[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005052462A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2005052462A1
WO2005052462A1 PCT/JP2004/017594 JP2004017594W WO2005052462A1 WO 2005052462 A1 WO2005052462 A1 WO 2005052462A1 JP 2004017594 W JP2004017594 W JP 2004017594W WO 2005052462 A1 WO2005052462 A1 WO 2005052462A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air conditioner
wind direction
temperature
condition
Prior art date
Application number
PCT/JP2004/017594
Other languages
English (en)
French (fr)
Inventor
Masaki Ohtsuka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP04819447A priority Critical patent/EP1707892B1/en
Priority to AU2004292624A priority patent/AU2004292624B2/en
Publication of WO2005052462A1 publication Critical patent/WO2005052462A1/ja
Priority to EGNA2006000487 priority patent/EG24392A/xx
Priority to HK07108007.7A priority patent/HK1103788A1/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0616Outlets that have intake openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively

Definitions

  • the present invention relates to an air conditioner for conditioning air taken in a housing and sending the air indoors.
  • FIG. 28 shows the behavior of the airflow in the room during the heating operation by the air conditioner.
  • the indoor unit 1 of the air conditioner is installed above the side wall W1.
  • an outlet (not shown) for sending out conditioned air is provided.
  • Fig. 29 shows the behavior of airflow in a room in a stable state where the room temperature is stable within a predetermined temperature with respect to the set temperature.
  • the conditioned air that is delivered at a wind speed of “weak” in a substantially downward direction as indicated by arrow B ′ as shown by the arrow B ′ flows through the living room R and returns to the suction port 4.
  • the wind speed is increased again. As a result, the room temperature is maintained at the set temperature!
  • Patent Document 1 discloses an air conditioner capable of changing the direction of a wind direction plate and sending out conditioned air from a blow-out port substantially downward.
  • Patent Document 1 Patent No. 3311932
  • FIGS. 30 and 31 show the temperature distribution in the room when the heating operation is performed at the wind speed "strong” (FIG. 28) in the rising state and at the wind speed "weak” (FIG. 29) in the stable state, respectively.
  • the set room temperature is 28 ° C
  • the size of the room R is 6 tatami mats (height 2400mm, width 3600mm, depth 2400mm). A total of 48 points were measured at the center cross section of the room R indicated by the dashed-dotted line D in Figs.
  • a part of the conditioned air sent out from the indoor unit 1 rises as shown by an arrow B ", and is immediately taken into the indoor unit 1 without circulating in the living room R.
  • the air around the indoor unit 1 is overheated as shown in Fig. 30 and Fig. 31.
  • a so-called warm air pool E is generated, which causes a problem that air conditioning efficiency is reduced.
  • An object of the present invention is to provide an air conditioner and an air conditioning method capable of improving comfort and air conditioning efficiency. Means for solving the problem
  • the present invention performs heating operation by attaching to a wall surface in a room, harmony of air taken in by a suction rocker, and sending out conditioned air with a variable outlet air direction.
  • the air conditioner is characterized in that the wind direction of the conditioned air can be changed between a substantially horizontal direction or a front upper direction and a substantially directly lower direction or a rear lower direction based on the operating condition of the air conditioner or the indoor air conditioning condition.
  • the air conditioner when the air conditioner starts the heating operation, the temperature of the air taken in from the suction port is increased and the air outlet force is sent upward, for example, forward.
  • the operating condition of the air conditioner or the air conditioning condition in the room changes, conditioned air is sent out, for example, downward and rearward.
  • the operating conditions of the air conditioner that changes the wind direction include the temperature of the air sent from the air conditioner, the temperature of the indoor heat exchanger allocated to the indoor unit, the air volume of the air sent from the air conditioner, and the refrigeration cycle. This includes the operating frequency of the operating compressor, the current consumption and power consumption of the air conditioner, and the amount of air taken into the outdoor unit.
  • indoor air conditioning conditions that change the wind direction include indoor temperature, indoor humidity, the degree of indoor air purification based on odor components and the amount of dust, and indoor ion concentration.
  • the present invention is characterized in that in the air conditioner having the above-described configuration, the wind direction of the conditioned air is further changed to a substantially directly downward direction and a rearward downward direction based on the operating condition of the air conditioner or the indoor air conditioning condition.
  • the conditioned air is sent from the air outlet, for example, upward and forward.
  • the operating condition of the air conditioner or the indoor air conditioning condition changes, conditioned air is sent out, for example, downward and rearward.
  • the operating condition of the air conditioner or the air conditioning condition in the room changes, the conditioned air is sent from the air outlet, for example, almost directly downward.
  • the present invention is characterized in that in the air conditioner having the above-described configuration, the wind direction of the conditioned air is further changed to a substantially downward direction and a forward downward direction based on the operating condition of the air conditioner or the indoor condition condition. And according to this configuration, when the heating operation is started, the conditioned air is sent from the air outlet, for example, upward and forward. When the operating condition of the air conditioner or the air conditioning condition in the room changes, the conditioned air is sent out, for example, almost directly downward. Furthermore, when the operating condition of the air conditioner or the indoor air conditioning condition changes, the outlet For example, conditioned air is delivered downward and forward.
  • the wind direction of the conditioned air is changed to a substantially horizontal direction or a front upper direction and a substantially straight direction or a rear lower direction.
  • the air direction of the conditioned air can be changed to a substantially horizontal direction or an upper front, and a lower front.
  • the conditioned air is sent, for example, upward and forward from the outlet.
  • the conditioned air is sent out, for example, downward and rearward. If the room is large, the outlet air force, for example, conditioned air is sent upward and forward.
  • the conditioned air is sent forward and downward at the outlet force.
  • the present invention is characterized in that in the air conditioner having the above configuration, the wind speed of the conditioned air is varied based on the operation condition of the air conditioner or the indoor condition condition.
  • the conditioned air is sent from the air outlet, for example, upward and forward.
  • the operating condition of the air conditioner or the indoor air conditioning condition changes, conditioned air is sent out, for example, downward and rearward.
  • the conditioned air is sent out from the air outlet, for example, at an increased wind speed and downward and rearward.
  • the present invention is characterized in that, in the air conditioner having the above-described configuration, the flow rate of conditioned air is varied based on the operating condition of the air conditioner or the indoor condition.
  • the conditioned air is sent from the air outlet, for example, upward and forward.
  • conditioned air is sent out, for example, downward and rearward.
  • the conditioned air is sent downward from the air outlet, for example, by lowering the air volume.
  • the wind direction of the conditioned air is set to be substantially horizontal or upward.
  • the wind direction of the conditioned air is set to be almost directly downward or backward, and the operating condition of the air conditioner is changed.
  • the indoor air-conditioning condition is the third condition, the wind direction of the conditioned air is more forward than in the second condition.
  • the present invention provides the air conditioner having the above-described configuration, wherein the first condition is satisfied when the blowing temperature is lower than a predetermined value, and the second condition is that the blowing temperature is higher than the predetermined value and the room temperature rises. It is characterized by the fact that the force is satisfied in the rising state, and the third condition consists of the stable state in which the room temperature is stable.
  • the conditioned air when the blowing temperature is low, the conditioned air is sent substantially horizontally or forward and upward. For example, if the blowout temperature does not feel cold even if the blowout temperature is directly applied, but reaches a predetermined temperature and the room temperature rises quickly, the conditioned air is sent substantially downward or rearward downward. Assuming that the room temperature becomes stable within a predetermined temperature with respect to the set temperature, the conditioned air is sent, for example, slightly downward and forward.
  • the present invention is characterized in that the air conditioner having the above-described configuration is provided with a prohibiting means for prohibiting the sending of air in a downward rearward direction or a substantially downward direction.
  • the wind direction of the conditioned air is varied based on the operating condition of the air conditioner or the indoor air conditioning condition, so that the user is prevented from being hit by the warm wind. Comfort can be improved by preventing pleasure. Also, when the room temperature rises, high-temperature air is sent downward and downward at the outlet of the outlet to perform quick air conditioning, and it is easy to change the wind direction, wind speed and air volume while the room temperature is stable and stable. Comfort can be improved.
  • the air outlet force is the temperature of the air to be sent out, the temperature of indoor heat exchange, the operating frequency of the compressor, the current consumption or power consumption of the air conditioner, or the air outlet. Sucked
  • the wind direction is varied based on the operating condition of the air conditioner, such as the amount of air flowing through the air conditioner, it is possible to reduce the amount of high-temperature air hitting the user by, for example, sending conditioned air having a high blowing temperature to the rear. Therefore, the discomfort of the user can be further reduced.
  • the wind direction is varied based on the blow-out force and the blown-out air volume, for example, when the wind volume is large, the wind direction is sent downward and downward to prevent discomfort to the user. Heating can be done efficiently. Further, when the air volume is small, the conditioned air is sent forward to prevent the reaching distance from being shortened, and the room can be heated to every corner.
  • the wind direction, wind speed, and air volume are varied based on indoor air conditioning such as indoor temperature, indoor humidity, indoor ion concentration, and indoor cleanliness.
  • indoor air conditioning such as indoor temperature, indoor humidity, indoor ion concentration, and indoor cleanliness.
  • the conditioned air is sent further rearward to greatly agitate the air in the entire room, and the harmony of the air is quickly increased to every corner of the room. Can be enhanced.
  • the air in the entire room can be adjusted in a short time.
  • the difference between the degree of harmony in the room and the degree of harmony set by the user is small, the air can be sent right below to reduce unnecessary backward airflow, and air conditioning can be performed efficiently.
  • the prohibiting means for prohibiting the sending of air in a downward rearward direction or a substantially downward direction is provided, when there is a wall or an obstacle below the indoor unit, the air is sent downward. It is possible to prevent an increase in short circuits due to the air being rebounded and the intake force being taken in, and it is possible to control the wind direction according to usage conditions.
  • the wind direction of the conditioned air is set to a substantially downward or rearward downward direction in a rising state in which the room temperature rises quickly, and the wind direction of the conditioned air is set forward in the stable state.
  • the conditioned air can reach far away in a few stable states.
  • the conditioned air when the blow-out temperature is lower than a predetermined value, the conditioned air has a substantially horizontal direction or an upper front direction, so that the low-temperature air does not directly hit the user and makes the user feel cold.
  • an air conditioner can be obtained.
  • FIG. 1 is a side sectional view showing a state of the indoor unit of the air conditioner according to the first embodiment of the present invention at the time of the second airflow control.
  • FIG. 2 is a circuit diagram showing a refrigeration cycle of the air conditioner according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of the air conditioner according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a control unit of the air conditioner according to the first embodiment of the present invention.
  • FIG. 5 is a side sectional view showing a state of the indoor unit of the air conditioner according to the first embodiment of the present invention at the time of the first airflow control.
  • FIG. 6 is a side sectional view showing another state of the indoor unit of the air conditioner according to the first embodiment of the present invention during the first airflow control.
  • FIG. 7 is a contour diagram showing a static pressure distribution in the vicinity of the air outlet when the indoor unit of the air conditioner according to the first embodiment of the present invention is in a rearward downward blow state.
  • FIG. 8 is a perspective view showing the behavior of the airflow in the living room when the indoor unit of the air conditioner according to the first embodiment of the present invention is in the state of downward rearward blowing.
  • Fig. 9 is a diagram showing a temperature distribution of a cross section of a central portion of the living room in a state where the indoor unit of the air conditioner according to the first embodiment of the present invention is blown backward and downward.
  • FIG. 10 is a side sectional view showing a state of the indoor unit of the air conditioner of the first embodiment of the present invention at the time of the third airflow control.
  • FIG. 11 is a side sectional view showing another state of the indoor unit of the air conditioner according to the first embodiment of the present invention during the second airflow control.
  • FIG. 12 is a side sectional view showing still another state of the indoor unit of the air conditioner according to the first embodiment of the present invention at the time of the second airflow control.
  • FIG. 13 is a side sectional view showing another state of the indoor unit of the air conditioner according to the first embodiment of the present invention at the time of the third airflow control.
  • FIG. 14 is a side sectional view showing still another state of the indoor unit of the air conditioner according to the first embodiment of the present invention at the time of the second airflow control.
  • FIG. 15 is a side sectional view showing still another state of the indoor unit of the air conditioner according to the first embodiment of the present invention at the time of the third airflow control.
  • FIG. 16 is a side sectional view showing a state of the indoor unit of the air conditioner according to the second embodiment of the present invention at the time of the second airflow control.
  • FIG. 17 is a side sectional view showing a state of the indoor unit of the air conditioner according to the second embodiment of the present invention at the time of the first airflow control.
  • FIG. 18 is a side sectional view showing another state of the indoor unit of the air conditioner according to the second embodiment of the present invention during the first airflow control.
  • FIG. 19 is a side sectional view showing a state of the indoor unit of the air conditioner according to the second embodiment of the present invention at the time of the third airflow control.
  • FIG. 20 is a side sectional view showing another state of the indoor unit of the air conditioner according to the second embodiment of the present invention during the second airflow control.
  • FIG. 21 is a side sectional view showing another state of the indoor unit of the air conditioner according to the second embodiment of the present invention at the time of the third airflow control.
  • FIG. 22 is a side sectional view showing a state of the indoor unit of the air conditioner according to the third embodiment of the present invention at the time of the second airflow control.
  • FIG. 23 is a side sectional view showing a state of the indoor unit of the air conditioner according to the third embodiment of the present invention at the time of the first airflow control.
  • FIG. 24 is a side sectional view showing another state of the indoor unit of the air conditioner according to the third embodiment of the present invention during the first airflow control.
  • FIG. 25 is a side sectional view showing a state of the indoor unit of the air conditioner according to the third embodiment of the present invention at the time of the third airflow control.
  • FIG. 26 is a side sectional view showing another state of the indoor unit of the air conditioner according to the third embodiment of the present invention at the time of the third airflow control.
  • FIG. 27 is a perspective view showing the behavior of airflow in a living room when the indoor unit of the air conditioner according to the thirteenth embodiment of the present invention is in the state of downward rearward blowing.
  • FIG. 28 is a perspective view showing an airflow of a conventional air conditioner when the air volume in a living room is "strong".
  • FIG. 29 is a perspective view showing an airflow when the air volume in a living room is "weak" due to a conventional air conditioner.
  • FIG. 30 is a diagram showing a temperature distribution at the time when the air volume is "strong" at the center section of a living room by a conventional air conditioner.
  • FIG. 31 is a diagram showing a temperature distribution when the air volume is "low" at the center section of a living room by another conventional air conditioner.
  • FIG. 1 is a side cross-sectional view showing the air conditioner of the first embodiment (showing a D cross section in FIG. 8 described later).
  • the main unit of the indoor unit 1 of the air conditioner is held by a cabinet 2, and a front panel 3 provided with a suction port 4 on the upper surface side and the front side is detachably attached to the cabinet 2.
  • the cabinet 2 is provided with a claw (not shown) on the rear side surface, and is supported by engaging the claw with a mounting plate (not shown) attached to the side wall W1 of the living room.
  • An outlet 5 is provided in a gap between the lower end of the front panel 3 and the lower end of the cabinet 2.
  • the outlet 5 is formed in a substantially rectangular shape extending in the width direction of the indoor unit 1 and is provided facing downward and forward.
  • a ventilation path 6 communicating from the suction port 4 to the outlet 5 is formed inside the indoor unit 1.
  • a blower fan 7 for sending air is arranged in the blower path 6.
  • the blowing path 6 has a front guide portion 6a for guiding the air sent out by the blowing fan 7 downward and forward.
  • the front guide section 6a is provided with a vertical louver 12 capable of changing the blowing angle in the left-right direction.
  • the upper wall of the ventilation path 6 has an inclined surface that is inclined upward as going forward from the end of the front guide portion 6a.
  • the outlet 5 is provided with wind direction variable portions 113a, 113b, and 113c that are rotatably supported.
  • the wind direction variable section 113c extends the lower wall of the front guide section 6a, and is pivotally supported by the cabinet 2 by a rotating shaft 113f rotated by driving of a drive motor (not shown).
  • the variable wind direction portion 113a is disposed above the outlet 5 and is rotatably supported by a rotating shaft 113d rotated by a drive motor (not shown).
  • the wind direction variable portion 113b is provided below the outlet 5 and is rotatably supported by a rotating shaft 113e that is rotated by a drive motor (not shown).
  • the wind direction variable units 113a and 113b rotate independently by the driving of the respective drive motors, and change the direction to change the wind direction.
  • the wind direction variable portions 113b and 113c have a curved cross-sectional shape, and one surface is formed as a convex curved surface and the other surface is formed as a concave curved surface.
  • One side (the left side in the figure) of the wind direction variable section 113a is substantially flat, and the other side (the right side in the figure) is formed as a gently convex curved surface. ing. It should be noted that the state shown in the figure shows a case where conditioned air is sent downward and rearward from the outlet 5 as will be described in detail later.
  • an air filter 8 that collects and removes dust contained in the air sucked from the suction port 4 is provided.
  • Indoor heat exchange 9 is arranged between the blower fan 7 and the air filter 8 in the blower path 6.
  • the indoor heat exchanger 9 is connected to a compressor 62 (see FIG. 2) disposed outdoors, and the compressor 62 drives the refrigeration plant.
  • the operation of the refrigeration cycle cools the indoor heat exchanger 9 to a temperature lower than the ambient temperature during cooling.
  • the indoor heat exchanger 9 is heated to a temperature higher than the ambient temperature.
  • a temperature sensor 61 for detecting the temperature of the sucked air is provided between the indoor heat exchanger 9 and the air filter 8.
  • a control unit 60 for controlling the driving of the air conditioner is provided. Drain pans 10 are provided below the indoor heat exchanger 9 before and after the indoor heat exchanger 9 to collect dew drops from the indoor heat exchanger 9 during cooling or dehumidification.
  • an ion generator 30 is installed with the discharge surface 30a facing the air blowing path 6.
  • the ions generated from the discharge surface 30a of the ion generator 30 are discharged into the air blowing path 6 and blown out of the room through the outlet 5.
  • the ion generator 30 has a discharge electrode.
  • the applied voltage is a positive voltage by corona discharge
  • the ion generator 30 mainly has a H + (HO) force.
  • H + (H O) and O- (H O) aggregate on the surface of microorganisms and suspend microorganisms in the air.
  • the ion generator 30 is a mode for generating more negative ions than positive ions, a mode for generating more positive ions than negative ions, and a mode for generating both positive ions and negative ions. Can be switched in a mode in which is generated at approximately the same rate.
  • FIG. 2 is a circuit diagram showing a refrigeration cycle of the air conditioner.
  • An outdoor unit (not shown) connected to the indoor unit 1 of the air conditioner includes a compressor 62, a four-way switching valve 63, an outdoor heat exchanger 64, and a blower fan.
  • a diaphragm mechanism 66 are provided.
  • One end of the compressor 62 is connected to an outdoor heat exchanger 64 via a refrigerant pipe 67 via a four-way switching valve 63.
