[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005080505A1 - ポリイミドシロキサン溶液組成物 - Google Patents

ポリイミドシロキサン溶液組成物 Download PDF

Info

Publication number
WO2005080505A1
WO2005080505A1 PCT/JP2005/002749 JP2005002749W WO2005080505A1 WO 2005080505 A1 WO2005080505 A1 WO 2005080505A1 JP 2005002749 W JP2005002749 W JP 2005002749W WO 2005080505 A1 WO2005080505 A1 WO 2005080505A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution composition
polyimide siloxane
mass
group
polyimidesiloxane
Prior art date
Application number
PCT/JP2005/002749
Other languages
English (en)
French (fr)
Inventor
Koji Hayashi
Yoshiki Tanaka
Katsutoshi Hirashima
Seiichirou Takabayashi
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to US10/589,982 priority Critical patent/US7491427B2/en
Priority to JP2006510270A priority patent/JP4582090B2/ja
Publication of WO2005080505A1 publication Critical patent/WO2005080505A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a polyimidesiloxane solution composition, and more particularly, to a polyimidesiloxane solution composition that can be advantageously used for manufacturing a wiring board on which an insulating cured film is formed.
  • a curable resin solution is applied to the surface of the wiring substrate so as to partially cover the electric circuit wiring portion.
  • Preliminary treatment is performed in which the composition is applied to form a coating film, and then the coating film is heated to form an insulating cured film in the next step.
  • Patent Document 1 discloses a solution composition for forming an insulating film (a protective film, a solder resist, an interlayer insulating layer, and the like) used in the field of electronic component mounting, as an organic solvent-soluble polyimide siloxane and epoxy.
  • a polyimidesiloxane solution composition containing a compound and / or a curable component such as a polyvalent isocyanate M conjugate is described.
  • This solution composition can be applied favorably by a method such as screen printing on a base material such as a flexible wiring board. By performing a heat treatment at a relatively low temperature, a cured insulating film can be formed.
  • the cured insulating film thus obtained has excellent adhesion to the substrate, and is excellent in heat resistance, solvent resistance, chemical resistance, bending resistance, electric properties, etc., in which warpage is hardly generated. Therefore, it is suitably used especially for the purpose of forming a cured insulating film (protective film) for protecting a flexible wiring board such as a TAB (Tape Automated Bonding) tape or a flexible wiring board.
  • the above-mentioned organic solvent-soluble polyimide siloxane is a compound obtained by reacting an aromatic tetracarboxylic acid compound, a diaminopolysiloxane component, and an aromatic diamine compound having a polar group.
  • Patent Document 1 discloses that an antifoaming agent may be added to the polyimide siloxane solution composition if necessary.
  • the antifoaming agent include an acrylic antifoaming agent and acrylic butyl ether. And a fluorine-based antifoaming agent, and a silicone-based antifoaming agent.
  • silicone-based antifoaming agents include dimethylpolysiloxane siloxane-based antifoaming agents (KS-603 manufactured by Shin-Etsu Chemical Co., Ltd. or DB-100 manufactured by Dow Corning), etc. Have been.
  • the defoaming agent used in the examples of Patent Document 1 is Floren AC326F, which is an acrylic bubble ether-based defoaming agent.
  • Conductive bonding of electronic components to a wiring board has conventionally been performed by a method using solder or a method using a conductive material such as gold as bumps.
  • a conductive material such as gold as bumps.
  • an anisotropic conductive film anisotropic conductive film, ACF
  • anisotropic tens Namashirube to 3 ⁇ 4 1 ⁇ list anisotropic conductive film
  • a method of forming an electrical junction through an outer lead portion of a wiring board using an anisotropic conductive material such as Conductive Paste (ACP) has also been used.
  • Patent Document 1 JP 2002-12664 A
  • the present inventor investigated the cause of the low affinity between the anisotropic material and the outer lead portion.
  • a polyimidesiloxane solution composition containing a dimethylpolysiloxane-based antifoaming agent is applied to the surface of a wiring board and used to form an insulating cured film
  • Part of the dimethylpolysiloxane oozes out of the surface of the outer lead portion from the coating film of the solution composition of (1), and the dimethylpolysiloxane remains on the surface of the outer lead portion even after the insulating cured film is formed.
  • the affinity wetting
  • dimethylpolysiloxane and fine powder were used as silicone-based antifoaming agents to be added to the polyimidesiloxane solution composition described in Patent Document 1.
  • the present invention provides an organic solvent, at least one curable component selected from the group consisting of an organic solvent-soluble polyimide siloxane, an epoxy compound and a polyvalent isocyanate compound, and a silicone antifoaming agent.
  • the silicone antifoaming agent comprises dimethyl polysiloxane, a polysiloxane compound having a hydrophilic group in a side chain or at a terminal, and finely divided silica. It is in.
  • the present invention also provides the polyimidesiloxane solution composition of the present invention described above so that the surface of a wiring board having an electric circuit wiring portion formed on a surface thereof partially covers the electric circuit wiring portion.
  • a method for manufacturing a wiring board having an insulating cured film formed on a surface which is formed by applying a coating film to form a coating film and then heating the polyimide siloxane composition applied film to form an insulating cured film.
  • the present invention further provides the polyimidesiloxane solution set of the present invention so as to partially cover the electric circuit wiring portion on the surface of the wiring board having the electric circuit wiring portion formed on the surface. Applying the composition to form a coating film, heating the polyimidesiloxane composition coating film to form a cured insulating film, and covering the wiring board surface with the cured insulating film of the electric circuit wiring portion. There is also a method of mounting an electronic component on a wiring board, which comprises connecting an electronic component to an area where there is no anisotropic conductive material.
  • the polyimidesiloxane solution composition of the present invention When the polyimidesiloxane solution composition of the present invention is applied to the surface of a wiring board by a coating method such as screen printing, the bubbles generated in the coating process and generated inside the coating film are quickly discharged. Since the bleeding of dimethylpolysiloxane onto the surface of the outer lead portion is suppressed, it is possible to obtain a wiring board having an insulating cured film with high workability by using the polyimidesiloxane solution composition of the present invention. . Further, when an electronic component is mounted on an outer lead portion surface of a wiring board having an insulating cured film formed by using the polyimidesiloxane solution composition of the present invention via an electrical bonding material, particularly an anisotropic conductive material. In addition, excellent electrical bonding that is highly practical is realized.
  • the curable component is contained in an amount of 110 parts by mass and the silicone antifoaming agent in an amount of 110 parts by mass.
  • the silicone antifoaming agent contains a polysiloxane conjugate having a hydrophilic group in a side chain or a terminal in a larger amount than dimethylpolysiloxane.
  • the hydrophilic group of the polysiloxane compound having a hydrophilic group at the side chain or at the terminal is a polyoxyalkylene group (particularly, a group composed of a copolymer of ethylene oxide and propylene oxide).
  • the silicone antifoaming agent has a water droplet contact angle of 50 ° or less.
  • at least one curable component selected from the group consisting of an organic solvent-soluble polyimide siloxane, an epoxy conjugate, and a polyvalent isocyanate conjugate used in the polyimide siloxane solution composition of the present invention will be described. I do.
  • the polyimide siloxane solution composition of the present invention is an improvement of the polyimide siloxane solution composition described in Patent Document 1 described above, and comprises an organic solvent-soluble polyimide siloxane, an epoxy compound, and a polyvalent isocyanate. The compound is described in detail in Patent Document 1.
  • the organic solvent-soluble polyimide siloxane used in the polyimide siloxane solution composition of the present invention is a diamine containing an aromatic tetracarboxylic acid compound, a diaminopolysiloxane and an aromatic diamine conjugate having a polar group.
  • the conjugate is reacted with the aromatic tetracarboxylic acid compound in an organic solvent at a ratio of about 1.0-1.2 mol with respect to 1 mol of the diamine compound. Can be obtained.
  • aromatic tetracarboxylic acid compound examples include 2,3,3 ', 4'-biphenyltetracarboxylic acid, 3,3', 4,4, -biphenyltetracarboxylic acid, 2,2 ,, 3,3'-Biphenyltetranolevonic acid, 3,3 ', 4,4'-Dipheninoleate enolate tetranolevonic acid, 3,3', 4,4'-Diphenylsulfonetetracarboxylic acid , 3,3,4,4'_Benzophenonetetracarboxylic acid, 2,2_bis (3,4_benzenedicarboxylic acid) hexafluoropropane, pyromellitic acid, 1,4-bis (3 , 4-benzenedicarboxylic acid) benzene, 2,2-bis [4- (3,4-phenoxydicarbonic acid) phenyl] propane, 2,3,6,7_naphthalenete
  • An enyltetracarboxylic acid or an esterified product of an acid dianhydride or a lower alcohol thereof is preferable because it has excellent solubility in an organic solvent when used as a polyimidesiloxane.
  • the aromatic tetracarboxylic acid compound is an aromatic compound which can be easily reacted with the diamine conjugate. It is preferable to use an aromatic tetracarboxylic dianhydride. When the amount of the aromatic tetracarboxylic dianhydride used is 1.05 times or more mol of the diamine component and an unreacted anhydride ring remains, it may be left as it is, but the ring is opened with an esterifying agent. You may half-esterdy.
  • Jiamin compounds, di- ⁇ amino polysiloxane and Yogu preferably di ⁇ amino polysiloxane 30 one 95 Monore 0/0 also contain Jiamini ⁇ product other than the aromatic Jiamin compound having a polar group , in particular 50 to 95 Monore 0/0, aroma with further 60 95 Monore 0/0, aromatic di- Amin compound 0. 5 40 Monore% having a polar group, and the di- ⁇ amino polysiloxane and the polar group It is used in a proportion of 0-69.5 mol% (usually, 30 mol%) of the diamine compound other than the aromatic diamine compound.
  • diaminopolysiloxane constituting the diamine component of the polyimidesiloxane
  • a compound represented by the following general formula (1) is preferable.
  • R represents a divalent hydrocarbon group or an aromatic group
  • nl represents an integer of 3-50.
  • R is German
  • 1 is a divalent hydrocarbon group having 1 to 6 carbon atoms or a phenylene group, especially a propylene group;
  • R is independently an alkyl group or a phenyl group having 1 to 5 carbon atoms;
  • nl is 3 to 20 Is
  • nl is calculated from the amino equivalent.
  • diaminopolysiloxane compound examples include ⁇ , ⁇ -bis (2-aminoethyl) polydimethylsiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydimethylsiloxane, ⁇ , ⁇ -bis ( 4-aminophenyl) polydimethylsiloxane, ⁇ , ⁇ -bis (4-amino-3-methylphenyl) No.) polydimethylsiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydiphenylsiloxane, ⁇ , ⁇ -bis (4-aminobutyl) polydimethylsiloxane and the like.
  • the aromatic diamine compound having a polar group constituting the diamine component of polyimidesiloxane is an aromatic diamine compound having a polar group having reactivity with an isocyanate group or an epoxy group in a molecule. And preferably a diamine compound represented by the following general formula (2).
  • X and ⁇ each independently represent a direct bond, CH, C (CH)
  • n3 and n4 are each independently 0, 1 or 2, preferably 0 or 1. And at least one of n3 and n4 is 1 or 2.
  • Examples of the diamine compound represented by the general formula (2) include diaminophenol compounds such as 2,4-diaminophenol, 3,3, -diamino_4,4′-dihydridoxybiphenyl, and 4,4′— Diamino-3,3'-dihydric xybiphenyl, 4,4'-Diamino-2,2'-dihydroxybiphenyl, 4,4'-diamino_2,2 ', 5,5'-tetrahydric xibiphenyl 3,3'-diamino-4,4'-dihydrid xidiphenylmethane, 4,4'-diamino-3,3 dihydrid xidiphenylmethane, 4,4 diamino-2,2 , -Dihydride mouth xidiphenylmethane, 2,2-bis [3-amino-4-hydroxyphenylinole] propane, 2,2-bis [4-amino-3-hydroxyphen
  • Bis (noxoxyphenoxy) biphenyl compounds and bis (hydroxyphenyloxyphenyl) sulfone compounds such as 2,2-bis [4_ (4-amino-1_3-hydroxyxenoxy) pheninole] sunolefon And diamine compounds having an OH group.
  • Examples of the diamine compound represented by the general formula (2) further include benzenecarboxylic compounds such as 3,5-diaminobenzoic acid and 2,4-diaminobenzoic acid, and 3,3′-diamino-4,4′-dicarboxy.
  • the diamine compound other than the diaminopolysiloxane and the aromatic diamine having a polar group constituting the diamine component of the polyimidesiloxane is not particularly limited, but is represented by the following general formula (3).
  • the aromatic diamine compounds shown are preferred.
  • X and Y are each independently a direct bond, CH, C (CH)
  • n5 is 1 or 2.
  • Examples of the aromatic diamine compound represented by the general formula (3) include 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, and 1,4-diamino-2,5 —Diamine compounds containing one benzene ring such as dihalogenobenzene, bis (4-aminophenyl) ether, bis (3-aminophenyl) ether, bis (4-aminophenyl) sulfone, bis (3-aminophenyl) Sulfone, bis (4-aminophenyl) methane, bis (3-aminophenyl) methane, bis (4-aminophenyl) sulfide, bis (3-aminophenyl) sulfide, 2,2_bis (4-aminophenyl) propane, 2,2- Bis (3-aminophenyl) propane, 2,2-bis (4-aminophenol) hexafluoropropane,
