WO2005050810A1 - Method for calculating power capability of battery packs using advanced cell model predictive techniques - Google Patents
Method for calculating power capability of battery packs using advanced cell model predictive techniques Download PDFInfo
- Publication number
- WO2005050810A1 WO2005050810A1 PCT/KR2004/003001 KR2004003001W WO2005050810A1 WO 2005050810 A1 WO2005050810 A1 WO 2005050810A1 KR 2004003001 W KR2004003001 W KR 2004003001W WO 2005050810 A1 WO2005050810 A1 WO 2005050810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charge
- current
- cell
- limits
- battery
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3828—Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/374—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
Definitions
- the present invention relates to the implementation of a method and apparatus for estimating battery charge power and discharge power.
- HEVs Hybrid Electric Vehicles
- BEVs Battery Electric Vehicles
- HPPC Hybrid Pulse Power Characterization
- the HPPC method estimates maximum cell power by considering only operational design limits on voltage. It does not consider design limits on current, power, or the battery state-of-charge (SOC) . Also the method produces a crude prediction for horizon At . Each cell in the battery pack is modeled by the approximate relationship
- ⁇ k (t) OCV (z k (t)) - R x i k (t), where OCV(zjt(t)) is the open-circuit-voltage of cell k at its present state-of-charge (zjt(t)) and ⁇ is a constant representing a cell's internal resistance.
- R may be used for charge and discharge currents, if desired, and are denoted as i chg and .R dls , respectively. Since the design limits Vmia - Vk ⁇ - Umax must be enforced, the maximum discharge current may be calculated as constrained by voltage, as shown below
- This prior art charge calculation method is limited in several respects.
- the method does not use operational design limits in SOC, maximum current, or maximum power in the computation.
- the cell model used is too primitive to give precise results. Overly optimistic or pessimistic values could be generated, either posing a safety of battery-health hazard or causing inefficient battery use.
- What is desired is a new method and apparatus for battery charge estimation based on a battery cell model. Such a cell model would be combined with a maximum-power algorithm that uses the cell model to give better power prediction. The new method would also take in operational design limits such as SOC, current, and power.
- Fig. 1A is a flow chart that outlines the maximum discharge estimation according to an embodiment of the present invention
- Fig. IB is a flow chart that outlines the minimum charge estimation according to an embodiment of the present invention
- Fig. 2 is a schematic block diagram showing the sensor components of a power estimating embodiment of the present invention
- Fig. 3 is an example plot of open-circuit-voltage (OCV) as a function of state-of-charge for a particular cell electrochemistry
- Fig. 1A is a flow chart that outlines the maximum discharge estimation according to an embodiment of the present invention
- Fig. IB is a flow chart that outlines the minimum charge estimation according to an embodiment of the present invention
- Fig. 2 is a schematic block diagram showing the sensor components of a power estimating embodiment of the present invention
- Fig. 3 is an example plot of open-circuit-voltage (OCV) as a function of state-of-charge for a particular cell electrochemistry
- Fig. 1A is a flow chart that outlines the
- Fig. 4 is an example plot showing the derivative of OCV as a function of state-of-charge for a particular cell electrochemistry
- Fig. 5 is a plot showing the voltage prediction using the cell model of the present invention
- Fig 6 is a zoom-in of the plot of voltage prediction for one UDDS cycle at around 50% state-of-charge
- Fig. 7 is a state-of-charge trace for cell test
- Fig. 8 is a plot comparing static maximum power calculations as functions of SOC for the PNGV HPPC method and Method I of the present invention
- Fig. 9 is a plot showing that discharge power capability estimates for cell cycle test comprising sixteen UDDS cycles over an SOC range of 90% down to 10%
- Fig. 10 is zoomed-in plot of Fig.
- the present invention relates to a method and an apparatus for estimating discharge and charge power of battery applications, including battery packs used in Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) .
- One embodiment is a charge prediction method that incorporates voltage, state-of-charge, power, and current design constraints, works for a user-specified prediction horizon ⁇ t, and is more robust and precise than the state of the art.
- the embodiment has the option of allowing different modeling parameters during battery operation to accommodate highly dynamic batteries used in Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) where such previous implementations were difficult.
- An embodiment of the present invention calculates maximum charge/discharge power by calculating the maximum charge/discharge current using any combination of four primary limits: 1. state-of-charge (SOC) limits 2. voltage limits 3. current limits 4. power limits In one embodiment, the minimum absolute charge/discharge current value from the calculations using state-of-charge (SOC) , voltage, and current limits is then chosen to obtain the maximum absolute charge/discharge power. In one embodiment, the maximum absolute charge/discharge power is checked to ensure it is within the power limits.
- the maximum absolute charge/discharge power is calculated in a way as to not violate any combination of the limits that may be used.
- Prior methods do not use SOC limits in their estimation of maximum charge/discharge power.
- the present invention incorporates the SOC of the battery cell or battery pack to estimate the maximum charge/discharge current.
- the estimation explicitly includes a user-defined time horizon ⁇ t.
- the SOC is obtained by using a Kalman filter.
- the SOC that is produced by Kalman filtering also yields an estimate of the uncertainty value, which can be used in the maximum charge/discharge calculation to yield a confidence level of the maximum charge/discharge current estimate.
- voltage limits are used to calculate the maximum charge/discharge current in a way that includes a user- defined time horizon ⁇ t.
- Two primary cell model embodiments are in the present invention for the calculation of maximum charge/discharge power based on voltage limits.
- the first is a simple cell model that uses a Taylor-series expansion to linearize the equation involved.
- the second is a more complex and accurate cell model that models cell dynamics in discrete-time state-space form.
- the cell model can incorporate a variety of inputs such as temperature, resistance, capacity, etc.
- One advantage of using model- based approach is that the same cell model may be used in both Kalman filtering to produce the SOC and the estimation of maximum charge/discharge current based of voltage limits.
- Embodiments of the present invention also include methods of charge estimation based on any combination of the voltage, current, power, or SOC limits described above. For example, charge estimation can be based on voltage limits only, or combined with current limits, SOC limits and/or power limits.
- Embodiments of the present invention are directed to a power apparatus that takes in data measurements from the battery such as current, voltage, temperature, and feeding such measurements to an arithmetic circuit, which includes calculation means that performs the calculation methods disclosed in the present invention to estimate the absolute maximum charge or discharge power.
- Embodiments of the present invention relates to battery charge estimation for any battery-powered application.
- the estimator method and apparatus find the maximum absolute battery charge and/or discharge power (based on present battery pack conditions) that may be maintained for ⁇ t seconds without violating pre-set limits on cell voltage, state-of-charge, power, or current.
- Figs. 1A and IB illustrates an overview of the embodiments of the present invention.
- Fig. 1A shows a method for finding the maximum discharge power for a user- defined time horizon ⁇ t, i.e. how much power may be drawn from the battery continuously for use for the next ⁇ t time period.
- accurate estimation of maximum discharge power can help prevent the hazardous occurrence of over-drawing the battery.
- the maximum discharge current is calculated based on pre-set limits on state-of-charge.
- the estimation explicitly includes a user-defined time horizon ⁇ t.
- the SOC is obtained by using a kalman filtering method.
- the SOC that is produced by Kalman filtering also yields an estimate of the uncertainty value, which can be used in the maximum charge/discharge calculation to yield a confidence level of the maximum charge/discharge current estimation.
- a simple state-of-charge is used. Step 10 is further described in the section titled "Calculation Based on State-of-Charge (SOC) Limits.”
- SOC State-of-Charge
- the present invention has two main model embodiments for calculation of maximum charge/discharge power based on voltage limits, although it is understood that other cell models could be used. Both overcome the limitation of prior art discharge estimation methods of giving a crude prediction of time horizon ⁇ t.
- the first is a simple cell model that uses a Taylor-series expansion to linearize the equation involved.
- the second is a more complex and accurate cell model that models cell dynamics in discrete-time state-space form.
- the cell model can incorporate a variety of inputs such as temperature, resistance, capacity, etc.
- the two cell models are further described in the section titled "Calculation Based on Voltage Limits.” Then In step 14, the maximum discharge current is calculated based on pre-set limits on current.
- step 16 the minimum of the three calculated current values from steps 10, 12, and 14 is chosen. It is understood that the execution order of steps 10, 12, 14 is interchangeable. It is further understood that any combination of steps 10, 12, and 14 may be omitted, if desired, in an implementation.
- step 18 calculates the maximum discharge power. The calculated pack power may be further refined in order to not violate individual cell or battery pack power design limits.
- Fig. IB shows a method for finding the maximum absolute charge power for a user-defined time horizon ⁇ t, i.e. how much power can be put back into the battery continuously for the next ⁇ t time period. The details and progression of the method mirror that of Fig. 1A.
- the maximum absolute current is the minimum current in a signed sense.
- the minimum charge current is calculated based on preset limits on state-of-charge. Again the SOC can be a simple one or one obtained using the Kalman filtering method. Then the minimum charge current is calculated based on pre-set limits on voltage in step 22 in accordance with a cell model, such as one of the two cell models described in the present disclosure. Then in step 24, the minimum charge current is calculated based on pre-set limits on current. Then, in step 26, the maximum of the three calculated current values from steps 20, 22, 24 is chosen. Note again that the execution order of steps 20, 22, 24 is interchangeable.
- step 28 calculates the minimum charge power.
- the calculated pack power may be further refined in order to not violate individual cell or battery pack power design limits. It is noted that modifications may be made to the method embodiments as shown in Figs. 1A and IB. For example, any or all of the current calculation steps based on state-of- charge and voltage limits may be removed. Also, the present invention discloses several methods of calculating maximum absolute charge and discharge current based on state-of- charge, voltage limits, and current limits. One embodiment of the present invention estimates the maximum absolute charge and/or discharge power of a battery pack.