  • the other end of the compressor 62 is connected to the indoor heat exchanger 9 through a refrigerant pipe 67 via a four-way switching valve 63.
  • the outdoor heat exchange 64 and the indoor heat exchange 9 are connected by a refrigerant pipe 67 via a throttle mechanism 66.
  • the indoor heat exchanger 9 is cooled to a temperature lower than the ambient temperature during cooling. Further, during the heating operation, the four-way switching valve 63 is switched, the blower fan 65 rotates, and the refrigerant flows in the opposite direction to the above. That is, a refrigeration cycle 68 that returns to the compressor 62 via the compressor 62, the four-way switching valve 63, the indoor heat exchanger 9, the throttle mechanism 66, the outdoor heat exchanger 64, and the four-way switching valve 63 is formed. Thereby, the indoor heat exchanger 9 is heated to a temperature higher than the ambient temperature.
  • FIG. 3 is a block diagram showing a configuration of the air conditioner.
  • the control unit 60 also includes a microcomputer, and is used for input by a temperature sensor 61 that detects the temperature of the operation and air intake by a user. Based on this, drive control of the blower fan 7, the compressor 62, the blower fan 65, the vertical luno 12, the wind direction variable units 113a, 113b, 113c, and the ion generator 30 is performed.
  • FIG. 4 is a block diagram showing a detailed configuration of the control unit 60.
  • the control unit 60 has a CPU 71 that performs various types of arithmetic processing.
  • the CPU 71 is connected to an input circuit 72 that receives an input signal and an output circuit 73 that outputs an arithmetic result of the CPU 71.
  • a memory 74 for storing a calculation program of the CPU 71 and temporarily storing a calculation result is provided.
  • the output of the temperature sensor 61 is input to the input circuit 72.
  • the output circuit 73 is connected to a drive motor (not shown) for driving the rotating shafts 113d, 113e and 113f (see FIG. 1) of the variable wind directions 113a 113b 113c.
  • An output of a light receiving unit (not shown) for receiving an operation signal of a remote controller (not shown) is input to the control unit 60.
  • the wind direction variable units 113a, 113b, 113c can be driven by a predetermined operation by the remote controller regardless of the detection result of the temperature sensor 61. That is, the control of the control unit 60 based on the temperature sensor 61 is prohibited, and the wind direction variable units 113a, 113b, and 113c can be arranged in arbitrary directions.
  • the control unit 60 drives the blower fan 7 of the indoor unit 1 to rotate. Airflow control is performed. As a result, air is sucked into the indoor unit 1 from the suction port 4, and dust contained in the air is removed by the air filter 8. The air taken into the indoor unit 1 is heated by exchanging heat with the indoor heat exchanger 9 and is controlled by the vertical louver 12 and the variable air direction units 113a, 113b, 113c to control the left-right direction and the up-down direction. Sent out.
  • the wind direction variable units 113a, 113b, and 113c are arranged in the state shown in FIG. 5 or FIG. 6, and the conditioned air is sent forward and upward or substantially horizontally at a wind speed of about 3-4 mZsec. That is, as shown in FIG. 5, the variable wind direction section 113a follows the airflow flowing through the front guide section 6a. In this case, the plane side is disposed facing upward and rearward.
  • the wind direction variable portion 113b is arranged substantially parallel to the airflow flowing through the front guide portion 6a, and halves the airflow so as to project downward.
  • the variable wind direction unit 113c is disposed below the cabinet 2 while also retracting the airflow force sent from the outlet 5.
  • the conditioned air flowing through the front guide portion 6a is curved and sent out from the outlet 5 upward and forward as shown by the arrow E. Further, when the direction of the wind direction variable portion 113a is horizontal as shown in FIG. 6, the conditioned air is sent out from the outlet 5 in a substantially horizontal direction as shown by an arrow D.
  • the conditioned air blown upward or substantially horizontally from the outlet 5 reaches the ceiling of the living room. Thereafter, the wall surface W2 (see FIG. 8) facing the indoor unit 1 from the ceiling wall S due to the Coanda effect, the floor surface F (see FIG. 8), and the wall surface W1 on the indoor unit 1 side sequentially circulate and circulate. Therefore, it is possible to prevent the user from feeling cold because the conditioned air that has not been sufficiently heated at the start of the heating operation by the first airflow control does not directly hit the user.
  • the second airflow control is performed by the control unit 60 when a certain period of time has elapsed after the heating operation is started or when the indoor heat exchanger 9 is sufficiently heated.
  • the wind direction variable portions 113a, 113b, and 113c are arranged, and the conditioned air is sent at a wind speed of about 6 to 7 mZsec, for example, at the rear of the outlet 5 force.
  • the wind direction variable unit 113a is disposed at a position where one end thereof comes into contact with the upper wall of the air flow path 6 to extend the upper wall of the air flow path 6 by driving the drive motor with the flat side facing the front.
  • the other end of the wind direction variable portion 113a is disposed downward so as to be in contact with the rotation shaft 113e.
  • the wind direction variable section 113b is arranged such that the tip is directed rearward and downward so that the blow path 6 side is concave.
  • the wind direction variable section 113c is disposed with its tip directed rearward and downward so that the blow path 6 side is convex.
  • FIG. 7 shows the static pressure distribution of the air passage 6 at this time.
  • a high static pressure portion 90 that is higher than the static pressure of the front guide portion 6a is formed on the inner surface side of the wind direction variable portions 113a and 113b in contact with the wind direction variable portions 113a and 113b.
  • the position of the wind direction variable units 113a, 113b, and 113c is adjusted according to the detection result of the static pressure detection sensor (not shown) that detects the static pressure of the blowing path 6, and the equal pressure line 90a of the high static pressure unit 90 is changed in the wind direction variable unit 113a. , 113b along the airflow circulating. That is, the high static pressure section 90
  • the isobar 90a is formed substantially parallel to a line connecting the end of the front guide portion 6a and the end of the wind direction variable portion 113b, and the air flow is substantially parallel to the isobar 90a near the high static pressure portion 90.
  • the high-pressure section 90 acts as a hydrodynamic wall surface, and the wind direction variable sections 113a, 113b, and 113c smoothly change the sending direction of the conditioned air to curve the airflow. Further, the isobar 90a of the high static pressure portion 90 in contact with the wind direction variable portions 113a and 113b does not intersect with the mainstream streamline of the airflow circulating through the airflow path 6. For this reason, the pressure loss exerted on the airflow can be significantly reduced.
  • the arrangement of the wind direction variable units 113a, 113b, 113c is changed using the static pressure detection sensor so that the static pressure near the wind direction variable units 113a, 113b becomes a predetermined value.
  • the positions of 113b and 113c may be stored as a database. As a result, data corresponding to the operating conditions can be retrieved from the database and the wind direction variable units 113a, 113b, 113c can be arranged at predetermined positions, and the static pressure detection sensor can be omitted.
  • the main flow of the conditioned air flowing toward the variable wind direction units 113a, 113b, 113c flows through the space surrounded by the high static pressure unit 90 and the lower wall surface of the ventilation path 6. That is, the wall surface of the flow path is formed by the high static pressure portion 90. Therefore, since the airflow is not in contact with the wind direction variable portions 113a and 113b, loss due to viscosity is reduced, and the airflow can be further increased.
  • the high static pressure portion 90 forms the wall surface of the flow passage, and the high static pressure portion 90 narrows the flow passage of the conditioned air to form a nozzle shape, so that the flow passage area is larger than that of the front guide portion 6a. Narrows. For this reason, the fluid of high energy is sent out from the outlet 5 by the action of the nozzle. As a result, the wind speed of the air flow adjacent to the high static pressure portion 90 does not change significantly, and the static pressure fluctuation of the air flow is suppressed, so that the air flow flows more smoothly and the pressure loss can be further reduced. Therefore, the air volume of the conditioned air sent from the air conditioner can be further increased.
  • the flow path area narrowed at one end by the high static pressure portion 90 is enlarged again downstream of the wind direction variable portions 113a, 113b, and 113c. As a result, the flow path becomes more downstream.
  • the cross-sectional area is reduced to form a minimum cross-sectional area portion (hereinafter referred to as "throat portion"). Therefore, a so-called diffuser is formed by the expanded flow path, and the static pressure of the blower fan 7 can be increased to further increase the air volume.
  • the high static pressure portion 90 does not occur in the throat of the flow path and no pressure loss occurs, the flow path is bent at that position, so that a curved portion where no pressure loss occurs is formed. Can be formed.
  • the wind direction variable portion 113b is arranged so as to intersect with a virtual surface 98 that extends the lower wall of the front guide portion 6a further outward of the outlet 5.
  • the lower end of the wind direction variable portion 113a is disposed below the virtual surface 98, and the airflow is reliably guided backward and downward. Therefore, an unintended airflow is not sent in the direction, and a highly reliable air conditioner can be obtained.
  • FIG. 8 shows the behavior of the airflow in the room R at the time of downward rear blowing.
  • the conditioned air descends along the side wall W1 and travels down the floor F, the side wall W2 facing the side wall W1, and the ceiling wall S in order as shown by the arrow C, and returns to the suction port 4.
  • the interior of the living room R is in a rising state in which the room temperature quickly rises and rises.
  • the temperature is low enough that the user feels cold when the air sent from the indoor unit 1 directly hits. For this reason, the room temperature rises when performing the first airflow control, but the rising speed is slowing down. In the start-up state, the temperature reaches a temperature at which the user does not feel cold even when the air sent from the indoor unit 1 is directly hit, the room temperature is lower than the set temperature, and the state power quickly rises.
  • FIG. 9 shows a room temperature distribution during the second airflow control.
  • the set room temperature is 28 ° C
  • the size of living room R is 6 tatami (height 2400mm, width 3600mm, depth 2400mm).
  • measurement points were measured at the center cross section of the living room R indicated by the dashed-dotted line D at 600 mm intervals in the height direction and in the horizontal direction, for a total of 48 points, totaling 6 points and 8 points. ing.
  • the temperature at the center of the floor of the living room R is 33 ° C-35 ° C.
  • the temperature is about 31 ° C-32 ° C (Fig. 30) and 23 ° C (Fig. 31) at the same position. This can reduce discomfort and greatly improve comfort.
  • the conditioned air sent out from the indoor unit 1 does not roll up because it follows the wall surface due to the Coanda effect, and short circuit does not occur. Therefore, there is no occurrence of a warm air pool E (see FIG. 30) in which the area around the indoor unit 1 is excessively heated, and the temperature near the suction port 4 is about the same as the set temperature of 28 ° C. Accordingly, the air conditioning efficiency is improved, and it is possible to easily determine whether or not the room is sufficiently warmed up!
  • the control unit 60 performs the third airflow control.
  • the operating frequency of the compressor 62 is reduced and the wind direction variable units 113a, 113b, and 113c are arranged as shown in FIG. 10, and for example, at a wind speed of about 6-7 mZsec, an arrow is tuned downward and backward as shown in the arrow. Air is delivered.
  • the wind direction variable section 113c is rotated in the K direction in FIG. 10 to reduce the area of the outlet 5 and adjust the rotation speed of the blower fan 7 to maintain the wind speed.
  • the blowing rate gradually decreases to about 70% at the same wind speed for the second airflow control.
  • the conditioned air (warm air) sent rearward and downward from the indoor unit 1 does not roll up due to the Coanda effect and continues to descend along the side wall W1 to directly enter the living space. It does not get down and follows the floor F to reach your feet.
  • the warm air does not reach every corner of the living room R, such as the boundary region between the side wall W2 and the floor F! Fear Therefore, it is more desirable to maintain the wind speed.
  • the air The conditioner shifts to the start-up state and performs the second airflow control. Then, the third airflow control is performed when a certain time has elapsed or when it is detected that the temperature difference between the room temperature and the set temperature has become small. This is repeated to perform the heating operation.
  • the user may want to directly take in warm air immediately after starting the heating operation or when the room temperature of the living room R has not reached the desired temperature.
  • the room temperature of the living room R reaches the desired temperature, the user may feel uncomfortable when directly exposed to the warm air, and may desire to maintain the indoor temperature at the desired temperature without directly receiving the warm air.
  • the conditioned air may be sent downward and forward as shown in the conventional example of FIG. 28, and then sent downward and downward as shown in FIGS. That is, in the rising state, the conditioned air is sent forward and downward as shown in FIG. This allows the user to directly receive warm air. Then, in a stable state, the conditioned air is sent backward and downward.
  • the user can maintain a desired room temperature without directly receiving warm air. Therefore, the convenience for the user can be greatly improved.
  • the arrangement of the vertical louver 12 and the wind direction variable units 113a, 113b, 113c can be changed by a user operating a remote controller (not shown). Thereby, the wind direction of the conditioned air can be arbitrarily selected by the user.
  • the plane side of the wind direction variable section 113a may be arranged facing the air passage 6 as shown in FIG. Thereby, the wind direction variable portions 113a and 113b are arranged along the front panel 3, and the aesthetic appearance of the indoor unit 1 is improved.
  • the high static pressure portion 90 is formed by being surrounded by the upper wall of the ventilation path 6 inclined upward and forward and the wind direction variable portions 113a and 113b, the vortex 25 developed in the high static pressure portion 90 becomes large.
  • the blowing efficiency is slightly reduced as compared with the case of Fig. 1, an increase in pressure loss can be suppressed as compared with the conventional case.
  • the wind direction variable section 113a may be arranged along the front panel 3 instead of the state shown in FIG. [0085]
  • the control unit 60 when the living room R in which the indoor unit 1 is installed is large, different control is performed by the control unit 60. Switching of the control can be performed by a switching switch or the like provided in the indoor unit 1 or the remote controller.
  • the wind direction variable units 113b and 113c are arranged in front of the state shown in FIG. Then, as shown by arrow B, the conditioned air is sent from the air outlet 5 almost directly downward, for example, at a wind speed of about 7-8 mZsec.
  • the wind direction variable units 113a, 113b, and 113c are arranged as shown in FIG. That is, the state force shown in FIG. 12 also rotates the wind direction variable portion 113c in the K direction, and the area of the outlet 5 is reduced. Accordingly, the rotation speed of the blower fan 7 is adjusted. As a result, for example, the air volume becomes about 70% of the second airflow control, and the conditioned air is sent from the outlet 5 almost downward as shown by an arrow at a wind speed of about 7-8 mZsec. Thereby, the room R is wide, and in some cases, the warm air can reach every corner of the room R.
  • wind direction variable units 113a, 113b, and 113c may be arranged as shown in FIGS. 14 and 15, respectively. That is, in the second airflow control in the rising state, in FIG. 14, the lower ends of the wind direction variable units 113a, 113b, and 113c are arranged in front of FIG. Then, the conditioned air is sent from the outlet 5 at a wind speed of about 6 to 7 mZsec, for example, as shown by an arrow A2, to a slightly lower front than immediately below.
  • the state force in FIG. 14 also rotates in the force direction of the wind direction variable portion 113a, and the wind direction variable portion 113c rotates in the The area is reduced. Accordingly, the rotation speed of the blower fan 7 is adjusted. As a result, for example, the air volume becomes about 70% of the second airflow control, and the conditioned air is sent downward and forward from the air outlet 5 at the wind speed of about 7-8 mZsec as indicated by the arrow ⁇ 2 ⁇ . Thus, when room R is large, warm air can reach every corner of the room. [0091] Further, in the second and third airflow control, as shown in Fig. 1 and Fig.
  • wind direction variable units 113a, 113b and 113c may be arranged to increase the wind speed. That is, in the rising state, the wind direction variable portions 113a, 113b, and 113c are set as shown in FIG. 1 and the conditioned air is sent from the outlet 5 downward and rearward as shown by an arrow C at, for example, a wind speed of about 91 lOmZsec. .
  • the wind direction variable units 113a, 113b, and 113c are set as shown in Fig. 10, and conditioned air is sent from the outlet 5 downward and backward as shown by the arrow C, for example, at a wind speed of about 91 lOmZsec.
  • conditioned air is sent from the outlet 5 downward and backward as shown by the arrow C, for example, at a wind speed of about 91 lOmZsec.
  • FIG. 16 is a side sectional view showing the indoor unit 1 of the air conditioner of the second embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 15 are denoted by the same reference numerals.
  • wind direction variable units 114a and 114b are provided in place of the wind direction variable units 113a, 113b and 113c of the first embodiment.
  • Other parts are the same as in the first embodiment.
  • the wind direction variable sections 114a and 114b are arranged in the outlet 5, and both sides have a flat plate force.
  • the rotating shafts 114c and 114d rotatably support the wind direction variable units 114a and 114b, and are rotated by a drive motor (not shown). Accordingly, the wind direction variable portions 114a and 114b also have a wind direction plate force that changes the direction by driving the drive motor to change the wind direction.
  • the rotating shaft 114c is provided substantially at the center of the variable wind direction unit 114a, and the rotating shaft 114d is provided at an end of the variable wind direction unit 114b.
  • the same figure has shown the arrangement
  • the control unit 60 drives the blower fan 7 of the indoor unit 1 to rotate. Airflow control is performed. As a result, air is sucked into the indoor unit 1 from the suction port 4. In rare cases, dust contained in the air is removed by the air filter 8.
  • the air taken into the indoor unit 1 is heated by exchanging heat with the indoor heat exchanger 9 and is sent out indoors by regulating the horizontal and vertical directions by the vertical louvers 12 and the wind direction variable units 114a and 114b.
  • the wind direction variable units 114a and 114b are arranged in the state shown in Fig. 17 or Fig. 18, and conditioned air is sent forward or upward in a substantially horizontal direction at a wind speed of about 3-4 mZsec. That is, as shown in FIG. 17, the wind direction variable portion 114a has its front end disposed above the rear end, and is substantially parallel to the upper wall of the ventilation path 6 that is inclined upward near the outlet 5.
  • the wind direction variable portion 114b is arranged such that the end on the shaft side is lower in front than the end on the open side.
  • the conditioned air flowing through the front guide portion 6a is curved and sent out from the outlet 5 to the upper front as shown by the arrow E.
  • the direction of the wind direction variable portion 114a is horizontal as shown in FIG. 18, the conditioned air is sent out from the outlet 5 in a substantially horizontal direction as shown by an arrow D.
  • the wall surface W2 facing the indoor unit 1 (see Fig. 8), the floor surface F (see Fig. 8), and the wall surface W1 on the indoor unit 1 side sequentially circulate. Therefore, the conditioned air that has not been sufficiently heated at the start of the heating operation by the first airflow control does not directly hit the user, and it is possible to prevent the user from feeling cold.
  • the second airflow control is performed by the control unit 60 when a certain period of time has elapsed after the heating operation is started or when the indoor heat exchanger 9 is sufficiently heated.
  • the wind direction variable units 114a and 114b are arranged, and conditioned air is sent downward from the outlet 5 to the rear at a wind speed of about 6-7 mZsec, for example.
  • the wind direction variable unit 114a is arranged such that one end thereof is close to the upper wall of the air flow path 6 and extends the upper wall downward by driving of the drive motor.
  • the other end of the wind direction variable section 114a is disposed downward in the vicinity of the rotating shaft 114d.
  • the wind direction variable portion 114b is disposed with its tip directed rearward and downward.
  • the forward direction of the airflow flowing through the front guide portion 6a is directed forward by the wind direction variable portions 114a, 1a.
  • a high static pressure portion 90 closed by 14b and in contact with the wind direction variable portions 114a and 114b is formed.
  • the isobar 90a (see FIG. 7) of the high static pressure section 90 is formed along the flow direction of the conditioned air facing the wind direction variable sections 114a and 114b as in the first embodiment. For this reason, the high static pressure portion 90 becomes a fluid dynamic wall surface, and the conditioned air is smoothly changed in the sending direction and sent out from the outlet 5 to the rear and downward.
  • the temperature under the feet can be increased in the standing state, thereby reducing the discomfort of the user and greatly improving the comfort.
  • wind direction variable portion 114b is disposed so as to intersect with a virtual surface 98 which extends the lower wall of the front guide portion 6a outward from the outlet 5 to the outside. Therefore, the same effect as in the first embodiment can be obtained.
  • the temperature sensor 61 detects the temperature difference.
  • the control unit 60 performs the third airflow control.
  • wind direction variable sections 114a and 114b are arranged, and the amount of air blown by the sending fan 7 is reduced so that the conditioned air flows in a substantially downward direction as indicated by an arrow B at a wind speed of about 5-6 mZsec. Sent out.
  • the wind direction variable section 114b is disposed almost forward with the tip located forward of the case of FIG. 16, so that the blowing amount and the wind speed are reduced.