  • aliphatic diamine conjugates such as hexamethylene diamine and diaminododecane can be used together with the diamine.
  • the polyimidesiloxane can be obtained, for example, by the following method.
  • a tetracarboxylic acid compound and a diamine compound are used in approximately equimolar amounts and are continuously polymerized and imidized at 15 250 ° C. in an organic polar solvent to obtain a polyimidesiloxane.
  • the product is polymerized and imidized in an organic polar solvent at 15-250 ° C to prepare an imido oligomer having an amino group at the terminal with an average degree of polymerization of about 110, and then both of the acid component and diamine component are converted into an acid component and a diamine component.
  • a method in which the reaction mixture is mixed at approximately equimolar amounts and reacted at 15-60 ° C, and then heated to 130-250 ° C and reacted to obtain polyimidesiloxane.
  • a tetracarboxylic acid compound and a diamine compound are used in approximately equimolar amounts and polymerized in an organic polar solvent at 20-80 ° C first to obtain a polyamic acid, and then the polyamic acid is imidized to obtain a polyimide siloxane.
  • Examples of the organic polar solvent used for obtaining the polyimide siloxane by the above method include nitrogen-containing solvents such as N, N-dimethylacetamide, N, N-getylacetamide, N, N —Dimethylformamide, N, N-getylformamide, N_methyl_2_pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-methylcaprolatatam, etc .; solutions containing sulfur atoms Solvents such as dimethylsulfoxide, getylsulfoxide, dimethylsulfone, dimethylenosolephon, hexamethylsulfonamide and the like; phenolic solvents such as cresol, phenol and xylenol; diglyme solvents such as diethylene glycol dimethyl ether (diglyme), triethylene Glycol dimethyl ether (triglyme), tetraglyme, and the like; solvents having an oxygen atom in the molecule, such as acetyl
  • polyimide siloxane those obtained by any of the above methods a) and b) may be used, but at least 3% by mass or more, preferably 5 to 60% by mass in an organic solvent. It can be dissolved, and the solution viscosity at 25 ° C. (E-type rotational viscometer) is preferably 11 to 10,000, especially preferably 110 to 100.
  • Polyimide siloxanes are preferably those having a high molecular weight, and those having a higher imidation ratio are more preferred.
  • Logarithmic viscosity (measurement concentration: 0.5 g / 100 ml, solvent: N-methyl-2-pyrrolidone, measurement temperature: 30 ° C) as a standard of molecular weight is 0.15 or more, especially 0.16-2. It is preferable from the viewpoint of mechanical properties such as strength and elongation of the cured product.
  • the imidization ratio determined from the infrared absorption spectrum is preferably 90% or more, particularly 95% or more, and more preferably substantially 100%.
  • the curable component used in the polyimidesiloxane solution composition of the present invention is an epoxy conjugate and / or a polyvalent isocyanate compound.
  • epoxy compound a liquid or solid epoxy resin having an epoxy equivalent of about 1004000 and a molecular weight of about 300 to 10,000 is preferable.
  • the polyvalent isocyanate compound may be any compound having two or more isocyanate groups in one molecule.
  • Such polyvalent isocyanate toy conjugates include aliphatic, alicyclic or aromatic diisocyanates, such as 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, and 1,4-tetramethylene diisocyanate.
  • polyvalent isocyanate conjugates those derived from aliphatic, alicyclic or aromatic polyvalent isocyanates, for example, isocyanurate-modified polyvalent isocyanate and buret-modified polyvalent isocyanate And monovalent isocyanate and urethane-modified polyvalent isocyanate.
  • a blocked polyvalent isocyanate obtained by blocking the isocyanate group of the polyvalent isocyanate with a blocking agent is preferably used.
  • the blocking agent include alcohols, phenols, active methylenes, mercaptans, acid amides, acid imides, imidazoles, ureas, oximes, amines, imides, and pyridines. Yes, these may be used alone or as a mixture.
  • Specific blocking agents include alcohol-based systems such as methanol, ethanol, propanol, butanol, 2-ethynolehexanol, methyl cellosonoleb, butinoresoeronoleb, methyl carbitol, benzylol.
  • Phenols such as alcohol, cyclohexanol and the like, active methylene such as phenol, cresol, ethylphenol, butylphenol, nonylphenol, dinoylphenol, styrenated phenol, hydroxybenzoate, etc.
  • Acid imides such as succinimide, maleic imide, imidazoles such as imidazole, 2-methylimidazole, ureas such as urea, thiourea and ethylene urea; oximes such as formaldoxime; Acetaldoxime, acetoxime, methylethyloketoxime, cyclohexanone oxime, etc., amines such as diphenylamine, aniline, phorbazole, etc., imines such as ethyleneimine and polyethyleneimine, and bisulfite as sodium bisulfite.
  • pyridine series include 2-hydroxypyridine and 2-hydroxyquinoline.
  • the amount of the curable component used is 115 parts by mass, preferably 114 parts by mass, particularly 2 to 40 parts by mass with respect to 100 parts by mass of the polyimidesiloxane.
  • an epoxy compound alone or a combination of an epoxy compound and a block polyvalent isocyanate compound is suitably used.
  • a combination of an epoxy compound and a block polyvalent isocyanate compound a combination of 0.5 to 30 parts by weight of the epoxy compound and 240 parts by weight of the block polyvalent isocyanate compound per 100 parts by weight of the polyimidesiloxane is used. It is preferable because it can be cured at a low temperature of about ° C or less and has good adhesion to a sealing material.
  • the silicone antifoaming agent used in the polyimidesiloxane solution composition of the present invention is a silicone containing dimethylpolysiloxane, a polysiloxane compound having a hydrophilic group on a side chain or a terminal, and a fine powder silica. It is an antifoaming agent and belongs to an antifoaming agent generally called a self-emulsifying type antifoaming agent. Especially preferred are silicone defoamers that exhibit a water droplet contact angle of 50 ° or less, preferably 25 ° or less.
  • hydrophilic group of the polysiloxane compound having a hydrophilic group at a side chain or at a terminal include a polyoxyalkylene group.
  • the polyoxyalkylene group include a polyoxyethylene group, a polyoxypropylene group, a polyoxybutylene group, and a polyoxyethyleneoxypropylene group (a copolymer group of ethyleneoxide and propyleneoxide). it can. Most preferably, it is a polyoxyethyleneoxypropylene group.
  • a hydrophilic group represented by a polyoxyalkylene group may be attached as a side chain, as a terminal group, or as a side chain and a terminal group of the polysiloxane main chain of the polysiloxane compound. Further, the hydrophilic group may be attached to the polysiloxane main chain via a linking group such as an alkylene group.
  • the polysiloxane compound having a hydrophilic group at the side chain or at the terminal is a polysiloxane component (dimethylpolysiloxane and a hydrophilic group at the side chain or at the terminal) contained in the silicone antifoaming agent used in the present invention. Preferably, it accounts for about 50% by mass or more, more preferably about 60% by mass. Also
  • the silicone antifoaming agent of the present invention is, for example, modified with an aromatic group such as a phenyl group.
  • Various polysiloxane compounds such as polysiloxane compounds may be contained as small components.
  • the silicone antifoaming agent used in the present invention is obtained by mixing fine powdered silica in an amount of 1 to 20 parts by mass based on 100 parts by mass of the total amount of dimethylpolysiloxane and the polysiloxane compound having a hydrophilic group in a side chain or a terminal. It is preferable to include parts by mass.
  • the silicone antifoaming agent used in the present invention is commercially available under the trade names of, for example, KS530, KS531, and KS538 (both are also manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the polyimidesiloxane solution composition of the present invention preferably contains a fine inorganic filler.
  • a fine inorganic filler those having an average particle diameter of 0.0001 15 x m, particularly 0.005 to 10 z m are preferable.
  • the fine filler include fine inorganic fillers such as aerosil, talc, myriki, and barium sulfate which are fine silica powders.
  • a combination consisting of at least one of aerosil and talc, Myriki and barium sulfate, particularly a combination consisting of aerosil, talc and barium sulfate is preferably used.
  • the fine inorganic filler is used to finely adjust the viscosity characteristics when forming a coating film by screen printing or the like in a polyimide siloxane solution composition, so that tin dipping during tin plating (the gap between the copper foil and the insulating film) This phenomenon is effective in suppressing the intrusion of tin into the copper foil, and in some cases, the copper foil may be cut off and cause pitting.
  • the amount of the fine inorganic filler used is preferably 20 to 150 parts by mass, particularly preferably 40 to 125 parts by mass with respect to 100 parts by mass of the polyimidesiloxane.
  • the polyimide siloxane solution composition of the present invention may be a dissociation catalyst for dissociating the blocking agent of the block polyvalent isocyanate at a certain temperature or higher, or a group in which the epoxy group and the Z or isocyanate group include a polar group of the polyimide siloxane. It is preferable to contain a curing catalyst composed of a curing accelerating catalyst for accelerating the curing reaction with the catalyst.
  • Examples of the dissociation catalyst for the block polyvalent isocyanate include dibutyltin dilaurate and tertiary amines.
  • the amount of the dissociation catalyst is preferably about 0.0125 parts by mass, particularly preferably about 0.115 parts by mass, per 100 parts by mass of the block polyvalent isocyanate.
  • Examples of the curing promoting catalyst include imidazole such as 2-ethyl-4-methylimidazole. And tertiary amines.
  • the amount of the curing accelerating catalyst is preferably about 0.01 to 25 parts by weight, particularly preferably about 0.1 to 15 parts by weight, based on 100 parts by weight of the block polyvalent isocyanate.
  • the polyimidesiloxane solution composition of the present invention contains an epoxy compound and a block polyvalent isocyanate, a tertiary amine capable of exhibiting both actions of a dissociation catalyst and a curing acceleration catalyst is cured. It is particularly preferred to include it as a catalyst.
  • tertiary amines for example, 1,8-diazabicyclo [5.4.0] _7_indene (sometimes abbreviated as DBU; the same applies hereinafter), N, N-dimethylbenzylamine, ⁇ , ⁇ , ⁇ ,, ⁇ '-tetramethylhexanediamine, triethylenediamine (TEDA), 2-dimethylaminomethylphenol (DMP-10), 2,4,6-tris (dimethylaminomethyl) phenol (DMP) — 30), dimorpholino dimethyl ether (DMDEE), 1,4-dimethylpiperazine, cyclohexyldimethylamine and the like.
  • DBU dimethylbenzylamine
  • 1,8-diazabicyclo [5.4.0] -7-indene (DBU), dimethylbenzylamine, and N, N, N ,, N, -tetramethylhexanediamine are block isocyanate compounds. Since the blocking agent can be dissociated at an appropriate temperature and the crosslinking reaction between the polyimide siloxane and the epoxy compound or the polyvalent isocyanate compound can be accelerated to an appropriate rate, the polyimide siloxane solution composition of the present invention can It is preferable to contain both the compound and the block polyvalent isocyanate.
  • the amount of the tertiary amine to be used is 0.5-20 parts by mass, and preferably 110 parts by mass, based on 100 parts by mass of the compound having a polysiloxane skeleton.
  • the organic solvent used in the reaction for preparing the polyimidesiloxane can be used as it is.
  • N-methyl-2_pyrrolidone, ⁇ , ⁇ -dimethylsulfoxide, ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -getylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ , ⁇ -jetylacetamide, ⁇ -butyrolataton, triethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and the like can be used.
  • diethylene glycol dimethyl alcohol (diglyme), triethylene glycol dimethyl alcohol (triglyme), tetraglyme Such a diglyme-based solvent can be suitably used.
  • a predetermined amount of the organic color pigment and the inorganic color pigment may be used, for example, about 0.1 to 100 parts by mass with respect to 100 parts by mass of the polyimide siloxane. it can.
  • the polyimidesiloxane solution composition of the present invention is prepared by uniformly dissolving a predetermined amount of a curable component such as polyimidesiloxane, an epoxy compound and / or a polyvalent isocyanate compound, the aforementioned silicone antifoaming agent, a fine filler and an organic solvent. Can be easily obtained by stirring and mixing.
  • a curable component such as polyimidesiloxane, an epoxy compound and / or a polyvalent isocyanate compound, the aforementioned silicone antifoaming agent, a fine filler and an organic solvent.
  • the polymerization solution of the polyimide siloxane may be used as it is, or a solution obtained by diluting the polymerization solution with an appropriate organic solvent may be used.
  • organic solvent examples include organic polar solvents that can be used in obtaining the above-mentioned polyimide siloxane, and those having a boiling point of 140 ° C or higher and 210 ° C or lower are preferable.
  • organic solvent having a boiling point of 180 ° C or higher, particularly 200 ° C or higher is used, for example, triglyme, the dissipation due to evaporation of the solvent is extremely reduced. It becomes easier to do.
