WO2001003867A1 - Verfahren und einrichtung zum herstellen eines stranges aus metall - Google Patents
Verfahren und einrichtung zum herstellen eines stranges aus metall Download PDFInfo
- Publication number
- WO2001003867A1 WO2001003867A1 PCT/DE2000/002117 DE0002117W WO0103867A1 WO 2001003867 A1 WO2001003867 A1 WO 2001003867A1 DE 0002117 W DE0002117 W DE 0002117W WO 0103867 A1 WO0103867 A1 WO 0103867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strand
- reduction
- solidification
- liquid core
- cooling
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000002184 metal Substances 0.000 title claims abstract description 6
- 238000007711 solidification Methods 0.000 claims abstract description 67
- 230000008023 solidification Effects 0.000 claims abstract description 67
- 238000001816 cooling Methods 0.000 claims abstract description 51
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 238000009434 installation Methods 0.000 claims abstract description 5
- 230000009467 reduction Effects 0.000 claims description 62
- 239000002826 coolant Substances 0.000 claims description 14
- 238000009749 continuous casting Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000005266 casting Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 230000006978 adaptation Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/1206—Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
- B21B1/463—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/128—Accessories for subsequent treating or working cast stock in situ for removing
- B22D11/1282—Vertical casting and curving the cast stock to the horizontal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/22—Controlling or regulating processes or operations for cooling cast stock or mould
- B22D11/225—Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2201/00—Special rolling modes
- B21B2201/14—Soft reduction
Definitions
- the invention relates to methods and a device for producing a strand of metal by means of a continuous casting plant, which has at least one cow device for cooling the strand, the cow device being assigned at least one reduction framework for reducing the thickness of the strand, the strand being a solidified shell during the thickness reduction and has a liquid core.
- the strand For the production of strands, it is known to associate or assign a reduction framework to a continuous casting plant. A particularly large reduction in thickness is achieved if the strand has a still liquid core when it runs in, the reduction framework. In this process, which is known as so-called soft reduction, it is important that the liquid core is large enough to ensure the necessary reduction in the thickness of the strand, but also not so large that it leads to strand breakthrough and leakage of liquid Metal is coming. To achieve the necessary dimension of the liquid core when the reduction framework is reached, the strand is cooled by means of a cooling device, the necessary cooling being set by an operator after the operator has estimated the dimension of the liquid core.
- the object of the invention is to provide a method and a device for carrying out the method, which permits a soft reduction which is improved compared to the prior art, in particular also with varying strand speed.
- the object is achieved according to the invention by a method according to claim 1 or a device according to claim 10.
- the cooling device is followed by at least one reduction frame for reducing the thickness of the strand, the strand showing a solidified shell and a liquid core in the thickness reduction, and wherein the cooling by means of a temperature and solidification model is set in such a way, in particular automatically, that the
- the solidification limit between the solidified shell and the liquid core when the strand enters the reduction framework corresponds to a predetermined target solidification limit between the solidified shell and the liquid core.
- a particularly good soft reduction is achieved in this way.
- reduction stands in the sense of the invention can be complex roll stands by means of which a certain geometry is rolled into the strand.
- the temperature and solidification model can be, for example, an analytical model, a neural network or a combination of an analytical model and a neural network.
- the temperature and solidification model advantageously relates the cooling of the strand and the solidification limit between the solidified shell and the liquid core.
- Such an embodiment of the invention is particularly advantageous since the temperature and solidification model depicts the solidification limit between the solidified shell and the liquid core as a function of the cooling quantity, the cause-effect relationship between cooling and the solidification limit between the solidified shell and the liquid core ,
- the solidification limit between the solidified shell and the liquid core is dependent on the cooling of the strand, in particular in real time and continuously, and the necessary cooling of the strand is determined iteratively depending on the predetermined set solidification limit between the solidified shell and the liquid core, iterating as often until the deviation of the solidification limit determined with the temperature and solidification model between of the solidified shell and the liquid core of the predetermined target solidification limit between the solidified shell and the liquid core is smaller than a predetermined tolerance value.
- the variables strand geometry, strand shell thickness, time, strand material, coolant pressure or volume and coolant temperature are used to determine the necessary cooling of the strand depending on the solidification limit between the solidified shell and the liquid core.
- the use of these sizes is particularly suitable for achieving particularly precise cooling of the strand.
- each reduction device is assigned a set solidification limit between the solidified shell and the liquid core of the strand.