- the battery pack may be, for example, a battery pack used in a hybrid electric vehicle or an electric vehicle.
- the embodiment makes a number of denotations and limits, including: - using n to denote the number of cells in the target battery pack where an estimation of charge and/or discharge power is desired; - using j t (t) to denote the cell voltage for cell number k in the pack, which has operational design limits so that Vmin ⁇ Vk(t) ⁇ «m « must be enforced for all k : I ⁇ k ⁇ n; - using z k ( t) to denote the state-of-charge for cell number k in the pack, which has operational design limits 2min ⁇ z k (t) ⁇ z max that must be enforced for all : 1 ⁇ k ⁇ n; - using p k ( t) to denote the cell power, which has a operational design limits so that P m ⁇ Pfc(*) ⁇ P ma must be enforced for
- any particular limit may be removed if desired by replacing its value by ⁇ , as appropriate.
- limits such as v max t v m ⁇ n , z max ⁇ z m ⁇ n r i max r i mxn, ⁇ max r p m ⁇ n may furthermore be functions of temperature and other factors pertaining to the present battery pack operating condition. In one embodiment, it is assumed that the discharge current and power have positive sign and the charge current and power have negative sign. Those skilled in the art will recognize that other sign conventions may be used, and that the description of the present invention can be adapted to these conventions in a forthright manner.
- the model used for predicting charge assumes that the battery pack comprises n s cell modules connected in series, where each cell module comprises n p individual cells connected in parallel and n s _ l, n v _ l.
- Fig. 2 is a schematic block diagram showing the sensor components of an embodiment of the present invention.
- Battery 40 is connected to load circuit 48.
- load circuit 48 could be a motor in an Electric Vehicle (EV) or Hybrid Electric Vehicle (HEV) .
- circuit 48 is a circuit that provides power and/or draws power. Measurements of battery and individual cell voltage are made with voltmeter (s) 44. Measurements of battery current are made with ammeter 42.
- Temperatur sensor (s) 46 Voltage, current and temperature measurements are processed with arithmetic circuit 50.
- Arithmetic circuit (estimator means) 50 takes in the measurements from the sensor components and perform the calculation methods of the present invention for power estimation. In some embodiment, temperature is not needed in the calculation methods.
- the power predictive method can take into account more information than simply the cell SOC.
- a Kalman filter can be used as a method to estimate all the cell SOCs in a pack. Besides giving the SOC, Kalman filtering yields estimates of the uncertainty of the SOC estimate itself.
- a method of using Kalman filter to estimate SOC is described in commonly assigned U.S. Patent No. 6,534,954, hereby incorporated by reference. Let the uncertainty have Gaussian distribution with standard deviation, as estimated by the Kalman filter, be denoted as ⁇ z .
- the method yields a95.5% confidence that the true SOC is within the estimate ⁇ 2 ⁇ z and a 99.7% confidence that the true SOC is within the estimate ⁇ 3 ⁇ z .
- This information can be incorporated into the estimate of maximum current based on SOC to have very high confidence that SOC design limits will not be violated. This is done as (assuming a 3 ⁇ z confidence interval) :
- embodiments of the present invention correct a limitation in the prior art HPPC method for applying voltage limits (steps 12 and 22 of Figs. 1A and IB) .
- HPPC method if the cell model of equation (1) is assumed, and that R chg and R dls are the cell's Ohmic resistances, then equation (2) and equation (3) predict the instantaneously available current, not the constant value of current that is available for the next ⁇ t seconds. If cases where ⁇ t is large, the result of the calculation poses a safety or battery-health issue, as the cells may become over/under charged.
- both the function OCV(z) and its derivative dOCV(z)/ dz might be computed from some known mathematical relationship for OCV(z), (e.g., Nernst's equation) using either analytic or numeric methods, or by a table lookup of empirical data.
- This quantity is positive for most battery electrochemistries over the entire SOC range, so the values computed by (8) and (9) are smaller in magnitude than those from (2) and (3) for the same values of R ⁇ is and R chq .
- the HPPC procedure compensates for its inaccuracy by using modified values of R dls and J? chg , determined experimentally, that approximate the denominator terms in (8) and (9) .
- n. PH n p ⁇ i v k (t + t) ⁇ iS flare ( OCV (z k (t) - d ⁇ iAt/C
- OCV ( z) , C, v maxr v m ⁇ n r z maxr z m ⁇ n r i max , i mx alloy, R chg , and R dls may be functions of temperature and other factors pertaining to the present battery pack operating conditions.
- a second method embodiment of the present invention may be used when more computational power is available.
- An example Cell Model An example cell model for the present invention power estimation methods is presented herein, with illustrations given to show the performance of the two methods compared to the prior art PNGV HPPC method.
- the cell model is a discrete-time state-space model of the form of (14) and (15) that applies to battery cells.
- the model named "Enhanced Self-Correcting Cell Model,” is further described in the article “Advances in EKFLiPB SOC Estimation,” by the inventor, published in CD-ROM and presented in Proc. 20th Electric Vehicle Symposium (EVS20) in Long Beach CA, (November 2003) and is hereby fully incorporated by reference. It is understood this model is an example model only and that a variety of suitable alternate models can be used.
- the "Enhanced Self-Correcting Cell Model” includes effects due to open-circuit-voltage, internal resistance, voltage time constants, and hysteresis.
- the parameter values are fitted to this model structure to model the dynamics of high-power Lithium-Ion Polymer Battery (LiPB) cells, although the structure and methods presented here are general.
- State-of-charge is captured by one state of the model.
- the matrix * c may be a diagonal matrix with real-valued entries. If so, the system is stable if all entries have magnitude less than one.
- the vector Bf E K ⁇ may simply be set to n f "l"s. The value of n f and the entries in the A f matrix are chosen as part of the system identification procedure to best fit the model parameters to measured cell data. The hysteresis level is captured by a single state
- the open-circuit-voltage as a function of state-of- charge for example Lithium Ion Polymer Battery (LiPB) cells is plotted in Fig.3. This is an empirical relationship found by cell testing. First, the cell was fully charged (constant current to 4.2V, constant voltage to 200mA).
- the cell was discharged at the C/25 rate until fully discharged (3.0V).
- the cell was then charged at the C/25 rate until the voltage was 4.2V.
- the low rates were used to minimize the dynamics excited in the cells.
- the cell voltage as a function of state of charge under discharge and under charge were averaged to compute the OCV. This has the effect of eliminating to the greatest extent possible the presence of hysteresis and ohmic resistance in the final function.
- the final curve was digitized at 200 points and stored in a table. Linear interpolation is used to look up values in the table.
- the partial derivative of OCV with respect to SOC for these example cells is plotted in Fig. 4.
- Fig. 5 is a plot showing the voltage prediction using the cell model of the present invention.
- the cell test was a sequence of sixteen UDDS cycles, performed at room temperature, separated by discharge pulses and five-minute rests, and spread over the 90% to 10% SOC range.
- the difference between true cell terminal voltage and estimated cell terminal voltage is very small (a root-mean-squared (RMS) voltage estimation error of less than 5mV) .
- RMS root-mean-squared
- Fig. 7 is a SOC trace for cell test.
- the graph shows that SOC increases by about 5% during each UDDS cycle, but is brought down about 10% during each discharge between cycles.
- the entire operating range for these cells (10% SOC to 90% SOC, delineated on the figure as the region between the thin dashed lines) is excited during the cell test.
- the PNGV HPPC power estimation method gives a result that is a function of only SOC. Therefore, it is possible to graph available power versus SOC to summarize the algorithm calculations.
- the first method proposed (Method I: Taylor Series Expansion Methods) in this patent disclosure is also possible to display in this way. Estimated power is only a function of SOC, 30CV/dz (also a function of SOC) , and static limits on maximum current and power.
- the second method (Method II: the Comprehensive Cell Model Method) , however, dynamically depends on all states of the system. Two systems at the same state of charge, but with different voltage time-constant state values or hysteresis state levels will have different amounts of power available.
- Fig. 8 is a plot comparing static maximum power calculations as functions of SOC for the PNGV HPPC method and Method I of the present invention.
- the black curves correspond to charge power
- the gray curves correspond to discharge power. Note that the absolute value of power is plotted to avoid confusion due to sign conventions.
- the PNGV HPPC method produces similar values to Method I in the mid-SOC range. The slight differences are due to the fact that the 10- second R chg value used for the PNGV method and the derivative-modified R chg for Method I are not identical.
- the graph shows that Method I ramps power down in the neighborhood of z max to avoid over- charging the cell, whereas the PNGV method has no such limits.
- the PNGV method over-predicts how much power is available since there are no current limits applied to the calculation.
- the Method I estimate is automatically lower due to the large derivative in the denominator of the calculation. This causes an anomaly near zero SOC where the method under-predicts the available charge power.
- the discharge power curves the comparison shows that Method I imposes limits on discharge power to ensure that the cell is not under-charged, whereas the PNGV method does not.
- Figs. 9 through 13 show how the two main voltage-limit based methods of power estimation of the present invention (Method I and Method II) compare to the prior art PNGV method in the dynamic cell tests shown in Fig. 5. Fig.
- FIG. 9 is a plot showing that discharge power capability estimates for cell cycle test comprising sixteen UDDS cycles over an SOC range of 90% down to 10%.
- Fig. 10 is zoomed-in plot of Fig. 9, showing about one UDDS cycle.
- Fig. 11 is a plot showing charging power capability estimates for cell cycle test comprising sixteen UDDS cycles over an SOC range of 90% down to 10%.
- Fig. 12 is zoomed-in plot of Fig. 11, showing about one UDDS cycle. Again, the absolute value of power is plotted.
