WO1998053329A1 - Verfahren zum ausgleich von abweichungen eines raddrehzahlsensors - Google Patents
Verfahren zum ausgleich von abweichungen eines raddrehzahlsensors Download PDFInfo
- Publication number
- WO1998053329A1 WO1998053329A1 PCT/EP1998/002303 EP9802303W WO9853329A1 WO 1998053329 A1 WO1998053329 A1 WO 1998053329A1 EP 9802303 W EP9802303 W EP 9802303W WO 9853329 A1 WO9853329 A1 WO 9853329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel
- wheel speed
- correction factors
- determined
- sensor
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
- G01P3/489—Digital circuits therefor
Definitions
- the invention relates to a method for compensating for inaccuracies of a wheel speed sensor according to the preamble of claim 1, according to which signal-forming elements are arranged on a sensor wheel and then a certain angle is assigned to determine a wheel speed of a certain number of signal-forming elements and after which the wheel speed is determined by evaluating the time during which the wheel rotates through this angle, a correction factor which is included in the determination of the wheel speed being stored to compensate for deviations in the signal-forming elements and / or the positioning of the elements for each element, the Correction factors are updated while driving.
- this object is achieved in that the update is carried out in such a way that the directly measured, uncorrected wheel speed is compared with a reference value of the wheel speed determined on the basis of a computing model, the correction factor being updated as a function of this comparison.
- the correction factors are updated much faster during driving than in the known method. While in the known method an update is only possible if the defined driving conditions are present, the method according to the invention can be used to update the vehicle while the vehicle is in operation, regardless of which driving conditions are currently being recognized.
- the correction factors depend on the one hand on the manufacturing tolerances of the magnet wheels and the resulting deviations in the distances between the individual signals donating elements, which should ideally be aquidistant. These are therefore uneven tooth and tooth gap widths or, in the case of active sensors, uneven distances between the magnets of the magnet wheel of the sensor due to manufacturing tolerances.
- the correction factors can be influenced by deformations of the signaling elements, which can occur during driving, and also by the fact that metal chips can possibly settle in the spaces between the signaling elements. Corrosion on the signal-forming elements can also occur. These are therefore uneven tooth and tooth gap widths or pulse spacings of the pole wheel due to corrosion and / or contamination as well as mechanical damage. These last-mentioned influences cause gradual or sudden deviations in the wheel speed, which should be taken into account as soon as possible by updating the correction factors in order to have correct wheel speed values available again as quickly as possible when driving. This is important insofar as the wheel speed is the measured variable for various driving safety systems.
- the signal-forming elements can be part of both passive and active sensors.
- the correction factors can be updated by using the correction factors determined so far and the current values an averaging of the new correction factors can be obtained. This can be done, for example, using a recursive least squares procedure - advantageously with a forgetting factor. This forgetting factor ensures that "old" values are no longer taken into account after a certain time.
- a first set of correction factors is detected before the wheel speed sensor is installed in a vehicle and stored in a control unit.
- the absolute position of the wheel is determined on the basis of a comparison of the sequence of the stored correction factors with the sequence of currently determined correction factors.
- this position can in principle be determined anew each time a signaling element has been recognized. From the prior art it is e.g. Known to omit a tooth from a pole wheel and from the fact that when this point is passed through, the distance between two signals is twice as long as the distance between the other signals, to recognize an absolute position. In contrast, no marking is required in the method according to the invention.
- the correction factors are stored one after the other, with the determination of the wheel speed signal for each element, the correction factor is read from the table, the next correction factor at the beginning of the table being read out after the end of the table, and the elements being assigned to the correction factors on the basis of the determined absolute position.
- the absolute position can advantageously be determined on the basis of the sequence of the determined correction factors, and the correction factors can subsequently be read out continuously from the table. It is possible to adjust the absolute position in the meantime. This can be done cyclically, for example, or if it is determined that the correction factors read out deviate from the currently determined correction factors by more than a certain amount.