  • comfort is improved without discomfort caused by direct wind blow to the user in a stable state.
  • the conditioned air is sent from the indoor unit 1 slightly forward (substantially directly downward) from the rising state, so that the warm air reaches a position distant from the indoor unit 1.
  • the air flow path is narrowed to maintain the wind speed and reduce the amount of air to be blown.
  • the window of the living room R is opened, the heating operation is temporarily stopped due to defrosting of the outdoor unit, and if the room temperature of the living room R falls below the set temperature for other reasons, the air The conditioner shifts to the room temperature startup state and performs the second airflow control. And after a certain time In this case, the third airflow control is performed when the temperature difference between the room temperature and the set temperature is reduced. This is repeated to perform the heating operation.
  • the arrangement of the vertical louver 12 and the wind direction variable units 114a and 114b can be changed by a user's operation of a remote controller (not shown). Thereby, the wind direction of the conditioned air can be arbitrarily selected by the user.
  • the wind direction variable section 114a may be arranged along the front panel 3, as shown in FIG. 20, instead of the state shown in FIG. Thereby, the aesthetic appearance of the indoor unit 1 is improved.
  • the high static pressure section 90 is connected to the upper wall of
  • the vortex 25 that develops in the high static pressure portion 90 becomes larger because it is formed by being surrounded by 114a and 114b.
  • the blowing efficiency is slightly reduced as compared to the case of Fig. 16, but the increase in pressure loss can be suppressed as compared with the conventional case.
  • the wind direction variable section 114a may be arranged along the front panel 3 instead of the state shown in FIG.
  • the wind direction variable units 114a and 114b are arranged as shown in FIG.
  • the wind direction variable section 114b is arranged forward of the state of FIG. Then, the conditioned air is sent from the outlet 5 at a wind speed of, for example, about 7-8 mZsec, as indicated by the arrow B, in a substantially downward direction.
  • the wind direction variable units 114a and 114b are arranged as shown in Fig. 21 in the third airflow control. That is, the wind direction variable section 114b is disposed forward of the state shown in FIG. Then, as shown by arrow B, the conditioned air is sent from the outlet 5 at a wind speed of, for example, about 6-7 mZsec, to a slightly lower front than immediately below. As a result, even if the room R is large, The warm air can reach every corner.
  • FIG. 22 is a side sectional view showing the indoor unit 1 of the air conditioner of the third embodiment.
  • the same parts as those in the second embodiment shown in FIGS. 16 to 21 described above are denoted by the same reference numerals.
  • wind direction variable sections 115a and 115b are provided instead of the wind direction variable sections 114a and 114b of the second embodiment.
  • a rotation number detection unit (not shown) for detecting the rotation number of the blower fan 7 in the indoor unit 1 and detecting the flow rate of the conditioned air sent from the outlet 5 is provided.
  • the output of the rotation speed detection unit is input to the control unit 60, and the wind direction variable units 115a and 115b are driven based on the detection result of the rotation speed detection unit.
  • Other parts are the same as in the second embodiment.
  • the wind direction variable sections 115a and 115b are arranged at the outlet 5, and both sides have a flat plate force.
  • the rotation shafts 115c and 115d rotatably support the wind direction variable portions 115a and 115b, and are rotated by a drive motor (not shown).
  • the wind direction variable sections 115a and 115b change the direction by driving of the drive motor to generate a wind direction plate force that changes the wind direction.
  • the rotating shaft 115c is provided substantially at the center of the variable wind direction portion 115a, and the rotating shaft 115d is provided at a position substantially apart from the variable wind direction portion 115b substantially at the center of the variable wind direction portion 115b. This figure shows the arrangement when the conditioned air is sent downward and downward.
  • the refrigeration cycle when the heating operation is started, the refrigeration cycle is operated, and the blower fan 65 of the outdoor unit (not shown) is driven to rotate. As a result, outside air is sucked into the outdoor unit (not shown).
  • the refrigerant absorbed by the outdoor heat exchanger 64 flows to the indoor heat exchanger 9 to heat the indoor heat exchanger 9.
  • the control unit 60 drives the blower fan 7 of the indoor unit 1 to rotate. Airflow control is performed. As a result, air is sucked into the indoor unit 1 from the suction port 4, and dust contained in the air is removed by the air filter 8. The air taken into the indoor unit 1 is heated by exchanging heat with the indoor heat exchanger 9, and is sent out indoors with the vertical louvers 12 and the wind direction variable units 115a and 115b regulating the horizontal and vertical directions.
  • the rotation speed of the blower fan 7 is set to, for example, 600 rpm, and the wind direction variable units 115a and 115b are arranged in the state shown in Fig. 23 or Fig. 24 by the detection of the rotation speed detection unit. Then, the conditioned air is sent upward or almost horizontally at a wind speed of about 3-4 mZsec.
  • the wind direction variable portion 115a has its front end disposed above the rear end, and is substantially parallel to the upper wall of the ventilation path 6 inclined upward near the outlet 5.
  • the wind direction variable portion 115b is arranged such that the outer end is located forward and lower than the inner end.
  • the conditioned air flowing through the front guide portion 6a is curved and is sent out from the outlet 5 to the front upper side as shown by the arrow E.
  • the direction of the wind direction variable portion 115a is horizontal as shown in FIG. 24, the conditioned air is sent out from the outlet 5 in a substantially horizontal direction as shown by an arrow D.
  • the conditioned air sent upwardly or substantially horizontally from the outlet 5 reaches the ceiling of the living room. Thereafter, due to the Coanda effect, the wall surface W2 facing the indoor unit 1 (see Fig. 8), the floor surface F (see Fig. 8), and the wall surface W1 on the indoor unit 1 side sequentially circulate. Therefore, it is possible to prevent the user from feeling cold because the conditioned air that has not been sufficiently heated at the start of the heating operation by the first airflow control does not directly hit the user.
  • the control unit 60 performs the second airflow control.
  • the rotation speed of the blower fan 7 is set to, for example, 1200 rpm
  • the wind direction variable units 115a and 115b are arranged in the state of FIG. Then, the conditioned air is sent backward and downward at a wind speed of about 6-7 mZsec.
  • the wind direction variable section 115a is arranged such that one end thereof comes into contact with the upper wall of the air blowing path 6 by driving the drive motor and extends the upper wall downward.
  • the wind direction variable section 115b is arranged such that the tip is directed substantially downward or rearward and downward.
  • the front of the airflow flowing through the front guide section 6a in the traveling direction is closed by the wind direction variable sections 115a and 115b, and the high static pressure section 90 in contact with the wind direction variable sections 115a and 115b is formed.
  • the isobar 90a (see FIG. 7) of the high static pressure section 90 is formed along the flow direction of the conditioned air facing the wind direction variable sections 115a and 115b as in the first and second embodiments. Therefore, the high static pressure section 9 Numeral 0 is a hydrodynamic wall surface, and the conditioned air is smoothly changed in the sending direction and is sent out rearward and downward from the outlet 5.
  • the user's discomfort can be reduced and comfort can be greatly improved.
  • the air conditioning efficiency is improved, and it is easy to determine whether the room is sufficiently warm.
  • the flow path is narrowed by the high static pressure portion 90, and the flow path is enlarged again on the downstream side.
  • wind direction variable portion 115b is disposed so as to intersect with a virtual surface 98 extending the lower wall of the front guide portion 6a outward from the air outlet 5. Therefore, the same effects as those of the first and second embodiments can be obtained.
  • the control unit 60 performs the third airflow control.
  • the third airflow control when the rotation speed of the blower fan 7 is set to 900 rpm, for example, the wind direction variable units 115a and 115b are arranged in the state shown in FIG. Then, conditioned air is sent out at a wind speed of approximately 5-6 mZsec almost downward as shown by arrow B.
  • the wind direction variable portion 115b is arranged such that the front end is disposed forward in comparison with the case of FIG. 22, and the front end is directed substantially directly downward or slightly forward.
  • comfort is improved without discomfort caused by direct wind blow to the user in a stable state.
  • the conditioned air is sent from the indoor unit 1 slightly forward (substantially directly downward) from the rising state, so that warm air reaches a position distant from the indoor unit 1.
  • the window of the room R is opened, the heating operation is temporarily stopped due to defrosting of the outdoor unit, or if the room temperature of the room R falls below the set temperature for other reasons, the air The conditioner shifts to the room temperature startup state and performs the second airflow control. Then, the third airflow control is performed when a certain time has elapsed or when it is detected that the temperature difference between the room temperature and the set temperature has become small. This is repeated to perform the heating operation.
  • the vertical louver 12 and the vertical louver 12 are operated by a user operating a remote controller (not shown).
  • the arrangement of the air flow direction change units 115a and 115b can be changed. Thereby, the wind direction of the conditioned air can be arbitrarily selected by the user.
  • control unit 60 when the living room R in which the indoor unit 1 is installed is large, different control is performed by the control unit 60. Switching of the control can be performed by a switching switch or the like provided in the indoor unit 1 or the remote controller.
  • the wind direction variable unit 115b is disposed forward of the state of FIG. Then, the conditioned air is blown out from the outlet 5 at a wind speed of, for example, about 7-8 mZsec, as indicated by the arrow B, in a substantially downward direction.
  • the wind direction variable units 115a and 115b are arranged as shown in FIG. That is, when the rotation speed of the blower fan 7 becomes, for example, 900 rpm, the rotation direction detection unit detects that the wind direction variable unit 115b is disposed in front of the state shown in FIG. So
  • the conditioned air is sent from the outlet 5 to the front lower side slightly forward from below, for example, at a wind speed of about 6-7 mZsec.
  • a similar rotation speed detector may be provided, and the wind direction, the wind speed, and the air volume may be changed based on the detection result of the rotation speed detector.
  • This embodiment is different from the air conditioner of the third embodiment in that a frequency detection unit (not shown) is provided instead of the rotation speed detection unit.
  • the frequency detector detects the operating frequency of the compressor 62 (see FIG. 2).
  • the output of the frequency detection unit is input to the control unit 60, and based on the detection result of the frequency detection unit.
  • the wind direction variable units 115a and 115b are driven.
  • Other parts are the same as in the third embodiment.
  • the arrangement of the wind direction variable units 115a and 115b can be changed according to the operating frequency of the compressor 62.
  • the operation frequency is increased, and when the operation frequency becomes, for example, 70 Hz or more, the wind direction variable units 115a and 115b are arranged in the state shown in FIG.
  • the third airflow control in a stable state the operating frequency is lowered, and when the operating frequency becomes, for example, 40 Hz to 70 Hz, the wind direction variable units 115a and 115b are arranged in the state shown in FIG. You.
  • a frequency detection unit may be provided in the first and second embodiments.
  • This embodiment is different from the air conditioner of the third embodiment in that a blow-out temperature detection unit (not shown) including a temperature sensor for detecting the blow-out temperature of conditioned air is provided in the ventilation path 6 instead of the rotation speed detection unit. ing. Further, in FIG. 4 described above, the output of the blow-out temperature detecting unit is input to the control unit 60 instead of the output of the temperature sensor 61, and the wind direction variable units 115a and 115b are controlled based on the detection result of the blow-out temperature detecting unit. Driven. Other parts are the same as in the third embodiment.
  • the settings of the wind direction variable units 115a and 115b can be changed according to the blow-out temperature of the conditioned air. If the temperature of indoor heat exchange has not risen and the outlet temperature is less than 36 ° C, the first airflow control is performed. In the second airflow control in the rising state, the blowout temperature rises due to an increase in the operating frequency of the compressor, and when the blowout temperature rises to 45 ° C or higher, the blowout temperature detecting unit detects that the wind direction variable units 115a, 115b It is placed in the state shown in 22.
  • the blow-out temperature detecting unit detects that the wind direction variable units 115a and 115b In the state shown in FIG. Therefore, in the same manner as described above, a part of the conditioned air having a high outlet temperature is sent further rearward. Thereby, the high-temperature air hitting the user can be reduced, and the discomfort of the user can be further reduced.
  • a blow-out temperature detector may be provided.
  • This embodiment is different from the air conditioner of the third embodiment in that a heat exchanger temperature detector (not shown) including a temperature sensor for detecting the temperature of the indoor heat exchanger 9 is provided instead of the rotation speed detector. ing. Further, in FIG. 4 described above, the output of the heat exchanger temperature detector is input to the controller 60, and the wind direction variable units 115a and 115b are driven based on the detection result of the heat exchanger temperature detector. Other parts are the same as in the third embodiment.
  • the first airflow control is performed when the temperature of the indoor heat exchanger 9 is less than 0 ° C.
  • the second airflow control in the rising state the temperature of the indoor heat exchange 9 rises due to the increase in the operating frequency of the compressor 62, and when the temperature exceeds 50 ° C, the wind direction variable units 115a and 115b are It is arranged in the state shown in FIG.
  • the operating frequency of the compressor 62 is reduced, and when the temperature of the indoor heat exchanger 9 changes from 40 ° C to 50 ° C, the wind direction can be changed by the detection of the heat exchange temperature detector.
  • the parts 115a and 115b are arranged, for example, in the state shown in FIG. Therefore, in the same manner as described above, a part of the conditioned air having a high outlet temperature is sent further rearward. Thereby, the high-temperature air hitting the user can be reduced, and the discomfort of the user can be further reduced.
  • a heat exchange temperature detector may be provided.
  • a seventh embodiment will be described.
  • This embodiment is different from the air conditioner of the third embodiment in that a current consumption detection unit is provided instead of the rotation speed detection unit.
  • Current consumption detection The output unit is composed of a current transformer or the like that generates a secondary voltage proportional to the current value, and detects current consumption or power consumption during operation of the air conditioner.
  • the output of the current consumption detection unit is input to the control unit 60, and the wind direction variable units 115a and 115b are driven based on the detection result of the current consumption detection unit.
  • Other parts are the same as in the third embodiment.
  • the settings of wind direction variable sections 115a and 115b can be changed according to the current consumption of the air conditioner.
  • the operating frequency of the compressor 62 increases, and when the current consumption or power consumption of the air conditioner becomes, for example, 12 A or 1200 W or more, the wind current variable units 115a, 115b Are arranged, for example, in the state shown in FIG.
  • the operating frequency of the compressor 62 is reduced, and when the current consumption or power consumption of the air conditioner becomes, for example, 7A to 12A or 700W to 1200W, the detection of the current consumption detection unit
  • the wind direction variable units 115a and 115b are arranged, for example, in the state shown in FIG. 25 described above.
  • a current consumption detector may be provided.
  • This embodiment is different from the air conditioner of the third embodiment in that an outdoor rotation speed detection unit is provided instead of the rotation speed detection unit.
  • the outdoor rotation speed detector is
  • the number of rotations of the blower fan 65 (see FIG. 2) provided in the outdoor unit is detected to detect the amount of air sucked from a suction port (not shown) of the outdoor unit.
  • the output of the outdoor rotation speed detection unit is input to the control unit 60, and the wind direction is determined based on the detection result of the outdoor rotation speed detection unit.
  • the variable units 115a and 115b are driven. Other parts are the same as in the third embodiment.
  • the settings of the wind direction variable units 115a and 115b can be changed according to the rotation speed of the outdoor blower fan 65.
  • the detection of the outdoor rotation speed detection unit places the wind direction variable units 115a and 115b in the state shown in FIG. 22 described above.
  • the third airflow control for example, when the rotation speed of the outdoor blower fan 65 reaches 500 lOOrpm, the wind direction variable units 115a and 115b are arranged in the state shown in FIG.
  • an outdoor rotation speed detector may be provided.
  • This embodiment is different from the air conditioner of the third embodiment in that a humidity sensor is provided instead of the rotation speed detecting unit.
  • the humidity sensor is provided between the indoor heat exchanger 9 and the air filter 8, and detects the humidity of the intake air.
  • the output of the humidity sensor is input to the control unit 60 instead of the output of the temperature sensor 61, and the wind direction variable units 115a and 115b are driven based on the detection result of the humidity sensor.
  • Other parts are the same as in the third embodiment.
  • the wind direction variable units 115a and 115b it is possible to change the settings of the wind direction variable units 115a and 115b according to the humidity of the intake air. For example, when the difference between the relative humidity of the intake air and the set humidity is 20% or more, the second airflow control is performed. When the difference between the relative humidity of the intake air and the set humidity is less than 20%, the third airflow control is performed.
  • This embodiment is different from the air conditioner of the third embodiment in that an ion sensor (not shown) is provided instead of the rotation speed detecting unit.
  • the ion sensor is provided between the indoor heat exchange 9 and the air filter 8, and detects the ion concentration of the intake air.
  • the output of the ion sensor is input to the control unit 60 instead of the output of the temperature sensor 61, and the wind direction variable units 115a and 115b are driven based on the detection result of the ion sensor.
  • Other parts are the same as in the third embodiment.
  • the settings of the wind direction variable units 115a and 115b can be varied according to the ion concentration of the intake air. For example, when the difference between the ion concentration of the intake air and the set ion concentration is 2000 pieces / cm 3 or more, the second airflow control is performed. When the difference between the ion concentration of the suction air and the set ion is less than 2000 Zcm 3, the third airflow control is performed.
  • This embodiment is different from the air conditioner of the third embodiment in that a dust sensor (purification degree detecting means) is provided instead of the rotation speed detecting unit.
  • the dust sensor is provided between the indoor heat exchanger 9 and the air filter 8, and detects the amount of dust in the intake air to detect the degree of purification of the indoor air.
  • the output of the dust sensor is input to the control unit 60 instead of the output of the temperature sensor 61, and the wind direction variable units 115a and 115b are driven based on the detection result of the dust sensor.
  • the other parts are the same as in the third embodiment.
  • the settings of the wind direction variable units 115a and 115b can be varied according to the amount of dust contained in the intake air. For example, when the dust amount of the intake air is larger than a predetermined amount, the second airflow control is performed. If the amount of dust in the intake air is smaller than the predetermined amount! /, The third airflow control is performed in such a case.
  • This embodiment is different from the air conditioner of the third embodiment in that an odor sensor (purification degree detection means) is provided instead of the rotation speed detection unit.
  • the odor sensor is provided between the indoor heat exchanger 9 and the air filter 8, and detects the odor content of the intake air to detect the degree of purification of the indoor air.
  • the output of the odor sensor is input to the control unit 60 instead of the output of the temperature sensor 61, and the wind direction variable units 115a and 115b are driven based on the detection result of the odor sensor.
  • Other parts are the same as in the third embodiment.
  • the settings of the wind direction variable units 115a and 115b can be varied according to the content of the odor component in the intake air. For example, when the odor component of the intake air is larger than a predetermined amount, the second airflow control is performed. If the odor component of the intake air is less than the predetermined amount! /, The third airflow control is performed in some cases.
  • an odor sensor may be provided.
  • the indoor unit 1 of the first embodiment is mounted at a position in contact with a ceiling wall S at a corner L where two side walls W3 and W4 adjacent to a living room R intersect, as shown in FIG. It is configured as follows. Also in this case, the same effect as above can be obtained.
  • the indoor units of the second to twelfth embodiments may be corner air conditioners.
  • the air conditioner according to the present invention has been described with reference to the eleventh to thirteenth embodiments.
  • the present invention is not limited to the above-described embodiments, and may be appropriately modified without departing from the gist of the present invention. Can be changed and implemented.
  • the present invention can be used for an air conditioner that conditioned air taken into a casing and sends the conditioned air indoors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