- the results of Method II are considered to be the "true" capability of the cell. This assumption is justified by the fidelity of the cell model's voltage estimates, as supported by the data in Fig. 6.
- Fig. 9 shows that the three methods produce similar estimates.
- Method I and Method II appear to be nearly identical when viewed at this scale.
- the PNGV HPPC method predicts higher power than is actually available (by as much as 9.8%), and at low SOCs, the PNGV HPPC method under-predicts the available power. Only the methods of the present invention include SOC bounds, which explain why their predictions are so different from the
- PNGV HPPC estimates at low SOC. If the vehicle controller were to discharge at the rates predicted by the PNGV HPPC method, the cell would be over-discharged in some cases (lowering its lifetime), and under-utilized in other cases.
- Fig. 10 zooms in on Fig. 9 (same region shown as in Fig. 6) to show greater detail. In this region, the three methods produce nearly identical predictions.
- a notable feature of Method II, however, is that it takes into account the entire dynamics of the cell when making a prediction. Therefore, the strong discharges at around time 237 and 267 minutes draw the cell voltage down, and allows less discharge power than the other two methods which only consider SOC when making their estimate. The three methods are also compared with respect to charge power, shown in Fig. 11.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0416652A BRPI0416652B8 (pt) | 2003-11-20 | 2004-11-19 | Método para estimar a potência de descarga máxima de uma bateria e método para estimar a potência de carga mínima de uma bateria |
CN2004800344009A CN1883097B (zh) | 2003-11-20 | 2004-11-19 | 估计蓄电池最大放电功率的方法 |
JP2006541030A JP4722857B2 (ja) | 2003-11-20 | 2004-11-19 | 進歩セルモデル予測技術を用いたバッテリパックの電力容量の計算方法 |
CA002547012A CA2547012C (en) | 2003-11-20 | 2004-11-19 | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
EP04800108.5A EP1692754B1 (en) | 2003-11-20 | 2004-11-19 | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US52432603P | 2003-11-20 | 2003-11-20 | |
US60/524,326 | 2003-11-20 | ||
US10/811,088 | 2004-03-25 | ||
US10/811,088 US7321220B2 (en) | 2003-11-20 | 2004-03-25 | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005050810A1 true WO2005050810A1 (en) | 2005-06-02 |
Family
ID=34595116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2004/003001 WO2005050810A1 (en) | 2003-11-20 | 2004-11-19 | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
Country Status (10)
Country | Link |
---|---|
US (3) | US7321220B2 (ru) |
EP (1) | EP1692754B1 (ru) |
JP (1) | JP4722857B2 (ru) |
KR (1) | KR100894021B1 (ru) |
CN (1) | CN1883097B (ru) |
BR (1) | BRPI0416652B8 (ru) |
CA (1) | CA2547012C (ru) |
RU (1) | RU2336618C2 (ru) |
TW (1) | TWI281298B (ru) |
WO (1) | WO2005050810A1 (ru) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009042193A1 (de) | 2009-09-18 | 2011-03-31 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Schätzung des Innenwiderstands- bzw. Impedanzwerts einer Batterie |
DE102009042192A1 (de) | 2009-09-18 | 2011-03-31 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Schätzung des Innenwiderstands- bzw. Impedanzwerts einer Batterie |
WO2011045206A2 (de) | 2009-10-14 | 2011-04-21 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur bestimmung und/oder vorhersage der hochstrombelastbarkeit einer batterie |
DE102013000572A1 (de) | 2013-01-15 | 2014-07-17 | Rheinisch-Westfälische Technische Hochschule Aachen | Verfahren und System zur Bestimmung der Modellparameter eines elektrochemischen Energiespeichers |
US9555714B2 (en) | 2013-06-11 | 2017-01-31 | Toyota Jidosha Kabushiki Kaisha | Power supply system of electric-powered vehicle |
CN108549746A (zh) * | 2018-03-26 | 2018-09-18 | 浙江零跑科技有限公司 | 基于电芯电压的电池系统功率限制估算算法 |
WO2021052776A1 (de) | 2019-09-20 | 2021-03-25 | Robert Bosch Gmbh | Verfahren zur ermittlung einer ersten spannungskennlinie einer ersten elektrischen energiespeichereinheit |
US11486935B2 (en) | 2018-01-08 | 2022-11-01 | Robert Bosch Gmbh | Method and management system for controlling and monitoring a plurality of battery cells in a battery pack, and battery pack |
Families Citing this family (190)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7321220B2 (en) * | 2003-11-20 | 2008-01-22 | Lg Chem, Ltd. | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
JP2006129588A (ja) * | 2004-10-28 | 2006-05-18 | Sanyo Electric Co Ltd | 二次電池の電力制御方法及び電源装置 |
US8103485B2 (en) * | 2004-11-11 | 2012-01-24 | Lg Chem, Ltd. | State and parameter estimation for an electrochemical cell |
US7424663B2 (en) * | 2005-01-19 | 2008-09-09 | Intel Corporation | Lowering voltage for cache memory operation |
US7786699B2 (en) * | 2005-01-25 | 2010-08-31 | Victhom Human Bionics, Inc. | Power supply charger and method of charging |
WO2006090636A1 (ja) * | 2005-02-22 | 2006-08-31 | Sharp Kabushiki Kaisha | 電池交換サービスシステム及び課金方法並びに携帯機器 |
EP1872458A1 (en) * | 2005-03-31 | 2008-01-02 | Energycs | Method and system for retrofitting a full hybrid to be a plug-in hybrid |
DE102005018434A1 (de) * | 2005-04-21 | 2006-10-26 | Continental Aktiengesellschaft | Kraftfahrzeug mit einer pneumatischen Niveauregelanlage |
EP1897201B1 (en) * | 2005-06-14 | 2018-01-10 | LG Chem. Ltd. | Method and apparatus for controlling charging/discharging power of a battery |
US7723957B2 (en) * | 2005-11-30 | 2010-05-25 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery parameter vector |
JP4532416B2 (ja) * | 2006-01-12 | 2010-08-25 | 古河電気工業株式会社 | バッテリ放電能力判定方法、バッテリ放電能力判定装置、及び電源システム |
JP4773848B2 (ja) * | 2006-03-03 | 2011-09-14 | プライムアースEvエナジー株式会社 | 二次電池の充放電制御システム、電池制御装置、およびプログラム |
US8466684B2 (en) * | 2006-06-16 | 2013-06-18 | Chevron Technology Ventures Llc | Determination of battery predictive power limits |
JP4265629B2 (ja) * | 2006-08-01 | 2009-05-20 | トヨタ自動車株式会社 | 二次電池の充放電制御装置およびそれを搭載したハイブリッド車両 |
TW200824169A (en) * | 2006-11-21 | 2008-06-01 | Benq Corp | Method for predicting remaining capacity of a battery |
US9013139B2 (en) * | 2007-03-26 | 2015-04-21 | The Gillette Company | Adaptive charger device and method |
WO2009059164A2 (en) * | 2007-10-31 | 2009-05-07 | Intrago Corporation | User-distributed shared vehicle system |
JP2009122056A (ja) * | 2007-11-19 | 2009-06-04 | Denso Corp | バッテリ充放電電流検出装置 |
US8628872B2 (en) * | 2008-01-18 | 2014-01-14 | Lg Chem, Ltd. | Battery cell assembly and method for assembling the battery cell assembly |
US7994755B2 (en) * | 2008-01-30 | 2011-08-09 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery cell module state |
JP4513882B2 (ja) * | 2008-03-21 | 2010-07-28 | トヨタ自動車株式会社 | ハイブリッド車およびその制御方法 |
US8067111B2 (en) * | 2008-06-30 | 2011-11-29 | Lg Chem, Ltd. | Battery module having battery cell assembly with heat exchanger |
US8426050B2 (en) * | 2008-06-30 | 2013-04-23 | Lg Chem, Ltd. | Battery module having cooling manifold and method for cooling battery module |
US9759495B2 (en) | 2008-06-30 | 2017-09-12 | Lg Chem, Ltd. | Battery cell assembly having heat exchanger with serpentine flow path |
US9140501B2 (en) * | 2008-06-30 | 2015-09-22 | Lg Chem, Ltd. | Battery module having a rubber cooling manifold |
US7883793B2 (en) * | 2008-06-30 | 2011-02-08 | Lg Chem, Ltd. | Battery module having battery cell assemblies with alignment-coupling features |
US8539408B1 (en) | 2008-07-29 | 2013-09-17 | Clarkson University | Method for thermal simulation |
JP4722976B2 (ja) * | 2008-08-26 | 2011-07-13 | 本田技研工業株式会社 | 蓄電容量制御装置 |
US8202645B2 (en) | 2008-10-06 | 2012-06-19 | Lg Chem, Ltd. | Battery cell assembly and method for assembling the battery cell assembly |
TWI398658B (zh) * | 2008-10-31 | 2013-06-11 | Evt Technology Co Ltd | An instant calculation method for battery pack information for electric vehicle and electric vehicle using the method |