- the effect of the thickness reduction by the reduction framework in particular the position, is shown in the temperature and solidification model the boundary between the solidified shell and the liquid core is also modeled.
- the reduction in thickness is modeled by the reduction framework by at least one of the large reduction force and degree of reduction.
- At least one of the large reduction force and degree of reduction in the reduction framework is measured and used to adapt the temperature and solidification model.
- the quantities reduction force and degree of reduction in the reduction framework are measured and used to adapt the temperature and solidification model.
- FIG. 1 shows a continuous casting installation
- FIG. 2 shows a flowchart for iteratively determining a target cooling of the strand using a temperature and solidification model
- FIG. 3 shows a flowchart for iteratively determining an adaptation coefficient.
- Reference numeral 1 designates the cast strand which has a solidified shell 21 within a solidification limit 22 and a liquid core 2.
- the strand is moved with drive or guide rollers 4 and cooled on its way through cow devices 5. These are advantageously designed as water spray devices.
- cow devices 5 are divided into cooling segments. This division is not necessary in the new and inventive method, but can be taken into account.
- Both the drive rollers 4 and the cow devices 5 are connected in terms of data technology to a computing device. In the present exemplary embodiment, both are technically connected to one and the same automation device 7.
- the automation device 7 optionally also has a terminal, not shown, and a keyboard, not shown.
- the automation device 7 is connected to a superordinate computing system 8.
- the material required for continuous casting, in this case liquid steel, is fed via a feed device 20.
- the manipulated variables for the cow devices 5 are calculated by means of a temperature and solidification model, ie a thermal model of the strand, which is implemented on the superordinate computer system 8 in the exemplary embodiment.
- Reference numerals 9, 10 and 11 designate reduction frameworks assigned to the cooling device 5. In an advantageous embodiment of the invention, these are connected to the programmable logic controller 7 in terms of data technology, the rolling force and the degree of reduction, for example in the form of the roll gap, being transmitted to the automation device 7.
- three reduction frameworks 9, 10 and 11 are provided.
- so-called soft reduction is carried out only in the reduction frameworks 9 and 10.
- the strand to be reduced is not completely solidified, but has a liquid core 2 and a solidified shell 21 when it enters a reduction framework.
- only a soft reduction in the reduction frameworks 9 and 10 is provided for the strand 1.
- the cooling with the cow devices 5 is set by means of the automation device 7 in such a way that that the solidification limit 22 between the solidified shell 21 and the liquid core 2 of the strand 1 corresponds to a desired set solidification limit between the liquid core 2 and the solidified shell 21 when it enters the reduction frames 9 and 10.
- the reduction frame 9 is arranged in a particularly advantageous manner within the cooling section, i.e. cooling devices 5 are provided in front of and behind the reduction frame 9. It can also be provided in an advantageous manner to also provide 10 cooling devices behind the second reduction frame.
- the cooling device 9 is advantageously not arranged in the bend of the strand 1, as is indicated for reasons of clarity in FIG. 1, but is arranged in front of the bend of the strand or behind the bend of the strand 1.
- the solidification limits e x in the strand are determined in the temperature and solidification model 13 from a given cooling of the strand k ⁇ by means of the temperature and solidification model 13.
- This solidification limit e x is compared in a comparator 14 with the set solidification limit eo in the strand.
- the comparator 14 asks whether I ⁇ i-eol ⁇ ⁇ e max , where ⁇ e max is a predetermined tolerance value.
- the function block 12 determines a new proposal k for improved cooling of the strand.
- a value for the cooling is used as the initial value for the iteration, which has proven to be a tried and tested experience in the long-term average. If the magnitude of the difference between e ⁇ and e 0 is less than or equal to the tolerance value ⁇ e max , the target value k 0 for the cow the string is set equal to the value.
- the values e lf e 0 , ⁇ e max , k ⁇ r k 0 are not necessarily scalars, but column matrices with one or more values. For example, B.
- the iteration circuit shown in FIG. 2 takes place on the basis of genetic algorithms. This is particularly useful when k x or k 0 are column matrices with many elements.
- the temperature and solidification model 13 can be implemented both as a one-dimensional model and as a two-dimensional model.
- the thermal conduction equation is the basis of the temperature and solidification model, shown here for the two-dimensional case
- T is the temperature
- t is the time
- a is the temperature conductivity
- x and y are the two-dimensional spatial coordinates.
- the cross-section of the strand skin is divided into small rectangles of the size ⁇ x times ⁇ y and the temperature is calculated in small time steps ⁇ t.