 空気調和機の室内機1は壁面W1の上部に取り付けられ、吸込口4及び吹出口5がそれぞれ室内機1の前面及び下部に設けられる。吹出口5には前方水平方向から後方下方に亙って吹出し方向を変更可能な風向可変部113a、113b、113cが配されている。暖房立ち上がり時には、調和空気を壁面W1に向けて斜め下方に送出される。調和空気はコアンダ効果によって壁面W1に沿って下降し、床面F上を流通して室内を循環する。暖房運転の安定状態では風向可変部113b、113cにより気流路を絞って風量を下げて調和空気を送出する。

Description

明 細 書
空気調和機
技術分野
[0001] 本発明は、筐体内に取り込まれた空気を調和して室内に送出する空気調和機に関 する。
背景技術
[0002] 従来の空気調和機は特願 2002-266437号等に示される。図 28はこの空気調和 機による暖房運転時の室内の気流の挙動を示して 、る。空気調和機の室内機 1は側 壁 W1の上部に取付けられている。室内機 1の下部には調和空気を送出する吹出口 (不図示)が設けられる。
[0003] 暖房運転の開始直後の室温が速やかに上昇する立ち上がり状態では、速やかに 室内の空気を循環させる必要がある。このため、吹出口(不図示)から矢印 Bに示す ように例えば風速「強」(約 5— 6mZsec)で略真下方向に勢いよく送出される。そし て、図中、矢印に示すように居室 R内を流通して室内機 1の上部または前部に設けら れた吸込口 4に戻る。
[0004] 吸込口 4から吸引された空気の温度と設定温度との温度差力 S小さくなつたことを検 知すると、徐々に送風量が低下して例えば風速「弱」(約 3— 4mZsec)で調和空気 が送出される。図 29はこの室温が設定温度に対して所定温度以内で安定した安定 状態の室内の気流の挙動を示している。吹出口力も矢印 B'に示すように略真下方 向に風速「弱」で送出される調和空気は居室 R内を流通して吸込口 4に戻る。居室 R 内の温度が設定温度よりも低くなると再度風速が増加される。これにより、室内温度を 設定温度に維持するようになって!/、る。
[0005] また、特許文献 1には、風向板の向きを可変して吹出口から略真下方向に向けて 調和空気を送出できる空気調和機が開示されている。
特許文献 1:特許第 3311932号
発明の開示
発明が解決しょうとする課題 [0006] 図 30、図 31はそれぞれ立ち上がり状態で風速「強」(図 28)、安定状態で風速「弱」 (図 29)で暖房運転した時の室内の温度分布を示している。室内温度の設定温度は 28°C、居室 Rの大きさは 6畳(高さ 2400mm、横 3600mm、奥行き 2400mm)である 。計測ポイントは図 28、図 29に一点鎖線 Dで示した部屋 Rの中央断面を 600mm間 隔で高さ方向と横方向にそれぞれ 6点、 8点の合計 48点計測している。
[0007] 風速「強」の場合は、図 28に示すように室内機 1から真下方向乃至前方下方に送 出された暖気は比重が小さく強い浮力を受ける。このため、床面に達する前に風向 が前方に大きく曲げられる。これにより、居住空間に暖気が直接降り注ぐ。このため、 暖気が使用者の頭部に継続的に降り注ぐ場合には、使用者に不快感を与える問題 があった。
[0008] 風速「弱」の場合は、図 29に示すように室内機 1から真下方向に送出された調和空 気は風速が弱い上に比重が小さくて強い浮力を受ける。このため、矢印 B'に示すよ うに上昇する。これにより、図 31に示すように居室 Rの上部のみが温められて床面近 傍は温められない。即ち、足元が寒ぐ頭部に暖気が直接当たって使用者に著しく不 †夬感を与える問題があった。
[0009] また、図 28、図 29によると、室内機 1から送出された調和空気の一部は矢印 B"に 示すように上昇し、居室 R内を循環せずに直ちに室内機 1に取込まれる所謂ショート サーキットが生じる。このため、図 30、図 31に示すように室内機 1の周囲の空気が過 加熱され、吸込口 4近傍の温度が設定温度 28°Cに対して 3°C以上高 、所謂暖気溜 り Eが生じる。これにより、空気調和効率が低下する問題もあった。
[0010] 更に、風速「強」(図 28)で暖房運転が行なわれている時にショートサーキットにより 暖気溜り Eが生ずると、吸込口 4より取り込んだ空気の温度が高いため設定温度に近 づいたと検知される。このため、居室 R全体が充分に暖められる前に風速「弱」に切り 替えられる。ところが、暖気溜り Eによって室内機 1の周囲の温度が高いため風速「強 」に切り替えられず、足元が寒ぐ頭部には暖気が直接当たるという不快感を使用者 に継続的に与える。
[0011] 本発明は、快適性の向上及び空気調和効率の向上を図ることのできる空気調和機 及び空気調和方法を提供することを目的とする。 課題を解決するための手段
[0012] 上記目的を達成するために本発明は、室内の壁面に取り付けて吸込ロカ 取り入 れた空気を調和し、調和空気を吹出口力 風向を可変して送出することにより暖房運 転を行う空気調和機にぉ 、て、空気調和機の運転状況または室内の空気調和状況 に基づいて調和空気の風向を略水平方向または前方上方と、略真下方向または後 方下方とに可変できることを特徴として 、る。
[0013] この構成によると、空気調和機により暖房運転を開始すると、吸込口から取り込まれ た空気が昇温され、吹出口力 例えば前方上方に送出される。空気調和機の運転状 況または室内の空気調和状況が変化すると、吹出口力 例えば後方下方に調和空 気が送出される。風向を可変する空気調和機の運転状況として、空気調和機から送 出される空気の温度、室内機に配される室内熱交換器の温度、空気調和機から送出 される空気の風量、冷凍サイクルと運転する圧縮機の運転周波数、空気調和機の消 費電流や消費電力、室外機に取り込まれる空気の風量等が含まれる。また、風向を 可変する室内の空気調和状況として、室内の温度、室内の湿度、臭気成分や塵埃 量に基づく室内の空気の浄化度、室内のイオン濃度等が含まれる。
[0014] また本発明は、上記構成の空気調和機において、空気調和機の運転状況または 室内の空気調和状況に基づいて調和空気の風向を更に略真下方向と後方下方とに 可変したことを特徴としている。この構成によると、暖房運転を開始すると、吹出口か ら例えば前方上方に調和空気が送出される。空気調和機の運転状況または室内の 空気調和状況が変化すると、吹出口力 例えば後方下方に調和空気が送出される。 更に空気調和機の運転状況または室内の空気調和状況が変化すると、吹出口から 例えば略真下方向に調和空気が送出される。
[0015] また本発明は、上記構成の空気調和機において、空気調和機の運転状況または 室内の空気調和状況に基づいて調和空気の風向を更に略真下方向と前方下方とに 可変したことを特徴としている。この構成によると、暖房運転を開始すると、吹出口か ら例えば前方上方に調和空気が送出される。空気調和機の運転状況または室内の 空気調和状況が変化すると、吹出口力 例えば略真下方向に調和空気が送出され る。更に空気調和機の運転状況または室内の空気調和状況が変化すると、吹出口 力 例えば前方下方に調和空気が送出される。
[0016] また本発明は、上記構成の空気調和機において、居室が所定の大きさよりも狭いと きに調和空気の風向を略水平方向または前方上方と、略真下方向または後方下方 とに可変するとともに、居室が所定の大きさよりも広いときに調和空気の風向を略水 平方向または前方上方と、前方下方とに可変することを特徴としている。
[0017] この構成によると、居室が小さい場合には、吹出口から例えば前方上方に調和空 気が送出される。空気調和機の運転状況または室内の空気調和状況が変化すると、 吹出口力も例えば後方下方に調和空気が送出される。居室が大きい場合には、吹 出口力 例えば前方上方に調和空気が送出される。空気調和機の運転状況または 室内の空気調和状況が変化すると、吹出口力 前方下方に調和空気が送出される。
[0018] また本発明は、上記構成の空気調和機において、空気調和機の運転状況または 室内の空気調和状況に基づ 、て調和空気の風速を可変したことを特徴として 、る。 この構成によると、暖房運転を開始すると、吹出口から例えば前方上方に調和空気 が送出される。空気調和機の運転状況または室内の空気調和状況が変化すると、吹 出口力 例えば後方下方に調和空気が送出される。更に空気調和機の運転状況ま たは室内の空気調和状況が変化すると、吹出口から例えば風速を上げて後方下方 に調和空気が送出される。
[0019] また本発明は、上記構成の空気調和機において、空気調和機の運転状況または 室内の空気調和状況に基づいて調和空気の風量を可変したことを特徴としている。 この構成によると、暖房運転を開始すると、吹出口から例えば前方上方に調和空気 が送出される。空気調和機の運転状況または室内の空気調和状況が変化すると、吹 出口力 例えば後方下方に調和空気が送出される。更に空気調和機の運転状況ま たは室内の空気調和状況が変化すると、吹出口から例えば風量を下げて後方下方 に調和空気が送出される。
[0020] また本発明は、上記構成の空気調和機において、空気調和機の運転状況または 室内の空気調和状況が第 1の条件の場合に調和空気の風向を略水平方向または前 方上方にし、空気調和機の運転状況または室内の空気調和状況が第 2の条件の場 合に調和空気の風向を略真下方向または後方下方にし、空気調和機の運転状況ま たは室内の空気調和状況が第 3の条件の場合に調和空気の風向を第 2の条件の時 よりも前方にしたことを特徴としている。
[0021] また本発明は、上記構成の空気調和機において、第 1の条件は吹出温度が所定値 よりも低い場合力 成り、第 2の条件は吹出温度が該所定値よりも高く室温が上昇す る立ち上がり状態の場合力 成り、第 3の条件は室温が安定した安定状態の場合か ら成ることを特徴としている。
[0022] この構成によると、吹出温度が低いと調和空気は略水平方向または前方上方に送 出される。吹出温度が例えば直接当たっても寒さを感じな 、所定温度に到達して室 温が速やかに上昇する立ち上がり状態になると調和空気は略真下方向または後方 下方に送出される。室温が設定温度に対して所定温度以内で安定した安定状態に なるとすると調和空気は例えばやや前方の下方に向けて送出される。
[0023] また本発明は、上記構成の空気調和機において、後方下方または略真下方向へ の空気の送出を禁止する禁止手段を設けたことを特徴としている。
発明の効果
[0024] 本発明によると、空気調和機の運転状況または室内の空気調和状況に基づ 、て調 和空気の風向を可変するので、使用者に暖かい風が当たりつづけることがなぐ使用 者の不快感防止による快適性の向上を図ることができる。また、室温が上昇する立ち 上がり状態で高温の空気を吹出口力 後方下方に向けて送出して迅速に空気調和 を行うとともに、室温が安定した安定状態で風向、風速、風量を変更して容易に快適 性を向上することができる。
[0025] また本発明によると、吹出口力 送出される空気の温度、室内熱交^^の温度、圧 縮機の運転周波数、空気調和機の消費電流または消費電力、或いは室外機吸込口 から吸引され
る空気の風量等の空気調和機の運転状況に基づいて風向を可変するので、例えば 、吹出温度の高い調和空気をより後方へ送出して使用者に当たる高温の空気を減 少させることができる。従って、使用者の不快感をより低減することができる。
[0026] また本発明によると、吹出口力 送出される風量に基づいて風向を可変するので、 例えば、風量が多いときには後方下方に送出して使用者への不快感を防止しつつ 効率良く暖房することができる。また、風量が少ないときにはより前方に調和空気を送 出して到達距離が短くなることを防止し、室内の隅々まで暖房することができる。
[0027] また本発明によると、室内の温度、室内の湿度、室内のイオン濃度、室内の浄化度 等の室内の空気調和状況に基づいて風向、風速、風量を可変するので、例えば、室 内の調和度と使用者により設定された調和度との間の差が大きいときにはより後方に 調和空気を送出して部屋全体の空気を大きく攪拌し、室内の隅々まで速やかに空気 の調和度を高めることができる。これにより、室内全体の空気を短時間で調和すること ができる。一方、室内の調和度と使用者により設定された調和度との間の差が小さい ときには真下方向に送出して不要な後方への送出を減少させて効率良く空気調和を 行うことができる。
[0028] また本発明によると、後方下方または略真下方向への空気の送出を禁止する禁止 手段を設けているので、室内機の下方に壁や障害物があった場合に下方に送出さ れる空気が跳ね返って吸込口力 取込まれることによるショートサーキットの増加を防 止することができ、使用状況に応じた風向制御を行うことができる。
[0029] また本発明によると、室温が速やかに上昇する立ち上がり状態で調和空気の風向 を略真下方向または後方下方にし、安定状態で調和空気の風向を立ち上がり状態 よりも前方にしたので、風量が少ない安定状態で調和空気を遠くまで到達させること ができる。
[0030] また本発明によると、吹出温度が所定値よりも低い場合に調和空気の風向を略水 平方向または前方上方にしたので、温度の低い空気が直接使用者に当たらず寒さ を感じさせな 、空気調和機を得ることができる。
図面の簡単な説明
[0031] [図 1]は、本発明の第 1実施形態の空気調和機の室内機の第 2の気流制御時の状態 を示す側面断面図である。
[図 2]は、本発明の第 1実施形態の空気調和機の冷凍サイクルを示す回路図である。
[図 3]は、本発明の第 1実施形態の空気調和機の構成を示すブロック図である。
[図 4]は、本発明の第 1実施形態の空気調和機の制御部の構成を示すブロック図で める。 [図 5]は、本発明の第 1実施形態の空気調和機の室内機の第 1の気流制御時の状態 を示す側面断面図である。
[図 6]は、本発明の第 1実施形態の空気調和機の室内機の第 1の気流制御時の他の 状態を示す側面断面図である。
[図 7]は、本発明の第 1実施形態の空気調和機の室内機の後方下方吹出しの状態の ときの吹出口近傍の静圧分布を示す等高線図である。
[図 8]は、本発明の第 1実施形態の空気調和機の室内機の後方下方吹出しの状態の ときの居室内の気流の挙動を示す透視斜視図である。
[図 9]は、本発明の第 1実施形態の空気調和機の室内機の後方下方吹出しの状態の ときの居室中央部断面の温度分布を示す図である。
[図 10]は、本発明の第 1実施形態の空気調和機の室内機の第 3の気流制御時の状 態を示す側面断面図である。
[図 11]は、本発明の第 1実施形態の空気調和機の室内機の第 2の気流制御時の他 の状態を示す側面断面図である。
[図 12]は、本発明の第 1実施形態の空気調和機の室内機の第 2の気流制御時の更 に他の状態を示す側面断面図である。
[図 13]は、本発明の第 1実施形態の空気調和機の室内機の第 3の気流制御時の他 の状態を示す側面断面図である。
[図 14]は、本発明の第 1実施形態の空気調和機の室内機の第 2の気流制御時の更 に他の状態を示す側面断面図である。
[図 15]は、本発明の第 1実施形態の空気調和機の室内機の第 3の気流制御時の更 に他の状態を示す側面断面図である。
[図 16]は、本発明の第 2実施形態の空気調和機の室内機の第 2の気流制御時の状 態を示す側面断面図である。
[図 17]は、本発明の第 2実施形態の空気調和機の室内機の第 1の気流制御時の状 態を示す側面断面図である。
[図 18]は、本発明の第 2実施形態の空気調和機の室内機の第 1の気流制御時の他 の状態を示す側面断面図である。 [図 19]は、本発明の第 2実施形態の空気調和機の室内機の第 3の気流制御時の状 態を示す側面断面図である。
[図 20]は、本発明の第 2実施形態の空気調和機の室内機の第 2の気流制御時の他 の状態を示す側面断面図である。
[図 21]は、本発明の第 2実施形態の空気調和機の室内機の第 3の気流制御時の他 の状態を示す側面断面図である。
[図 22]は、本発明の第 3実施形態の空気調和機の室内機の第 2の気流制御時の状 態を示す側面断面図である。
[図 23]は、本発明の第 3実施形態の空気調和機の室内機の第 1の気流制御時の状 態を示す側面断面図である。
[図 24]は、本発明の第 3実施形態の空気調和機の室内機の第 1の気流制御時の他 の状態を示す側面断面図である。
[図 25]は、本発明の第 3実施形態の空気調和機の室内機の第 3の気流制御時の状 態を示す側面断面図である。
[図 26]は、本発明の第 3実施形態の空気調和機の室内機の第 3の気流制御時の他 の状態を示す側面断面図である。
[図 27]は、本発明に第 13実施形態の空気調和機の室内機の後方下方吹出しの状 態のときの居室内の気流の挙動を示す透視斜視図である。
[図 28]は、従来の空気調和機による居室内の風量「強」時の気流を示す斜視図であ る。
[図 29]は、従来の空気調和機による居室内の風量「弱」時の気流を示す斜視図であ る。
[図 30]は、従来の空気調和機による居室中央部断面の風量「強」時の温度分布を示 す図である。
[図 31]は、他の従来の空気調和機による居室中央部断面の風量「弱」時の温度分布 を示す図である。
符号の説明
1 室内機 2 キャビネット
3 フロントパネル
4 吸込口
5 吹出口
6 送風経路
7 送風ファン
8 エアフイノレタ
9 室内熱交換器
10 ドレンノ ン
12 縦ルーバ
25 渦
60 制御部
61 温度センサ
62 圧縮機
63 四方切替弁
64 室外熱交換器
65 送風ファン
66 絞り機構
67 冷媒配管
68 冷凍サイクル
71 CPU
72 入力回路
73 出力回路
74 メモリ
90 高静圧部
98 仮想面
113a, 113b, 113c, 114a, 114b, 115a, 115b 風向可変部 発明を実施するための最良の形態 [0033] 以下に本発明の実施形態について図面を参照して説明する。説明の便宜上、以 下の各実施形態において前述の図 28、図 29に示す従来例と同一の部分について は同一の符号を付している。
[0034] <第 1実施形態 >
図 1は第 1実施形態の空気調和機を示す側面断面図である (後述する図 8の D断 面を示している)。空気調和機の室内機 1は、キャビネット 2により本体部が保持され ており、キャビネット 2には上面側と前面側に吸込口 4が設けられたフロントパネル 3が 着脱自在に取り付けられて 、る。
[0035] キャビネット 2は後方側面に爪部(不図示)が設けられ、居室の側壁 W1に取り付け られた取付板 (不図示)に該爪部を係合することにより支持される。フロントパネル 3の 下端部とキャビネット 2の下端部との間隙には、吹出口 5が設けられている。吹出口 5 は室内機 1の幅方向に延びる略矩形に形成され、前方下方に臨んで設けられている
[0036] 室内機 1の内部には、吸込口 4から吹出口 5に連通する送風経路 6が形成されてい る。送風経路 6内には空気を送出する送風ファン 7が配されている。送風ファン 7とし て、例えば、クロスフローファン等を用いることができる。送風経路 6は送風ファン 7に より送出される空気を前方下方に案内する前方案内部 6aを有して 、る。前方案内部 6aには左右方向の吹出角度を変更可能な縦ルーバ 12が設けられている。また、送 風経路 6の上壁は前方案内部 6aの終端から前方へ行くほど上方に傾斜した傾斜面 になっている。