CN102246029B (zh) * | 2008-11-17 | 2014-06-25 | 奥的斯电梯公司 | 电池荷电状态校准 |
US8116998B2 (en) | 2009-01-30 | 2012-02-14 | Bae Systems Controls, Inc. | Battery health assessment estimator |
DE102009001300A1 (de) * | 2009-03-03 | 2010-09-09 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Ermittlung einer charakteristischen Größe zur Erkennung der Bordnetzstabilität |
US8004243B2 (en) * | 2009-04-08 | 2011-08-23 | Tesla Motors, Inc. | Battery capacity estimating method and apparatus |
US9337456B2 (en) | 2009-04-20 | 2016-05-10 | Lg Chem, Ltd. | Frame member, frame assembly and battery cell assembly made therefrom and methods of making the same |
US8663828B2 (en) | 2009-04-30 | 2014-03-04 | Lg Chem, Ltd. | Battery systems, battery module, and method for cooling the battery module |
US8403030B2 (en) | 2009-04-30 | 2013-03-26 | Lg Chem, Ltd. | Cooling manifold |
US8852778B2 (en) | 2009-04-30 | 2014-10-07 | Lg Chem, Ltd. | Battery systems, battery modules, and method for cooling a battery module |
US8663829B2 (en) | 2009-04-30 | 2014-03-04 | Lg Chem, Ltd. | Battery systems, battery modules, and method for cooling a battery module |
US9172118B2 (en) * | 2009-06-17 | 2015-10-27 | Gm Global Technology Operations, Llc. | Method and system for estimating battery life |
FR2947637B1 (fr) * | 2009-07-01 | 2012-03-23 | Commissariat Energie Atomique | Procede de calibration d'un accumulateur electrochimique |
US8703318B2 (en) * | 2009-07-29 | 2014-04-22 | Lg Chem, Ltd. | Battery module and method for cooling the battery module |
US8399118B2 (en) | 2009-07-29 | 2013-03-19 | Lg Chem, Ltd. | Battery module and method for cooling the battery module |
BR112012003621A2 (pt) * | 2009-08-21 | 2017-08-08 | Mahindra Reva Electric Vehicles Pvt Ltd | determinacao e uso de energia de reserva em sistemas de energia armazenada |
US8399119B2 (en) | 2009-08-28 | 2013-03-19 | Lg Chem, Ltd. | Battery module and method for cooling the battery module |
DE102009042194B4 (de) * | 2009-09-18 | 2019-01-31 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Bestimmung des Betriebsbereichs eines wiederaufladbaren elektrischen Energiespeichers |
DE102009049589A1 (de) * | 2009-10-16 | 2011-04-21 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Bestimmung und/oder Vorhersage der maximalen Leistungsfähigkeit einer Batterie |
DE102009045783A1 (de) * | 2009-10-19 | 2011-04-21 | Robert Bosch Gmbh | Verfahren zur präzisen Leistungsvorhersage für Batteriepacks |
FR2952235B1 (fr) * | 2009-10-29 | 2015-01-16 | Commissariat Energie Atomique | Procede de charge ou de decharge d'une batterie pour determiner la fin de charge ou de decharge en fonction de mesures de courant et de temperature |
JP5496612B2 (ja) * | 2009-11-11 | 2014-05-21 | 三洋電機株式会社 | 電池の充放電可能電流演算方法及び電源装置並びにこれを備える車両 |
US8427105B2 (en) * | 2009-12-02 | 2013-04-23 | Gregory L. Plett | System and method for equalizing a battery pack during a battery pack charging process |
US8041522B2 (en) * | 2009-12-02 | 2011-10-18 | American Electric Vehicles, Ind. | System and method for recursively estimating battery cell total capacity |
US8918299B2 (en) * | 2009-12-02 | 2014-12-23 | American Electric Vehicles, Inc. | System and method for maximizing a battery pack total energy metric |
JP5517692B2 (ja) * | 2010-03-26 | 2014-06-11 | 三菱重工業株式会社 | 電池パックおよび電池制御システム |
US8341449B2 (en) | 2010-04-16 | 2012-12-25 | Lg Chem, Ltd. | Battery management system and method for transferring data within the battery management system |
US9147916B2 (en) | 2010-04-17 | 2015-09-29 | Lg Chem, Ltd. | Battery cell assemblies |
RU2565339C2 (ru) * | 2010-06-07 | 2015-10-20 | Мицубиси Электрик Корпорейшн | Устройство оценки состояния заряда |
JP2012039725A (ja) * | 2010-08-05 | 2012-02-23 | Toyota Motor Corp | 充電方法、充電システム |
US8920956B2 (en) | 2010-08-23 | 2014-12-30 | Lg Chem, Ltd. | Battery system and manifold assembly having a manifold member and a connecting fitting |
US8353315B2 (en) | 2010-08-23 | 2013-01-15 | Lg Chem, Ltd. | End cap |
US8758922B2 (en) | 2010-08-23 | 2014-06-24 | Lg Chem, Ltd. | Battery system and manifold assembly with two manifold members removably coupled together |
US8469404B2 (en) | 2010-08-23 | 2013-06-25 | Lg Chem, Ltd. | Connecting assembly |
US9005799B2 (en) | 2010-08-25 | 2015-04-14 | Lg Chem, Ltd. | Battery module and methods for bonding cell terminals of battery cells together |
FR2964196B1 (fr) * | 2010-08-25 | 2012-08-24 | Peugeot Citroen Automobiles Sa | Dispositif de determination de grandeur(s) d'une batterie a cellules en serie |
US8662153B2 (en) | 2010-10-04 | 2014-03-04 | Lg Chem, Ltd. | Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger |
US8749201B2 (en) * | 2010-10-05 | 2014-06-10 | GM Global Technology Operations LLC | Battery pack capacity learn algorithm |
DE102010038017B4 (de) | 2010-10-06 | 2019-03-14 | FEV Europe GmbH | Verfahren zur Bestimmung des maximal möglichen Stromflusses einer Batterie durch ein Steuergerät sowie Steuergerät |
SG10201508552TA (en) * | 2010-10-22 | 2015-11-27 | Nucleus Scient Inc | Apparatus and method for rapidly charging batteries |
US8400112B2 (en) * | 2010-11-10 | 2013-03-19 | Ford Global Technologies, Llc | Method for managing power limits for a battery |
JP4988974B2 (ja) * | 2010-11-25 | 2012-08-01 | パナソニック株式会社 | 充電制御回路、電池駆動機器、充電装置及び充電方法 |
TWI428622B (zh) | 2010-11-25 | 2014-03-01 | Ind Tech Res Inst | 一種藉由電池充放電特性檢控容量與功率的方法 |
CN102195105B (zh) * | 2011-01-14 | 2013-03-20 | 中兴通讯股份有限公司 | 一种蓄电池充电控制方法及装置 |
CN102590749B (zh) * | 2011-01-14 | 2016-09-28 | 朴昌浩 | 一种电池荷电状态预测内核设计方法 |
WO2012098523A2 (en) * | 2011-01-19 | 2012-07-26 | Sendyne Corp. | Converging algorithm for real-time battery prediction |
US8288031B1 (en) | 2011-03-28 | 2012-10-16 | Lg Chem, Ltd. | Battery disconnect unit and method of assembling the battery disconnect unit |
CN102137536B (zh) * | 2011-03-28 | 2014-06-04 | 天津英诺华微电子技术有限公司 | 太阳能供电路灯亮度自适应控制方法 |
DE102011007884A1 (de) * | 2011-04-21 | 2012-10-25 | Sb Limotive Company Ltd. | Verfahren zur Bestimmung eines maximal verfügbaren Konstantstroms einer Batterie |
US8449998B2 (en) | 2011-04-25 | 2013-05-28 | Lg Chem, Ltd. | Battery system and method for increasing an operational life of a battery cell |
US9178192B2 (en) | 2011-05-13 | 2015-11-03 | Lg Chem, Ltd. | Battery module and method for manufacturing the battery module |
CN102298118A (zh) * | 2011-05-17 | 2011-12-28 | 杭州电子科技大学 | 一种电池模型参数与剩余电量联合同步在线估计方法 |
FR2975501B1 (fr) * | 2011-05-20 | 2013-05-31 | Renault Sas | Procede d'estimation de l'etat de charge d'une batterie electrique |
US20120316810A1 (en) * | 2011-06-08 | 2012-12-13 | GM Global Technology Operations LLC | Battery limit calibration based on battery life and performance optimization |
US10234512B2 (en) * | 2011-06-11 | 2019-03-19 | Sendyne Corporation | Current-based cell modeling |
US8993136B2 (en) | 2011-06-30 | 2015-03-31 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8974929B2 (en) | 2011-06-30 | 2015-03-10 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8974928B2 (en) | 2011-06-30 | 2015-03-10 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8859119B2 (en) | 2011-06-30 | 2014-10-14 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US9260033B2 (en) * | 2011-07-13 | 2016-02-16 | Sanyo Electric Co., Ltd. | Power supply device and vehicle including the same |
US9496544B2 (en) | 2011-07-28 | 2016-11-15 | Lg Chem. Ltd. | Battery modules having interconnect members with vibration dampening portions |
CN103033752B (zh) * | 2011-09-30 | 2016-01-20 | 吴昌旭 | 电动车电池寿命预测方法以及延长方法 |
CN103094630B (zh) * | 2011-10-28 | 2015-04-15 | 东莞钜威新能源有限公司 | 一种电池管理方法及系统 |
CN102419599B (zh) * | 2011-10-31 | 2013-08-07 | 江苏科技大学 | 基于人工鱼群算法的太阳能电池最大功率点跟踪方法 |