  • the organic solvent is usually used in an amount of about 60 to 200 parts by mass with respect to 100 parts by mass of the polyimidesiloxane.
  • the polyimidesiloxane solution composition of the present invention is not particularly limited, but has a melting point of rice at room temperature (25. C) at night, and has a power of S50-10000 poise, particularly 100-1000 poise, and more preferably 100-1000 poise.
  • a size of 600 voids is preferable in consideration of workability such as screen printing, physical properties of a solution, and characteristics of a cured insulating film to be obtained.
  • the polyimidesiloxane solution composition of the present invention can be used on a substrate such as a flexible wiring board. Can be applied well by a method such as screen printing, a cured insulating film can be formed by heat treatment at a relatively low temperature, and the obtained cured insulating film has excellent adhesion to a substrate, It has excellent heat resistance, solvent resistance, chemical resistance (small tin submersion), bending resistance, and electrical characteristics, which are less likely to warp. Easiness) (the bubble removal time is preferably 400 seconds or less, particularly 100 seconds or less in the measurement method described below), so that the workability when forming a cured insulating film by application using screen printing or the like is good.
  • the solution composition is applied to a wiring board, and repelling that causes adhesion failure is suppressed at the peripheral portion of the cured insulating film obtained by applying a heat treatment (described later).
  • the repelling distance is preferably 100 ⁇ m or less according to the measuring method. (Especially 30 ⁇ m or less), the affinity (wetting) of the outer lead portion for the anisotropic conductive film or the anisotropic conductive paste is maintained, and highly reliable electrical bonding is possible.
  • a typical embodiment of the method for mounting a wiring board according to the present invention includes (1) forming a polyimidesiloxane solution so as to partially cover the wiring on an insulating substrate having a wiring serving as an electric circuit formed on a surface thereof; (2) heating the polyimidesiloxane solution composition applied film to form a cured insulating film, and (3) covering with the cured insulating film, wiring, and wiring And forming an electrical joint with an anisotropic conductive film (ACF) or an anisotropic conductive paste (ACP) in the portion.
  • the mounting method of the present invention is based on a conventionally well-known wiring board mounting method except that the cured insulating film is manufactured using the polyimidesiloxane solution composition of the present invention.
  • FIG. 1 shows an embodiment of a wiring board in which an inner lead portion is joined to a chip component such as an IC chip component, and an outer lead portion is joined to an electrode of a liquid crystal device by ACF or ACP and mounted. It is a schematic sectional view showing an example.
  • the mounting of such a wiring board is generally performed by the following procedure.
  • the polyimidesiloxane solution composition is screen-printed on a predetermined portion of the surface of the wiring board. It is applied by printing, and the obtained coating film is heated at 50 ° C. to 210 ° C. to form a cured insulating film 3. This heat treatment is usually performed at a temperature of about 160 ° C. If the tin has already been tinted, the heat treatment is performed at a relatively low temperature of about 120 ° C.
  • a tin plating layer 4 is formed on the surface of the wiring not covered with the cured insulating film. This step may be omitted if tin plating has already been performed.
  • the chip component 5 is electrically connected to the wiring portion (inner lead portion) not covered with the cured insulating film by the gold bump 6.
  • An underfill material 7 made of a curable resin such as an epoxy resin is injected into a gap between the insulating substrate 1 made of a polyimide film and the chip component 5, and is usually heated at a temperature of about 150 ° C to 160 ° C. Let it cure.
  • the electrode 9 of the substrate 10 of the liquid crystal panel is bonded by thermocompression bonding to the wiring portion (outer lead portion) of the wiring substrate which is not covered with the cured insulating film using ACF or ACP8.
  • the "bubble removal time” was determined by using a screen mask (SUS # 180, milk IJ thickness 15 / im, mesh thickness 101 ⁇ m) of a polyimidesiloxane yarn, 1 cm
  • the X lcm frame was hand-painted and printed on a polyimide film (UPILEX 25S) with a squeegee (hardness: 70, material: silicone rubber), and the printed surface was observed under transmitted light with a 10x optical microscope. It was determined by measuring the time until the bubbles disappeared. The measurement was performed three times, and the average value was described as the bubble removal time.
  • Short bubble removal time means good bubble removal
  • a copper foil (Fukuda Metal Co., Ltd.) was used using a screen mask (SUS # 180, emulsion thickness 15 ⁇ 111, mesh thickness 10 lzm) and a squeegee (hardness: 70, material: silicone rubber).
  • a polyimide siloxane solution composition is applied on a foil of CF-T8 manufactured by Foil Powder Co., Ltd., and then cured by heating at a temperature of 120 ° C (or 160 ° C) for 1 hour.
  • the sample was tin-plated on the foil and then heat-treated at a temperature of 150 ° C for 2 hours to prepare a sample for cissing evaluation.
  • the measurement of the ACF adhesion strength was performed by the following method. First, a sample for measuring the ACF adhesion strength was prepared in the same manner as the method for preparing the sample for evaluating cissing. Next, ACF (FP1708E, manufactured by Sony Chemical Co., Ltd.) was pressed at 60 ° C. on another copper foil (mirror surface of CF-T8 manufactured by Fukuda Metal Foil & Powder Co., Ltd.).
  • the next contact position of the cured film of the sample for ACF adhesion strength measurement place the ACF portion of the copper foil which was crimped ACF, 190 ° C from the top of the copper foil, 10 seconds at a pressure of 10k g / cm 2 This was pressed to obtain a laminate for a peel test. Next, the laminate was peeled by 90 ° peeling, and the peel strength was measured.
  • the water droplet contact angle was measured by the following method. A thin defoamer is applied to the surface of copper foil (CF-T8 mirror surface manufactured by Fukuda Metal Foil & Powder Co., Ltd.), and drops of purified water are dropped on the coated surface, and the contact angle of the drops is measured. It measured using the apparatus. The measurement was performed five times, and the average value was described as the water contact angle.
  • Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd., epoxy resin, epoxy equivalent: 190
  • B—882N Takenate B_882N, manufactured by Mitsui Takeda Chemical Co., Ltd., blocked 1,6-hexamethylene diisocyanate, blocking agent: methylethylketoxime
  • Aerozinole # 50 Nippon Aerodil Co., Ltd., average particle size 30 nm
  • AEROGINOLE # 130 Nippon AEROSIL Co., Ltd., average particle size 16nm
  • Talc P_3 Talc, Microace P_3, manufactured by Nippon Talc Co., Ltd., average particle size 5.1 / im Barium sulfate B—30: Sulfuric acid sulfate manufactured by Sakai Danigaku Kogyo Co., Ltd., average particle size 0.3 ⁇ ⁇ [0070] [Reference Example 1]
  • the obtained polyimide siloxane reaction solution was a solution having a polymer solid content concentration of 51% by mass and 77 of 0.20.
  • the imidation rate was substantially 100%.
  • Table 1 shows the measurement results of the bubble elimination time (sec) and the cissing distance ( ⁇ m) of this polyimide siloxane composition.
  • the epoxy compound epikote 828 was changed to epikote 157S 70 and the curing catalyst 2
  • a polyimide siloxane composition of the present invention was obtained in the same manner as in Example 1, except that the amount of E4MZ was changed to 0.25 parts by mass (relative amount to 100 parts by mass of the polyimide siloxane solution, the same applies hereinafter). .
  • Table 1 shows the measurement results of the bubble elimination time (sec), repelling distance ( ⁇ m), and ACF peel strength (g / cm) of this polyimide siloxane composition.
  • the amount of the epoxy compound epikote 157S70 used was changed to 1 part by mass (relative amount to 100 parts by mass of the polyimide siloxane solution, the same applies hereinafter), and 10 parts by mass of the polyvalent isocyanate conjugate B_882N was added as a curing catalyst.
  • P_3 and 11.25 mass of potassium sulfate B-30 were used, to obtain a polyimidesiloxane composition of the present invention.
  • Table 1 shows the measurement results of the bubble elimination time (sec) and the repelling distance ( ⁇ m) of this polyimide siloxane composition.
  • Silicone defoamer KS531 was replaced by KS530 (Shin-Etsu Chemical Co., Ltd., self-emulsifying silicone defoamer, dimethylpolysiloxane, polyethyleneoxy propyleneoxy group on the side chain with a larger amount than dimethylpolysiloxane.
  • KS530 Shin-Etsu Chemical Co., Ltd., self-emulsifying silicone defoamer, dimethylpolysiloxane, polyethyleneoxy propyleneoxy group on the side chain with a larger amount than dimethylpolysiloxane.
  • the same operation as in Example 2 was carried out, except that the polysiloxane conjugate was made hydrophilic and the powdery silica was contained, and the water contact angle was changed to 13 °.
  • a polyimide siloxane composition was obtained.
  • Table 1 shows the measurement results of the bubble elimination time (sec), repelling distance ( ⁇ m), and ACF peel strength (g / cm) of this polyimide siloxane composition.
  • KS_538 Shin-Etsu Chemical Co., Ltd., self-emulsifying silicone antifoaming agent J, dimethylpolysiloxane, polyethyleneoxy-propyleneoxy on the side chain with a larger amount than dimethylpolysiloxane
  • the polysiloxane compound which was made hydrophilic by adding a group and silica in the form of fine powder were used, and the water contact angle was 17 °).
  • Table 1 shows the measurement results of the bubble elimination time (sec), the repelling distance ( ⁇ m), and the ACF peel strength (g / cm) of this polyimide siloxane composition.
  • Example 2 Except that the KS531 silicone antifoaming agent was changed to DB-100 (Dow Kojung Asia Co., Ltd., containing dimethyl polysiloxane and finely divided silica, water droplet contact angle: 66 °). The same operation as in Example 2 was performed to obtain a comparative polyimide siloxane composition.
  • Table 1 shows the measurement results of the bubble elimination time (sec), repelling distance ( ⁇ m), and ACF peel strength (g / cm) of this polyimide siloxane composition.
  • Silicone antifoaming agent KS531 KS510 (Shin-Etsu Chemical Co., Ltd., oil compound type silicone antifoaming agent, polysiloxane conjugated product having an alkyl group having 10 or more carbon atoms in the side chain and fine powder The same operation as in Example 2 was carried out, except that the composition contained silica-like particles and the contact angle of water droplets was 94 °) to obtain a polyimide siloxane composition for comparison.
  • Table 1 shows the measurement results of the bubble elimination time (sec), the repelling distance ( ⁇ m), and the ACF peel strength (g / cm) of this polyimide siloxane composition.
  • Example 2 product of Shin-Etsu Chemical Co., Ltd., containing silicone emulsion defoamer, dimethylpolysiloxane, dimethylpolysiloxane, silica in fine powder and emulsifier), water contact angle: 19
  • the same operation as in Example 2 was performed, except that the temperature was changed to (°), to obtain a polyimide siloxane composition for comparison.
  • Table 1 shows the measurement results of the bubble elimination time (sec), repelling distance ( ⁇ m), and ACF peel strength (g / cm) of this polyimide siloxane composition.
  • Example 2 The same as Example 2 except that the silicone-based antifoaming agent KS531 was changed to a metal stone-based antifoaming agent Nopco NXZ (manufactured by San Nopco Co., Ltd., containing a fatty acid metal salt, water droplet contact angle: 10 °). By performing the above operation, a polyimide siloxane composition for comparison was obtained.
  • a metal stone-based antifoaming agent Nopco NXZ manufactured by San Nopco Co., Ltd., containing a fatty acid metal salt, water droplet contact angle: 10 °
  • Table 1 shows the measurement results of the bubble elimination time (sec), repelling distance ( ⁇ m), and ACF peel strength (g / cm) of this polyimide siloxane composition.
  • Example 2 The same operation as in Example 2 was carried out except that the silicone-based antifoaming agent KS531 was changed to an acrylic bullet ether-based antifoaming agent Floren AC-326F (manufactured by Kyoeisha Chemical Co., Ltd., water contact angle: 42 °). Thus, a comparative polyimide siloxane composition was obtained.
  • Table 1 shows the measurement results of the bubble elimination time (sec), repelling distance ( ⁇ m), and ACF peel strength (g / cm) of this polyimide siloxane composition.
  • Example 2 47 seconds 0 i m 780 g / cm
  • Example 4 37 seconds 0 ⁇ 740 g / cm
  • Example 5 24 seconds 0 ⁇ 750 g / cm Comparative Example 1 25 seconds 500 ⁇ m 740 g / cm
  • Comparative Example 2 142 seconds 400 x m 280 g / cm
  • Comparative Example 3 26 seconds 410 z m 290 g / cm
  • Comparative Example 4 28 seconds 370 zm 340 g / cm Comparative Example 5> 600 seconds O ⁇ m 770gZcm
  • FIG. 1 is a schematic cross-sectional view of a wiring board in which an inner lead portion is joined to a chip component, and an outer lead portion is joined and mounted on an electrode of a liquid crystal device by ACF or ACP. Explanation of symbols
  • Insulating substrate made of polyimide film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