[0037] 吹出口 5には回動可能に支持される風向可変部 113a、 113b, 113cが設けられる 。風向可変部 113cは前方案内部 6aの下壁を延長し、駆動モータ (不図示)の駆動 によって回転する回動軸 113fによりキャビネット 2に枢支されている。風向可変部 11 3aは吹出口 5の上部に配されるとともに駆動モータ (不図示)によって回転する回 動軸 113dにより回動可能に支持されている。
[0038] 風向可変部 113bは吹出口 5の下部に配されるとともに駆動モータ (不図示)によつ て回転する回動軸 113eにより回動可能に支持されている。風向可変部 113a、 113 bは各駆動モータの駆動によって独立に回動し、向きを替えて風向を可変する。 [0039] また、風向可変部 113b、 113cは断面形状が湾曲しており、一面が凸状の曲面に 形成されるとともに他面が凹状の曲面に形成される。風向可変部 113aは一面(図中 、左側)が略平面になっており他面(図中、右側)が緩やかな凸状の曲面に形成され 、略中央部付近を回転軸 113dで軸支されている。尚、同図の状態は詳細を後述す るように吹出口 5から後方下方に向けて調和空気を送出する場合を示している。
[0040] フロントパネル 3に対向する位置には、吸込口 4から吸い込まれた空気に含まれる 塵埃を捕集 ·除去するエアフィルタ 8が設けられて 、る。送風経路 6中の送風ファン 7 とエアフィルタ 8との間には、室内熱交^^ 9が配置されている。室内熱交^^ 9は屋 外に配される圧縮機 62 (図 2参照)に接続されており、圧縮機 62の駆動により冷凍サ イタルが運転される。
[0041] 冷凍サイクルの運転によって冷房時には室内熱交換器 9が周囲温度よりも低温に 冷却される。また、暖房時には、室内熱交換器 9が周囲温度よりも高温に加熱される 。尚、室内熱交^^ 9とエアフィルタ 8との間には吸い込まれた空気の温度を検知す る温度センサ 61が設けられる。室内機 1の側部には空気調和機の駆動を制御する制 御部 60 (図 3参照)が設けられている。室内熱交換機 9の前後の下部には冷房または 除湿時に室内熱交翻9から落下した結露を補集するドレンパン 10が設けられてい る。
[0042] 前方のドレンパン 10には、イオン発生装置 30が放電面 30aを送風経路 6に面して 設置されて!、る。イオン発生装置 30の放電面 30aから発生したイオンは送風経路 6 内に放出され、吹出口 5から室内に吹出される。イオン発生装置 30は放電電極を有 し、コロナ放電によって印加電圧が正電圧の場合は主として H+(H O)力も成るブラ
2 n
スイオンを生成し、負電圧の場合は主として Ο 一 (H O)カゝら成るマイナスイオンを生
2 2 m
成する(n, mは整数)。
[0043] H+(H O)及び O— (H O) は微生物の表面で凝集し、空気中の微生物等の浮遊
2 n 2 2 m
菌を取り囲む。そして、式(1)一(3)に示すように、衝突により活性種である [ ·ΟΗ] ( 水酸基ラジカル)や Η Ο (過酸化水素)を浮遊菌の表面上で生成する (η' , m'は整
2 2
数)。これにより、浮遊菌を破壊して殺菌を行う。
[0044] H+(H O) +0— (H O)→·ΟΗ + 1/20 + (n+m)H O · · · (1)
2 n 2 2 m 2 2 H+(H O) +H+(H O) +0— (H O) +0— (H O)
2 n 2 n' 2 2 m 2 2 m'
→ 2 -OH + O +(n+n,+m+m,)H O
2 …(2)
2
H+(H O) +H+(H O) +0— (H O) +0— (H O)
2 n 2 n' 2 2 m 2 2 m'
→ H O +0 +(n+n
2 2 2 ,+m+m,)H O
2
•••(3)
[0045] イオン発生装置 30は使用目的に応じて、プラスイオンに比べてマイナスイオンを多 く発生させるモード、マイナスイオンに比べてプラスイオンを多く発生させるモード、及 びプラスイオンとマイナスイオンの両方を略同量の割合で発生させるモードの切替え ができるようになつている。
[0046] 図 2は空気調和機の冷凍サイクルを示す回路図である。空気調和機の室内機 1に 接続される室外機 (不図示)には、圧縮機 62、四方切替弁 63、室外熱交換器 64、送 風ファ
ン 65及び絞り機構 66が設けられる。圧縮機 62の一端は冷媒配管 67により四方切替 弁 63を介して室外熱交 64に接続されている。圧縮機 62の他端は冷媒配管 67 により四方切替弁 63を介して室内熱交翻9に接続されている。室外熱交翻64と 室内熱交翻9とは冷媒配管 67により絞り機構 66を介して接続されている。
[0047] 冷房運転を開始すると圧縮機 62が駆動されるとともに送風ファン 7が回転する。こ れにより、冷媒が圧縮機 62、四方切替弁 63、室外熱交換器 64、絞り機構 66、室内 熱交換器 9及び四方切替弁 63を経て圧縮機 62に戻る冷凍サイクル 68が形成される
[0048] 冷凍サイクル 68の運転によって、冷房時には室内熱交換器 9が周囲温度よりも低 温に冷却される。また、暖房運転時には四方切替弁 63が切り替えられて送風ファン 6 5が回転し、上記と逆方向に冷媒が流通する。即ち、圧縮機 62、四方切替弁 63、室 内熱交換器 9、絞り機構 66、室外熱交換器 64及び四方切替弁 63を経て圧縮機 62 に戻る冷凍サイクル 68が形成されている。これにより、室内熱交換器 9が周囲温度よ りも高温に加熱される。
[0049] 図 3は空気調和機の構成を示すブロック図である。制御部 60はマイクロコンピュー タカも成り、使用者による操作や吸込空気の温度を検知する温度センサ 61の入力に 基づいて、送風ファン 7、圧縮機 62、送風ファン 65、縦ルーノ 12、風向可変部 113a 、 113b, 113c、イオン発生装置 30の駆動制御を行う。
[0050] 図 4は、制御部 60の詳細構成を示すブロック図である。制御部 60は各種演算処理 を行う CPU71を有し、 CPU71には入力信号を受け取る入力回路 72及び CPU71 の演算結果を出力する出力回路 73が接続されている。また、 CPU71の演算プログ ラムの格納及び演算結果の一時記憶を行うメモリ 74が設けられている。
[0051] 入力回路 72には温度センサ 61の出力が入力される。出力回路 73には、風向可変 咅 113aゝ 113bゝ 113cの回転軸 113d、 113eゝ 113f (図 1参照)を駆動する駆動モ → (不図示)が接続されて ヽる。
[0052] また、リモートコントローラ (不図示)の操作信号を受信する受光部 (不図示)の出力 が制御部 60に入力される。これにより、リモートコントローラによる所定の操作によつ て温度センサ 61の検知結果に拘わらず風向可変部 113a、 113b, 113cを駆動可能 になっている。即ち、温度センサ 61に基づく制御部 60の制御を禁止して任意の向き に風向可変部 113a、 113b, 113cを配置することができる。
[0053] 上記構成の空気調和機において、暖房運転を開始すると、冷凍サイクルが運転さ れるとともに、室外機 (不図示)の送風ファン 65が回転駆動される。これにより、室外 機 (不図示)には外気が吸い込まれる。室外熱交換器 64により吸熱した冷媒は室内 熱交換器 9へ流れて室内熱交換器 9を加熱する。
[0054] 暖房運転を開始して一定時間が経過した場合または室内熱交換器 9が所定温度ま で加熱された場合に制御部 60によって室内機 1の送風ファン 7が回転駆動され、第 1 の気流制御が行われる。これにより、室内機 1内には吸込口 4から空気が吸い込まれ 、エアフィルタ 8によって空気中に含まれる塵埃が除去される。室内機 1内に取り込ま れた空気は室内熱交換器 9と熱交換して加熱され、縦ルーバ 12及び風向可変部 11 3a、 113b, 113cによって左右方向及び上下方向の向きを規制して室内に送出され る。
[0055] 第 1の気流制御は図 5または図 6の状態に風向可変部 113a、 113b, 113cを配置 して例えば風速約 3— 4mZsecで前方上方または略水平方向に調和空気を送出す る。即ち、図 5に示すように、風向可変部 113aは前方案内部 6aを流通する気流に沿 つて平面側が後方上方に面して配置される。風向可変部 113bは前方案内部 6aを流 通する気流に略平行かつ気流を二分して下に凸に配される。風向可変部 113cは吹 出口 5から送出される気流力も退避してキャビネット 2の下方に配される。
[0056] これにより、前方案内部 6aを流通する調和空気は湾曲して吹出口 5から矢印 Eに示 すように前方上方に送出される。また、図 6に示すように風向可変部 113aの向きを水 平にすると、矢印 Dに示すように調和空気を吹出口 5から略水平方向に送出される。
[0057] 吹出口 5から前方上方または略水平方向に送出された調和空気は居室の天井に 到達する。その後、コアンダ効果により天井壁 Sから室内機 1に対向する壁面 W2 (図 8参照)、床面 F (図 8参照)、室内機 1側の壁面 W1を順次伝って流通する。従って、 第 1の気流制御によって暖房運転の運転立ち上がり時に充分昇温されていない調和 空気が使用者に直接当たらず、使用者が寒さを感じることを防止することができる。
[0058] 暖房運転を開始して更に一定時間が経過した場合または室内熱交換器 9が充分 に加熱された場合には制御部 60によって第 2の気流制御が行われる。第 2の気流制 御は前述の図 1に示すように風向可変部 113a、 113b, 113cが配置され、吹出口 5 力 後方下方に例えば風速約 6— 7mZsecで調和空気が送出される。
[0059] 即ち、風向可変部 113aは駆動モータの駆動によって平面側を前面に向け、送風 経路 6の上壁に一端部が接触して送風経路 6の上壁を延長する位置に配される。風 向可変部 113aの他端部は回動軸 113eに接するように下方に向けて配される。風向 可変部 113bは送風経路 6側が凹になるように先端が後方下方に向けて配される。風 向可変部 113cは送風経路 6側が凸になるように先端が後方下方に向けられて配さ れる。
[0060] これにより、前方案内部 6aを流通する気流の進行方向前方が風向可変部 113a、 1 13bにより閉塞され、気流が湾曲して後方下方に導かれる。図 7はこの時の送風経路 6の静圧分布を示している。風向可変部 113a、 113bの内面側には風向可変部 113 a、 113bに接して前方案内部 6aの静圧よりも高圧の高静圧部 90が形成される。
[0061] 送風経路 6の静圧を検知する静圧検知センサ(不図示)の検知結果によって風向 可変部 113a、 113b, 113cは位置調整され、高静圧部 90の等圧線 90aが風向可変 部 113a、 113bに面して流通する気流に沿って形成されている。即ち、高静圧部 90 の等圧線 90aは前方案内部 6aの終端と風向可変部 113bの終端とを結ぶ線に略平 行に形成され、高静圧部 90近傍で気流が等圧線 90aに略平行になって 、る。
[0062] このため、高圧部 90が流体力学的な壁面として作用し、風向可変部 113a、 113b 、 113cによって調和空気の送出方向を滑らかに可変して気流を湾曲させる。そして 、風向可変部 113a、 113bに接する高静圧部 90の等圧線 90aが送風経路 6を湾曲 して流通する気流の主流の流線と交わらない。このため、該気流に力かる圧力損失 を大幅に低減することができる。
[0063] その結果、大きな風向の変更にもかかわらず大風量の調和空気を後方下方に送出 することができる。尚、高静圧部 90では主流力も分かれた低速かつ低エネルギーの 気流が風向可変部 113a、 113bに沿って流通している。このため、圧力損失に対す る影響が/少なくなって 、る。
[0064] 尚、静圧検知センサを用いて風向可変部 113a、 113b近傍の静圧が所定値になる ように風向可変部 113a、 113b, 113cの配置を可変し、風向可変部 113a、
113b, 113cの位置をデータベースとして記憶してもよい。これにより、運転条件に応 じたデータをデータベースから取りだして風向可変部 113a、 113b, 113cを所定位 置に配置でき、静圧検知センサを省くことができる。
[0065] また、風向可変部 113a、 113b, 113cに面して流通する調和空気の主流は高静圧 部 90と送風経路 6の下壁面とに囲まれた空間を流通する。即ち、高静圧部 90により 流路の壁面が形成される。従って、気流が風向可変部 113a、 113bと接していない ので粘性による損失が低減され、更に風量を増加することができる。
[0066] また、高静圧部 90は流路の壁面を成し、高静圧部 90により調和空気の流路を絞つ てノズル形状を成して流路面積が前方案内部 6aよりも狭くなる。このため、ノズルの 作用により高工ネルギ一の流体が吹出口 5から送出される。その結果、高静圧部 90 に隣接する気流の風速が大きく変化せず、気流の静圧変動を抑制して気流がよりス ムーズに流れて圧力損失をより低減できる。従って、空気調和機から送出する調和 空気の風量をより増加させることができる。
[0067] また、高静圧部 90により絞られて一端狭くなつた流路面積が風向可変部 113a、 11 3b、 113cの下流側で再度拡大されている。これにより、流路は下流に行くに従い一 且断面積が減少して最小断面積部(以下「のど部」という)が形成される。このため、 拡大された流路によって所謂ディフューザが構成され、送風ファン 7の静圧上昇を補 助して更に風量を増加することができる。また、図 7に示すように、流路ののど部には 高静圧部 90が発生せず圧力損失が生じないため、その位置で流路を湾曲すること により、圧力損失が生じない湾曲部を形成することができる。
[0068] 尚、前方案内部 6aの上壁と風向可変部 113aとの接触部分が滑らかな曲面により 形成されないため高静圧部 90には渦 25が発生して送風効率がやや低下する。しか しながら、従来よりも圧力損失の増加を抑制して送風効率を向上することができる。
[0069] 更に、風向可変部 113bは前方案内部 6aの下壁を吹出口 5のさらに外側に延長し た仮想面 98と交差するように配置されている。これにより、風向可変部 113aの下端 部が仮想面 98よりも下方に配され、気流が後方下方に確実に導かれる。従って、意 図しな 、方向に気流が送出されず、信頼性の高 、空気調和機を得ることができる。
[0070] 図 8は後方下方吹出し時の居室 R内の気流の挙動を示している。調和空気は側壁 W1に沿って下降して矢印 Cに示すように床面 F、側壁 W1に対向する側壁 W2、天 井壁 Sを順次伝って吸込口 4に戻る。これにより、送出された暖気の巻き上がりを防止 してショートサーキットによる暖房効率の低下を防止できるとともに、居室 Rの下部を 充分暖めて快適性を向上させることができる。従って、居室 R内は室温が速やかに上 昇して立ち上がる立ち上がり状態となる。
[0071] 尚、第 1の気流制御では室内機 1から送出される空気が直接当たると使用者が寒さ を感じる程度に低い温度になっている。このため、第 1の気流制御を行う際も室温が 上昇するが、上昇速度が遅くなつている。立ち上がり状態では室内機 1から送出され る空気が直接当たっても使用者が寒さを感じない温度に到達し、室温が設定温度よ りも低 、状態力 速やかに上昇する。
[0072] 図 9は、第 2の気流制御時の室内の温度分布を示している。室内温度の設定温度 は 28°Cであり、居室 Rの大きさは 6畳(高さ 2400mm、横 3600mm、奥行き 2400m m)である。前述の図 30、図 31と同様〖こ、計測ポイントは一点鎖線 Dで示した居室 R の中央断面を 600mm間隔で高さ方向と横方向にそれぞれ 6点、 8点の合計 48点計 測している。 [0073] 同図に示すように、温度の高い調和空気が床面 Fを伝って足元に到達するため、 居室 Rの床面中央部の温度は 33°C— 35°Cになっている。前述の図 30、図 31に示 す従来例では同じ位置で 31°C— 32°C (図 30)及び 23°C (図 31 )程度であるため、 足下の温度をより高くして使用者の不快感を低減して快適性を大幅に向上させること ができる。
[0074] また、室内機 1から送出された調和空気はコアンダ効果によって壁面に沿うため卷 き上がらず、ショートサーキットが生じない。このため、室内機 1の周囲が過剰に暖め られる暖気溜り E (図 30参照)も生じず、吸込口 4近傍の温度は設定温度である 28°C と同じ程度になっている。従って、空気調和効率が向上されるとともに、室内が充分 温まって!/ヽるかどうかの判断を容易〖こすることができる。
[0075] 次に、第 2の気流制御を行って更に一定時間が経過した場合、または吸込口 4より 取込んだ空気の温度と設定温度との温度差が小さくなつたことを温度センサ 61により 検知した場合には、制御部 60によって第 3の気流制御が行われる。第 3の気流制御 は圧縮機 62の運転周波数を下げるとともに図 10に示すように風向可変部 113a、 11 3b、 113cが配置され、例えば風速約 6— 7mZsecで矢印 こ示すように後方下方 に調和空気が送出される。
[0076] 即ち、風向可変部 113cを図 10の K方向に回動して吹出口 5の面積を絞るとともに 送風ファン 7の回転数を調節して風速を維持する。これにより、第 2の気流制御に対し て同じ風速で徐々に送風量が約 70%に低下する。この時、送風量が低下しても、室 内機 1から後方下方に送出された調和空気 (暖気)はコアンダ効果によって巻き上が らずに側壁 W1に沿って下降し続け、居住空間に直接降り注がずに床面 Fを伝って 足元に到達する。
[0077] 従って、使用者に直接風が当たることによる不快感もなく快適性が向上する。更に 、送風量が低下しても風速が維持されるため、側壁 W2と床面 Fとの境界領域等の居 室 Rの隅々に暖気が確実に到達する。これにより、居室 R内は室温が設定温度に対 して所定温度以内で安定した安定状態になる。
[0078] 尚、第 3の気流制御において風量を低下するとともに風速を低下させた場合には、 側壁 W2と床面 Fとの境界領域等の居室 Rの隅々まで暖気が到達しな!、恐れがある ので、風速を維持する方がより望ましい。
[0079] 第 3の気流制御中に居室 Rの窓の開放、室外機の除霜のために暖房運転の一時 中断、その他の理由で居室 Rの室温が設定温度よりも低下した場合は、空気調和機 は立ち上がり状態に移行して第 2の気流制御を行う。そして、一定時間が経過した場 合や室温と設定温度との温度差が小さくなつたことを検知した場合に第 3の気流制御 を行う。これを繰り返して暖房運転が行われる。
