C の低温にて熱処理することにより、ボンドゥエーハ 1は、剥離予定イオン注入層 3'の 概ね濃度ピーク位置において剥離し、ベースウェーハ 5側に残留した部分が SOI層 1 'となる。剥離位置は、既に説明した通り、第 1のイオン注入工程 (a2)で剥離予定ィ オン注入層 3として決定されるので、その後の工程の付加機能層 4の堆積や平坦ィ匕 研磨による膜厚不均一には影響されない。図 2の (f2)では、付加機能層 4'は膜厚不 均一であるが、ボンドゥエーハ 1が剥離用イオン注入層 3'で剥離されたために、 SOI 層 1 'は膜厚が均一となっている状態を例示している。なお、剥離用イオン注入層 3' を形成する際のイオン注入のドーズ量を高めることにより、剥離熱処理を省略できる 場合もある。また、剥離後のボンドゥエーハ 1の残余の部分は、剥離面を再研磨後、 再びボンドゥエーハまたはべ一スウェーハとして再利用することが可能である。
[0057] なお、貼り合わせ工程 (e2)および剥離工程 (f 2)は、参考技術に記載した手法でも よい。すなわち、貼り合わせ前にプラズマでボンドゥエーハ 1の付加機能層 4'の表面 および Zまたはべ一スウェーハ 5の表面を活性ィ匕した後に貼り合わせを行!、、その後 に温度をかけずに水レーザや気体をボンドウヱーハ 1に吹きかけることで剥離するよう にしてもよい。
[0058] 実施例 2に係る貼り合わせゥヱーハ製造方法においても、実施例 1に係る貼り合わ せゥエーハ製造方法におけるのと同様に、付加機能層 4'の膜厚不均一のいかんに かかわらず、イオン注入剥離によって得られる貼り合わせ半導体薄層(SOI層 1 ' )の 膜厚を均一にすることができる。
[0059] 以上、本発明の実施の形態を説明したが、本発明はこれらに限定されるものではな ぐ請求項の記載に基づく技術的範囲を逸脱しない限り、種々の変形ないし改良を 付加することができることはもちろんである。特に、貼り合わせゥエーハ製造方法とし て SOIゥヱーハの製造方法を例にとって説明したが、イオン注入剥離によって得られ る貼り合わせ半導体薄層がシリコン薄膜でなる SOI層に限られないことはいうまでも ない。