【課題】 消泡性に優れ、配線基板の表面に塗布し、硬化させて絶縁硬化膜を形成した場合でも、配線基板上のアウターリード部の濡れを高いレベルに維持することのできるポリイミドシロキサン溶液組成物を提供する。 【解決手段】 有機溶媒中に、有機溶媒可溶性ポリイミドシロキサン、エポキシ化合物および多価イソシアネート化合物などの硬化性成分、そしてシリコーン消泡剤が含まれてなり、該シリコーン消泡剤が、ジメチルポリシロキサン、側鎖もしくは末端部に親水性基を有するポリシロキサン化合物、そして微粉末状シリカを含むものであるポリイミドシロキサン溶液組成物。                                                                         

Description

明 細 書
ポリイミドシロキサン溶液組成物
技術分野
[0001] 本発明は、ポリイミドシロキサン溶液組成物に関し、特に、絶縁硬化膜が形成された 配線基板の製造に有利に用いることのできるポリイミドシロキサン溶液組成物に関す る。
背景技術
[0002] 表面に電気回路配線部が形成されている配線基板に電子部品を実装する場合は 、まず、配線基板の表面に、その電気回路配線部を部分的に被覆するように硬化性 樹脂溶液組成物を塗布して塗布膜を形成し、次レ、で該塗布膜を加熱して絶縁硬化 膜とすることからなる予備処理が行なわれる。
[0003] 特許文献 1には、電子部品実装の分野において用いられる絶縁膜 (保護膜、ソルダ レジスト、層間絶縁層など)を形成するための溶液組成物として、有機溶媒可溶性の ポリイミドシロキサンと、エポキシ化合物及び/又は多価イソシァネー M匕合物などの 硬化性成分とを含有してなるポリイミドシロキサン溶液組成物が記載されてレ、る。この 溶液組成物は、フレキシブル配線基板などの基材上にスクリーン印刷などの方法で 良好に塗布できるものであり、比較的低温の加熱処理を行なうことによって硬化絶縁 膜を形成することができ、得られた硬化絶縁膜は基材との密着性が優れ、ソリが発生 し難ぐ耐熱性、耐溶剤性、耐薬品性、耐屈曲性、そして電気特性などが優れるもの である。従って、特に TAB (Tape Automated Bonding)テープやフレキシブル配線基 板などのフレキシブル性を有する配線基板を保護する硬化絶縁膜 (保護膜)の形成 の目的で好適に使用される。上記の有機溶媒可溶性のポリイミドシロキサンは、芳香 族テトラカルボン酸化合物、ジァミノポリシロキサン成分、そして極性基を有する芳香 族ジァミン化合物の反応により得られる化合物である。
[0004] 特許文献 1には、ポリイミドシロキサン溶液組成物に、必要に応じて消泡剤を加えて もよい旨の記載があり、消泡剤の例として、アクリル系消泡剤、アクリルビュルエーテ ル系消泡剤、フッ素系消泡剤、そしてシリコーン系消泡剤が挙げられている。この内、 シリコーン系消泡剤の例としては、溶液型ゃォイルコンパウンド型のジメチルポリシ口 キサン系消泡剤 (信越化学工業株式会社製の KS— 603あるいはダウコーニング社製 の DB-100)などが列記されている。なお、特許文献 1の実施例で用いられている消 泡剤は、アクリルビュルエーテル系の消泡剤であるフローレン AC326Fである。
[0005] 配線基板への電子部品の導電性接合は、従来は、はんだを用いる方法あるいは金 などの導電性材料をバンプとして用いる方法により行なっていた力 S、近年、例えば、 液晶表示素子などの電子部品の配線基板への実装に際して、異方性導電フィルム( Anisotropic Conductive Film、 ACF)又は異方十生導¾へ1 ~スト (Anisotropic
Conductive Paste, ACP)などの異方性導電材料によって配線基板のアウターリード 部を介して電気的接合部を形成する方法も利用されるようになってきている。
特許文献 1 :特開 2002 - 12664号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明の発明者は、前記特許文献 1に記載のポリイミドシロキサン溶液組成物を配 線基板の絶縁硬化膜の形成に用いる場合に、絶縁基板への密着性を高め、かつ溶 液組成物内に取り込まれた気泡(泡)を短時間に排出させる機能を有する消泡剤に ついて研究を行なった結果、シリコーン系消泡剤として最も一般的なジメチルポリシ ロキサン (シリコーンオイル)系消泡剤が、上記の目的に好適であることを確認した。
[0007] し力 ながら、その後の検討により、特許文献 1に記載のポリイミドシロキサン溶液組 成物にジメチルポリシロキサン系消泡剤を加えて消泡性を高めた溶液組成物を配線 基板の絶縁硬化膜の形成に用いた場合に、その絶縁硬化膜が形成された配線基板 のアウターリード部を介して異方性導電材料により電子部品を電気的に接合させよう とすると、異方性導電材料とアウターリード部との親和性が低くなり、 目的の異方性導 電材料とアウターリード部との間の良好な電気的接合が実現しにくくなることが判明し た。
[0008] このため、本発明者は、上記の異方性材料とアウターリード部との親和性が低くなる 原因を調べた。その結果、ジメチルポリシロキサン系消泡剤を添加したポリイミドシロ キサン溶液組成物を配線基板の表面に塗布して、絶縁硬化膜の形成に用いると、そ の溶液組成物の塗布膜からジメチルポリシロキサンの一部がアウターリード部の表面 上に滲み出し、絶縁硬化膜の形成後も、そのジメチルポリシロキサンがアウターリード 部の表面に残るために、異方性導電材料とアウターリード部との親和性 (いわゆる濡 れ)が低下し、良好な電気的接合が困難になっているとの結論に達した。
課題を解決するための手段
[0009] 上記の結論に基づき、本発明者は更に研究を進めた結果、特許文献 1に記載のポ リイミドシロキサン溶液組成物に添加するシリコーン系消泡剤として、ジメチルポリシ口 キサンと微粉末シリカとを含む最も一般的なシリコーン系消泡剤のジメチルポリシロキ サンの一部を、側鎖もしくは末端部に親水性基(特に、ポリオキシアルキレン基)に置 換したシリコーン系消泡剤を用いることにより、消泡性 (溶液組成物内に取り込まれた 気泡を短時間に排出させる機能)が優れ、かつ配線基板の表面に塗布し、硬化させ て絶縁硬化膜を形成した場合でも、配線基板上のアウターリード部へのジメチルポリ シロキサンの滲み出しを抑制することができ、そして、異方性導電材料とアウターリー ド部との親和性が向上して、異方性導電材料とアウターリード部との間の良好な電気 的接合の実現を可能にするポリイミドシロキサン溶液組成物が得られることを見いだ した。
[0010] 従って、本発明は、有機溶媒中に、有機溶媒可溶性ポリイミドシロキサン、エポキシ 化合物および多価イソシァネートィヒ合物からなる群より選ばれる少なくとも一種の硬 化性成分、そしてシリコーン消泡剤が含まれてなり、該シリコーン消泡剤が、ジメチル ポリシロキサン、側鎖もしくは末端部に親水性基を有するポリシロキサン化合物、そし て微粉末状シリカを含むことを特徴とするポリイミドシロキサン溶液組成物にある。
[0011] 本発明はまた、表面に電気回路配線部が形成されている配線基板の表面に該電 気回路配線部を部分的に被覆するように上記の本発明のポリイミドシロキサン溶液組 成物を塗布して塗布膜を形成し、次レ、で該ポリイミドシロキサン組成物塗布膜を加熱 して絶縁硬化膜とすることからなる表面に絶縁硬化膜が形成された配線基板の製造 方法にもある。
[0012] 本発明はさらに、表面に電気回路配線部が形成されている配線基板の表面に該電 気回路配線部を部分的に被覆するように上記の本発明のポリイミドシロキサン溶液組 成物を塗布して塗布膜を形成する工程、該ポリイミドシロキサン組成物塗布膜を加熱 して絶縁硬化膜とする工程、そして上記配線基板表面上の電気回路配線部の絶縁 硬化膜で被覆されていない領域に異方性導電性材料を介して電子部品を接続する ことからなる電子部品の配線基板への実装方法にもある。
産業上の利用可能性
[0013] 本発明のポリイミドシロキサン溶液組成物は、配線基板の表面にスクリーン印刷等 の塗布方法により塗布した場合に、その塗布過程で取り込まれて塗布膜内部に生成 した気泡の排出を速やかに実現でき、またアウターリード部表面へのジメチルポリシ ロキサンの滲み出しが抑制されるため、本発明のポリイミドシロキサン溶液組成物を 利用することにより高い作業性で絶縁硬化膜を有する配線基板を得ることができる。 また、本発明のポリイミドシロキサン溶液組成物を利用して絶縁硬化膜を形成した配 線基板のアウターリード部表面に電気的接合材料、特に異方性導電材料を介して電 子部品を実装する場合に実用性が高い優れた電気的接合が実現する。
発明を実施するための最良の形態
[0014] 本発明のポリイミドシロキサン溶液組成物の好ましレ、態様を次に示す。
(1)有機溶剤可溶性ポリイミドシロキサン 100質量部に対して、硬化性成分を 1一 50 質量部、そしてシリコーン消泡剤を 1一 10質量部含む。
(2)シリコーン消泡剤が、側鎖もしくは末端部に親水性基を有するポリシロキサンィ匕 合物をジメチルポリシロキサンより多い量にて含む。
(3)シリコーン消泡剤力 ジメチルポリシロキサンと側鎖もしくは末端部に親水性基を 有するポリシロキサンィ匕合物との合計量 100質量部に対して、微粉末状シリカを 1一 20質量部を含む。
(4)側鎖もしくは末端部に親水性基を有するポリシロキサン化合物の親水性基がポリ ォキシアルキレン基(特に、エチレンォキシドとプロピレンォキシドとの共重合体から なる基)である。
(5)さらに、無機フィラーを含む。
(6)さらに、硬化触媒 (硬化剤)を含む。
(7)シリコーン消泡剤が 50°以下の水滴接触角を示す。 [0015] 次に、本発明のポリイミドシロキサン溶液組成物で用いられる有機溶媒可溶性ポリ イミドシロキサンそしてエポキシィ匕合物および多価イソシァネートイ匕合物からなる群よ り選ばれる少なくとも一種の硬化性成分について説明する。なお、前述のように、本 発明のポリイミドシロキサン溶液組成物は、前記の特許文献 1に記載のポリイミドシロ キサン溶液組成物の改良であり、有機溶媒可溶性ポリイミドシロキサンそしてェポキ シ化合物および多価イソシァネートイ匕合物については、特許文献 1に詳しい記載が ある。
[0016] 本発明のポリイミドシロキサン溶液組成物で用いられる有機溶媒可溶性ポリイミドシ ロキサンは、芳香族テトラカルボン酸化合物と、ジァミノポリシロキサン及び極性基を 有する芳香族ジァミンィ匕合物とを含むジァミンィ匕合物とを、略等モル好ましくはジアミ ン化合物 1モルに対して芳香族テトラカルボン酸化合物が 1. 0-1. 2モル程度の割 合となるように用いて有機溶媒中で反応させることにより得ることができる。
[0017] 芳香族テトラカルボン酸化合物の例としては、 2, 3, 3 ' , 4'-ビフエニルテトラカル ボン酸、 3, 3 ' , 4, 4,—ビフエニルテトラカルボン酸、 2, 2,, 3, 3 '—ビフエニルテトラ 力ノレボン酸、 3, 3 ' , 4, 4 '—ジフエニノレエーテノレテ卜ラ力ノレボン酸、 3, 3' , 4, 4'—ジフ ェニルスルホンテトラカルボン酸、 3, 3,, 4, 4' _ベンゾフエノンテトラカルボン酸、 2, 2_ビス(3, 4_ベンゼンジカルボン酸)へキサフルォロプロパン、ピロメリット酸、 1, 4- ビス(3, 4—ベンゼンジカルボン酸)ベンゼン、 2, 2—ビス〔4一(3, 4—フエノキシジカル ボン酸)フエニル〕プロパン、 2, 3, 6, 7_ナフタレンテトラカルボン酸、 1, 2, 5, 6—ナ フタレンテトラカルボン酸、 1 , 2, 4, 5_ナフタレンテトラカルボン酸、 1 , 4, 5, 8_ナフ タレンテトラカルボン酸、 1 , 1_ビス(2, 3—ジカルボキシフエニル)ェタンなどの芳香 族テトラカルボン酸、またはそれらの酸二無水物や低級アルコールのエステル化物を 好適に挙げることができる。これらのなかでも特に、 2, 3, 3 ', 4,-ビフエニルテトラ力 ノレボン酸、 3, 3 ', 4, 4 '—ジフエニルェ—テルテトラカルボン酸、及び 2, 2' , 3, 3 ' _ ビフエニルテトラカルボン酸、又は、それらの酸二無水物や低級アルコールのエステ ル化物は、ポリイミドシロキサンとしたときの有機溶媒に対する溶解性が優れてレ、るの で好適である。
[0018] 芳香族テトラカルボン酸化合物は、ジァミンィ匕合物と反応させることが容易な芳香 族テトラカルボン酸二無水物を用いることが好ましい。また、芳香族テトラカルボン酸 二無水物の使用量がジァミン成分に対して 1. 05倍モル以上で未反応無水環が残 存するような場合には、そのままでもよいが、エステル化剤で開環ハーフエステルイ匕 してもよい。
[0019] ジァミン化合物は、ジァミノポリシロキサン及び極性基を有する芳香族ジァミン化合 物以外のジァミンィ匕合物を含んでいてもよぐ好ましくはジァミノポリシロキサンを 30 一 95モノレ0 /0、特に 50— 95モノレ0 /0、更に 60 95モノレ0 /0、極性基を有する芳香族ジ ァミン化合物を 0. 5— 40モノレ%、そして前記ジァミノポリシロキサン及び前記極性基 を有する芳香族ジァミンィ匕合物以外のジァミン化合物を 0— 69. 5モル% (通常、 0 30モル%)とする割合で使用される。
[0020] ポリイミドシロキサンのジァミン成分を構成するジァミノポリシロキサンとしては、下記 一般式(1)で示される化合物が好適である。
[0021] [化 1]
Figure imgf000008_0001
H2N-R1 Si-o n-l -Ri-NH: 一般式(1)
Figure imgf000008_0002
[0022] 一般式(1)において、 Rは 2価の炭化水素基又は芳香族基を示し、 Rは独立に一
1 2
価の炭素水素基又は芳香族基を示し、 nlは 3— 50の整数を示す。ただし、 Rは独
1 立に炭素数 1一 6の 2価の炭化水素基またはフエ二レン基、特にプロピレン基であり、 Rは独立に炭素数 1一 5のアルキル基またはフエニル基であり、 nlは 3— 20であるこ
2
とが好ましい。なお、ジァミノポリシロキサンが二種以上の混合物からなる場合は、 nl はァミノ当量から計算される。