- the cross correlation of the determined correction factors with the stored correction factors is determined and the absolute position of the sensor wheel is determined from the value ⁇ , which corresponds to the maximum of the cross correlation.
- the determination of the wheel speed is based on a movement difference measurement between two objects moving relative to one another (mostly wheel and wheel carrier). The time that is required to cover a certain angle (determined by the teeth of the pulse wheel (pole wheel) for wheel speed sensors) is measured.
- the analog output signal U sens emitted by the sensor is usually first low-pass filtered in terms of signal processing (U senSff i lt ) and converted into a square-wave signal U senSfTTL with a trigger module.
- the TTL square-wave signal in the control unit of the control system is converted into a wheel turning speed by means of gate switching.
- this signal can be falsified by the irregularities of the magnet wheel mentioned at the beginning.
- the wheel speeds ⁇ rad can be corrected using appropriate correction factors and handed over to the subsequent units.
- a quick determination of the correction factors is also important because after the vehicle has come to a standstill or falls below the "sensor function speed", the absolute position can be determined in a very short time by means of the proposed correlation method.
- the currently measured wheel rotation speed is compared to a value of the wheel rotation speed determined on the basis of a computing model, the correction factors being updated as a function of deviations of the measured wheel rotation speed from the value of the wheel rotation speed determined on the basis of the computing model.
- the update can be, for example, a recursive parameter estimation method with a forgetting factor.
- the reference speed can be determined, for example, by a fuzzy approach or by a non-causal filter approach.
- the current magnet wheel position can advantageously also be determined without a reference pulse on the magnet wheel by means of correlation analysis.
- ⁇ i (j) Z / ⁇ z k , the summation taking place over all k from (ln / 2) to (l + nj / 2).
- Figure 1 shows the representation of five normalized Gaussian functions and Figure 2 shows the representation of straight lines, which were averaged over the membership functions.
- the number of averaged measured values can be influenced by a suitable choice of the standard deviation ⁇ . Since the regression lines only have local effects, the m k and b k of the different lines can be estimated independently of one another with only small interpolation errors from the measurement data. An estimate of two parameters (m k and b k ) is therefore required for each newly measured rotational speed value.
- the optimal parameters ⁇ j_ for the i-th tooth result from the following weighted least
- FIG. 3 shows the classification of the data for the estimation according to equation (2) and for the calculation according to equation (1) for a pole wheel with 48 teeth or pulses.
- the parameters of the tooth half a revolution back are estimated according to (2). From the data that is half a revolution older, the rotational speed signal for the tooth one revolution back is calculated according to (1).
- the estimation of the parameters requires data on the right and on the left, and on the other hand, the calculation of the rotational speed requires parameters that have already been estimated on the right and left.
- the calculation of the rotational speed requires parameters that have already been estimated on the right and left. For each pulse interval, exactly one parameter vector with two parameters is estimated according to (2) and the associated rotational speed is calculated for a tooth.
- An alternative way of calculating a compensation curve by the measured rotational speeds is acausal digital filtering of the signals.
- the fundamental difference to the approach described above is that only rotational speed values at the discretely measured times are available for filtering, while a compensation curve generates a continuous signal curve.
- the filter is advantageously acausal in order to avoid a systematic error due to a phase shift introduced by the filter to avoid.
- Acausal filtering can be achieved very easily, for example, by forward and subsequent backward filtering of the data using a causal filter. This method therefore also requires data on both sides of the tooth for which the smoothed rotational speed is to be calculated.
- the filter order and the filter time constant can be controlled via the parameters a ⁇ and b ⁇ .
- index j of the error ⁇ j or the correction factor VJ runs from one to the number of teeth per rotor rotation nj_.
- index i is increased by one with each measured value from the start of the journey.
- the correction factors are calculated using a recursive least squares method.
- a recursive least-squares method with a forgetting factor ⁇ of less than one is used in order to take into account the time-variant property of tooth-tooth gap errors due to corrosion, contamination or mechanical damage that occurs on the flywheel during driving.