JP2013115846A (ja) * | 2011-11-25 | 2013-06-10 | Denso Corp | 組電池のガード処理装置 |
US8718850B2 (en) * | 2011-11-30 | 2014-05-06 | Nec Laboratories America, Inc. | Systems and methods for using electric vehicles as mobile energy storage |
US8977510B2 (en) | 2011-12-15 | 2015-03-10 | Lg Chem, Ltd. | System and method for determining charging and discharging power levels for a battery pack |
CN103185865A (zh) * | 2011-12-31 | 2013-07-03 | 陕西汽车集团有限责任公司 | 运用ekf对电动汽车锂离子电池soc闭环实时估算法 |
US20130175996A1 (en) * | 2012-01-05 | 2013-07-11 | IDesign, Inc | Characterizing battery discharge under different loads |
DE102012200414A1 (de) * | 2012-01-12 | 2013-07-18 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zu einer Bestimmung eines Ladezustands eines elektrischen Energiespeichers |
GB2499052A (en) * | 2012-02-01 | 2013-08-07 | Continental Automotive Systems | Calculating a power value in a vehicular application |
DE102012202077A1 (de) * | 2012-02-13 | 2013-08-14 | Robert Bosch Gmbh | Verfahren zum Bestimmen eines Stroms, Batteriemanagementeinheit, Batterie und Kraftfahrzeug |
CN102590680A (zh) * | 2012-02-29 | 2012-07-18 | 广东步步高电子工业有限公司 | 一种可模拟真电池特性的智能电源 |
DE102012204957B4 (de) * | 2012-03-28 | 2024-08-22 | Robert Bosch Gmbh | Verfahren zur Bestimmung eines maximal verfügbaren Konstantstroms einer Batterie, Anordnung zur Ausführung eines solchen Verfahrens, Batterie in Kombination mit einer solchen Anordnung und Kraftfahrzeug mit einer solchen Batterie |
CN102608542B (zh) * | 2012-04-10 | 2013-12-11 | 吉林大学 | 动力电池荷电状态估计方法 |
US8922217B2 (en) * | 2012-05-08 | 2014-12-30 | GM Global Technology Operations LLC | Battery state-of-charge observer |
US9067598B2 (en) * | 2012-06-14 | 2015-06-30 | GM Global Technology Operations LLC | Method and apparatus for controlling a high-voltage electrical system for a multi-mode transmission |
KR101405354B1 (ko) | 2012-11-13 | 2014-06-11 | 카코뉴에너지 주식회사 | Pv 셀 모델링 방법 |
CN103901344A (zh) * | 2012-12-24 | 2014-07-02 | 财团法人金属工业研究发展中心 | 电池残电量估测系统及其估测方法 |
JP6071725B2 (ja) | 2013-04-23 | 2017-02-01 | カルソニックカンセイ株式会社 | 電気自動車の駆動力制御装置 |
CN104298793B (zh) * | 2013-07-16 | 2017-11-21 | 万向一二三股份公司 | 一种动力电池组极限功率的模型反推动态算法 |
CN103401534B (zh) * | 2013-07-24 | 2015-12-23 | 中达电通股份有限公司 | 基于rc电路充放电最终电压快速预测的方法 |
US9368841B2 (en) * | 2013-08-30 | 2016-06-14 | Ford Global Technologies, Llc | Battery power capability estimation at vehicle start |
US10473723B2 (en) * | 2013-08-30 | 2019-11-12 | Ford Global Technologies, Llc | Parameter and state limiting in model based battery control |
FR3011084A1 (fr) * | 2013-09-25 | 2015-03-27 | St Microelectronics Grenoble 2 | Procede de determination de l’etat de charge d’une batterie d’un appareil electronique |
US9631595B2 (en) | 2013-09-26 | 2017-04-25 | Ford Global Technologies, Llc | Methods and systems for selective engine starting |
CN104698382A (zh) * | 2013-12-04 | 2015-06-10 | 东莞钜威新能源有限公司 | 一种电池组的soc与soh的预测方法 |
FR3016091B1 (fr) * | 2013-12-27 | 2016-01-08 | Renault Sas | Procede et systeme de gestion de batterie pour vehicule automobile |
CN103995232B (zh) * | 2014-04-21 | 2017-01-04 | 中通客车控股股份有限公司 | 一种磷酸铁锂动力电池组峰值充放电性能的检测方法 |
GB201407805D0 (en) | 2014-05-02 | 2014-06-18 | Dukosi Ltd | Battery condition determination |
US10830821B2 (en) * | 2014-05-05 | 2020-11-10 | Apple Inc. | Methods and apparatus for battery power and energy availability prediction |
US9419314B2 (en) * | 2014-05-12 | 2016-08-16 | GM Global Technology Operations LLC | Systems and methods for determining battery system power capability |
CN103995235A (zh) * | 2014-06-02 | 2014-08-20 | 耿直 | 高压蓄电池组中的蓄电池模块的输出限流方法 |
US20160001672A1 (en) * | 2014-07-01 | 2016-01-07 | Ford Global Technologies, Llc | Equivalent circuit based battery current limit estimations |
JP6324248B2 (ja) * | 2014-07-17 | 2018-05-16 | 日立オートモティブシステムズ株式会社 | 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法 |
US9381823B2 (en) * | 2014-07-17 | 2016-07-05 | Ford Global Technologies, Llc | Real-time battery estimation |
US10451678B2 (en) | 2014-07-17 | 2019-10-22 | Ford Global Technologies, Llc | Battery system identification through impulse injection |
JP6316690B2 (ja) | 2014-07-17 | 2018-04-25 | 日立オートモティブシステムズ株式会社 | 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法 |
US9321368B2 (en) | 2014-08-19 | 2016-04-26 | Fca Us Llc | Multi-step model predictive iterative techniques for battery system peak power estimation |
US10408880B2 (en) | 2014-08-19 | 2019-09-10 | Fca Us Llc | Techniques for robust battery state estimation |
EP3017993B1 (en) * | 2014-11-07 | 2021-04-21 | Volvo Car Corporation | Power and current estimation for batteries |
CN104391251B (zh) * | 2014-11-18 | 2017-04-26 | 郑州日产汽车有限公司 | 电动汽车电池管理系统数据采集方法 |
FR3029296B1 (fr) | 2014-11-28 | 2016-12-30 | Renault Sa | Procede automatique d'estimation de l'etat de charge d'une cellule d'une batterie |
FR3029298B1 (fr) * | 2014-11-28 | 2016-12-30 | Renault Sa | Procede automatique d'estimation de l'etat de charge d'une cellule d'une batterie |
CN105891715A (zh) * | 2014-12-12 | 2016-08-24 | 广西大学 | 一种锂离子电池健康状态估算方法 |
CN104483539B (zh) * | 2015-01-08 | 2017-02-22 | 湖南大学 | 一种基于泰勒展开式的有功功率快速测量方法 |
PL3045925T3 (pl) | 2015-01-14 | 2023-08-07 | Corvus Energy Ltd. | Sposób i układ do iteracyjnego określania stanu naładowania ogniwa akumulatorowego |
CN104537268B (zh) * | 2015-01-19 | 2018-08-21 | 重庆长安汽车股份有限公司 | 一种电池最大放电功率估算方法和装置 |
CN104635165B (zh) * | 2015-01-27 | 2017-03-29 | 合肥工业大学 | 一种光电互补供电系统蓄电池剩余电量的准确估算方法 |
JP6670999B2 (ja) * | 2015-03-27 | 2020-03-25 | パナソニックIpマネジメント株式会社 | 二次電池の状態推定装置および状態推定方法 |
US9789784B2 (en) * | 2015-05-13 | 2017-10-17 | Ford Global Technologies, Llc | Maintaining a vehicle battery |
US10048320B2 (en) * | 2015-06-12 | 2018-08-14 | GM Global Technology Operations LLC | Systems and methods for estimating battery system power capability |
CN105277895B (zh) * | 2015-09-30 | 2018-01-26 | 上海凌翼动力科技有限公司 | 一种串联电池组功率状态sop的在线估计方法及其应用 |
JP6787660B2 (ja) * | 2015-12-10 | 2020-11-18 | ビークルエナジージャパン株式会社 | 電池制御装置、動力システム |
US10298042B2 (en) * | 2016-02-05 | 2019-05-21 | Nec Corporation | Resilient battery charging strategies to reduce battery degradation and self-discharging |
CN105699910A (zh) * | 2016-04-21 | 2016-06-22 | 中国计量大学 | 一种锂电池剩余电量在线估计方法 |
US9921272B2 (en) * | 2016-05-23 | 2018-03-20 | Lg Chem, Ltd. | System for determining a discharge power limit value and a charge power limit value of a battery cell |
EP3252616A1 (en) * | 2016-06-01 | 2017-12-06 | Honeywell spol s.r.o. | Estimating variables that are not directly measurable |
CN106054085B (zh) * | 2016-07-11 | 2019-11-15 | 四川普力科技有限公司 | 一种基于温度用于估计电池soc的方法 |
CN106443459A (zh) * | 2016-09-06 | 2017-02-22 | 中国第汽车股份有限公司 | 一种车用锂离子动力电池荷电状态估算方法 |
CN106526490A (zh) * | 2016-10-25 | 2017-03-22 | 宁德时代新能源科技股份有限公司 | 一种极限工作电流的获取方法及装置 |
DE102016224376B4 (de) * | 2016-12-07 | 2018-10-18 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Steuereinheit zum Betrieb eines Stationärspeichers |
CN106842038B (zh) * | 2016-12-14 | 2020-08-14 | 广东恒沃动力科技有限公司 | 一种电池最大放电功率在线估算方法 |
TWI597511B (zh) * | 2016-12-23 | 2017-09-01 | Chen Tech Electric Mfg Co Ltd | Battery life cycle prediction model building method |
CN106855612B (zh) * | 2017-02-21 | 2019-09-24 | 山东大学 | 计及非线性容量特性的分数阶KiBaM电池模型及参数辨识方法 |
EP3593155B1 (en) * | 2017-03-06 | 2021-04-07 | Volvo Truck Corporation | A battery cell state of charge estimation method and a battery state monitoring system |
WO2018162023A2 (en) * | 2017-03-06 | 2018-09-13 | Volvo Truck Corporation | A battery state of power estimation method and a battery state monitoring system |
JP6729460B2 (ja) * | 2017-03-17 | 2020-07-22 | トヨタ自動車株式会社 | 車載バッテリの充電制御装置 |
CN107102271A (zh) * | 2017-05-25 | 2017-08-29 | 宁德时代新能源科技股份有限公司 | 电池组峰值功率的估算方法、装置和系统 |
CN107402356B (zh) * | 2017-08-04 | 2020-03-20 | 南京南瑞继保电气有限公司 | 一种基于动态参数辨识的ekf估算铅酸电池soc方法 |