- ⁇ is assumed to be constant and Tu is equated to the temperature of the cooling water in the mold.
- Tu is equated to the temperature of the coolant and ⁇ is, for example, according to
- V is the coolant volume in - ⁇ .
- D min at V can be specified differently for each point on the strand surface, which means that the model can also be used to describe nozzle characteristics.
- the model also calculates the course of the solidification limit from the course of the temperature distribution in the strand.
- the individual model parameters include:
- the solidification limits e x in the strand are determined in the temperature and solidification model 13 from a given cooling of the strand by means of the temperature and solidification model 13.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/030,340 US6880616B1 (en) | 1999-07-07 | 2000-06-29 | Method and device for making a metal strand |
DE50000941T DE50000941D1 (de) | 1999-07-07 | 2000-06-29 | Verfahren und einrichtung zum herstellen eines stranges aus metall |
AT00951251T ATE229392T1 (de) | 1999-07-07 | 2000-06-29 | Verfahren und einrichtung zum herstellen eines stranges aus metall |
EP00951251A EP1200216B1 (de) | 1999-07-07 | 2000-06-29 | Verfahren und einrichtung zum herstellen eines stranges aus metall |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19931331A DE19931331A1 (de) | 1999-07-07 | 1999-07-07 | Verfahren und Einrichtung zum Herstellen eines Stranges aus Metall |
DE19931331.8 | 1999-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001003867A1 true WO2001003867A1 (de) | 2001-01-18 |
Family
ID=7913934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2000/002117 WO2001003867A1 (de) | 1999-07-07 | 2000-06-29 | Verfahren und einrichtung zum herstellen eines stranges aus metall |
Country Status (6)
Country | Link |
---|---|
US (1) | US6880616B1 (de) |
EP (1) | EP1200216B1 (de) |
AT (1) | ATE229392T1 (de) |
DE (2) | DE19931331A1 (de) |
RU (1) | RU2245214C2 (de) |
WO (1) | WO2001003867A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2494834C1 (ru) * | 2012-06-27 | 2013-10-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Способ непрерывного литья заготовок |
EP3338914A1 (de) | 2016-12-22 | 2018-06-27 | Primetals Technologies Austria GmbH | Verfahren zur endlosen herstellung eines aufgewickelten warmbands in einer giess-walz-verbundanlage, verfahren zum anfahren einer giess-walz-verbundanlage und giess-walz-verbundanlage |
RU2747341C2 (ru) * | 2016-11-03 | 2021-05-04 | Прайметалз Текнолоджиз Аустриа ГмбХ | Комбинированная литейно-прокатная установка и способ бесконечного изготовления горячекатаной чистовой полосы |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002098587A2 (de) * | 2001-06-01 | 2002-12-12 | Sms Demag Aktiengesellschaft | Verfahren zum einstellen der dynamischen soft reduction an stranggiessmaschinen |
DE102004002783A1 (de) * | 2004-01-20 | 2005-08-04 | Sms Demag Ag | Verfahren und Einrichtung zum Bestimmen der Lage der Sumpfspitze im Gießstrang beim Stranggießen von flüssigen Metallen, insbesondere von flüssigen Stahlwerkstoffen |
DE102006056683A1 (de) * | 2006-01-11 | 2007-07-12 | Sms Demag Ag | Verfahren und Vorrichtung zum Stranggießen |
US20090084517A1 (en) * | 2007-05-07 | 2009-04-02 | Thomas Brian G | Cooling control system for continuous casting of metal |
DE102007058109A1 (de) * | 2007-12-03 | 2009-06-04 | Sms Demag Ag | Vorrichtung zur Steuerung oder Regelung einer Temperatur |
AT507590A1 (de) † | 2008-11-20 | 2010-06-15 | Siemens Vai Metals Tech Gmbh | Verfahren und stranggiessanlage zum herstellen von dicken brammen |
DE102009010034A1 (de) * | 2009-02-21 | 2010-09-23 | Actech Gmbh | Verfahren und Gießanlage zur gerichteten Erstarrung eines Gusskörpers aus Aluminium oder einer Aluminiumlegierung |