[0023] ジァミノポリシロキサンの化合物の例としては、 α , ω—ビス(2_アミノエチル)ポリジメ チルシロキサン、 α , ω—ビス(3—ァミノプロピル)ポリジメチルシロキサン、 α , ω—ビス (4—ァミノフエニル)ポリジメチルシロキサン、 α , ω—ビス(4—ァミノ— 3—メチルフエ二 ノレ)ポリジメチルシロキサン、 α , ω—ビス(3—ァミノプロピル)ポリジフエエルシロキサン 、 α , ω—ビス(4一アミノブチル)ポリジメチルシロキサンなどが挙げられる。
[0024] ポリイミドシロキサンのジァミン成分を構成する極性基を有する芳香族ジァミン化合 物は、分子中にイソシァネート基又はエポキシ基との反応性を有する極性基を有す る芳香族ジァミンィ匕合物であり、好ましくは下記一般式(2)で示されるジァミン化合物 である。
[0025] [化 2]
Figure imgf000009_0001
[0026] 一般式(2)におレ、て、 Xおよび Υは、それぞれ独立に、直接結合、 CH、 C (CH )
、 C (CF ) 、 0、ベンゼン環、 SOを示し、 rlは COOH又は〇Hを示し、 n2は 1又は 2 であり、 n3、 n4はそれぞれ独立に 0、 1又は 2、好ましくは 0又は 1であり、 n3及び n4 の少なくとも一方は 1又は 2である。
[0027] 一般式(2)で示されるジァミン化合物としては、 2, 4—ジァミノフヱノ—ノレなどのジアミ ノフエノール化合物類、 3, 3,—ジァミノ _4, 4'—ジハイド口キシビフエニル、 4, 4'—ジ ァミノ—3, 3 '—ジハイド口キシビフエニル、 4, 4 '—ジァミノ—2, 2 '—ジハイドロキシビフ ェニル、 4, 4 '—ジァミノ _2, 2 ' , 5, 5 '—テトラハイド口キシビフエニルなどのヒドロキシ ビフエニル化合物類、 3, 3 '—ジァミノ— 4, 4 '—ジハイド口キシジフエニルメタン、 4, 4 ' -ジァミノ- 3, 3 ジハイド口キシジフエニルメタン、 4, 4 ジァミノ- 2, 2,-ジハイド口 キシジフエニルメタン、 2, 2—ビス〔3—アミノー 4—ハイドロキシフエ二ノレ〕プロパン、 2, 2 —ビス〔4—ァミノ一 3—ハイドロキシフエニル〕プロパン、 2, 2—ビス〔3—ァミノ一 4—ハイド ロキシフエニル〕へキサフルォロプロパン、 4, 4 'ージアミノー 2, 2 ' , 5, 5 '—テトラハイド 口キシジフエニルメタンなどのヒドロキシジフエニルアルカン化合物類、 3, 3,ージァミノ -4, 4 'ージハイド口キシジフエニルエーテル、 4, 4 'ージアミノー 3, 3 '—ジハイドロキシ ジフエニルエーテル、 4, 4 'ージアミノー 2, 2 '—ジハイド口キシジフエニルエーテル、 4, 4 '—ジァミノ—2, 2' , 5, 5 '—テトラハイド口キシジフエ二ルェ—テルなどのヒドロキシジフ ェニルエーテル化合物類、 3, 3 '—ジァミノ—4, 4 '—ジハイド口キシジフエニルスルホン 、 4, 4 '—ジァミノ— 3, 3 '—ジハイド口キシジフエニルスルホン、 4, 4 '—ジァミノ— 2, 2' —ジハイド口キシジフエニルスルホン、 4, 4 '—ジアミノー 2, 2' , 5, 5 '—テトラハイドロキ シジフエニルスルホンなどのヒドロキシジフエニルスルホン化合物類、 2, 2_ビス〔4_ ( 4—ァミノ一 3—ハイド口キシフエノキシ)フエニル〕プロパンなどのビス(ハイドロキシフエ ニキシフヱニル)アルカン化合物類、 4, 4,_ビス(4—ァミノ— 3_ハイド口キシフヱノキシ )ビフヱニルなどのビス(ノヽイド口キシフエノキシ)ビフヱニル化合物類、そして 2, 2—ビ ス〔4_ (4—ァミノ一 3_ハイド口キシフエノキシ)フエ二ノレ〕スノレホンなどのビス(ハイドロキ シフヱニキシフヱニル)スルホン化合物類などの、 OH基を有するジァミン化合物類を 挙げ'ること力 Sできる。
一般式(2)で示されるジァミン化合物としては更に、 3, 5—ジァミノ安息香酸、 2, 4— ジァミノ安息香酸などのベンゼンカルボン酸化合物類、 3, 3'—ジアミノー 4, 4'ージカ ルボキシビフエニル、 4, 4 'ージアミノー 3, 3 '—ジカルボキシビフエニル、 4, 4 'ージアミ ノ— 2, 2 '—ジカルボキシビフエニル、 4, 4'ージアミノー 2, 2' , 5, 5 '—テトラカルボキシ ビフエ二ルなどのカルボキシビフエニル化合物類、 3, 3,ージアミノー 4, 4,ージカルボ キシジフエニルメタン、 4, 4'ージアミノー 3, 3 '—ジカルボキシジフエニルメタン、 4, 4' ージアミノー 2, 2,ージカルボキシジフエニルメタン、 2, 2—ビス〔3—アミノー 4—カルボキ シフエ二ノレ〕プロパン、 2, 2_ビス〔4—ァミノ一 3_カルボキシフエ二ノレ〕プロパン、 2, 2- ビス〔3—ァミノ— 4_カルボキシフエニル〕へキサフルォロプロパン、 4, 4,ージァミノ _2 , 2' , 5, 5 '—テトラカルボキシビフエニルなどのカルボキシジフエ二ルアルカン化合 物類、 3, 3,—ジァミノ— 4, 4,_ジカルボキシジフエ二ルェ—テル、 4, 4,_ジァミノ— 3, 3 '—ジカルボキシジフエ二ルェ—テル、 4, 4 'ージアミノー 2, 2 '—ジカルボキシジフエ二 ノレエーテノレ、 4, 4,_ジアミノー 2, 2' , 5, 5 ' _テトラカノレボキシジフエニノレエ一テノレなど のカルボキシジフエニルェ—テル化合物類、 3, 3 '—ジァミノ _4, 4 '—ジカルボキシジ フエニルスルホン、 4, 4'—ジァミノ—3, 3 '—ジカルボキシジフエニルスルホン、 4, 4'- ジアミノー 2, 2' , 5, 5 '—テトラカルボキシジフエニルスルホンなどのカルボキシジフエ ニルスルホン化合物類、 2, 2_ビス〔4_ (4—ァミノ— 3_カルボキシフエノキシ)フエニル 〕プロパンなどのビス(カルボキシフエノキシフエニル)アルカン化合物類、 4, 4'一ビス (4—ァミノ一 3—カルボキシフエノキシ)ビフエ二ルなどのビス(カルボキシフエノキシ)ビ フエニル化合物類、 2, 2—ビス〔4— (4—ァミノ一 3—カルボキシフエノキシ)フエニル〕ス ノレホンなどのビス(カルボキシフエノキシフヱニル)スルホン化合物類などの、 COOH 基を有するジァミンィ匕合物類を挙げることができる。
[0029] ポリイミドシロキサンのジァミン成分を構成する前記ジァミノポリシロキサン及び前記 極性基を有する芳香族ジァミン以外のジァミン化合物は、特に限定されるものではな レ、が、下記一般式(3)で示される芳香族ジァミン化合物が好適である。
[0030] [化 3]
-般式 (3)
Figure imgf000011_0001
一般式(3)において、 Xおよび Yは、それぞれ独立に、直接結合、 CH、 C (CH )
、 C (CF ) 、〇、ベンゼン環、 SOを示し、 n5は 1又は 2である。
[0031] 一般式(3)で示される芳香族ジァミン化合物の例としては、 1 , 4ージァミノベンゼン 、 1 , 3—ジァミノベンゼン、 2, 4—ジァミノトルエン、 1 , 4—ジァミノ—2, 5—ジハロゲノべ ンゼンなどのベンゼン環を 1個を含むジァミン化合物類、ビス(4ーァミノフエニル)エー テル、ビス(3—ァミノフエニル)ェ—テル、ビス(4—ァミノフエニル)スルホン、ビス(3—ァ ミノフエニル)スルホン、ビス(4—ァミノフエニル)メタン、ビス(3—ァミノフエニル)メタン、 ビス(4—ァミノフエニル)スルフイド、ビス(3—ァミノフエニル)スルフイド、 2, 2_ビス(4— ァミノフエニル)プロパン、 2, 2—ビス(3—ァミノフエニル)プロパン、 2, 2—ビス(4—アミ ノフエ二ノレ)へキサフルォロプロパン、 o—ジァニシジン、 o—トリジン、トリジンスルホン 酸などのベンゼン環を 2個を含むジァミン化合物類、 1 , 4一ビス(4一アミノフエノキシ) ベンゼン、 1 , 4—ビス(3—アミノフエノキシ)ベンゼン、 1 , 4—ビス(4—ァミノフエニル)ベ ンゼン、 1 , 4_ビス(3—ァミノフエ二ノレ)ベンゼン、 α , α '—ビス(4—ァミノフエ二ル)一 1 , 4—ジイソプロピルベンゼン、 α , α,—ビス(4—ァミノフエ二ル)— 1 , 3—ジイソプロピ ルベンゼンなどのベンゼン環を 3個を含むジァミン化合物類、 2, 2—ビス〔4_ (4一アミ ノフエノキシ)フエ二ノレ〕プロパン、 2, 2—ビス〔4— (4—アミノフエノキシ)フエ二ノレ〕へキ サフルォロプロパン、 2, 2_ビス〔4_ (4—アミノフエノキシ)フエニル〕スルホン、 4, 4' _ (4—アミノフエノキシ)ビフエニル、 9, 9—ビス(4—ァミノフエニル)フルオレン、 5, 10- ビス(4—ァミノフエニル)アントラセンなどのベンゼン環を 4個以上を含むジァミン化合 物類などのジァミン化合物類が挙げられる。
また、へキサメチレンジァミン、ジアミノドデカンなど脂肪族ジァミンィ匕合物を上記ジ ァミンと共に使用することができる。
[0032] ポリイミドシロキサンは、例えば次の方法で得ることができる。
a)テトラカルボン酸化合物とジァミン化合物とを略等モル使用し、有機極性溶媒中 で連続的に 15 250°Cで重合及びイミド化させてポリイミドシロキサンを得る方法。 b)テトラカルボン酸化合物とジァミン化合物とをそれぞれ分けて、まず過剰量のテト ラカルボン酸化合物とジァミンィ匕合物(例、ジァミノポリシロキサン)とを有機極性溶媒 中 15— 250°Cで重合及びイミド化させて平均重合度 1一 10程度の末端に酸無水物 基(又は、酸、そのエステルイ匕物)を有するイミドシロキサンオリゴマーを調製し、別に テトラカルボン酸化合物と過剰量のジァミンィ匕合物とを有機極性溶媒中 15— 250°C で重合及びイミド化させて平均重合度 1一 10程度の末端にアミノ基を有するイミドオリ ゴマーを調製し、次いでこの両者を酸成分とジァミン成分とが略等モルになるように 混合して 15— 60°Cで反応させて、さらに 130— 250°Cに昇温して反応させてポリイミ ドシロキサンを得る方法。
c)テトラカルボン酸化合物とジァミン化合物とを略等モル使用し、有機極性溶媒中 でまず 20— 80°Cで重合させてポリアミック酸を得た後に、そのポリアミック酸をイミド 化してポリイミドシロキサンを得る方法。
[0033] 上述の方法でポリイミドシロキサンを得る際に使用される有機極性溶媒としては、含 窒素系溶媒、例えば N, N—ジメチルァセトアミド、 N, N—ジェチルァセトアミド、 N, N —ジメチルホルムアミド、 N, N—ジェチルホルムアミド、 N_メチル _2_ピロリドン、 1, 3 —ジメチルー 2—イミダゾリジノン、 N—メチルカプロラタタムなど;硫黄原子を含有する溶 媒、例えばジメチルスルホキシド、ジェチルスルホキシド、ジメチルスルホン、ジェチ ノレスノレホン、へキサメチルスルホルアミドなど,フエノール系溶媒、例えばクレゾール、 フエノール、キシレノールなど;ジグライム系溶媒、例えばジエチレングリコールジメチ ルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テト ラグライムなど;酸素原子を分子内に有する溶媒、例えばアセトン、メタノーノレ、ェタノ ール、エチレングリコール、ジォキサン、テトラヒドロフランなど;その他、ピリジン、テト ラメチル尿素などを挙げることができる。また必要に応じて、ベンゼン、トルエン、キシ レンなどの芳香族炭化水素系溶媒やソルベントナフサ、ベンゾニトリルなど他の有機 溶媒を併用してもよい。
[0034] ポリイミドシロキサンは、前記 a)— b)などいずれの方法で得られたものを使用しても よいが、有機溶媒に少なくとも 3質量%以上、好ましくは 5— 60質量%の高濃度で溶 解させることができるもので、 25°Cの溶液粘度 (E型回転粘度計)が 1一 10000ボイ ズ、特に 1一 100ボイズであることが好ましい。
[0035] ポリイミドシロキサンは高分子量のものが好ましぐ更にイミド化率が高いものが好ま しい。分子量の目安としての対数粘度(測定濃度: 0. 5g/100ミリリットル、溶媒: N- メチルー 2_ピロリドン、測定温度: 30°C)が、 0. 15以上、特に 0. 16— 2のもの力 硬 化物の強度、伸度などの機械的物性の点から好ましい。また、赤外吸収スペクトルか ら求められるイミド化率は、 90%以上特に 95%以上更に実質的に 100%のものが好 ましい。
[0036] 本発明のポリイミドシロキサン溶液組成物で用いられる硬化性成分は、エポキシィ匕 合物及び/又は多価イソシァネートィヒ合物である。
[0037] エポキシ化合物としては、エポキシ当量が 100 4000程度であって、分子量が 30 0— 10000程度である液状または固体状のエポキシ樹脂が好ましい。
[0038] 多価イソシァネート化合物としては、 1分子中にイソシァネート基を 2個以上有するも のであればどのようなものでもよレ、。このような多価イソシァネ—トイ匕合物としては、脂 肪族、脂環族または芳香族のジイソシァネート等があり、例えば、 1, 4ーテトラメチレン ジイソシァネート、 1 , 5_ペンタメチレンジイソシァネート、 1 , 6—へキサメチレンジイソシ ァネート、 2, 2, 4—トリメチノレー 1, 6—へキサメチレンジイソシァネート、リジンジイソシァ ネ一ト、 3—イソシァネ一トメチル一3, 5, 5—トリメチルシクロへキシルイソシァネ一ト(イソ ホロンジイソシァネ—ト)、 1, 3—ビス(イソシァネ—トメチル)—シクロへキサン、 4, 4,ージ シクロへキシルメタンジイソシァネ一ト、トリレンジイソシァネ一ト、 4, 4 '—ジフエニルメタ ンジイソシァネート、 1, 5_ナフタレンジイソシァネート、トリジンジイソシァネート、キシリ レンジイソシァネート等を挙げることができる。
[0039] 更に、多価イソシァネートイ匕合物として、脂肪族、脂環族または芳香族の多価イソシ ァネ—トから誘導されるもの、例えばイソシァヌレ―ト変性多価イソシァネ—ト、ビュレット 変性多価イソシァネート、ウレタン変性多価イソシァネート等を挙げることができる。