Claims

請求の範囲
[1] ボンドゥエーハの表面から、深さ方向のイオン注入プロファイルにおいて予め定めら れた深さ位置に濃度ピークを有するように第 1のイオン注入を行なう第 1のイオン注入 工程と、
前記ボンドウ ーハのイオン注入面側に付加機能層を堆積する付加機能層堆積ェ 程と、
前記ボンドゥエーハの前記付加機能層側から前記第 1のイオン注入位置を目標とす る第 2のイオン注入を行なう第 2のイオン注入工程と、
前記ボンドウ ーハの前記付加機能層側をべ一スウェーハに貼り合わせる貼り合わ せ工程と、
前記ボンドゥエーハを前記第 1のイオン注入位置で剥離する剥離工程と
を含むことを特徴とする貼り合わせゥエーハの製造方法。
[2] 前記第 1のイオン注入が、前記付加機能層の成長熱履歴で前記ボンドゥエーハに 割れが生じることのないイオン注入量であることを特徴とする請求の範囲第 1項に記 載の貼り合わせゥエーハの製造方法。
[3] 単結晶シリコン基板上に絶縁膜を形成してなるボンドゥエーハの前記絶縁膜側から 臨界ドーズ量未満のイオンを打ち込むことにより、前記ボンドゥエーハ中に、深さ方向 のイオン注入プロファイルにおいて予め定められた深さ位置に濃度ピークを有する剥 離予定イオン注入層を形成する第 1のイオン注入工程と、
前記ボンドウヱーハの前記絶縁膜上に付加機能層を堆積する付加機能層堆積工程 と、
前記付加機能層の表面側から前記第 1のイオン注入工程でイオン注入されたのと同 じ深さ位置となるように、前記第 1のイオン注入工程でイオン注入されたドーズ量と合 わせて臨界ドーズ量以上となるドーズ量のイオンを打ち込むことにより、前記剥離予 定イオン注入層を剥離用イオン注入層とする第 2のイオン注入工程と、
前記剥離用イオン注入層が形成された前記ボンドゥエーハ上の付加機能層とベース ゥエーハとを貼り合わせる貼り合わせ工程と、
前記ボンドゥエーハを前記剥離用イオン注入層で剥離する剥離工程と を含むことを特徴とする貼り合わせゥエーハの製造方法。
[4] 前記第 1のイオン注入工程でのイオン注入のドーズ量力 前記第 2のイオン注入ェ 程でのイオン注入のドーズ量より多 、ことを特徴とする請求の範囲第 1項な 、し第 3 項のいずれか 1項に記載の貼り合わせゥ ーハの製造方法。
[5] 前記第 1のイオン注入工程でのイオン注入のドーズ量が、前記臨界ドーズ量の 70
%以上、 90%以下であることを特徴とする請求の範囲第 4項に記載の貼り合わせゥ エーハの製造方法。
[6] 前記第 2のイオン注入工程の前段または後段に、前記堆積した付加機能層の表面 を研磨することにより平坦ィ匕する平坦化研磨工程を含むことを特徴とする請求の範囲 第 1項ないし第 5項のいずれ力 1項に記載の貼り合わせゥ ーハの製造方法。
[7] 前記貼り合わせ工程の前段に、プラズマで前記ボンドゥエーハおよび Zまたは前記 ベースウェーハの表面を活性ィ匕する活性ィ匕工程を含むことを特徴とする請求の範囲 第 1項ないし第 6項のいずれ力 1項に記載の貼り合わせゥ ーハの製造方法。
[8] 前記剥離工程が、前記活性化工程後に、水レーザや気体を前記ボンドウ ーハに 吹きかけることで剥離する工程であることを特徴とする請求の範囲第 7項に記載の貼 り合わせゥエーハの製造方法。
[9] 前記剥離工程が、前記ボンドウ ーハに熱処理を行なって剥離する工程であること を特徴とする請求の範囲第 1項ないし第 6項のいずれ力 1項に記載の貼り合わせゥェ ーハの製造方法。
[10] 前記絶縁膜が、シリコン酸ィ匕膜,シリコン窒化膜またはシリコン酸ィ匕窒化膜のいず れカから選択された膜であることを特徴とする請求の範囲第 1項ないし第 9項のいず れカ 1項に記載の貼り合わせゥ ーハの製造方法。
[11] 前記付加機能層が、ポリシリコン層または非晶質シリコン層のいずれかから選択さ れた層でなることを特徴とする請求の範囲第 1項ないし第 10項のいずれか 1項に記 載の貼り合わせゥエーハの製造方法。
[12] 前記イオンが、水素イオン,ヘリウムイオン,ネオンイオン,アルゴンイオン,タリプト ンイオンまたはキセノンイオンのいずれかから選択されたイオンであることを特徴とす る請求の範囲第 1項ないし第 11項のいずれ力 1項に記載の貼り合わせゥエーハの製 造方法。
前記べ一スウェーハが、絶縁膜付きの単結晶シリコン基板,単結晶シリコン基板, 絶縁性基板または化合物半導体基板のいずれかから選択された基板でなることを特 徴とする請求の範囲第 1項ないし第 12項のいずれか 1項に記載の貼り合わせゥエー ハの製造方法。
PCT/JP2005/010648 2004-06-17 2005-06-10 貼り合わせウェーハの製造方法 WO2005124865A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/629,074 US7601613B2 (en) 2004-06-17 2005-06-06 Manufacturing method of bonded wafer
EP05749050.0A EP1780794B1 (en) 2004-06-17 2005-06-10 Method for manufacturing bonded wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004179373A JP4730581B2 (ja) 2004-06-17 2004-06-17 貼り合わせウェーハの製造方法
JP2004-179373 2004-06-17

Publications (1)

Publication Number Publication Date
WO2005124865A1 true WO2005124865A1 (ja) 2005-12-29

Family

ID=35510008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010648 WO2005124865A1 (ja) 2004-06-17 2005-06-10 貼り合わせウェーハの製造方法

Country Status (4)