US10237830B1 (en) | 2017-08-31 | 2019-03-19 | Google Llc | Dynamic battery power management |
KR101946784B1 (ko) * | 2017-09-29 | 2019-02-12 | 한국과학기술원 | 칼만 필터를 이용하여 배터리의 엔트로피를 측정하는 방법 |
KR102515606B1 (ko) * | 2017-10-31 | 2023-03-28 | 삼성에스디아이 주식회사 | 배터리 충전량 표시 방법 및 이를 수행하는 배터리 팩 및 전자 기기 |
KR102203245B1 (ko) | 2017-11-01 | 2021-01-13 | 주식회사 엘지화학 | 배터리 soc 추정 장치 및 방법 |
US10549649B2 (en) * | 2017-11-10 | 2020-02-04 | GM Global Technology Operations LLC | Maximum current calculation and power prediction for a battery pack |
CN107861075B (zh) * | 2017-12-24 | 2020-03-27 | 江西优特汽车技术有限公司 | 一种确定动力电池sop的方法 |
CN108427079B (zh) * | 2018-06-11 | 2019-06-07 | 西南交通大学 | 一种动力电池剩余电量估计方法 |
CN109343370B (zh) * | 2018-11-30 | 2021-10-01 | 北京宇航系统工程研究所 | 一种空间电源控制器动态环境仿真系统及方法 |
KR102465889B1 (ko) | 2018-12-18 | 2022-11-09 | 주식회사 엘지에너지솔루션 | 이차 전지 팩의 충전 제어 장치 및 방법 |
KR102645052B1 (ko) * | 2019-03-05 | 2024-03-08 | 현대자동차주식회사 | 하이브리드 차량의 주행모드 제어 장치 및 그 방법 |
KR20200112248A (ko) | 2019-03-21 | 2020-10-05 | 주식회사 엘지화학 | 배터리 뱅크 제어 장치 및 방법 |
JP6722954B1 (ja) * | 2019-04-02 | 2020-07-15 | 東洋システム株式会社 | バッテリー残存価値決定システム |
CN110009528B (zh) * | 2019-04-12 | 2021-06-01 | 杭州电子科技大学 | 一种基于最优结构多维泰勒网的参数自适应更新方法 |
US11485239B2 (en) * | 2019-06-03 | 2022-11-01 | GM Global Technology Operations LLC | Power prediction for reconfigurable series-connected battery with mixed battery chemistry |
US11515587B2 (en) * | 2019-10-10 | 2022-11-29 | Robert Bosch Gmbh | Physics-based control of battery temperature |
CN111025172B (zh) * | 2019-12-31 | 2022-03-01 | 国联汽车动力电池研究院有限责任公司 | 一种实现锂离子电池充放电最大允许功率快速测量的方法 |
US11313912B2 (en) * | 2020-01-28 | 2022-04-26 | Karma Automotive Llc | Battery power limits estimation based on RC model |
US11454673B2 (en) | 2020-02-12 | 2022-09-27 | Karma Automotive Llc | Battery current limits estimation based on RC model |
CN111289927A (zh) * | 2020-03-02 | 2020-06-16 | 大陆汽车电子(长春)有限公司 | 智能电池传感器的起动信号模拟装置、测试方法及系统 |
EP4394409A3 (en) * | 2020-06-18 | 2024-10-02 | Volvo Truck Corporation | A method for predicting state-of-power of a multi-battery electric energy storage system |
US11522440B2 (en) * | 2020-07-29 | 2022-12-06 | Cirrus Logic, Inc. | Use of shared feedback among two or more reactive schemes |
CN112763918B (zh) * | 2020-12-23 | 2024-05-24 | 重庆金康动力新能源有限公司 | 电动汽车动力电池放电功率控制方法 |
KR20220100331A (ko) * | 2021-01-08 | 2022-07-15 | 주식회사 엘지에너지솔루션 | 최대 방전 전류 예측 방법 및 이를 이용한 배터리 시스템 |
CN113109716B (zh) * | 2021-04-06 | 2022-08-23 | 江苏大学 | 一种基于电化学模型的锂电池sop估算方法 |
WO2022241301A1 (en) * | 2021-05-14 | 2022-11-17 | Carnegie Mellon University | System and method for application-dependent selection of batteries with differentiable programming |
FR3123156A1 (fr) * | 2021-05-18 | 2022-11-25 | Psa Automobiles Sa | Systeme de gestion de baterie comprenant des moyens de detection de cellules limitantes, vehicule et procede sur la base d’un tel systeme |
CN113466697B (zh) * | 2021-06-10 | 2024-02-27 | 深圳拓邦股份有限公司 | 电池的soc估算方法、计算机终端和存储介质 |
KR20230054191A (ko) * | 2021-10-15 | 2023-04-24 | 주식회사 엘지에너지솔루션 | Soc 레벨을 안내하기 위한 배터리 제어 시스템 및 방법 |
CN114643892B (zh) * | 2022-04-11 | 2024-09-27 | 广州万城万充新能源科技有限公司 | 一种基于多模态数据感知的电动车充电功率预测系统 |
CN116070466B (zh) * | 2023-03-08 | 2023-06-13 | 上海泰矽微电子有限公司 | 一种电池截止电压下的最优soc仿真寻值方法 |
DE102023107087A1 (de) | 2023-03-21 | 2024-09-26 | Bayerische Motoren Werke Aktiengesellschaft | Steuervorrichtung und verfahren für eine antriebsbatterie eines kraftfahrzeugs |
CN117175653B (zh) * | 2023-08-04 | 2024-06-21 | 浙江晨泰科技股份有限公司 | 一种基于大功率双向充放电模块的充放电设备及充放电方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644212A (en) * | 1994-11-11 | 1997-07-01 | Fuji Jukogyo Kabushiki Kaisha | Traction battery management system |
JPH09312901A (ja) * | 1996-05-22 | 1997-12-02 | Nissan Motor Co Ltd | 電気自動車の電力制御装置 |
JPH113505A (ja) * | 1997-06-11 | 1999-01-06 | Sony Corp | 磁気ヘッド及びその製造方法 |
JPH1123676A (ja) * | 1997-06-30 | 1999-01-29 | Sony Corp | 二次電池の充電特性測定方法及び装置 |
JPH1138105A (ja) * | 1997-07-15 | 1999-02-12 | Toyota Autom Loom Works Ltd | 電池の残存容量算出方法および残存容量不足警報出力方法 |
US6232744B1 (en) * | 1999-02-24 | 2001-05-15 | Denso Corporation | Method of controlling battery condition of self-generation electric vehicle |
US20020053490A1 (en) | 2000-11-09 | 2002-05-09 | Hirokazu Banno | Apparatus for controlling elevator |
JP2003257501A (ja) * | 2002-02-27 | 2003-09-12 | Suzuki Motor Corp | 二次電池の残存容量計 |
Family Cites Families (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4390841A (en) | 1980-10-14 | 1983-06-28 | Purdue Research Foundation | Monitoring apparatus and method for battery power supply |
DE69033939T2 (de) * | 1989-12-11 | 2002-09-12 | Canon K.K., Tokio/Tokyo | Ladegerät |
CN1017561B (zh) * | 1990-10-12 | 1992-07-22 | 湖南轻工研究所 | 预测干电池间歇放电容量的方法 |
JP3209457B2 (ja) * | 1992-12-11 | 2001-09-17 | 本田技研工業株式会社 | バッテリの残容量検出方法 |
US5825155A (en) | 1993-08-09 | 1998-10-20 | Kabushiki Kaisha Toshiba | Battery set structure and charge/ discharge control apparatus for lithium-ion battery |
US5714866A (en) | 1994-09-08 | 1998-02-03 | National Semiconductor Corporation | Method and apparatus for fast battery charging using neural network fuzzy logic based control |
US5578915A (en) | 1994-09-26 | 1996-11-26 | General Motors Corporation | Dynamic battery state-of-charge and capacity determination |
US5606242A (en) | 1994-10-04 | 1997-02-25 | Duracell, Inc. | Smart battery algorithm for reporting battery parameters to an external device |
US5633573A (en) | 1994-11-10 | 1997-05-27 | Duracell, Inc. | Battery pack having a processor controlled battery operating system |
TW269727B (en) | 1995-04-03 | 1996-02-01 | Electrosource Inc | Battery management system |
FR2740554A1 (fr) | 1995-10-31 | 1997-04-30 | Philips Electronique Lab | Systeme de controle de la phase de decharge des cycles de charge-decharge d'une batterie rechargeable, et dispositif hote muni d'une batterie intelligente |
JP3520886B2 (ja) | 1996-03-08 | 2004-04-19 | サンケン電気株式会社 | 二次電池の状態判定方法 |
US5694335A (en) | 1996-03-12 | 1997-12-02 | Hollenberg; Dennis D. | Secure personal applications network |
US6064180A (en) | 1996-10-29 | 2000-05-16 | General Motors Corporation | Method and apparatus for determining battery state-of-charge using neural network architecture |
US5739670A (en) | 1996-10-31 | 1998-04-14 | General Motors Corporation | Method for diagnosing battery condition |
JP2000504477A (ja) | 1996-11-21 | 2000-04-11 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | バッテリー管理システム及びバッテリー・シミュレータ |
JPH1132442A (ja) | 1997-07-10 | 1999-02-02 | Matsushita Electric Ind Co Ltd | 蓄電池残容量推定方法及び蓄電池残容量推定システム |
WO1999061929A1 (en) | 1998-05-28 | 1999-12-02 | Toyota Jidosha Kabushiki Kaisha | Means for estimating charged state of battery and method for estimating degraded state of battery |
US6018227A (en) | 1998-06-22 | 2000-01-25 | Stryker Corporation | Battery charger especially useful with sterilizable, rechargeable battery packs |
KR100271094B1 (ko) * | 1998-08-21 | 2000-11-01 | 김덕중 | 충전 제어기 |
US6353815B1 (en) | 1998-11-04 | 2002-03-05 | The United States Of America As Represented By The United States Department Of Energy | Statistically qualified neuro-analytic failure detection method and system |
EP1206826B1 (en) | 1999-05-05 | 2009-02-25 | Midtronics, Inc. | Energy management system for automotive vehicle |
JP2001095160A (ja) * | 1999-09-17 | 2001-04-06 | Matsushita Electric Ind Co Ltd | 異常電池セル検出方法 |
DE19959019A1 (de) | 1999-12-08 | 2001-06-13 | Bosch Gmbh Robert | Verfahren zur Zustandserkennung eines Energiespeichers |
DE19960761C1 (de) | 1999-12-16 | 2001-05-23 | Daimler Chrysler Ag | Verfahren zur Überwachung der Restladung und der Leistungsfähigkeit einer Batterie |
DE10021161A1 (de) | 2000-04-29 | 2001-10-31 | Vb Autobatterie Gmbh | Verfahren zur Ermittlung des Ladezustands und der Belastbarkeit eines elektrischen Akkumulators |