[0040] 多価イソシァネ—トとしては、多価イソシァネ—トのイソシァネ—ト基をブロック化剤で ブロックしたブロック多価イソシァネートが好適に使用される。このブロック化剤としては 例えば、アルコール系、フエノール系、活性メチレン系、メルカプタン系、酸アミド系、酸 イミド系、イミダゾール系、尿素系、ォキシム系、アミン系、イミド系化合物、ピリジン系 化合物等があり、これらを単独あるいは、混合して使用してもよい。具体的なブロック 化剤としては、アルコ-ノレ系としてメタノール、エタノール、プロパノ -ル、ブタノ-ル、 2- ェチノレへキサノール、メチルセロソノレブ、ブチノレセロソノレブ、メチルカルピトール、ベン ジノレアルコール、シクロへキサノ一ル等、フエノ一ル系として、フエノ一ル、クレゾ一ル、ェ チルフエノール、ブチルフエノール、ノニルフエノール、ジノユルフェノール、スチレン化フ ェノール、ヒドロキシ安息香酸エステル等、活性メチレン系として、マロン酸ジメチル、 マロン酸ジェチル、ァセト酢酸メチル、ァセト酢酸ェチル、ァセチルアセトン等、メルカ プタン系として、ブチルメルカプタン、 ドデシルメルカプタン等、酸アミド系として、ァ セトァユリド、酢酸アミド、 ε—力プロラタタム、 δ—バレロラタタム、 γ _ブチロラタタム等
、酸イミド系として、コハク酸イミド、マレイン酸イミド、イミダゾ—ル系として、イミダゾ—ル 、 2—メチルイミダゾール、尿素系として、尿素、チォ尿素、エチレン尿素等、ォキシム 系として、ホルムアルドォキシム、ァセトアルドォキシム、ァセトォキシム、メチルェチ ノレケトォキシム、シクロへキサノンォキシム等、アミン系として、ジフエニルァミン、ァニ リン、力ルバゾール等、イミン系として、エチレンィミン、ポリエチレンイミン等、重亜硫 酸塩として、重亜硫酸ソーダ等、ピリジン系として、 2—ヒドロキシピリジン、 2—ヒドロキシ キノリン等が挙げられる。 [0041] 本発明において、硬化性成分の使用量は、ポリイミドシロキサン 100質量部に対し て 1一 50質量部、好ましくは 1一 40質量部、特に 2— 40質量部である。本発明のポリ イミドシロキサン溶液組成物では、エポキシ化合物のみか、又はエポキシ化合物とブ ロック多価イソシァネート化合物との組合せが好適に使用される。エポキシ化合物と ブロック多価イソシァネート化合物との組合せでは、ポリイミドシロキサン 100質量部 に対してエポキシ化合物を 0. 5— 30質量部及びブロック多価イソシァネート化合物 を 2 40質量部の組合せで使用するのが 130°C程度以下の低温で硬化することが できる上に、封止材料との密着性が良好であるので好適である。
[0042] 本発明のポリイミドシロキサン溶液組成物で用いられるシリコーン消泡剤は、ジメチ ルポリシロキサン、側鎖もしくは末端部に親水性基を有するポリシロキサン化合物、そ して微粉末状シリカを含むシリコーン消泡剤であり、一般に自己乳化型消泡剤と呼ば れる消泡剤に属する。なかでも好ましいのは、 50°以下、好ましくは 25°以下、の水滴 接触角を示すシリコーン消泡剤である。
[0043] 側鎖もしくは末端部に親水性基を有するポリシロキサン化合物の親水性基の代表 例としては、ポリオキシアルキレン基を挙げることができる。ポリオキシアルキレン基の 例としては、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基、 ポリオキシエチレンォキシプロピレン基(エチレンォキシドとプロピレンォキシドとの共 重合体基)を挙げることができる。ポリオキシエチレンォキシプロピレン基であることが 最も好ましい。
[0044] ポリオキシアルキレン基に代表される親水性基は、ポリシロキサン化合物のポリシ口 キサン主鎖の側鎖として、末端基として、あるいは側鎖と末端基として付けられていて よい。また、親水性基は、ポリシロキサン主鎖にアルキレン基などの連結基を介して 付けられていてもよい。
[0045] 側鎖もしくは末端部に親水性基を有するポリシロキサン化合物は、本発明で用いる シリコーン消泡剤に含まれるポリシロキサン成分 (ジメチルポリシロキサンと側鎖もしく は末端部に親水性基を有するポリシロキサン化合物)の約 50質量%、もしくはそれ以 上を占めることが好ましぐさらには、約 60 90質量%を占めることが好ましい。また
、本発明のシリコーン消泡剤には、例えば、フエニル基などの芳香族基で変性された ポリシロキサン化合物などの各種のポリシロキサン化合物を少量成分として含んでい てもよい。
[0046] 本発明で用いるシリコーン消泡剤は、微粉末状シリカを、ジメチルポリシロキサンと 側鎖もしくは末端部に親水性基を有するポリシロキサン化合物との合計量 100質量 部に対する量として 1一 20質量部含むことが好ましい。
[0047] なお、本発明で用いるシリコーン消泡剤は、たとえば、 KS530、 KS531、 KS538 ( レ、ずれも信越化学工業株式会社製)などの商品名で市販されてレ、る。
[0048] 本発明のポリイミドシロキサン溶液組成物は、微細な無機フィラーを含有することが 好ましい。微細な無機フイラ—としては、平均粒子径が 0. 001 15 x m、特に 0. 00 5— 10 z mのものが好ましい。微細なフイラ—としては、例えば微粉状シリカであるァ エロジル、タルク、マイ力、硫酸バリウムなどの微細無機フイラ—を好適に挙げることが できる。微細な無機フィラーとしては、ァエロジルとタルク、マイ力及び硫酸バリウムの うちの少なくとも一つからなる組合せ、特にァエロジルとタルクと硫酸バリウムとからな る組合せが好適に用レ、られる。
[0049] 微細な無機フイラ一はポリイミドシロキサン溶液組成物中において、スクリーン印刷 などによって塗膜を形成する時の粘度特性を良好に調整し、スズメツキ時のスズ潜り( 銅箔と絶縁膜との隙間にスズが侵入する現象、銅箔がえぐれて孔蝕となることもある) を好適に抑制するために有効である。
[0050] 微細な無機フイラ-の使用量は、ポリイミドシロキサン 100質量部に対して、合計で 2 0— 150質量部、特に 40— 125質量部であることが好適である。
更に、本発明のポリイミドシロキサン溶液組成物は、ブロック多価イソシァネートのブ ロック化剤を一定の温度以上で解離する解離触媒や、エポキシ基及び Z又はイソシ ァネート基がポリイミドシロキサンの極性基を含む基との硬化反応を促進する硬化促 進触媒からなる硬化触媒を含有することが好ましい。
[0051] ブロック多価イソシァネートの解離触媒としては、例えばジブチル錫ジラウレ—トなど や 3級ァミン類が例示できる。解離触媒の量はブロック多価イソシァネ—ト 100質量部 に対して 0. 01 25質量部程度特に 0. 1 15質量部程度が好ましい。
[0052] また、硬化促進触媒としては、 2—ェチルー 4ーメチルイミダゾールなどのイミダゾール 類や 3級ァミン類が例示できる。硬化促進触媒の量は、ブロック多価イソシァネ-ト 10 0質量部に対して約 0. 01— 25質量部、特に約 0. 1— 15質量部が好ましい。
[0053] 本発明のポリイミドシロキサン溶液組成物力 エポキシ化合物とブロック多価イソシ ァネートとを含有する場合には、解離触媒と硬化促進触媒との両方の作用を発揮す ることができる 3級ァミンを硬化触媒として含有させることが特に好ましい。
[0054] 3級ァミンとしては、例えば、 1 , 8—ジァザビシクロ [5. 4. 0]_7_ゥンデセン(DBU と略記することもある。以下同様)、 N, N—ジメチルベンジルァミン、 Ν, Ν, Ν,, Ν' - テトラメチルへキサンジァミン、トリエチレンジァミン (TEDA)、 2—ジメチルァミノメチル フエノール(DMP— 10)、 2, 4, 6—トリス(ジメチルアミノメチル)フエノール(DMP— 30 )、ジモルホリノジェチルエーテル(DMDEE)、 1, 4—ジメチルピペラジン、シクロへ キシルジメチルァミンなどを挙げることができる。
[0055] 特に、 1 , 8—ジァザビシクロ [5. 4. 0]— 7—ゥンデセン(DBU)、ジメチルベンジルァ ミン、そして N, N, N,, N,ーテトラメチルへキサンジァミンは、ブロックイソシァネート 力 ブロック化剤を適当な温度において解離し、且つ、ポリイミドシロキサンとエポキシ 化合物及び多価イソシァネート化合物との架橋反応を適当な速度に促進することが できるので、本発明のポリイミドシロキサン溶液組成物は、エポキシ化合物とブロック 多価イソシァネートの両方を含有することが好ましい。
[0056] 3級ァミンの使用量は、ポリシロキサン骨格を有する化合物 100質量部に対して、 0 . 5— 20質量部、好ましくは 1一 10質量部である。
[0057] 本発明のポリイミドシロキサン溶液組成物を構成する有機溶媒としては、ポリイミドシ ロキサンを調製するときの反応に使用した有機溶媒をそのまま使用することができる 力 好適には、含窒素系溶媒、例えば N, N—ジメチルァセトアミド、 N, N—ジェチル ァセトアミド、 N, N—ジメチルホルムアミド、 N, N—ジェチルホルムアミド、 N—メチルー 2—ピロリドン、 1 , 3—ジメチルー 2—イミダゾリジノン、 N—メチルカプロラタタムなど;含硫 黄原子溶媒、例えばジメチルスルホキシド、ジェチルスルホキシド、ジメチルスルホン 、ジェチルスルホン、へキサメチルスルホルアミドなど;含酸素溶媒、例えばフエノーノレ 系溶媒、例えばクレゾール、フエノール、キシレノ―ルなど;ジグライム系溶媒、例えばジ エチレングリコ—ルジメチルェ—テル(ジグライム)、トリエチレングリコーノレジメチルェ— テル(トリグライム)、テトラグライムなど;そしてアセトン、ァセトフエノン、プロピオフエノ ン、エチレングリコール、ジォキサン、テトラヒドロフランなどを挙げることができる。特 に、 N—メチルー 2_ピロリドン、 Ν,Ν—ジメチルスルホキシド、 Ν,Ν—ジメチルホルムアミ ド、 Ν, Ν—ジェチルホルムアミド、 Ν, Ν—ジメチルァセトアミド、 Ν, Ν—ジェチルァセト アミド、 γ _ブチロラタトン、トリエチレングリコ—ノレジメチルェ—テル、ジエチレングリコ— ルジメチルェ—テルなどを使用することができ、特にジエチレングリコーノレジメチルェ— テル (ジグライム)、トリエチレングリコ—ノレジメチルェ—テル(トリグライム)、テトラグラィ ムなどのジグライム系溶媒を好適に使用することができる。
[0058] さらに、本発明のポリイミドシロキサン溶液組成物においては、有機着色顔料、無機 着色顔料を所定量、例えばポリイミドシロキサン 100質量部に対して、 0. 1一 100質 量部程度使用することができる。
[0059] 本発明のポリイミドシロキサン溶液組成物は、ポリイミドシロキサン、エポキシ化合物 及び/又は多価イソシァネート化合物などの硬化性成分、前述のシリコーン消泡剤、 微細なフィラーおよび有機溶媒などの所定量を均一に、撹拌'混合することによって 容易に得ることができる。有機溶媒に混合させて溶液組成物にするにあたっては、ポ リイミドシロキサンの重合溶液をそのままでも、又その重合溶液を適当な有機溶媒で 希釈したものを使用してもよい。有機溶媒としては、前記ポリイミドシロキサンを得る際 に使用できる有機極性溶媒を挙げることができるが、沸点 140°C以上で 210°C以下 のものを使用することが好ましい。特に沸点 180°C以上、特に 200°C以上である有機 溶媒 (例えばトリグライムなど)を使用すると、溶媒の蒸発による散逸が極めて減少す るので、又その溶液組成物を使用するとスクリーン印刷などによって印刷をしやすく なる。有機溶媒は、ポリイミドシロキサン 100質量部に対して通常は、 60— 200質量 部程度使用する。
[0060] 本発明のポリイミドシロキサン溶液組成物は、特に限定するものではないが、室温( 25。C)での溶 f夜米占度力 S50一 10000ポィズ、特に 100一 1000ポィズ、更に 100一 60 0ボイズであることがスクリーン印刷などの作業性や溶液物性や得られる硬化絶縁膜 の特性上などを考慮すると好適である。
[0061] 本発明のポリイミドシロキサン溶液組成物は、フレキシブル配線基板などの基材上 にスクリーン印刷などの方法で良好に塗布でき、比較的低温で加熱処理することによ つて硬化絶縁膜を形成することができ、且つ得られた硬化絶縁膜は基材との密着性 が優れ、ソリが発生し難ぐ耐熱性、耐溶剤性、耐薬品性 (スズ潜りが小さい)、耐屈 曲性、電気特性が優れるのものであり、特に溶液組成物として泡抜け性 (気泡の排出 の容易さ)が良好 (後述の測定方法で、泡抜け時間が好ましくは 400秒以下、特に 1 00秒以下)であるから、スクリーン印刷を用いた塗布などによって硬化絶縁膜を形成 する際の作業性を著しく改善することができ、且つ前記溶液組成物を配線基板に塗 布後、加熱処理して得られた硬化絶縁膜の周辺部で接着不良の原因になるハジキ が抑制されるため(後述の測定方法でハジキ距離が好ましくは 100 μ m以下、特に 3 0 μ m以下)、異方性導電フィルム又は異方性導電ペーストに対するアウターリード部 の親和性 (濡れ)が維持されて、信頼性が高い電気的接合が可能となる。
[0062] 次に本発明のポリイミドシロキサン溶液組成物を用いる配線基板の実装方法につ いて説明する。
[0063] 本発明の配線基板の実装方法の代表的な態様は、(1)表面に電気回路となる配 線が形成された絶縁基板上に配線を部分的に覆うようにポリイミドシロキサン溶液組 成物塗布膜を形成する工程、 (2)該ポリイミドシロキサン溶液組成物塗布膜を加熱し て硬化絶縁膜とする工程、次レ、で(3)硬化絶縁膜で覆われてレ、なレ、配線部にて異 方性導電フィルム (ACF)又は異方性導電ペースト (ACP)によって電気的接合部を 形成する工程を含む。本発明の実装方法においては、硬化絶縁膜を本発明のポリイ ミドシロキサン溶液組成物を用いて製造する点以外については、従来周知の配線基 板の実装方法に基づくものである。
[0064] 図 1は、インナーリード部が ICチップ部品などのチップ部品に接合され、アウターリ ード部が ACFまたは ACPによって液晶装置の電極と接合されて実装が行なわれた 配線基板の実施態様の一例を示す概略の断面図である。
このような配線基板の実装は、概略、次の手順によっておこなわれる。
(1)ポリイミドフィルムの絶縁基板 1の表面に電気回路配線 2が形成されている配線 基板を準備する。必要に応じて電気回路配線 2の表面はスズメツキされる。