JP5476959B2 (ja) * | 2009-12-08 | 2014-04-23 | Jfeスチール株式会社 | 軽圧下連続鋳造方法 |
EP2543454B1 (de) * | 2011-07-08 | 2019-09-04 | Primetals Technologies Germany GmbH | Verfahren und Vorrichtung zur Herstellung von langen Stahlprodukten mit Stranggießen |
RU2564192C1 (ru) * | 2014-04-02 | 2015-09-27 | Открытое акционерное общество "Уральский завод тяжелого машиностроения" | Способ мягкого обжатия непрерывнолитой заготовки |
CN106232263B (zh) * | 2014-05-14 | 2019-01-18 | 新日铁住金株式会社 | 铸坯的连续铸造方法 |
DE102017213842A1 (de) * | 2017-08-08 | 2019-02-14 | Sms Group Gmbh | Verfahren und Anlage zum Stranggießen eines metallischen Produkts |
DE102018216529A1 (de) * | 2018-09-27 | 2020-04-02 | Sms Group Gmbh | Verfahren und Anlage zum Stranggießen eines metallischen Produkts |
CN109500371A (zh) * | 2018-12-20 | 2019-03-22 | 南京钢铁股份有限公司 | 一种板坯动态二冷和轻压下控制系统 |
CN110508765A (zh) * | 2019-09-09 | 2019-11-29 | 东北大学 | 一种有利于消除芯部缺陷的大方坯连铸制造方法 |
CN111360221B (zh) * | 2020-04-03 | 2021-05-25 | 中天钢铁集团有限公司 | 280mm×320mm断面高碳钢消除中心缩孔及控制中心偏析的方法 |
CN113695548B (zh) * | 2021-08-26 | 2023-01-31 | 宝武杰富意特殊钢有限公司 | 一种连铸小方坯的生产工艺及连铸小方坯 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4417808A1 (de) * | 1993-05-24 | 1994-12-01 | Voest Alpine Ind Anlagen | Verfahren zum Stranggießen eines Metallstranges |
DE19612420A1 (de) * | 1996-03-28 | 1997-10-02 | Siemens Ag | Verfahren und Einrichtung zur Steuerung der Kühlung eines Stranges in einer Stranggießanlage |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5422777B2 (de) | 1973-09-17 | 1979-08-09 | ||
DE3818077A1 (de) * | 1988-05-25 | 1989-11-30 | Mannesmann Ag | Verfahren zum kontinuierlichen giesswalzen |
US5488987A (en) * | 1991-10-31 | 1996-02-06 | Danieli & C. Officine Meccaniche Spa | Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant, and relative device |
RU2044598C1 (ru) * | 1992-10-19 | 1995-09-27 | Акционерное общество "Носта" | Способ производства непрерывнолитой заготовки |
DE19508476A1 (de) * | 1995-03-09 | 1996-09-12 | Siemens Ag | Leitsystem für eine Anlage der Grundstoff- oder der verarbeitenden Industrie o. ä. |
US5734329A (en) | 1995-07-13 | 1998-03-31 | Dell Usa L.P. | Method and apparatus for superimposing self-clocking multifunctional communications on a static digital signal line |
AT410875B (de) | 1996-01-10 | 2003-08-25 | Frequentis Nachrichtentechnik Gmbh | Verfahren und anlage zur übertragung von daten |
-
1999
- 1999-07-07 DE DE19931331A patent/DE19931331A1/de not_active Ceased
-
2000
- 2000-06-29 EP EP00951251A patent/EP1200216B1/de not_active Expired - Lifetime
- 2000-06-29 RU RU2002103039/02A patent/RU2245214C2/ru not_active IP Right Cessation
- 2000-06-29 DE DE50000941T patent/DE50000941D1/de not_active Expired - Lifetime
- 2000-06-29 US US10/030,340 patent/US6880616B1/en not_active Expired - Lifetime
- 2000-06-29 AT AT00951251T patent/ATE229392T1/de active
- 2000-06-29 WO PCT/DE2000/002117 patent/WO2001003867A1/de active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4417808A1 (de) * | 1993-05-24 | 1994-12-01 | Voest Alpine Ind Anlagen | Verfahren zum Stranggießen eines Metallstranges |
DE19612420A1 (de) * | 1996-03-28 | 1997-10-02 | Siemens Ag | Verfahren und Einrichtung zur Steuerung der Kühlung eines Stranges in einer Stranggießanlage |
Non-Patent Citations (1)
Title |
---|
HARSTE K ET AL: "NEUBAU EINER VERTIKALSTRANGGIESSANLAGE BEI DER AG DER DILLINGER HUETTENWERKE", STAHL UND EISEN,DE,VERLAG STAHLEISEN GMBH. DUSSELDORF, vol. 117, no. 11, 10 November 1997 (1997-11-10), pages 73 - 79,153, XP000737187, ISSN: 0340-4803 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2494834C1 (ru) * | 2012-06-27 | 2013-10-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Способ непрерывного литья заготовок |
RU2747341C2 (ru) * | 2016-11-03 | 2021-05-04 | Прайметалз Текнолоджиз Аустриа ГмбХ | Комбинированная литейно-прокатная установка и способ бесконечного изготовления горячекатаной чистовой полосы |