TW535308B (en) * | 2000-05-23 | 2003-06-01 | Canon Kk | Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said |
EP1160953B1 (en) | 2000-05-29 | 2009-12-02 | Panasonic Corporation | Method for charging battery |
DE10056969A1 (de) | 2000-11-17 | 2002-05-23 | Bosch Gmbh Robert | Verfahren und Anordnung zur Bestimmung des Ladezustandes einer Batterie |
US6359419B1 (en) | 2000-12-27 | 2002-03-19 | General Motors Corporation | Quasi-adaptive method for determining a battery's state of charge |
US6407532B1 (en) * | 2000-12-29 | 2002-06-18 | Nokia Mobile Phones, Ltd. | Method and apparatus for measuring battery charge and discharge current |
JP2002228730A (ja) | 2001-02-06 | 2002-08-14 | Shikoku Electric Power Co Inc | 二次電池の残存電力量の推定装置 |
DE10106508A1 (de) | 2001-02-13 | 2002-08-29 | Bosch Gmbh Robert | Verfahren und Anordnung zur Bestimmung der Leistungsfähigkeit einer Batterie |
DE10106505A1 (de) | 2001-02-13 | 2002-08-29 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Zustandserfassung von technischen Systemen wie Energiespeicher |
JP4292721B2 (ja) | 2001-02-14 | 2009-07-08 | 株式会社日本自動車部品総合研究所 | ハイブリッド車の電池状態制御方法 |
DE10207659B4 (de) * | 2001-02-23 | 2006-09-28 | Yazaki Corp. | Verfahren und Vorrichtung zum Schätzen einer Klemmenspannung einer Batterie, Verfahren und Vorrichtung zum Berechnen einer Leerlaufspannung einer Batterie sowie Verfahren und Vorrichtung zum Berechnen der Batteriekapazität |
US6441586B1 (en) * | 2001-03-23 | 2002-08-27 | General Motors Corporation | State of charge prediction method and apparatus for a battery |
JP4193371B2 (ja) | 2001-04-25 | 2008-12-10 | トヨタ自動車株式会社 | バッテリ容量制御装置 |
CN1387279A (zh) * | 2001-05-21 | 2002-12-25 | 孕龙科技股份有限公司 | 充放电能量显示装置与测量方法 |
JP4523738B2 (ja) | 2001-06-07 | 2010-08-11 | パナソニック株式会社 | 二次電池の残存容量制御方法および装置 |
JP3934365B2 (ja) | 2001-06-20 | 2007-06-20 | 松下電器産業株式会社 | バッテリの充放電制御方法 |
EP1417503B1 (de) * | 2001-06-29 | 2010-02-17 | Robert Bosch Gmbh | Verfahren zur ermittlung des ladezustands und/oder der leistungsfähigkeit eines ladungsspeichers |
US20030015993A1 (en) | 2001-07-17 | 2003-01-23 | Sudhan Misra | Battery charging system with electronic logbook |
US7072871B1 (en) | 2001-08-22 | 2006-07-04 | Cadex Electronics Inc. | Fuzzy logic method and apparatus for battery state of health determination |
JP3672248B2 (ja) * | 2001-09-19 | 2005-07-20 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 電気機器、コンピュータ装置、インテリジェント電池、電池診断方法、電池状態表示方法、およびプログラム |
US6727708B1 (en) | 2001-12-06 | 2004-04-27 | Johnson Controls Technology Company | Battery monitoring system |
US6534954B1 (en) * | 2002-01-10 | 2003-03-18 | Compact Power Inc. | Method and apparatus for a battery state of charge estimator |
JP3867581B2 (ja) | 2002-01-17 | 2007-01-10 | 松下電器産業株式会社 | 組電池システム |
US20030184307A1 (en) | 2002-02-19 | 2003-10-02 | Kozlowski James D. | Model-based predictive diagnostic tool for primary and secondary batteries |
JP4038788B2 (ja) | 2002-02-22 | 2008-01-30 | アクソンデータマシン株式会社 | バッテリの残存容量判定方法と、その装置 |
WO2003079116A1 (en) | 2002-03-19 | 2003-09-25 | Mapper Lithography Ip B.V. | Direct write lithography system |
JP2004031014A (ja) * | 2002-06-24 | 2004-01-29 | Nissan Motor Co Ltd | 並列接続電池を含む組電池の最大充放電電力演算方法および装置 |
KR100471233B1 (ko) * | 2002-06-26 | 2005-03-10 | 현대자동차주식회사 | 하이브리드 전기자동차 배터리의 최대 충전 및 방전전류값 생성방법 |
DE10231700B4 (de) | 2002-07-13 | 2006-06-14 | Vb Autobatterie Gmbh & Co. Kgaa | Verfahren zur Ermittlung des Alterungszustandes einer Speicherbatterie hinsichtlich der entnehmbaren Ladungsmenge und Überwachungseinrichtung |
JP3539424B2 (ja) | 2002-07-24 | 2004-07-07 | 日産自動車株式会社 | 電気自動車の制御装置 |
DE10240329B4 (de) | 2002-08-31 | 2009-09-24 | Vb Autobatterie Gmbh & Co. Kgaa | Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie |
DE10252760B4 (de) | 2002-11-13 | 2009-07-02 | Vb Autobatterie Gmbh & Co. Kgaa | Verfahren zur Vorhersage des Innenwiderstands einer Speicherbatterie und Überwachungseinrichtung für Speicherbatterien |
US6892148B2 (en) | 2002-12-29 | 2005-05-10 | Texas Instruments Incorporated | Circuit and method for measurement of battery capacity fade |
US6832171B2 (en) | 2002-12-29 | 2004-12-14 | Texas Instruments Incorporated | Circuit and method for determining battery impedance increase with aging |
JP4473823B2 (ja) | 2003-01-30 | 2010-06-02 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 電気エネルギー蓄積器のための複数の部分モデルを用いた状態量およびパラメータの推定装置 |
US7317300B2 (en) | 2003-06-23 | 2008-01-08 | Denso Corporation | Automotive battery state monitor apparatus |
US7199557B2 (en) | 2003-07-01 | 2007-04-03 | Eaton Power Quality Company | Apparatus, methods and computer program products for estimation of battery reserve life using adaptively modified state of health indicator-based reserve life models |
DE10335930B4 (de) | 2003-08-06 | 2007-08-16 | Vb Autobatterie Gmbh & Co. Kgaa | Verfahren zur Bestimmung des Zustands einer elektrochemischen Speicherbatterie |
JP4045340B2 (ja) * | 2003-08-13 | 2008-02-13 | 現代自動車株式会社 | バッテリー有効パワー算出方法及び算出システム |
US6927554B2 (en) * | 2003-08-28 | 2005-08-09 | General Motors Corporation | Simple optimal estimator for PbA state of charge |
US7109685B2 (en) * | 2003-09-17 | 2006-09-19 | General Motors Corporation | Method for estimating states and parameters of an electrochemical cell |
TWI251951B (en) | 2003-09-19 | 2006-03-21 | Lg Chemical Ltd | Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved |
US7039534B1 (en) | 2003-11-03 | 2006-05-02 | Ryno Ronald A | Charging monitoring systems |
US7321220B2 (en) | 2003-11-20 | 2008-01-22 | Lg Chem, Ltd. | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
US20050127874A1 (en) | 2003-12-12 | 2005-06-16 | Myoungho Lim | Method and apparatus for multiple battery cell management |
JP4331210B2 (ja) | 2003-12-18 | 2009-09-16 | エルジー・ケム・リミテッド | 神経網を用いたバッテリ残存量推定装置及び方法 |
JP4583765B2 (ja) | 2004-01-14 | 2010-11-17 | 富士重工業株式会社 | 蓄電デバイスの残存容量演算装置 |
DE102004005478B4 (de) | 2004-02-04 | 2010-01-21 | Vb Autobatterie Gmbh | Verfahren zur Bestimmung von Kenngrößen für elektrische Zustände einer Speicherbatterie und Überwachungseinrichtung hierzu |
US7126312B2 (en) | 2004-07-28 | 2006-10-24 | Enerdel, Inc. | Method and apparatus for balancing multi-cell lithium battery systems |
US7233128B2 (en) | 2004-07-30 | 2007-06-19 | Ford Global Technologies, Llc | Calculation of state of charge offset using a closed integral method |
US8103485B2 (en) | 2004-11-11 | 2012-01-24 | Lg Chem, Ltd. | State and parameter estimation for an electrochemical cell |
US7525285B2 (en) | 2004-11-11 | 2009-04-28 | Lg Chem, Ltd. | Method and system for cell equalization using state of charge |
US7315789B2 (en) | 2004-11-23 | 2008-01-01 | Lg Chem, Ltd. | Method and system for battery parameter estimation |
US7593821B2 (en) | 2004-11-23 | 2009-09-22 | Lg Chem, Ltd. | Method and system for joint battery state and parameter estimation |
US7424663B2 (en) | 2005-01-19 | 2008-09-09 | Intel Corporation | Lowering voltage for cache memory operation |
US7197487B2 (en) | 2005-03-16 | 2007-03-27 | Lg Chem, Ltd. | Apparatus and method for estimating battery state of charge |
US7589532B2 (en) | 2005-08-23 | 2009-09-15 | Lg Chem, Ltd. | System and method for estimating a state vector associated with a battery |
US7446504B2 (en) | 2005-11-10 | 2008-11-04 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery state vector |
US7723957B2 (en) | 2005-11-30 | 2010-05-25 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery parameter vector |
US7400115B2 (en) | 2006-02-09 | 2008-07-15 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated combined battery state-parameter vector |
US7521895B2 (en) | 2006-03-02 | 2009-04-21 | Lg Chem, Ltd. | System and method for determining both an estimated battery state vector and an estimated battery parameter vector |
-
2004