(2)配線基板の表面の所定部分に、ポリイミドシロキサン溶液組成物をスクリーン印 刷によって塗布し、得られた塗膜を 50°C— 210°Cにて加熱処理して、硬化絶縁膜 3 を形成する。この加熱処理は、通常は 160°C程度の温度で行なわれる力 既にスズメ ツキされた場合には 120°C程度の比較的低い温度で加熱処理が行なわれる。
(3)硬化絶縁膜で覆われていない配線の表面にスズメツキ層 4を形成する。既にスズ メツキされた場合はこの工程が省略される場合もある。
(4)チップ部品 5を、硬化絶縁膜で覆われていない配線部(インナーリード部)に金バ ンプ 6によって電気的に接合する。
(5)ポリイミドフィルムの絶縁基板 1とチップ部品 5との隙間にエポキシ樹脂などの硬 化性樹脂からなるアンダーフィル材 7を注入し、通常 150°C 160°C程度の温度で 加熱処理して硬化させる。
(6)液晶パネルの基板 10の電極 9を、 ACFまたは ACP8を用いて、配線基板の硬化 絶縁膜で覆われていない配線部(アウターリード部)に熱圧着して接合する。
実施例
[0065] 以下の実施例において「泡抜け時間」は、ポリイミドシロキサン糸且成物をスクリーンマ スク(SUS # 180、乳斉 IJ厚 15 /i m、メッシュ厚 101 μ m)を用レ、、 1cm X lcm枠をス キージ(硬度: 70、材質:シリコーンゴム)にてポリイミドフィルム(ユーピレックス 25S) 上に手塗り印刷し、印刷面を 10倍の光学顕微鏡にて透過光下に観察し、全ての泡 が消滅するまでの時間を測定することにより調べた。測定は 3回行いその平均値を泡 抜け時間として記載した。泡抜け時間が短レ、ことは、泡抜け性が良いことを意味する
[0066] 「ハジキ」の評価では、スクリーンマスク(SUS # 180、乳剤厚 15 ^ 111、メッシュ厚 10 l z m)とスキージ (硬度: 70、材質:シリコーンゴム)とを用いて、銅箔 (福田金属箔粉 工業 (株)製 CF— T8の鏡面)上にポリイミドシロキサン溶液組成物を塗布し、次いで 1 20°C (もしくは 160°C)の温度で 1時間加熱処理して硬化させた後、銅箔上にスズメッ キし、その後 150°Cの温度で 2時間熱処理してハジキ評価用サンプルを作製した。 ハジキの評価は、和光純薬工業 (株)製のぬれ張力試験用混合液 No. 35. 0を用 レ、、これをスポイトにて硬化絶縁膜際から lcmの位置に 0. lmL垂らし、次いで、スポ イトの先でぬれ張力試験用混合液を硬化膜際に近づけて、硬化膜の際を挟んで硬 化絶縁膜表面の側から銅箔表面を濡らす。そして、その後、硬化膜の際からぬれ張 力試験用混合液がはじかれた銅箔表面領域の距離を測定した。はじかれた距離が 大きいほどハジキの程度が大きい。
[0067] ACF密着強度の測定は次の方法により実施した。まず、 ACF密着強度測定用サ ンプルをハジキ評価用サンプルの作成方法と同じ方法により作成した。次いで、別の 銅箔 (福田金属箔粉工業 (株)製 CF—T8の鏡面)上に ACF (ソニーケミカル (株)製 F P1708E)を 60°Cで圧着した。次に、 ACF密着強度測定用サンプルの硬化膜の隣 接する位置に、 ACFを圧着した銅箔の ACF部を配置し、銅箔の上から 190°C、 10k g/cm2の圧力で 10秒間圧着して、剥離試験用の積層体を得た。次いで、この積層 体を 90°剥離により剥離して、剥離強度を測定した。
[0068] 水滴接触角は、次の方法により測定した。銅箔 (福田金属箔粉工業 (株)製 CF— T8 の鏡面)の表面に消泡剤を薄く塗布し、この塗布面に精製水の水滴を垂らし、その水 滴接触角を水滴接触角測定装置を用いて測定した。測定は 5回実施し、その平均値 を水滴接触角として記載した。
[0069] 実施例と比較例で用いた材料(消泡剤以外)は次の通りである。
〔エポキシィ匕合物〕
(1)ェピコート 828 :ジャパンエポキシレジン(株)製、エポキシ樹脂、エポキシ当量: 190
(2)ェピコート 157S70 :ジャパンエポキシレジン(株)製、エポキシ樹脂、エポキシ 当量: 210
〔多価イソシァネートィヒ合物〕
B—882N :タケネート B_882N、三井武田ケミカル(株)製、 1, 6—へキサメチレンジ イソシァネートブロック化体、ブロック化剤:メチルェチルケトォキシム
〔硬化触媒〕
2E4MZ :四国化成工業(株)製、 2—ェチルー 4—メチルイミダゾール
DBU :アルドリッチ製、 1, 8—ジァザビシクロ [5. 4. 0]— 7—ゥンデセン
〔無機フィラー〕
ァエロジノレ # 50 :日本ァェロジル(株)製、平均粒径 30nm ァエロジノレ # 130 :日本ァエロジル(株)製、平均粒径 16nm
タルク P_3 :日本タルク(株)製タルク、ミクロエース P_3、平均粒径 5· 1 /i m 硫酸バリウム B— 30 :堺ィ匕学工業 (株)製硫酸ノくリウム、平均粒径 0· 3 μ ΐη [0070] 〔参考例 1〕
ポリイミドシロキサン溶液の製造:
容量 500mLのガラス製フラスコに、 2, 3, 3,, 4,—ビフエニルテトラカルボン酸二無 水物 47. lg (0. 16モル)、溶媒のメチルトリグライム (TG) 100gを仕込み、窒素雰囲 気下、 180°Cで加熱撹拌した。 ひ, ω—ビス(3—ァミノプロピル)ポリジメチルシロキサ ン(ァミノ当量: 460) 125. lg (0. 136モノレ)、 TG40gをカロえ、 180。Cで 60分力ロ熱携 拌した。さらにこの反応溶液に 3, 3 '—カルボキシー 4, 4 'ージアミノジフエニルメタン( MBAA) 6. 9g (0. 024モノレ)及び TG39gをカロえ、 180°Cで 10時間加熱撹拌した後 、濾過を行った。得られたポリイミドシロキサン反応溶液は、ポリマー固形分濃度 51質 量%、 77 が 0. 20の溶液であった。イミド化率は実質的に 100%であった。
inh
[0071] [実施例 1 ]
ガラス製容器に、参考例 1で得たポリイミドシロキサン溶液を 40. 0g、エポキシ化合 物のェピコート 828を 3 · 7g (ポリイミドシロキサン溶液 100質量部に対して 9 · 25質量 部、以下同じ)、硬化触媒の 2E4MZを 0. 08g (0. 2質量部)、シリコーン系消泡剤の KS531 (信越化学工業 (株)製、 自己乳化型シリコーン消泡剤、ジメチルポリシロキサ ン、ジメチルポリシロキサンより多い量の側鎖にポリエチレンォキシ 'プロピレンォキシ 基が付いて親水性とされたポリシロキサン化合物、そして微粉末状のシリカを含有、 水滴接触角: 18° )を 0. 9g (2. 25質量部)、無機充填材のァエロジノレ # 50を 3. 9g ( 9. 75質量部)、タルクのミクロエース P—3を 4. 8g ( 12. 0質量部)、そして硫酸バリゥ ム B— 30を 14. 5g (36. 25質量部)を仕込み、 25°Cで 2時間撹拌して均一に混合し て、本発明のポリイミドシロキサン組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)とハジキ距離( μ m)の測定結果 を表 1に示す。
[0072] [実施例 2]
エポキシ化合物のェピコート 828をェピコート 157S 70に変え、そして硬化触媒の 2 E4MZの使用量を 0· 25質量部(ポリイミドシロキサン溶液 100質量部に対する相対 量、以下同じ)に変えた以外は、実施例 1と同様な操作を行ない、本発明のポリイミド シロキサン組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)、ハジキ距離( μ m)そして ACF 剥離強度 (g/cm)の測定結果を表 1に示す。
[0073] [実施例 3]
エポキシ化合物のェピコート 157S70の使用量を 1質量部(ポリイミドシロキサン溶 液 100質量部に対する相対量、以下同じ)に変え、多価イソシァネートイ匕合物の B_8 82Nを 10質量部追加し、硬化触媒として 0. 1質量部の 2E4MZと 0. 4質量部の DB Uを用い、無機フイラ一として、 2質量部のァエロジル # 50、 8. 25質量部のァエロジ ノレ # 130、 22. 75質量音のミクロエース P_3、そして 11. 25質量きの硫酸ノ リウム B —30を用いた以外は、実施例 2と同様な操作を行ない、本発明のポリイミドシロキサン 組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)とハジキ距離( μ m)の測定結果 を表 1に示す。
[0074] [実施例 4]
シリコーン系消泡剤の KS531を KS530 (信越化学工業 (株)製、自己乳化型シリコ 一ン消泡剤、ジメチルポリシロキサン、ジメチルポリシロキサンより多い量の側鎖にポリ エチレンォキシ ·プロピレンォキシ基が付いて親水性とされたポリシロキサンィ匕合物そ して微粉末状のシリカを含有、水滴接触角: 13° )に変えた以外は、実施例 2と同様な 操作を行ない、本発明のポリイミドシロキサン組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)、ハジキ距離( μ m)そして ACF 剥離強度 (g/cm)の測定結果を表 1に示す。
[0075] [実施例 5]
シリコーン系消泡剤の KS531を KS_538 (信越化学工業 (株)製、 自己乳化型シリ コーン消泡斉' J、ジメチルポリシロキサン、ジメチルポリシロキサンより多い量の側鎖に ポリエチレンォキシ ·プロピレンォキシ基が付いて親水性とされたポリシロキサン化合 物そして微粉末状のシリカを含有、水滴接触角: 17° )に変えた以外は、実施例 2と同 様な操作を行ない、本発明のポリイミドシロキサン組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)、ハジキ距離( μ m)そして ACF 剥離強度(g/cm)の測定結果を表 1に示す。
[0076] [比較例 1]
シリコーン系消泡剤の KS531を DB— 100 (ダウ'コーユング 'アジア(株)製、ジメチ ルポリシロキサンと微粉末状のシリカを含有、水滴接触角: 66° )に変えた以外は、実 施例 2と同様な操作を行ない、比較用のポリイミドシロキサン組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)、ハジキ距離( μ m)そして ACF 剥離強度 (g/cm)の測定結果を表 1に示す。
[0077] [比較例 2]
シリコーン系消泡剤の KS531を KS510 (信越化学工業 (株)製、オイルコンパゥン ド型シリコーン消泡剤、側鎖に炭素原子数 10以上のアルキル基を有するポリシロキ サンィ匕合物と微粉末状のシリカを含有、水滴接触角: 94° )に変えた以外は、実施例 2と同様な操作を行ない、比較用のポリイミドシロキサン組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)、ハジキ距離( μ m)そして ACF 剥離強度(g/cm)の測定結果を表 1に示す。
[0078] [比較例 3]
シリコーン系消泡剤の KS531を X— 50-1041 (信越化学工業(株)製、ェマルジョ ン型シリコーン消泡剤、ジメチルポリシロキサン、微粉末状のシリカそして乳化剤を含 有、水滴接触角: 19° )に変えた以外は、実施例 2と同様な操作を行ない、比較用の ポリイミドシロキサン組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)、ハジキ距離( μ m)そして ACF 剥離強度 (g/cm)の測定結果を表 1に示す。
[0079] [比較例 4]
シリコーン系消泡剤の KS531を KM—981 (信越化学工業(株)製、ェマルジヨン型 シリコーン消泡剤、ジメチルポリシロキサン、微粉末状のシリカそして乳化剤を含有、 水滴接触角: 30° )に変えた以外は、実施例 2と同様な操作を行なレ、、比較用のポリ イミドシロキサン組成物を得た。 このポリイミドシロキサン組成物の泡抜け時間(秒)、ハジキ距離( μ m)そして ACF 剥離強度(g/cm)の測定結果を表 1に示す。
[0080] [比較例 5]
シリコーン系消泡剤の KS531を金属石鹼系消泡剤のノプコ NXZ (サンノプコ(株) 製、脂肪酸金属塩を含有、水滴接触角: 10° )に変えた以外は、実施例 2と同様な操 作を行ない、比較用のポリイミドシロキサン組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)、ハジキ距離( μ m)そして ACF 剥離強度 (g/cm)の測定結果を表 1に示す。
[0081] [比較例 6]
シリコーン系消泡剤の KS531をアクリルビュルエーテル系消泡剤のフローレン AC -326F (共栄社化学 (株)製、水滴接触角:42° )に変えた以外は、実施例 2と同様な 操作を行ない、比較用のポリイミドシロキサン組成物を得た。
このポリイミドシロキサン組成物の泡抜け時間(秒)、ハジキ距離( μ m)そして ACF 剥離強度(g/cm)の測定結果を表 1に示す。
[0082] 表 1 泡抜け時間 ハジキ距離 ACF剥離強度 実施例 1 38秒 0 i m ——
実施例 2 47秒 0 i m 780g/cm
実施例 3 57秒 0 i m ——
実施例 4 37秒 0 μ τα 740g/cm
実施例 5 24秒 0 μ τα 750g/ cm 比較例 1 25秒 500 μ m 740g/ cm
比較例 2 142秒 400 x m 280g/cm
比較例 3 26秒 410 z m 290g/cm
比較例 4 28秒 370 z m 340g/cm 比較例 5 > 600秒 O ^ m 770gZcm
比較例 6 > 600秒 Ο μ τη 780g/cm 図面の簡単な説明
[0083] [図 1]インナーリード部がチップ部品に接合され、アウターリード部が ACF又は ACP によって液晶装置の電極と接合されて実装された配線基板の概略の断面図である。 符号の説明
[0084] 1 ポリイミドフィルムかなる絶縁基板
2 電気回路配線
3 硬化膜 (保護膜)
4 スズメツキ
5 ICチップ部品
6 金バンプ
7 アンダーフィル
8 異方性導電フィルム又は異方性導電ペースト
9 液晶パネル基板の電極
10 液晶パネル基板