- the correction factors J thus calculated for the wheel speed values are stored in a table and updated after each new estimate.
- the passive sensors no longer provide reliable information about the speed of rotation.
- the correction factors stored in a table can no longer be clearly assigned to the teeth / magnets of the sensor (e.g. even after the vehicle has come to a standstill).
- the method can advantageously be designed such that such an assignment is possible quickly.
- new correction factors are first determined for the first wheel rotation after a loss of allocation (for example as a result of the vehicle at a standstill). These are of poor quality compared to the stored correction factors because they only come from one measurement. Nevertheless, they come very close to the characteristics of the stored correction factors. If one now correlates the stored correction factors with the newly measured ones, the correlation function will have its maximum in the number of teeth n v by which the table and measurement are shifted relative to one another.
- Corrected speed information can thus be obtained from a speed value that has just been measured, the correction value being taken from a table in the memory of a sensor signal evaluation unit.
- the correction factors are each assigned to a tooth or a tooth / tooth gap sequence or a magnet or magnet area).
- the parameters can be set as a function of the wheel rotation speed in order to dampen disturbances of the angular speed signal above a certain frequency, regardless of the speed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Regulating Braking Force (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98922742A EP0983518A1 (de) | 1997-05-23 | 1998-04-18 | Verfahren zum ausgleich von abweichungen eines raddrehzahlsensors |
US09/424,310 US6446018B1 (en) | 1997-05-23 | 1998-04-18 | Method for compensating variations of a wheel speed sensor |
JP54985298A JP2002500760A (ja) | 1997-05-23 | 1998-04-18 | 車輪速度センサの偏差の補償方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19721488A DE19721488A1 (de) | 1997-05-23 | 1997-05-23 | Verfahren zum Ausgleich von Abweichungen eines Raddrehzahlsensors |
DE19721488.6 | 1997-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998053329A1 true WO1998053329A1 (de) | 1998-11-26 |
Family
ID=7830219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1998/002303 WO1998053329A1 (de) | 1997-05-23 | 1998-04-18 | Verfahren zum ausgleich von abweichungen eines raddrehzahlsensors |
Country Status (5)
Country | Link |
---|---|
US (1) | US6446018B1 (de) |
EP (1) | EP0983518A1 (de) |
JP (1) | JP2002500760A (de) |
DE (1) | DE19721488A1 (de) |
WO (1) | WO1998053329A1 (de) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999010747A1 (de) * | 1997-08-25 | 1999-03-04 | Mannesmann Vdo Ag | Verfahren und anordnung zur genauen bestimmung der geschwindigkeit eines umlaufenden bauteiles, insbesondere der geschwindigkeit eines fahrzeugrades |
ITMO20010110A1 (it) * | 2001-05-29 | 2002-11-29 | G S Srl Unipersonale | Procedimento per la calibrazione di un sensore per la misura dell'angolo di inclinazione di una ruota di un autoveicolo |
KR100774141B1 (ko) * | 2002-02-09 | 2007-11-08 | 주식회사 만도 | 요우레이트센서를 이용한 차체속도 보정방법 |
US7400993B2 (en) * | 2006-10-31 | 2008-07-15 | General Electric Company | Method and system for accuracy of speed and acceleration measurements on rotating machinery with a speed wheel |