- 2004-03-25 US US10/811,088 patent/US7321220B2/en active Active
- 2004-11-18 TW TW093135430A patent/TWI281298B/zh active
- 2004-11-19 CA CA002547012A patent/CA2547012C/en active Active
- 2004-11-19 EP EP04800108.5A patent/EP1692754B1/en active Active
- 2004-11-19 KR KR1020067009587A patent/KR100894021B1/ko active IP Right Grant
- 2004-11-19 JP JP2006541030A patent/JP4722857B2/ja active Active
- 2004-11-19 BR BRPI0416652A patent/BRPI0416652B8/pt active IP Right Grant
- 2004-11-19 CN CN2004800344009A patent/CN1883097B/zh active Active
- 2004-11-19 WO PCT/KR2004/003001 patent/WO2005050810A1/en active Application Filing
- 2004-11-19 RU RU2006121548/09A patent/RU2336618C2/ru active
-
2007
- 2007-12-21 US US11/963,307 patent/US7656122B2/en not_active Expired - Lifetime
-
2009
- 2009-12-30 US US12/649,844 patent/US7969120B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644212A (en) * | 1994-11-11 | 1997-07-01 | Fuji Jukogyo Kabushiki Kaisha | Traction battery management system |
JPH09312901A (ja) * | 1996-05-22 | 1997-12-02 | Nissan Motor Co Ltd | 電気自動車の電力制御装置 |
JPH113505A (ja) * | 1997-06-11 | 1999-01-06 | Sony Corp | 磁気ヘッド及びその製造方法 |
JPH1123676A (ja) * | 1997-06-30 | 1999-01-29 | Sony Corp | 二次電池の充電特性測定方法及び装置 |
JPH1138105A (ja) * | 1997-07-15 | 1999-02-12 | Toyota Autom Loom Works Ltd | 電池の残存容量算出方法および残存容量不足警報出力方法 |
US6232744B1 (en) * | 1999-02-24 | 2001-05-15 | Denso Corporation | Method of controlling battery condition of self-generation electric vehicle |
US20020053490A1 (en) | 2000-11-09 | 2002-05-09 | Hirokazu Banno | Apparatus for controlling elevator |
JP2003257501A (ja) * | 2002-02-27 | 2003-09-12 | Suzuki Motor Corp | 二次電池の残存容量計 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1692754A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009042193A1 (de) | 2009-09-18 | 2011-03-31 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Schätzung des Innenwiderstands- bzw. Impedanzwerts einer Batterie |
DE102009042192A1 (de) | 2009-09-18 | 2011-03-31 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Schätzung des Innenwiderstands- bzw. Impedanzwerts einer Batterie |
DE102009042192B4 (de) | 2009-09-18 | 2023-12-14 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Schätzung des Innenwiderstands- bzw. Impedanzwerts einer Batterie |
WO2011045206A2 (de) | 2009-10-14 | 2011-04-21 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur bestimmung und/oder vorhersage der hochstrombelastbarkeit einer batterie |
DE102009049320A1 (de) | 2009-10-14 | 2011-04-21 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Bestimmung und/oder Vorhersage der Hochstrombelastbarkeit einer Batterie |
DE102013000572A1 (de) | 2013-01-15 | 2014-07-17 | Rheinisch-Westfälische Technische Hochschule Aachen | Verfahren und System zur Bestimmung der Modellparameter eines elektrochemischen Energiespeichers |
US9555714B2 (en) | 2013-06-11 | 2017-01-31 | Toyota Jidosha Kabushiki Kaisha | Power supply system of electric-powered vehicle |
US11486935B2 (en) | 2018-01-08 | 2022-11-01 | Robert Bosch Gmbh | Method and management system for controlling and monitoring a plurality of battery cells in a battery pack, and battery pack |
CN108549746A (zh) * | 2018-03-26 | 2018-09-18 | 浙江零跑科技有限公司 | 基于电芯电压的电池系统功率限制估算算法 |
CN108549746B (zh) * | 2018-03-26 | 2021-11-26 | 浙江零跑科技股份有限公司 | 基于电芯电压的电池系统功率限制估算方法 |
WO2021052776A1 (de) | 2019-09-20 | 2021-03-25 | Robert Bosch Gmbh | Verfahren zur ermittlung einer ersten spannungskennlinie einer ersten elektrischen energiespeichereinheit |
Also Published As
Publication number | Publication date |
---|---|
BRPI0416652A (pt) | 2007-01-16 |
US7656122B2 (en) | 2010-02-02 |
TW200531399A (en) | 2005-09-16 |
CA2547012A1 (en) | 2005-06-02 |
US7969120B2 (en) | 2011-06-28 |
RU2336618C2 (ru) | 2008-10-20 |
BRPI0416652B8 (pt) | 2023-01-17 |
CA2547012C (en) | 2009-06-02 |
US7321220B2 (en) | 2008-01-22 |
EP1692754A1 (en) | 2006-08-23 |
CN1883097B (zh) | 2011-11-16 |
BRPI0416652B1 (pt) | 2017-11-21 |
CN1883097A (zh) | 2006-12-20 |
US20050110498A1 (en) | 2005-05-26 |
TWI281298B (en) | 2007-05-11 |
KR100894021B1 (ko) | 2009-04-17 |
JP4722857B2 (ja) | 2011-07-13 |
US20100174500A1 (en) | 2010-07-08 |
RU2006121548A (ru) | 2008-01-20 |
EP1692754B1 (en) | 2018-01-10 |
KR20060107535A (ko) | 2006-10-13 |
JP2007517190A (ja) | 2007-06-28 |
US20080094035A1 (en) | 2008-04-24 |
EP1692754A4 (en) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1692754B1 (en) | Method for calculating power capability of battery packs using advanced cell model predictive techniques | |
Plett | High-performance battery-pack power estimation using a dynamic cell model | |
Farmann et al. | Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles | |
Zhang et al. | Joint state-of-charge and state-of-available-power estimation based on the online parameter identification of lithium-ion battery model | |
Kwak et al. | Parameter identification and SOC estimation of a battery under the hysteresis effect | |
Li et al. | A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique | |
Farmann et al. | A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles | |
Dong et al. | Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries | |
Roscher et al. | Reliable state estimation of multicell lithium-ion battery systems | |
Xu et al. | Hierarchical estimation model of state-of-charge and state-of-health for power batteries considering current rate | |
EP1989563B1 (en) | System and method for determining both an estimated battery state vector and an estimated battery parameter vector | |
Plett | Efficient battery pack state estimation using bar-delta filtering | |
WO2006052043A1 (en) | State and parameter estimation for an electrochemical cell | |
WO2006057468A1 (en) | Method and system for battery state and parameter estimation | |
Li et al. | A new parameter estimation algorithm for an electrical analogue battery model | |
Moulik et al. | A battery modeling technique based on fusion of hybrid and adaptive algorithms for real-time applications in pure evs | |
Biswas et al. | Simultaneous state and parameter estimation of li-ion battery with one state hysteresis model using augmented unscented kalman filter | |
CA2588334C (en) | Method and system for joint battery state and parameter estimation | |
Aung et al. | State-of-charge estimation using particle swarm optimization with inverse barrier constraint in a nanosatellite | |
Plett | Battery management system algorithms for HEV battery state-of-charge and state-of-health estimation | |
Santos et al. | Lead acid battery SoC estimation based on extended Kalman Filter method considering different temperature conditions | |
Naik et al. | State of Charge Estimation of Lithium-ion Batteries for Electric Vehicle. | |
Rahighi et al. | Developing a battery monitoring system software in matlab simulink environment using kalman filter | |
CN113466724B (zh) | 确定电池等效电路模型的参数的方法、装置、存储介质及电子设备 | |
Chen et al. | Improving the accuracy of voltage estimation in the low charge state range at low temperature: An equivalent circuit model considering the influence of temperature on solid phase diffusion process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480034400.9 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1238/KOLNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067009587 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006541030 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2547012 Country of ref document: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004800108 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006121548 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004800108 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067009587 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: PI0416652 Country of ref document: BR |