Claims

請求の範囲
[I] 有機溶媒中に、有機溶媒可溶性ポリイミドシロキサン、エポキシ化合物および多価 イソシァネートイ匕合物からなる群より選ばれる少なくとも一種の硬化性成分、そしてシ リコーン消泡剤が含まれてなり、該シリコーン消泡剤力 s、ジメチルポリシロキサン、側 鎖もしくは末端部に親水性基を有するポリシロキサン化合物、そして微粉末状シリカ を含むことを特徴とするポリイミドシロキサン溶液組成物。
[2] 有機溶剤可溶性ポリイミドシロキサン 100質量部に対して、硬化性成分を 1一 50質 量部、そしてシリコーン消泡剤を 1一 10質量部含む請求項 1に記載のポリイミドシロキ サン溶液組成物。
[3] 該シリコーン消泡剤が、側鎖もしくは末端部に親水性基を有するポリシロキサンィ匕 合物をジメチルポリシロキサンより多い量にて含むものである請求項 1に記載のポリイ ミドシロキサン溶液組成物。
[4] 該シリコーン消泡剤が、ジメチルポリシロキサンと側鎖もしくは末端部に親水性基を 有するポリシロキサンィ匕合物との合計量 100質量部に対して、微粉末状シリカを 1一 20質量部を含む請求項 2に記載のポリイミドシロキサン溶液組成物。
[5] 側鎖もしくは末端部に親水性基を有するポリシロキサン化合物の親水性基がポリオ キシアルキレン基である請求項 1に記載のポリイミドシロキサン溶液組成物。
[6] ポリオキシアルキレン基が、エチレンォキシドとプロピレンォキシドとの共重合体から なる基である請求項 5に記載のポリイミドシロキサン溶液組成物。
[7] さらに、無機フィラーを含む請求項 1に記載のポリイミドシロキサン溶液組成物。
[8] さらに、硬化触媒を含む請求項 1に記載のポリイミドシロキサン溶液組成物。
[9] 該シリコーン消泡剤が 50°以下の水滴接触角を示す請求項 1に記載のポリイミドシ ロキサン溶液組成物。
[10] 表面に電気回路配線部が形成されている配線基板の表面に該電気回路配線部を 部分的に被覆するように請求項 1に記載のポリイミドシロキサン溶液組成物を塗布し て塗布膜を形成し、次レヽで該ポリイミドシロキサン溶液組成物塗布膜を加熱して絶縁 硬化膜とすることからなる表面に絶縁硬化膜が形成された配線基板の製造方法。
[II] 表面に電気回路配線部が形成されている配線基板の表面に該電気回路配線部を 部分的に被覆するように請求項 1に記載のポリイミドシロキサン溶液組成物を塗布し て塗布膜を形成する工程、該ポリイミドシロキサン溶液組成物塗布膜を加熱して絶縁 硬化膜とする工程、そして上記配線基板表面上の電気回路配線部の絶縁硬化膜で 被覆されていない領域に異方性導電性材料を介して電子部品を接続することからな る電子部品の配線基板への実装方法。
PCT/JP2005/002749 2004-02-20 2005-02-21 ポリイミドシロキサン溶液組成物 WO2005080505A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/589,982 US7491427B2 (en) 2004-02-20 2005-02-21 Polyimidesiloxane solution composition
JP2006510270A JP4582090B2 (ja) 2004-02-20 2005-02-21 ポリイミドシロキサン溶液組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004044530 2004-02-20
JP2004-044530 2004-02-20

Publications (1)

Publication Number Publication Date
WO2005080505A1 true WO2005080505A1 (ja) 2005-09-01

Family

ID=34879348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002749 WO2005080505A1 (ja) 2004-02-20 2005-02-21 ポリイミドシロキサン溶液組成物

Country Status (5)

Country Link
US (1) US7491427B2 (ja)
JP (1) JP4582090B2 (ja)
KR (1) KR100972323B1 (ja)
CN (1) CN100569857C (ja)
WO (1) WO2005080505A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173266A (ja) * 2005-12-19 2007-07-05 Ube Ind Ltd 配線基板の実装方法およびポリイミドシロキサン溶液組成物
JP2009540104A (ja) * 2006-06-15 2009-11-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電子用途用の疎水性組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378523B2 (en) * 2005-08-25 2008-05-27 National Starch And Chemical Investment Holding Corporation Quinolinols as fluxing and accelerating agents for underfill compositions
TWI465525B (zh) * 2008-06-26 2014-12-21 Ube Industries 含有顏料之硬化性樹脂溶液組成物的製造方法、顏料分散液、及含有顏料之硬化性樹脂溶液組成物
KR101720819B1 (ko) * 2009-08-18 2017-03-28 우베 고산 가부시키가이샤 폴리이미드 실록산 용액 조성물의 제조 방법, 및 폴리이미드 실록산 용액 조성물
WO2018022417A1 (en) 2016-07-28 2018-02-01 3M Innovative Properties Company Segmented silicone polyamide block copolymers and articles containing the same
WO2018022680A1 (en) 2016-07-28 2018-02-01 3M Innovative Properties Company Segmented silicone polyamide block copolymers and articles containing the same
CN108912968B (zh) * 2018-08-20 2021-02-26 无锡创彩光学材料有限公司 一种仿木复合漆及其制备方法
CN112770488B (zh) * 2021-01-20 2022-02-18 东莞市玮孚电路科技有限公司 一种电路板及其制造方法
CN113717525A (zh) * 2021-09-01 2021-11-30 大同共聚(西安)科技有限公司 一种含硅聚酰亚胺树脂溶液组合物的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231424A (ja) * 1997-02-18 1998-09-02 Nippon Steel Chem Co Ltd 電子材料用樹脂溶液組成物
JP2001302913A (ja) * 2000-04-21 2001-10-31 Unitika Ltd ポリイミド前駆体溶液及びそれから得られるポリイミド被膜
JP2002012664A (ja) * 2000-06-29 2002-01-15 Ube Ind Ltd ポリイミド重合体の製造法、ポリイミド系絶縁膜用組成物
JP2003192910A (ja) * 2001-12-27 2003-07-09 Hitachi Chem Co Ltd 樹脂組成物及びそれを含む被膜形成材料
JP2004124015A (ja) * 2002-10-07 2004-04-22 Hitachi Chem Co Ltd 樹脂組成物及びそれを含む被膜形成材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139260A (ja) * 1990-09-28 1992-05-13 Toshiba Silicone Co Ltd 樹脂組成物およびその製造方法
JP3063935B2 (ja) * 1992-05-12 2000-07-12 宇部興産株式会社 接着性、耐熱性および耐カ−ル性を兼ね備えたポリイミドシロキサン組成物
JP4228400B2 (ja) * 1997-02-05 2009-02-25 日本メクトロン株式会社 接着剤組成物溶液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231424A (ja) * 1997-02-18 1998-09-02 Nippon Steel Chem Co Ltd 電子材料用樹脂溶液組成物
JP2001302913A (ja) * 2000-04-21 2001-10-31 Unitika Ltd ポリイミド前駆体溶液及びそれから得られるポリイミド被膜
JP2002012664A (ja) * 2000-06-29 2002-01-15 Ube Ind Ltd ポリイミド重合体の製造法、ポリイミド系絶縁膜用組成物
JP2003192910A (ja) * 2001-12-27 2003-07-09 Hitachi Chem Co Ltd 樹脂組成物及びそれを含む被膜形成材料
JP2004124015A (ja) * 2002-10-07 2004-04-22 Hitachi Chem Co Ltd 樹脂組成物及びそれを含む被膜形成材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173266A (ja) * 2005-12-19 2007-07-05 Ube Ind Ltd 配線基板の実装方法およびポリイミドシロキサン溶液組成物
JP2009540104A (ja) * 2006-06-15 2009-11-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電子用途用の疎水性組成物

Also Published As

Publication number Publication date
KR20070004734A (ko) 2007-01-09
US20070185286A1 (en) 2007-08-09
CN100569857C (zh) 2009-12-16
JP4582090B2 (ja) 2010-11-17
KR100972323B1 (ko) 2010-07-26
US7491427B2 (en) 2009-02-17
CN1942524A (zh) 2007-04-04
JPWO2005080505A1 (ja) 2007-10-25

Similar Documents

Publication Publication Date Title
JP5321560B2 (ja) ポリブタジエンを含んだ変性ポリイミド樹脂、その組成物及び硬化絶縁膜
JP5135698B2 (ja) ポリカーボネートを含んだ変性ポリイミド樹脂、その組成物及び硬化絶縁膜
KR100960842B1 (ko) 전자 장치 패키징 및 경화성 수지 조성물
JP4211569B2 (ja) ポリイミドシロキサン絶縁膜用組成物、絶縁膜、および、絶縁膜の形成方法
JP4238452B2 (ja) ポリイミド系絶縁膜用組成物、絶縁膜および絶縁膜の形成法
JP4650176B2 (ja) ポリブタジエンを含んだ変性ポリイミド樹脂、その組成物及び硬化絶縁膜
JP4107215B2 (ja) ポリシロキサン絶縁膜用組成物、絶縁膜、及び、絶縁膜の形成方法
JP4374742B2 (ja) ポリイミド重合体の製造法、ポリイミド系絶縁膜用組成物
JP4582090B2 (ja) ポリイミドシロキサン溶液組成物
JP4701914B2 (ja) 耐燃性が改良されたテープキャリアパッケージ用柔軟性配線板
JP4622480B2 (ja) ポリイミドシロキサン絶縁膜用組成物、絶縁膜、および、絶縁膜の形成方法
JP5659783B2 (ja) フレキシブル配線板の実装方法及びポリイミドシロキサン樹脂組成物
JP5017894B2 (ja) 変性ポリイミド樹脂組成物
JP4218282B2 (ja) ポリイミドシロキサン系絶縁膜用組成物、絶縁膜、および、絶縁膜の形成方法
JP4915400B2 (ja) 電子部品の実装方法
JP4872335B2 (ja) 配線基板の実装方法
JP4654721B2 (ja) ポリイミドシロキサン組成物
JP5167834B2 (ja) 電子部品の実装方法
JP4273777B2 (ja) 絶縁膜用組成物、絶縁膜、及び、絶縁膜の形成方法
JP5439906B2 (ja) 熱硬化性樹脂組成物
JP2011134939A (ja) プリント配線板、及びシロキサン系樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510270

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10589982

Country of ref document: US

Ref document number: 2007185286

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067019238

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580011595.X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067019238

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10589982

Country of ref document: US