[0080] 尚、使用者によって暖房運転の開始直後や居室 Rの室内温度が所望の温度に達 していない時に暖気を直接浴びたい場合がある。また、居室 Rの室内温度が所望の 温度に達した後に、暖気を直接浴びると不快感を感じるため暖気を直接浴びることな く室内温度を所望の温度に保ちたいと要望する場合もある。
[0081] このような場合に、前述の図 28の従来例に示すように調和空気を前方下方に送出 した後、図 1、図 10に示すように後方下方に送出するとよい。即ち、立ち上がり状態 では図 28に示すように前方下方に調和空気を送出する。これにより、暖気を使用者 に直接浴びせることができる。そして、安定状態では、調和空気を後方下方に送出 する。これにより
、ユーザは暖気を直接浴びることなぐ部屋の温度を所望の温度に保つことができる 。従って、使用者の利便性を大幅に向上させることができる。
[0082] また、使用者によるリモートコントローラ(不図示)の操作によって、縦ルーバ 12およ び風向可変部 113a、 113b, 113cの配置を可変できるようになつている。これにより 、調和空気の風向を使用者により任意に選択することができる。
[0083] 第 2の気流制御において前述の図 1の状態に替えて図 11に示すように、風向可変 部 113aの平面側を送風経路 6に面して配置してもよい。これにより、前面パネル 3に 沿って風向可変部 113a、 113bが配され、室内機 1の美観が向上する。この時、高静 圧部 90は前方上方に傾斜した送風経路 6の上壁と風向可変部 113a、 113bにより 囲まれて形成されるため高静圧部 90内に発達する渦 25が大きくなる。
[0084] このため、図 1の場合に比して送風効率がやや若干低下するが従来よりも圧力損失 の増加を抑制することができる。同様に、第 3の気流制御において前述の図 10の状 態に替えて風向可変部 113aを前面パネル 3に沿つて配置してもよ ヽ。 [0085] また、第 2、第 3の気流制御において、室内機 1が設置される居室 Rが広い場合に は制御部 60によって異なる制御が行われる。制御の切り替えは室内機 1またはリモ ートコントローラに設けた切替スィッチ等によって行うことができる。
[0086] 居室 Rが広ぐ室内機 1が取り付けられる側壁 W1と側壁 W1に対向する側壁 W2と の距離が比較的大きいと、吹出口 5から後方下方に調和空気を送出すると側壁 W2と 床面 Fとの境界領域等の居室 Rの隅々に暖気が到達しない場合がある。このため、 立ち上がり状態の第 2の気流制御において風向可変部 113a、 113b, 113cが図 12 に示すように配置される。
[0087] 即ち、風向可変部 113b、 113cが前述の図 1の状態よりも前方に配置される。そし て、矢印 Bに示すように吹出口 5から調和空気が略真下方向に例えば風速約 7— 8m Zsecで送出される。
[0088] 安定状態では第 3の気流制御において風向可変部 113a、 113b, 113cが図 13に 示すように配置される。即ち、風向可変部 113cを図 12の状態力も K方向に回動して 吹出口 5の面積が絞られる。これに伴って送風ファン 7の回転数を調節する。これに より、例えば風量は第 2の気流制御に対して約 70%となり、風速約 7— 8mZsecで吹 出口 5から矢印 ΒΊこ示すように略真下方向に調和空気が送出される。これにより、居 室 Rが広 、場合に居室 Rの隅々に暖気を到達させることができる。
[0089] また、第 2、第 3の気流制御においてそれぞれ図 14、図 15に示すように風向可変 部 113a、 113b, 113cを配置してもよい。即ち、立ち上がり状態の第 2の気流制御で は図 14において、風向可変部 113a、 113b, 113cの下端を図 12に対して前方に配 置する。そして、吹出口 5から例えば風速約 6— 7mZsecで矢印 A2に示すように調 和空気を真下よりもやや前方の前方下方に送出する。
[0090] 安定状態の第 3の気流制御では図 15にお 、て図 14の状態力も風向可変部 113a 力 方向に回動し、風向可変部 113cが K方向に回動して吹出口 5の面積が絞られる 。これに伴って送風ファン 7の回転数を調節する。これにより、例えば風量は第 2の気 流制御に対して約 70%となり、風速約 7— 8mZsecで吹出口 5から矢印 Α2Ίこ示す ように前方下方に調和空気が送出される。これにより、居室 Rが広い場合に居室尺の 隅々に暖気を到達させることができる。 [0091] 更に、第 2、第 3の気流制御においてそれぞれ前述の図 1、図 10に示すように風向 可変部 113a、 113b, 113cを配置して風速を大きくしてもよい。即ち、立ち上がり状 態では図 1に示すように風向可変部 113a、 113b, 113cを設定し、吹出口 5から矢 印 Cに示すように後方下方に例えば風速約 9一 lOmZsecで調和空気を送出する。
[0092] 安定状態では図 10に示すように風向可変部 113a、 113b, 113cを設定し、吹出 口 5から矢印 Cに示すように後方下方に例えば風速約 9一 lOmZsecで調和空気を 送出する。これにより、居室 Rが広くても居室 Rの隅々に暖気を到達させることができ る。従って、居室 Rが広い場合には風向を前方に設定するか風速を大きくすることに より居室が狭い場合と同様の効果を得ることができる。
[0093] <第 2実施形態 >
次に、図 16は第 2実施形態の空気調和機の室内機 1を示す側面断面図である。前 述の図 1一図 15に示す第 1実施形態と同様の部分には同一の符号を付している。本 実施形態は第 1実施形態の風向可変部 113a、 113b, 113cに替えて風向可変部 1 14a、 114bが設けられる。その他の部分は第 1実施形態と同様である。
[0094] 風向可変部 114a、 114bは吹出口 5に配され、両面が平面の平板力も成っている。
回動軸 114c、 114dは風向可変部 114a、 114bを回動可能に支持し、駆動モータ( 不図示)によって回転する。これにより、風向可変部 114a、 114bは駆動モータの駆 動によって向きを替えて風向を可変する風向板力も成っている。また、回動軸 114c は風向可変部 114aの略中央に設けられ、回動軸 114dは風向可変部 114bの端部 に設けられる。尚、同図は調和空気を後方下方に送出する場合の配置を示している
[0095] 上記構成の空気調和機において、暖房運転を開始すると、冷凍サイクルが運転さ れるとともに、室外機 (不図示)の送風ファン 65が回転駆動される。これにより、室外 機 (不図示)には外気が吸い込まれる。室外熱交換器 64により吸熱した冷媒は室内 熱交換器 9へ流れて室内熱交換器 9を加熱する。
[0096] 暖房運転を開始して一定時間が経過した場合、または室内熱交換器 9が所定温度 まで加熱された場合に制御部 60によって室内機 1の送風ファン 7が回転駆動され、 第 1の気流制御が行われる。これにより、室内機 1内には吸込口 4から空気が吸い込 まれ、エアフィルタ 8によって空気中に含まれる塵埃が除去される。室内機 1内に取り 込まれた空気は室内熱交換器 9と熱交換して加熱され、縦ルーバ 12及び風向可変 部 114a、 114bによって左右方向及び上下方向の向きを規制して室内に送出される
[0097] 第 1の気流制御は図 17または図 18の状態に風向可変部 114a、 114bを配置して 風速約 3— 4mZsecで前方上方または略水平方向に調和空気を送出する。即ち、 図 17に示すように風向可変部 114aは前端が後端よりも上方に配され、吹出口 5近 傍で上方に傾斜した送風経路 6の上壁に略平行になって 、る。風向可変部 114bは 軸側の端部が開放側の端部よりも前方下方になるように配される。
[0098] これにより、前方案内部 6aを流通する調和空気は湾曲して吹出口 5から矢印 Eに示 すように前方上方に送出される。また、図 18に示すように風向可変部 114aの向きを 水平にすると、矢印 Dに示すように調和空気が吹出口 5から略水平方向に送出され る。
[0099] 吹出口 5から前方上方または略水平方向に送出された調和空気は居室の天井に 到達する
。その後、コアンダ効果により天井面力 室内機 1に対向する壁面 W2 (図 8参照)、 床面 F (図 8参照)、室内機 1側の壁面 W1を順次伝って流通する。従って、第 1の気 流制御によって暖房運転の運転立ち上がり時に充分昇温されていない調和空気が 使用者に直接当たらず、使用者が寒さを感じることを防止することができる。
[0100] 暖房運転を開始して更に一定時間が経過した場合や室内熱交換器 9が充分にカロ 熱された場合には制御部 60によって第 2の気流制御が行われる。第 2の気流制御は 前述の図 16に示すように風向可変部 114a、 114bが配置され、吹出口 5から後方下 方に例えば風速約 6— 7mZsecで調和空気が送出される。
[0101] 即ち、風向可変部 114aは駆動モータの駆動によって一端が送風経路 6の上壁に 近接して上壁を下方へ延長するように配される。風向可変部 114aの他端部は回動 軸 114dに近接して下方に向けて配される。風向可変部 114bは先端が後方下方に 向けて配される。
[0102] これにより、前方案内部 6aを流通する気流の進行方向前方が風向可変部 114a、 1 14bにより閉塞され、風向可変部 114a、 114bに接した高静圧部 90が形成される。 高静圧部 90の等圧線 90a (図 7参照)は第 1実施形態と同様に風向可変部 114a、 1 14bに面した調和空気の流通方向に沿って形成される。このため、高静圧部 90が流 体力学的な壁面となり、調和空気が送出方向を滑らかに可変して吹出口 5から後方 下方に送出される。
[0103] 従って、第 1実施形態と同様に、立ち上がり状態で足下の温度をより高くして使用 者の不快感を低減して快適性を大幅に向上させることができる。また、空気調和効率 が向上されるとともに、室内が充分温まっているかどうかの判断を容易にすることがで きる。
[0104] また、高静圧部 90によって流路が絞られ、下流側で再度流路が拡大されている。
更に、風向可変部 114bは前方案内部 6aの下壁を吹出口 5から外側に延長した仮想 面 98と交差するように配置される。従って、第 1実施形態と同様の効果を得ることが できる。
[0105] 次に、暖房運転を開始して更に一定時間が経過した場合、または吸込口 4より取込 んだ空気の温度と設定温度との温度差が小さくなつたことを温度センサ 61により検知 した場合には、制御部 60によって第 3の気流制御が行われる。第 3の気流制御は図 19に示すように風向可変部 114a、 114bが配置され、送付ファン 7の送風量を下げ て風速約 5— 6mZsecで矢印 Bに示すように略真下方向に調和空気が送出される。
[0106] 即ち、風向可変部 114bは先端を図 16の場合よりも前方に配して略真下方向に向 けられ、送風量及び風速が下げられる。これにより、安定状態で使用者に直接風が 当たることによる不快感もなく快適性が向上する。また送風量が低下しても、室内機 1 から立ち上がり状態よりも調和空気がやや前方 (略真下方向)に送出されるため、室 内機 1から離れた位置まで暖気が到達する。尚、第 1実施形態では安定状態で第 3 の気流制御において気流路を絞って風速を維持して送風量を下げることができるた め暖気の到達距離が大きくなるのでより望ましい。
[0107] 第 3の気流制御中に居室 Rの窓の開放、室外機の除霜のために暖房運転の一時 中断、その他の理由で居室 Rの室温が設定温度よりも低下した場合は、空気調和機 は室温立ち上げ状態に移行して第 2の気流制御を行う。そして、一定時間が経過し た場合や室温と設定温度との温度差が小さくなつたことを検知した場合に第 3の気流 制御を行う。これを繰り返して暖房運転が行われる。
[0108] また、使用者によるリモートコントローラ(不図示)の操作によって、縦ルーバ 12およ び風向可変部 114a、 114bの配置を可変できるようになつている。これにより、調和 空気の風向を使用者により任意に選択することができる。
[0109] 第 2の気流制御において前述の図 16の状態に替えて図 20に示すように、風向可 変部 114aを前面パネル 3に沿って配置してもよい。これにより、室内機 1の美観が向 上する。この時、高静圧部 90は前方上方に傾斜した送風経路 6の上壁と風向可変部
114a, 114bにより囲まれて形成されるため高静圧部 90内に発達する渦 25が大きく なる。
[0110] このため、図 16の場合に比して送風効率がやや若干低下するが従来よりも圧力損 失の増加を抑制することができる。同様に、第 3の気流制御において前述の図 19の 状態に替えて風向可変部 114aを前面パネル 3に沿って配置してもよい。
[0111] また、第 2、第 3の気流制御において、室内機 1が設置される居室 Rが広い場合に は制御部 60によって異なる制御が行われる。制御の切り替えは室内機 1またはリモ ートコントローラに設けた切替スィッチ等によって行うことができる。
[0112] 居室 Rが広ぐ室内機 1が取り付けられる側壁 W1と側壁 W1に対向する側壁 W2と の距離が比較的大きいと、吹出口 5から後方下方に調和空気を送出すると側壁 W2と 床面 Fとの境界領域等の居室 Rの隅々に暖気が到達しない場合がある。このため、 立ち上がり状態の第 2の気流制御において風向可変部 114a、 114bが前述の図 19 に示すように配置される。
[0113] 即ち、風向可変部 114bが前述の図 16の状態よりも前方に配置される。そして、吹 出口 5から例えば風速約 7— 8mZsecで矢印 Bに示すように調和空気を略真下方向 に送出する。
[0114] 安定状態では第 3の気流制御において風向可変部 114a、 114bが図 21に示すよ うに配置される。即ち、風向可変部 114bが前述の図 19の状態よりも前方に配置され る。そして、吹出口 5から例えば風速約 6— 7mZsecで矢印 Bに示すように調和空気 を真下よりもやや前方の前方下方に送出する。これにより、居室 Rが広くても居室尺の 隅々に暖気を到達させることができる。
[0115] <第 3実施形態 >
次に、図 22は第 3実施形態の空気調和機の室内機 1を示す側面断面図である。前 述の図 16から図 21に示す第 2実施形態と同様の部分には同一の符号を付している 。本実施形態は第 2実施形態の風向可変部 114a、 114bに替えて風向可変部 115a 、 115bが設けられる。
[0116] また、室内機 1内の送風ファン 7の回転数を検出して、吹出口 5から送出される調和 空気の風量を検知する回転数検出部(不図示)が設けられて 、る。前述の図 4にお いて、回転数検出部の出力が制御部 60に入力され、回転数検出部の検出結果に基 づいて風向可変部 115a、 115bが駆動されている。その他の部分は第 2実施形態と 同様である。
[0117] 風向可変部 115a、 115bは吹出口 5に配され、両面が平面の平板力も成っている。
回動軸 115c、 115dは風向可変部 115a、 115bを回動可能に支持し、駆動モータ( 不図示)によって回転する。これにより、風向可変部 115a、 115bは駆動モータの駆 動によって向きを替えて風向を可変する風向板力 成っている。また、回動軸 115c は風向可変部 115aの略中央に設けられ、回動軸 115dは風向可変部 115 bの略中央の風向可変部 115bから所定量離れた位置に設けられる。尚、同図は調 和空気を後方下方に送出する場合の配置を示して 、る。
[0118] 上記構成の空気調和機において、暖房運転を開始すると、冷凍サイクルが運転さ れるとともに、室外機 (不図示)の送風ファン 65が回転駆動される。これにより、室外 機 (不図示)には外気が吸い込まれる。室外熱交換器 64により吸熱した冷媒は室内 熱交換器 9へ流れて室内熱交換器 9を加熱する。
[0119] 暖房運転を開始して一定時間が経過した場合、または室内熱交換器 9が所定温度 まで加熱された場合に制御部 60によって室内機 1の送風ファン 7が回転駆動され、 第 1の気流制御が行われる。これにより、室内機 1内には吸込口 4から空気が吸い込 まれ、エアフィルタ 8によって空気中に含まれる塵埃が除去される。室内機 1内に取り 込まれた空気は室内熱交換器 9と熱交換して加熱され、縦ルーバ 12及び風向可変 部 115a、 115bによって左右方向及び上下方向の向きを規制して室内に送出される [0120] 第 1の気流制御は送風ファン 7の回転数を例えば 600rpmにして回転数検出部の 検出によって図 23または図 24の状態に風向可変部 115a、 115bが配置される。そし て、風速約 3— 4mZsecで前方上方または略水平方向に調和空気を送出する。即 ち、図 23に示すように風向可変部 115aは前端が後端よりも上方に配され、吹出口 5 近傍で上方に傾斜した送風経路 6の上壁に略平行になって 、る。風向可変部 115b は外側の端部が内側の端部よりも前方下方になるように配される。
[0121] これにより、前方案内部 6aを流通する調和空気は湾曲して吹出口 5から矢印 Eに示 すように前方上方に送出される。また、図 24に示すように風向可変部 115aの向きを 水平にすると、矢印 Dに示すように調和空気を吹出口 5から略水平方向に送出される
[0122] 吹出口 5から前方上方または略水平方向に送出された調和空気は居室の天井に 到達する。その後、コアンダ効果により天井面力 室内機 1に対向する壁面 W2 (図 8 参照)、床面 F (図 8参照)、室内機 1側の壁面 W1を順次伝って流通する。従って、第 1の気流制御によって暖房運転の運転立ち上がり時に充分昇温されていない調和空 気が使用者に直接当たらず、使用者が寒さを感じることを防止することができる。
[0123] 暖房運転を開始して更に一定時間が経過した場合や室内熱交換器 9が充分にカロ 熱された場合には制御部 60によって第 2の気流制御が行われる。第 2の気流制御は 送風ファン 7の回転数を例えば 1200rpmにすると回転数検出部の検出によって前 述の図 22の状態に風向可変部 115a、 115bが配置される。そして、風速約 6— 7m Zsecで後方下方に調和空気を送出する。
[0124] 即ち、風向可変部 115aは駆動モータの駆動によって一端が送風経路 6の上壁に 当接して上壁を下方へ延長するように配される。風向可変部 115bは先端が略真下 方向または後方下方に向けて配される。
[0125] これにより、前方案内部 6aを流通する気流の進行方向前方が風向可変部 115a、 1 15bにより閉塞され、風向可変部 115a、 115bに接した高静圧部 90が形成される。 高静圧部 90の等圧線 90a (図 7参照)は第 1、第 2実施形態と同様に風向可変部 11 5a、 115bに面した調和空気の流通方向に沿って形成される。このため、高静圧部 9 0が流体力学的な壁面となり、調和空気が送出方向を滑らかに可変して吹出口 5から 後方下方に送出される。
[0126] 従って、第 1、第 2実施形態と同様に、立ち上がり状態で足下の温度をより高くして 使