Country Link
US (1) US7601613B2 (ja)
EP (1) EP1780794B1 (ja)
JP (1) JP4730581B2 (ja)
WO (1) WO2005124865A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118420A (ja) * 2008-11-12 2010-05-27 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
US8101501B2 (en) 2007-10-10 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US8765576B2 (en) 2007-02-28 2014-07-01 Shin-Etsu Chemical Co., Ltd. Process for producing laminated substrate and laminated substrate
JP2015115332A (ja) * 2013-12-06 2015-06-22 信越半導体株式会社 貼り合わせsoiウェーハの製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012864A (ja) * 1998-06-22 2000-01-14 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
FR2903809B1 (fr) 2006-07-13 2008-10-17 Soitec Silicon On Insulator Traitement thermique de stabilisation d'interface e collage.
US8124499B2 (en) * 2006-11-06 2012-02-28 Silicon Genesis Corporation Method and structure for thick layer transfer using a linear accelerator
JP5220335B2 (ja) * 2007-04-11 2013-06-26 信越化学工業株式会社 Soi基板の製造方法
JP5463017B2 (ja) * 2007-09-21 2014-04-09 株式会社半導体エネルギー研究所 基板の作製方法
FR2924273B1 (fr) 2007-11-28 2010-02-19 Commissariat Energie Atomique Procede de moderation de deformation
US8003483B2 (en) 2008-03-18 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
FR2934924B1 (fr) * 2008-08-06 2011-04-22 Soitec Silicon On Insulator Procede de multi implantation dans un substrat.
JP5263509B2 (ja) * 2008-09-19 2013-08-14 信越半導体株式会社 貼り合わせウェーハの製造方法
SG160302A1 (en) * 2008-09-29 2010-04-29 Semiconductor Energy Lab Method for manufacturing semiconductor substrate
JP5643509B2 (ja) * 2009-12-28 2014-12-17 信越化学工業株式会社 応力を低減したsos基板の製造方法
US8652925B2 (en) 2010-07-19 2014-02-18 International Business Machines Corporation Method of fabricating isolated capacitors and structure thereof
FR2973158B1 (fr) 2011-03-22 2014-02-28 Soitec Silicon On Insulator Procédé de fabrication d'un substrat de type semi-conducteur sur isolant pour applications radiofréquences
WO2013129572A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 複合基板
JP6110095B2 (ja) * 2012-03-29 2017-04-05 京セラ株式会社 複合基板
JP6162381B2 (ja) * 2012-02-29 2017-07-12 京セラ株式会社 複合基板
JP6114063B2 (ja) * 2012-02-29 2017-04-12 京セラ株式会社 複合基板
FR3003997B1 (fr) * 2013-03-29 2015-03-20 Soitec Silicon On Insulator Procede de fabrication d'une structure composite
JP6487454B2 (ja) * 2014-02-07 2019-03-20 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited 層状半導体構造体の製造方法
JP6118757B2 (ja) * 2014-04-24 2017-04-19 信越半導体株式会社 貼り合わせsoiウェーハの製造方法
JP6100200B2 (ja) * 2014-04-24 2017-03-22 信越半導体株式会社 貼り合わせsoiウェーハの製造方法
CN108352357B (zh) * 2015-10-23 2023-02-17 应用材料公司 用于先进cmp及凹槽流的间隙填充膜改性
CN116364561B (zh) * 2023-06-01 2023-09-08 湖北三维半导体集成创新中心有限责任公司 键合方法及键合结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258873A (ja) * 1988-08-25 1990-02-28 Toshiba Corp 積層構造半導体基板および半導体装置
JPH11191557A (ja) * 1997-12-26 1999-07-13 Mitsubishi Materials Silicon Corp Soi基板の製造方法
JPH11307471A (ja) * 1998-04-22 1999-11-05 Mitsubishi Materials Silicon Corp Soi基板の製造方法
JP3048201B2 (ja) 1991-09-18 2000-06-05 コミサリヤ・ア・レネルジ・アトミク 半導体材料薄膜の製造方法
JP2002502122A (ja) * 1998-02-02 2002-01-22 エス オー イ テク シリコン オン インシュレータ テクノロジース 原子注入による半導体基板のキャビティ形成法
JP2004063730A (ja) 2002-07-29 2004-02-26 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG68035A1 (en) * 1997-03-27 1999-10-19 Canon Kk Method and apparatus for separating composite member using fluid
US6534380B1 (en) * 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
FR2773261B1 (fr) * 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
US20020089016A1 (en) * 1998-07-10 2002-07-11 Jean-Pierre Joly Thin layer semi-conductor structure comprising a heat distribution layer
KR100741541B1 (ko) * 2000-05-30 2007-07-20 신에쯔 한도타이 가부시키가이샤 접합웨이퍼의 제조방법 및 접합웨이퍼
FR2847075B1 (fr) * 2002-11-07 2005-02-18 Commissariat Energie Atomique Procede de formation d'une zone fragile dans un substrat par co-implantation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258873A (ja) * 1988-08-25 1990-02-28 Toshiba Corp 積層構造半導体基板および半導体装置
JP3048201B2 (ja) 1991-09-18 2000-06-05 コミサリヤ・ア・レネルジ・アトミク 半導体材料薄膜の製造方法
JPH11191557A (ja) * 1997-12-26 1999-07-13 Mitsubishi Materials Silicon Corp Soi基板の製造方法
JP2002502122A (ja) * 1998-02-02 2002-01-22 エス オー イ テク シリコン オン インシュレータ テクノロジース 原子注入による半導体基板のキャビティ形成法
JPH11307471A (ja) * 1998-04-22 1999-11-05 Mitsubishi Materials Silicon Corp Soi基板の製造方法
JP2004063730A (ja) 2002-07-29 2004-02-26 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765576B2 (en) 2007-02-28 2014-07-01 Shin-Etsu Chemical Co., Ltd. Process for producing laminated substrate and laminated substrate
US8101501B2 (en) 2007-10-10 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
CN101409214B (zh) * 2007-10-10 2012-11-14 株式会社半导体能源研究所 制造半导体器件的方法
JP2010118420A (ja) * 2008-11-12 2010-05-27 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2015115332A (ja) * 2013-12-06 2015-06-22 信越半導体株式会社 貼り合わせsoiウェーハの製造方法