EP3338914A1 (de) | 2016-12-22 | 2018-06-27 | Primetals Technologies Austria GmbH | Verfahren zur endlosen herstellung eines aufgewickelten warmbands in einer giess-walz-verbundanlage, verfahren zum anfahren einer giess-walz-verbundanlage und giess-walz-verbundanlage |
WO2018115324A1 (de) | 2016-12-22 | 2018-06-28 | Primetals Technologies Austria GmbH | Verfahren zur endlosen herstellung eines aufgewickelten warmbands in einer giess-walz-verbundanlage, verfahren zum anfahren einer giess-walz-verbundanlage und giess-walz-verbundanlage |
Also Published As
Publication number | Publication date |
---|---|
DE50000941D1 (de) | 2003-01-23 |
ATE229392T1 (de) | 2002-12-15 |
EP1200216A1 (de) | 2002-05-02 |
DE19931331A1 (de) | 2001-01-18 |
US6880616B1 (en) | 2005-04-19 |
EP1200216B1 (de) | 2002-12-11 |
RU2245214C2 (ru) | 2005-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1200216B1 (de) | Verfahren und einrichtung zum herstellen eines stranges aus metall | |
DE19612420C2 (de) | Verfahren und Einrichtung zur Steuerung der Kühlung eines Stranges in einer Stranggießanlage | |
EP3184202B1 (de) | Verfahren zum stranggiessen eines metallstranges | |
DE19508476A1 (de) | Leitsystem für eine Anlage der Grundstoff- oder der verarbeitenden Industrie o. ä. | |
EP2346631B1 (de) | Verfahren und vorrichtung zur steuerung der erstarrung eines giessstranges in einer stranggiessanlage beim anfahren des giessprozesses | |
WO2012159866A1 (de) | Steuerverfahren für eine walzstrasse | |
AT408197B (de) | Verfahren zum stranggiessen eines metallstranges | |
EP3318342A1 (de) | Verfahren zum betreiben einer giesswalzverbundanlage | |
DE19618995C2 (de) | Verfahren und Einrichtung zur Beeinflussung relevanter Güteparameter, insbesondere des Profils oder der Planheit eines Walzbandes | |
EP3733323B1 (de) | Verfahren und stranggiessanlage zum giessen eines giessstrangs | |
EP0732979B1 (de) | Giess-walzanlage für stahlbänder und regelsystem dafür | |
WO2004080628A1 (de) | Giesswalzanlage zum erzeugen eines stahlbandes | |
EP1448330B1 (de) | Verfahren zum stranggiessen | |
EP3173166B1 (de) | Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs | |
WO2004048016A2 (de) | Verfahren und einrichtung zum stranggiessen von brammen-dünnbrammen-, vorbloco-, vorprofil-, knüppelsträngen und dgl. aus flüssigem metall, insbesondere aus stahlwerkstoff | |
DE102009048567B4 (de) | Verfahren und Anordnung zum Kühlen eines Gießstrangs in einer Stranggießanlage | |
WO1998049354A1 (de) | Verfahren und einrichtung zur kühlung von metallen in einem hüttenwerk | |
EP3831511A1 (de) | Verfahren und computersystem zur vorhersage einer schrumpfung eines gegossenen metallproduktes | |
DE69000282T2 (de) | Verfahren und vorrichtung zur herstellung von duennen metallprodukten mittels strangguss. | |
AT403351B (de) | Verfahren zum stranggiessen eines metallstranges | |
EP1100639B1 (de) | Verfahren und einrichtung zum giessen eines stranges aus flüssigem metall | |
WO2020177937A1 (de) | Verfahren zur herstellung eines metallischen bandes oder blechs | |
EP3944910A1 (de) | Verfahren zur herstellung eines giessstrangs in einer stranggiessanlage | |
EP3744440A1 (de) | Verfahren und vorrichtung zum stranggiessen | |
EP1046443A1 (de) | Verfahren und Vorrichtung zur Formung von Metallsträngen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): RU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2000951251 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: RU Ref document number: 2002 2002103039 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 2000951251 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10030340 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000951251 Country of ref document: EP |