用者の不快感を低減して快適性を大幅に向上させることができる。また、空気調和効 率が向上されるとともに、室内が充分温まっているかどうかの判断を容易にすることが できる。
[0127] また、高静圧部 90によって流路が絞られ、下流側で再度流路が拡大されている。
更に、風向可変部 115bは前方案内部 6aの下壁を吹出口 5から外側に延長した仮想 面 98と交差するように配置される。従って、第 1、第 2実施形態と同様の効果を得るこ とがでさる。
[0128] 次に、暖房運転を開始して更に一定時間が経過した場合、または吸込口 4より取込 んだ空気の温度と設定温度との温度差が小さくなつたことを温度センサ 61により検知 した場合には、制御部 60によって第 3の気流制御が行われる。第 3の気流制御は送 風ファン 7の回転数を例えば 900rpmにすると回転数検出部の検出によって図 25の 状態に風向可変部 115a、 115bが配置される。そして、風速約 5— 6mZsecで矢印 Bに示すように略真下方向に調和空気が送出される。
[0129] 即ち、送風ファン 7の回転数を下げることによって風向可変部 115bは先端を図 22 の場合よりも前方に配して先端が略真下方向またはやや前方に向けられる。これによ り、安定状態で使用者に直接風が当たることによる不快感もなく快適性が向上する。 また送風量が低下しても、室内機 1から立ち上がり状態よりも調和空気がやや前方( 略真下方向)に送出されるため、室内機 1から離れた位置まで暖気が到達する。
[0130] 第 3の気流制御中に居室 Rの窓の開放、室外機の除霜のために暖房運転の一時 中断、その他の理由で居室 Rの室温が設定温度よりも低下した場合は、空気調和機 は室温立ち上げ状態に移行して第 2の気流制御を行う。そして、一定時間が経過場 合や室温と設定温度との温度差が小さくなつたことを検知した場合に第 3の気流制御 を行う。これを繰り返して暖房運転が行われる。
[0131] また、使用者によるリモートコントローラ(不図示)の操作によって、縦ルーバ 12およ び風向可変部 115a、 115bの配置を可変できるようになつている。これにより、調和 空気の風向を使用者により任意に選択することができる。
[0132] また、第 2、第 3の気流制御において、室内機 1が設置される居室 Rが広い場合に は制御部 60によって異なる制御が行われる。制御の切り替えは室内機 1またはリモ ートコントローラに設けた切替スィッチ等によって行うことができる。
[0133] 居室 Rが広ぐ室内機 1が取り付けられる側壁 W1と側壁 W1に対向する側壁 W2と の距離が比較的大きいと、吹出口 5から後方下方に調和空気を送出すると側壁 W2と 床面 Fとの境界領域等の居室 Rの隅々に暖気が到達しない場合がある。このため、 立ち上がり状態の第 2の気流制御において風向可変部 115a、 115bが前述の図 25 に示すように配置される。
[0134] 即ち、送風ファン 7の回転数が例えば 1200rpmになると回転数検出部の検出によ つて風向可変部 115bが前述の図 22の状態よりも前方に配置される。そして、吹出口 5から例えば風速約 7— 8mZsecで矢印 Bに示すように調和空気を略真下方向に送 出する。
[0135] 安定状態では第 3の気流制御において風向可変部 115a、 115bが図 26に示すよ うに配置される。即ち、送風ファン 7の回転数が例えば 900rpmになると回転数検出 部の検出によって風向可変部 115bが前述の図 25の状態よりも前方に配置される。 そ
して、吹出口 5から例えば風速約 6— 7mZsecで矢印 Bに示すように調和空気を真 下よりもやや前方の前方下方に送出する。これにより、居室 Rが広くても居室 Rの隅 々に暖気を到達させることができる。
[0136] 尚、第 1、第 2実施形態において同様の回転数検出部を設け、回転数検出部の検 出結果に基づいて風向、風速、風量を可変してもよい。
[0137] <第 4実施形態 >
次に、第 4実施形態について説明する。本実施形態は第 3実施形態の空気調和機 に対して、回転数検出部に替えて周波数検出部 (不図示)が設けられている。周波 数検出部は圧縮機 62 (図 2参照)の運転周波数を検出する。前述の図 4において、 周波数検出部の出力が制御部 60に入力され、周波数検出部の検出結果に基づい て風向可変部 115a、 115bが駆動されている。その他の部分は第 3実施形態と同様 である。
[0138] これにより、圧縮機 62の運転周波数に応じて風向可変部 115a、 115bの配置を可 変することができる。立ち上がり状態の第 2の気流制御では運転周波数が上げられ、 運転周波数が例えば 70Hz以上になると周波数検出部の検出によって風向可変部 1 15a、 115bが例えば前述の図 22に示す状態に配置される。また、安定状態の第 3の 気流制御では運転周波数が下げられ、運転周波数が例えば 40Hz— 70Hzになると 周波数検出部の検出によって風向可変部 115a、 115bが例えば前述の図 25に示す 状態に配置される。
[0139] 暖房時には圧縮機 62の運転周波数が高いときは暖房能力が向上して室内熱交換 器 9の温度が高くなる。圧縮機 62の運転周波数が低いと暖房能力は低下して室内 熱交換器 9の温度が低くなる。従って、上記と同様に、吹出温度の高い調和空気の 一部がより後方へ送出される。これにより、使用者に当たる高温の空気を減少させて 使用者の不快感をより低減することができる。なお、第 1、第 2実施形態において周波 数検出部を設けてもよい。
[0140] <第 5実施形態 >
次に、第 5実施形態について説明する。本実施形態は第 3実施形態の空気調和機 に対して、回転数検出部に替えて調和空気の吹出し温度を検出する温度センサから 成る吹出温度検出部(不図示)を送風経路 6内に設けている。また、前述の図 4にお いて、温度センサ 61の出力に替えて吹出温度検出部の出力が制御部 60に入力さ れ、吹出温度検出部の検出結果に基づいて風向可変部 115a、 115bが駆動されて いる。その他の部分は第 3実施形態と同様である。
[0141] これにより、調和空気の吹出し温度に応じて風向可変部 115a、 115bの設定を可 変することができる。室内熱交^^の温度が上昇しておらず、吹出し温度が 36°C未 満では第 1の気流制御が行われる。立ち上がり状態の第 2の気流制御では圧縮機の 運転周波数増加によって吹出し温度が上昇し、吹出し温度が 45°C以上になると吹 出温度検出部の検出によって風向可変部 115a、 115bが例えば前述の図 22に示す 状態に配置される。 [0142] 安定状態の第 3の気流制御では圧縮機 62の運転周波数が下げられ、吹出し温度 が 36°C力も 45°Cになると吹出温度検出部の検出によって風向可変部 115a、 115b が例えば前述の図 25に示す状態に配置される。従って、上記と同様に、吹出温度の 高い調和空気の一部がより後方へ送出される。これにより、使用者に当たる高温の空 気を減少させて使用者の不快感をより低減することができる。尚、第 1、第 2実施形態 において吹出温度検出部を設けてもよい。
[0143] <第 6実施形態 >
次に、第 6実施形態について説明する。本実施形態は第 3実施形態の空気調和機 に対して、回転数検出部に替えて室内熱交換器 9の温度を検出する温度センサから 成る熱交換器温度検出部 (不図示)が設けられている。また、前述の図 4において熱 交換器温度検出部の出力が制御部 60に入力され、熱交換器温度検出部の検出結 果に基づいて風向可変部 115a、 115bが駆動されている。その他の部分は第 3実施 形態と同様である。
[0144] これにより、室内熱交^^ 9の温度に応じて風向可変部 115a、 115bの設定を可変 することができる。例えば、室内熱交^^ 9の温度力 0°C未満の時には第 1の気流 制御が行われる。立ち上がり状態の第 2の気流制御では圧縮機 62の運転周波数増 加によって室内熱交 9の温度が上昇し、 50°C以上になると熱交 温度検出 部の検出によって風向可変部 115a、 115bが例えば前述の図 22に示す状態に配置 される。
[0145] 安定状態の第 3の気流制御では圧縮機 62の運転周波数が下げられ、室内熱交換 器 9の温度が 40°Cから 50°Cになると熱交翻温度検出部の検出によって風向可変 部 115a、 115bが例えば前述の図 25に示す状態に配置される。従って、上記と同様 に、吹出温度の高い調和空気の一部がより後方へ送出される。これにより、使用者に 当たる高温の空気を減少させて使用者の不快感をより低減することができる。なお、 第 1、第 2実施形態において熱交翻温度検出部を設けてもよい。
[0146] <第 7実施形態 >
次に、第 7実施形態について説明する。本実施形態は第 3実施形態の空気調和機 に対して、回転数検出部に替えて消費電流検出部が設けられている。消費電流検 出部は電流値に比例した二次電圧を発生させるカレントトランス等により構成され、 空気調和機の運転時の消費電流または消費電力を検出する。前述の図 4において 消費電流検出部の出力が制御部 60に入力され、消費電流検出部の検出結果に基 づいて風向可変部 115a、 115bが駆動されている。その他の部分は第 3実施形態と 同様である。
[0147] これにより、空気調和機の消費電流に応じて風向可変部 115a、 115bの設定を可 変することができる。立ち上がり状態の第 2の気流制御では圧縮機 62の運転周波数 が増加し、空気調和機の消費電流または消費電力が例えば 12Aまたは 1200W以 上になると消費電流検出部の検出によって風向可変部 115a、 115bが例えば前述 の図 22に示す状態に配置される。
[0148] 安定状態の第 3の気流制御では圧縮機 62の運転周波数が下げられ、空気調和機 の消費電流または消費電力が例えば 7A— 12Aまたは 700W— 1200Wになると消 費電流検出部の検出によって風向可変部 115a、 115bが例えば前述の図 25に示す 状態に配置される。
[0149] 空気調和機の運転時の消費電流または消費電力が大きいときは圧縮機 62 (図 2参 照)の周波数が高いと考えられ、暖房時には室内熱交換器 9の温度が高くなる。空気 調和機の運転時の消費電流または消費電力が小さいときは圧縮機 62の運転周波数 が低いと考えられ、暖房時には室内熱交 9の温度が低くなる。従って、上記と同 様に、吹出温度の高い調和空気の一部がより後方へ送出される。これにより、使用者 に当たる高温の空気を減少させて使用者の不快感をより低減することができる。尚、 第 1、第 2実施形態において消費電流検出部を設けてもよい。
[0150] <第 8実施形態 >
次に、第 8実施形態について説明する。本実施形態は第 3実施形態の空気調和機 に対して、回転数検出部に替えて室外回転数検出部が設けられている。室外回転 数検出部は、室
外機に備えられる送風ファン 65 (図 2参照)の回転数を検出して室外機の吸込口(不 図示)から吸引される空気の風量を検出する。前述の図 4において室外回転数検出 部の出力が制御部 60に入力され、室外回転数検出部の検出結果に基づいて風向 可変部 115a、 115bが駆動されている。その他の部分は第 3実施形態と同様である。
[0151] これにより、室外送風ファン 65の回転数に応じて風向可変部 115a、 115bの設定 を可変することができる。第 2の気流制御では例えば室外送風ファン 65の回転数が 1 OOOrpm以上になると室外回転数検出部の検出によって風向可変部 115a、 115bが 前述の図 22に示す状態に配置される。第 3の気流制御では例えば室外送風ファン 6 5の回転数が 500— lOOOrpmになると消費電流検出部の検出によって風向可変部 115a, 115bが前述の図 25に示す状態に配置される。
[0152] 暖房時には圧縮機 62 (図 2参照)の運転周波数が高いときは室外機の送風ファン 6 5の風量または回転数も大きく設定され、暖房能力が向上して室内熱交換器 9の温 度が高くなる。圧縮機 62の運転周波数が低 、ときは室外機の送風ファン 65の風量ま たは回転数も小さく設定され、暖房能力が低下して室内熱交 9の温度が低くなる 。従って、上記と同様に、吹出温度の高い調和空気の一部がより後方へ送出される。 これにより、使用者に当たる高温の空気を減少させて使用者の不快感をより低減する ことができる。尚、第 1、第 2実施形態において室外回転数検出部を設けてもよい。
[0153] <第 9実施形態 >
次に、第 9実施形態について説明する。本実施形態は第 3実施形態の空気調和機 に対して、回転数検出部に替えて湿度センサが設けられている。湿度センサは室内 熱交^^ 9とエアフィルタ 8との間に設けられ、吸込空気の湿度を検知する。前述の 図 4において温度センサ 61の出力に替えて湿度センサの出力が制御部 60に入力さ れ、湿度センサの検出結果に基づいて風向可変部 115a、 115bが駆動されている。 その他の部分は第 3実施形態と同様である。
[0154] これにより、吸込空気の湿度に応じて風向可変部 115a、 115bの設定を可変するこ とができる。例えば、吸込空気の相対湿度と設定湿度の差が 20%以上になると第 2 の気流制御が行われる。吸込空気の相対湿度と設定湿度の差が 20%未満の時には 第 3の気流制御が行われる。
[0155] 従って、吸込空気の相対湿度と設定湿度の差が大きいときにはより後方に調和空 気を送出して部屋全体の空気を大きく攪拌し、室内の隅々まで速やかに湿度のバラ ンスを整えることができる。一方吸込空気の相対湿度と設定湿度の差が小さいときに は略真下方向に送出して不要な後方への送出を減少させて効率良く空気調和を行 うことができる。尚、第 1、第 2実施形態において湿度センサを設けてもよい。
[0156] <第 10の実施形態 >
次に、第 10実施形態について説明する。本実施形態は第 3実施形態の空気調和 機に対して、回転数検出部に替えてイオンセンサ (不図示)が設けられている。イオン センサは、室内熱交 9とエアフィルタ 8との間に設けられ、吸込空気のイオン濃度 を検知する。前述の図 4において、温度センサ 61の出力に替えてイオンセンサの出 力が制御部 60に入力され、イオンセンサの検出結果に基づいて風向可変部 115a、 115bが駆動されて 、る。その他の部分は第 3実施形態と同様である。
[0157] これにより、吸込空気のイオン濃度に応じて風向可変部 115a、 115bの設定を可変 することができる。例えば吸込空気のイオン濃度と設定イオン濃度の差が 2000個 Z cm3以上の時には第 2の気流制御が行われる。吸込空気のイオン濃度と設定イオン の差が 2000個 Zcm3未満の時には第 3の気流制御が行われる。
[0158] 従って、吸込空気の吸込空気のイオン濃度と設定イオン濃度の差が大きいときには イオンを大量に含んだ調和空気をより後方に調和空気を送出して部屋全体の空気を 大きく攪拌し、室内の隅々まで速やかにイオンのバランスを整えることができる。一方 吸込空気の吸込空気のイオン濃度と設定イオン濃度の差が小さいときには真下方向 に送出して不要な後方への送出を減少させて効率良く空気調和を行うことができる。 なお、第 1、第 2実施形態においてイオンセンサを設けても良い。
[0159] <第 11実施形態 >
次に、第 11実施形態について説明する。本実施形態は第 3実施形態の空気調和 機に対して、回転数検出部に替えてほこりセンサ (浄ィ匕度検知手段)が設けられてい る。ほこりセンサは室内熱交^^ 9とエアフィルタ 8との間に設けられ、吸込空気の塵 埃量を検知して室内の空気の浄ィ匕度を検知する。前述の図 4において、温度センサ 61の出力に替えてほこりセンサの出力が制御部 60に入力され、ほこりセンサの検出 結果に基づいて風向可変部 115a、 115bが駆動されている。その他の部分は第 3実 施形態と同様である。 [0160] これにより、吸込空気中に含まれる塵埃量に応じて風向可変部 115a、 115bの設 定を可変することができる。例えば吸込空気の塵埃量が所定量よりも多い場合には 第 2の気流制御が行われる。吸込空気の塵埃量が所定量よりも少な!/、場合には第 3 の気流制御が行われる。
[0161] 従って、吸込空気中に含まれる塵埃量が多い場合にはより後方に調和空気を送出 して部屋全体の空気を大きく攪拌し、室内の塵埃を室内機中に取り込み、エアフィル タ 8により速やかに空気清浄を行うことができるため、部屋全体の空気を短時間で清 浄することができる。一方吸込空気中に含まれる塵埃量が少ない場合には略真下方 向に送出して不要な後方への送出を減少させて効率良く空気調和を行うことができ る。尚、エアフィルタ 8 (図 1参照)に替えて HEPAフィルタや電気集塵機を用いれば 、より大きな空気清浄効果を得ることができる。尚、第 1、第 2実施形態においてほこり センサを設けてもよい。
[0162] <第 12実施形態 >
次に、第 12実施形態について説明する。本実施形態は第 3実施形態の空気調和 機に対して、回転数検出部に替えてにおいセンサ (浄ィ匕度検知手段)が設けられて いる。においセンサは室内熱交^^ 9とエアフィルタ 8との間に設けられ、吸込空気の 臭気成分の含有量を検知して室内の空気の浄化度を検知する。前述の図 4におい て、温度センサ 61の出力に替えてにおいセンサの出力が制御部 60に入力され、に おいセンサの検出結果に基づいて風向可変部 115a、 115bが駆動されている。その 他の部分は第 3実施形態と同様である。
[0163] これにより、吸込空気中の臭気成分の含有量に応じて風向可変部 115a、 115bの 設定を可変することができる。例えば吸込空気の臭気成分が所定量よりも多い場合 には第 2の気流制御が行われる。吸込空気の臭気成分が所定量よりも少な!/、場合に は第 3の気流制御が行われる。
[0164] 従って、吸込空気中の臭気成分の含有量が多い場合にはより後方に調和空気を 送出して部屋全体の空気を大きく攪拌し、室内の塵埃を室内機中に取り込み、エア フィルタ 8により速やかに空気清浄を行うことができるため、部屋全体の空気を短時間 で清浄することができる。一方吸込空気中の臭気成分の含有量が少ない場合には略 真下方向に送出して不要な後方への送出を減少させて効率良く空気調和を行うこと ができる。なお、第 1、第 2実施形態において、においセンサを設けてもよい。
[0165] <第 13実施形態 >
本実施形態は第 1実施形態の室内機 1を図 27に示すように居室 Rの隣接する 2側 壁 W3、 W4が交差したコーナー Lの天井壁 Sに接する位置に取り付ける、所謂コー ナーエアコンのように構成される。この場合においても、上記と同様の効果を得ること 力 Sできる。尚、第 2—第 12実施形態の室内機をコーナーエアコンにしてもよい。
[0166] 以上により、本発明に係る空気調和機を第 1一第 13実施形態により説明したが、本 発明は上記実施形態に限定される訳ではなぐ本発明の趣旨を逸脱しない範囲で適 宜の変更をカ卩えて実施することができる。
産業上の利用可能性
[0167] 本発明によると、筐体内に取り込まれた空気を調和して室内に送出する空気調和 機に利用することができる。