Also Published As

Publication number Publication date
EP1780794B1 (en) 2020-01-15
US20080286937A1 (en) 2008-11-20
EP1780794A4 (en) 2014-06-11
EP1780794A1 (en) 2007-05-02
JP4730581B2 (ja) 2011-07-20
JP2006005127A (ja) 2006-01-05
US7601613B2 (en) 2009-10-13

Similar Documents

Publication Publication Date Title
WO2005124865A1 (ja) 貼り合わせウェーハの製造方法
CN100530531C (zh) 复合基材的制造方法
CN100419960C (zh) Soi晶片的制造方法
JP4927080B2 (ja) 厚い絶縁層の粗さを減少させるための方法
KR101057140B1 (ko) 미세 매립 절연층을 가지는 실리콘-온-절연물 기판들
US7776719B2 (en) Method for manufacturing bonded wafer
US8461018B2 (en) Treatment for bonding interface stabilization
WO2003046993A1 (fr) Procede de production de plaquettes soi
KR20100120283A (ko) Soi 기판의 표면 처리 방법
KR20100027947A (ko) 감소된 secco 결함 밀도를 갖는 반도체-온-절연체 기판의 제조 방법
WO2007125771A1 (ja) Soiウエーハの製造方法
JP2006527480A (ja) 自立を誘発することによって薄肉化された極薄層の製造方法
JP2003224247A (ja) Soiウエーハ及びsoiウエーハの製造方法
KR101543748B1 (ko) Soi 웨이퍼의 제조방법
JP4147577B2 (ja) Soiウェーハの製造方法
US8273636B2 (en) Process for the transfer of a thin layer formed in a substrate with vacancy clusters
KR101695862B1 (ko) 적어도 하나의 결정성 실리콘 초박층을 포함하는 다층 막 제조 방법, 및 상기 방법에 의해 얻어진 장치
EP3993018B1 (en) Method of manufacture of a semiconductor on insulator structure
JP5643488B2 (ja) 低応力膜を備えたsoiウェーハの製造方法
JP2006013179A (ja) Soiウェーハの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11629074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005749050

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005749050

Country of ref document: EP