Claims

請求の範囲
[1] 室内の壁面に取り付けて吸込口から取り入れた空気を調和し、調和空気を吹出口 力 風向を可変して送出することにより暖房運転を行う空気調和機において、空気調 和機の運転状況または室内の空気調和状況に基づいて調和空気の風向を略水平 方向または前方上方と、略真下方向または後方下方とに可変できることを特徴とする 空気調和機。
[2] 空気調和機の運転状況または室内の空気調和状況に基づいて調和空気の風向を 更に略真下方向と後方下方とに可変したことを特徴とする請求項 1に記載の空気調 和機。
[3] 空気調和機の運転状況または室内の空気調和状況に基づいて調和空気の風向を 更に略真下方向と前方下方とに可変したことを特徴とする請求項 1に記載の空気調 和機。
[4] 居室が所定の大きさよりも狭いときに調和空気の風向を略水平方向または前方上 方と、略真下方向または後方下方とに可変するとともに、居室が所定の大きさよりも広 いときに調和空気の風向を略水平方向または前方上方と、前方下方とに可変するこ とを特徴とする請求項 1に記載の空気調和機。
[5] 空気調和機の運転状況または室内の空気調和状況に基づ!、て調和空気の風速を 可変したことを特徴とする請求項 1に記載の空気調和機。
[6] 空気調和機の運転状況または室内の空気調和状況に基づ!、て調和空気の風量を 可変したことを特徴とする請求項 1に記載の空気調和機。
[7] 空気調和機の運転状況または室内の空気調和状況が第 1の条件の場合に調和空 気の風向を略水平方向または前方上方にし、空気調和機の運転状況または室内の 空気調和状況が第 2の条件の場合に調和空気の風向を略真下方向または後方下方 にし、空気調和機の運転状況または室内の空気調和状況が第 3の条件の場合に調 和空気の風向を第 2の条件の時よりも前方にしたことを特徴とする請求項 1に記載の 空気調和機。
[8] 第 1の条件は吹出温度が所定値よりも低い場合力 成り、第 2の条件は吹出温度が 該所定値よりも高く室温が上昇する立ち上がり状態の場合力 成り、第 3の条件は室 温が安定した安定状態の場合力 成ることを特徴とする請求項 7に記載の空気調和 機。
[9] イオンを発生するイオン発生装置を備え、前記吹出口力 調和空気とともにイオン を室内に送出することを特徴とする請求項 1一請求項 7のいずれかに記載の空気調 和機。
[10] 室内のイオン濃度を検知するイオンセンサを備え、風向を可変する室内の空気調 和状況が前記イオンセンサにより検知されたイオン濃度力 成ることを特徴とする請 求項 9に記載の空気調和機。
[11] 風向を可変する空気調和機の運転状況が前記吹出口から送出される風量から成る ことを特徴とする請求項 1一請求項 5のいずれかに記載の空気調和機。
[12] 室内の空気を前記吸込ロカ 取り入れて前記吹出口力 送出する送風機の回転 数を検知する回転数検知部を設け、風向を可変する空気調和機の運転状況が前記 回転数検知部の検出結果から成ることを特徴とする請求項 11に記載の空気調和機
[13] 取り入れた空気と熱交換して空気温度を調和する室内熱交換器の温度を検出する 熱交換器温度検出部を設け、風向を可変する空気調和機の運転状況が前記熱交 換器温度検出部の検出結果から成ることを特徴とする請求項 1一請求項 7のいずれ かに記載の空気調和機。
[14] 前記吹出口力 送出される空気の温度を検出する吹出温度検出部を設け、風向を 可変する空気調和機の運転状況が前記吹出温度検出部の検出結果力 成ることを 特徴とする請求項 1一請求項 7のいずれかに記載の空気調和機。
[15] 冷凍サイクルを運転する圧縮機の運転周波数を検出する周波数検出部を設け、風 向を可変する空気調和機の運転状況が前記周波数検出部の検出結果力 成ること を特徴とする請求項 1一請求項 7のいずれかに記載の空気調和機。
[16] 空気調和機の消費電力または消費電流を検出する消費電流検出部を設け、風向 を可変する空気調和機の運転状況が前記消費電流検出部の検出結果力 成ること を特徴とする請求項 1一請求項 7のいずれかに記載の空気調和機。
[17] 外気を取り入れて熱交換する室外機を設け、風向を可変する空気調和機の運転状 況が前記室外機に取り入れられる空気の風量力 成ることを特徴とする請求項 1一請 求項 7の 、ずれかに記載の空気調和機。
[18] 前記室外機は外気を取り入れる室外送風機を有するとともに前記室外送風機の回 転数を検出する室外回転数検出部を設け、風向を可変する空気調和機の運転状況 が前記室外回転数検出部の検出結果から成ることを特徴とする請求項 17に記載の 空気調和機。
[19] 前記吸込口から取り入れられた空気の温度を検出する温度センサを備え、風向を 可変する室内の空気調和状況が前記温度センサの検出結果力 成ることを特徴とす る請求項 1一請求項 7のいずれかに記載の空気調和機。
[20] 前記吸込口から取り入れられた空気の温度を検出する温度センサを備え、風向を 可変する室内の空気調和状況が前記温度センサの検出結果と設定温度との差から 成ることを特徴とする請求項 1一請求項 7のいずれかに記載の空気調和機。
[21] 風向を可変する室内の空気調和状況が暖房運転開始後の時間から成ることを特 徴とする請求項 1一請求項 7のいずれかに記載の空気調和機。
[22] 室内の湿度を検知する湿度センサを備え、風向を可変する室内の空気調和状況 が前記湿度センサの検出結果力 成ることを特徴とする請求項 1一請求項 7のいず れかに記載の空気調和機。
[23] 室内の空気の浄ィ匕度を検出する浄ィ匕度検出手段を備え、風向を可変する室内の 空気調和状況が前記浄化度検出手段の検出結果から成ることを特徴とする請求項 1 一請求項 7の 、ずれかに記載の空気調和機。
[24] 前記浄化度検知手段は、室内の空気に含まれる臭気成分を検知する臭いセンサ、 または室内の空気に含まれる塵埃の量を検知するほこりセンサ力 成ることを特徴と する請求項 23に記載の空気調和機。
[25] 後方下方または略真下方向への空気の送出を禁止する禁止手段を設けたことを特 徴とする請求項 1一請求項 7のいずれかに記載の空気調和機。
[26] 室内の壁面に取り付けて吸込口から取り入れた空気を調和し、調和空気を吹出口 力 風向を可変して送出することにより暖房運転を行う空気調和機において、吹出温 度が所定値よりも高く室温が上昇する立ち上がり状態の場合に調和空気の風向を略 真下方向または後方下方にし、室温が安定した安定状態の場合に調和空気の風向 を前記立ち上がり状態よりも前方にしたことを特徴とする空気調和機。
[27] 吹出温度が前記所定値よりも低い場合に調和空気の風向を略水平方向または前 方上方にしたことを特徴とする請求項 26に記載の空気調和機。
[28] 前記安定状態から室温が設定温度に対して所定温度離れた場合に前記立ち上が り状態と
同じ風向にしたことを特徴とする請求項 26に記載の空気調和機。
[29] 室内の壁面に取り付けて吸込口から取り入れた空気を調和し、調和空気を吹出口 力 風向を可変して送出することにより暖房運転を行う空気調和方法において、空気 調和機の運転状況または室内の空気調和状況に基づいて調和空気の風向を略水 平方向または前方上方と、略真下方向または後方下方とに可変できることを特徴とす る空気調和方法。
[30] 空気調和機の運転状況または室内の空気調和状況に基づいて調和空気の風向を 更に略真下方向と後方下方とに可変したことを特徴とする請求項 29に記載の空気調 和方法。
[31] 空気調和機の運転状況または室内の空気調和状況に基づ 、て調和空気の風向を 更に略真下方向と前方下方とに可変したことを特徴とする請求項 29に記載の空気調 和方法。
[32] 居室が所定の大きさよりも狭いときに調和空気の風向を略水平方向または前方上 方と、略真下方向または後方下方とに可変するとともに、居室が所定の大きさよりも広 いときに調和空気の風向を略水平方向または前方上方と、前方下方とに可変するこ とを特徴とする請求項 29に記載の空気調和方法。
PCT/JP2004/017594 2003-11-28 2004-11-26 空気調和機 WO2005052462A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04819447A EP1707892B1 (en) 2003-11-28 2004-11-26 Air conditioner
AU2004292624A AU2004292624B2 (en) 2003-11-28 2004-11-26 Air conditioner
EGNA2006000487 EG24392A (en) 2003-11-28 2006-05-24 Air conditioner
HK07108007.7A HK1103788A1 (en) 2003-11-28 2007-07-24 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-400474 2003-11-28
JP2003400474A JP3686963B2 (ja) 2003-11-28 2003-11-28 空気調和機

Publications (1)

Publication Number Publication Date
WO2005052462A1 true WO2005052462A1 (ja) 2005-06-09

Family

ID=34631647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017594 WO2005052462A1 (ja) 2003-11-28 2004-11-26 空気調和機

Country Status (7)

Country Link
EP (1) EP1707892B1 (ja)
JP (1) JP3686963B2 (ja)
KR (1) KR100803112B1 (ja)
CN (1) CN100565027C (ja)
AU (1) AU2004292624B2 (ja)
HK (1) HK1103788A1 (ja)
WO (1) WO2005052462A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833463A (zh) * 2019-11-25 2021-05-25 夏普株式会社 空气调节机

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014617B2 (ja) * 2006-01-20 2007-11-28 シャープ株式会社 空気調和機
EP1975522B1 (en) * 2006-01-20 2013-02-27 Sharp Kabushiki Kaisha Air conditioner
EP1950503A1 (en) 2007-01-26 2008-07-30 Lg Electronics Inc. Indoor unit of air conditioner with air inlet via movable front panel and air outlet via bottom/top towards rearside
KR100979820B1 (ko) * 2008-04-29 2010-09-02 신성델타테크 주식회사 센서네트워크를 이용한 공기청정 시스템
JP4813573B2 (ja) * 2009-01-19 2011-11-09 シャープ株式会社 画像形成装置
JP4613240B2 (ja) * 2009-05-15 2011-01-12 シャープ株式会社 イオン発生装置
JP5279622B2 (ja) * 2009-06-08 2013-09-04 三菱電機株式会社 空気調和機の室内機
JP5414466B2 (ja) * 2009-11-06 2014-02-12 清水建設株式会社 イオン送風システム及びそれに用いる天吊カセット形空気調和器
JP5365675B2 (ja) * 2011-09-30 2013-12-11 ダイキン工業株式会社 空調室内機
JP5403125B2 (ja) * 2011-10-31 2014-01-29 ダイキン工業株式会社 空調室内機
JP5408227B2 (ja) 2011-10-31 2014-02-05 ダイキン工業株式会社 空調室内機
JP2013096639A (ja) 2011-10-31 2013-05-20 Daikin Industries Ltd 空調室内機
JP5338895B2 (ja) 2011-12-28 2013-11-13 ダイキン工業株式会社 空調室内機
CN103196181B (zh) * 2012-01-06 2016-06-08 珠海格力电器股份有限公司 空调器及其控制方法
GB2500672B (en) 2012-03-29 2016-08-24 Howorth Air Tech Ltd Clean air apparatus
JP5408318B1 (ja) * 2012-09-13 2014-02-05 ダイキン工業株式会社 空調室内機
JP5980637B2 (ja) * 2012-09-26 2016-08-31 シャープ株式会社 空気調和機
WO2015063868A1 (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 空気清浄機
CN104697056B (zh) * 2015-02-13 2017-06-27 广东美的制冷设备有限公司 空调室内机及其控制方法
JP6137254B2 (ja) * 2015-09-10 2017-05-31 ダイキン工業株式会社 空調室内機
CN107278256B (zh) * 2016-02-01 2020-03-20 三菱电机株式会社 空调的室内机
EP3412983B1 (en) * 2016-02-02 2020-11-11 Mitsubishi Electric Corporation Indoor unit for air conditioners
JP6225225B2 (ja) * 2016-07-26 2017-11-01 シャープ株式会社 空気調和機
CN106287963B (zh) * 2016-08-23 2019-06-28 美的集团武汉制冷设备有限公司 空调器及其送风方法
CN106322520B (zh) * 2016-08-23 2019-06-28 美的集团武汉制冷设备有限公司 空调器及其送风方法
JP6361718B2 (ja) * 2016-10-28 2018-07-25 ダイキン工業株式会社 空調室内機
JP6782618B2 (ja) * 2016-11-30 2020-11-11 株式会社竹中工務店 コアンダ気流空調システム
JP6428804B2 (ja) * 2017-02-06 2018-11-28 ダイキン工業株式会社 空気調和機
JP6493486B1 (ja) * 2017-10-30 2019-04-03 ダイキン工業株式会社 空気調和機
CN108489026B (zh) * 2018-03-09 2020-06-19 广东美的制冷设备有限公司 空调器及其控制方法、控制装置、计算机可读存储介质
KR102549804B1 (ko) * 2018-08-21 2023-06-29 엘지전자 주식회사 공기조화기
JP6945100B1 (ja) * 2021-02-01 2021-10-06 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN112944622B (zh) * 2021-02-26 2022-07-05 青岛海尔空调器有限总公司 一种下出风空调的控制方法和下出风空调
CN113405236B (zh) * 2021-06-25 2022-03-08 海信(山东)空调有限公司 空调器的自清洁杀菌控制方法及装置、空调器和存储介质
CN114235450A (zh) * 2021-11-12 2022-03-25 东风马勒热系统有限公司 车用空调风量分配测量系统及车用空调风量分配测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019300A (ja) * 1996-06-26 1998-01-23 Toshiba Corp 空気調和装置の室内機
JP2001038122A (ja) * 1999-07-30 2001-02-13 Sanyo Electric Co Ltd 空気清浄機
JP2002286243A (ja) * 2001-03-27 2002-10-03 Corona Corp 空気調和機
JP2002357352A (ja) * 2002-05-21 2002-12-13 Toshiba Kyaria Kk 空気調和装置の室内機
JP2003185225A (ja) * 2001-12-20 2003-07-03 Fujitsu General Ltd 空気調和機の制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2993412B2 (ja) * 1995-11-20 1999-12-20 三菱電機株式会社 吹出口及び該吹出口を備えた空気調和装置
JP3356257B2 (ja) * 1996-06-06 2002-12-16 株式会社富士通ゼネラル 空気調和機
MY114632A (en) * 1998-06-30 2002-11-30 Matsushita Electric Ind Co Ltd Air conditioner.
JP3960812B2 (ja) * 2002-02-06 2007-08-15 シャープ株式会社 空気調和機
EP1707893B1 (en) * 2003-11-28 2017-05-10 Sharp Kabushiki Kaisha Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019300A (ja) * 1996-06-26 1998-01-23 Toshiba Corp 空気調和装置の室内機
JP2001038122A (ja) * 1999-07-30 2001-02-13 Sanyo Electric Co Ltd 空気清浄機
JP2002286243A (ja) * 2001-03-27 2002-10-03 Corona Corp 空気調和機
JP2003185225A (ja) * 2001-12-20 2003-07-03 Fujitsu General Ltd 空気調和機の制御方法
JP2002357352A (ja) * 2002-05-21 2002-12-13 Toshiba Kyaria Kk 空気調和装置の室内機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1707892A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833463A (zh) * 2019-11-25 2021-05-25 夏普株式会社 空气调节机

Also Published As

Publication number Publication date
AU2004292624A1 (en) 2005-06-09
KR100803112B1 (ko) 2008-02-13
JP3686963B2 (ja) 2005-08-24
JP2005164068A (ja) 2005-06-23
KR20060097134A (ko) 2006-09-13
EP1707892A4 (en) 2010-05-12
CN1906445A (zh) 2007-01-31
AU2004292624B2 (en) 2009-08-13
EP1707892A1 (en) 2006-10-04
EP1707892B1 (en) 2012-01-25
CN100565027C (zh) 2009-12-02
HK1103788A1 (en) 2007-12-28

Similar Documents

Publication Publication Date Title
WO2005052462A1 (ja) 空気調和機
JP4259822B2 (ja) 空気調和機
JP4297625B2 (ja) 空気調和機
JP2003232531A (ja) 空気調和機
JP2014055733A (ja) 空調室内機
JP3995491B2 (ja) 空気調和機
JP2007205711A (ja) 空気調和機
JP4285959B2 (ja) 空気調和機
JP4017483B2 (ja) 空気調和機
WO2005052463A1 (ja) 空気調和機
CN110762614A (zh) 立式空调器室内机
JP2014055732A (ja) 空調室内機
JP2007051866A (ja) 空気調和機
JP2012097958A (ja) 空気調和機
JP2003232559A (ja) 空気調和機
JP2005164065A (ja) 空気調和機
JP2004076974A (ja) 空気調和機および空気調和機の制御方法
JP4478004B2 (ja) 空気調和機
JP2004308930A (ja) 空気調和機
JP4090489B2 (ja) 空気調和機
JP2007285533A (ja) 空気調和機の室内ユニット
JP6056297B2 (ja) 空調室内機
JP7025672B2 (ja) 空調室内機
JP6947266B2 (ja) 空調室内機
JP3942910B2 (ja) 空気調和機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067010109

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004292624

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004819447

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004292624

Country of ref document: AU

Date of ref document: 20041126

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004292624

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200480040996.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067010109

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004819447

Country of ref document: EP