DE102007026995C5 (de) | 2007-06-07 | 2017-03-30 | Senvion Gmbh | Drehzahlbestimmung |
DE102007030431A1 (de) | 2007-06-29 | 2009-01-02 | Continental Teves Ag & Co. Ohg | Verfahren zur Fahrtrichtungserkennung eines Kraftfahrzeugs |
DE102007030432B4 (de) | 2007-06-29 | 2023-03-16 | Continental Automotive Technologies GmbH | Verfahren zur Drehrichtungserkennung eines Encoders |
JP5060219B2 (ja) * | 2007-09-06 | 2012-10-31 | トヨタ自動車株式会社 | 車両制御装置 |
JP4938598B2 (ja) * | 2007-09-06 | 2012-05-23 | トヨタ自動車株式会社 | 車両制御装置 |
US8209081B2 (en) * | 2008-06-09 | 2012-06-26 | Ford Global Technologies | Minimizing wheel speed and acceleration errors |
DE102008041307A1 (de) * | 2008-08-18 | 2010-02-25 | Robert Bosch Gmbh | Verfahren zur dynamikangepassten Erfassung einer Winkelgeschwindigkeit mit einem digitalen Winkelgeber |
US9014944B2 (en) * | 2009-06-18 | 2015-04-21 | United Technologies Corporation | Turbine engine speed and vibration sensing system |
DE102012204141A1 (de) | 2012-03-16 | 2013-09-19 | Continental Automotive Gmbh | Vorrichtung und Verfahren zur Bestimmung einer absoluten Winkelposition eines Rades eines Fahrzeugs |
DE102017217804A1 (de) * | 2017-10-06 | 2019-04-11 | Bayerische Motoren Werke Aktiengesellschaft | Vorrichtung und verfahren zur ermittlung einer tachometerkennlinie eines fahrzeugs, system zur regelung der geschwindigkeit eines fahrzeugs sowie fahrzeug |
EP3643570B1 (de) | 2018-10-23 | 2023-12-13 | NXP USA, Inc. | Sensorschaltungskompensation für versorgungsspannungstransienten |
DE102022212296A1 (de) * | 2022-11-18 | 2024-05-23 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Steuern eines Fahrzeugs |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4133679A1 (de) * | 1991-10-11 | 1993-04-22 | Bosch Gmbh Robert | Verfahren zur adaption von mechanischen toleranzen eines geberrades |
EP0721107A2 (de) * | 1994-12-30 | 1996-07-10 | Lucas Industries Public Limited Company | Verfahren zur Bestimmung der Motordrehzahl einer Brennkraftmaschine |
US5541859A (en) * | 1993-03-23 | 1996-07-30 | Nippondenso Co., Ltd. | Speed detecting apparatus for rotating body |
DE19540674A1 (de) * | 1995-10-31 | 1997-05-07 | Siemens Ag | Adaptionsverfahren zur Korrektur von Toleranzen eines Geberrades |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3425472A1 (de) * | 1984-07-11 | 1986-01-23 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren und vorrichtung zur digitalen bestimmung der zahl der umdrehungen sich drehender koerper |
DE3446248A1 (de) * | 1984-12-19 | 1986-06-19 | Robert Bosch Gmbh, 7000 Stuttgart | Sensor zur messung physikalischer groessen und verfahren zum abgleich des sensors |
JP2554480B2 (ja) * | 1986-11-07 | 1996-11-13 | 株式会社 ゼクセル | 時間測定装置 |
JPS63285469A (ja) | 1987-05-19 | 1988-11-22 | Diesel Kiki Co Ltd | 回転角度一時間変換装置 |
JP2749409B2 (ja) * | 1987-11-17 | 1998-05-13 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 車輪センサにより検出された車両車輪回転速度の補正方法 |
DE3915879C5 (de) * | 1989-05-16 | 2005-07-14 | Continental Teves Ag & Co. Ohg | Verfahren und Schaltungsanordnung zur Auswertung der Radgeschwindigkeitssignale für eine Blockierschutz- oder Antriebsschlupfregelung |
US5020008A (en) * | 1989-06-05 | 1991-05-28 | Allied-Signal Inc. | Method of calibrating vehicle speed signals |
JP2543245B2 (ja) * | 1990-09-17 | 1996-10-16 | オ−クマ株式会社 | 位置検出誤差補正装置 |
US5297028A (en) * | 1991-08-27 | 1994-03-22 | Zexel Corporation Daihatsu-Nissan | Method and apparatus for correcting drift errors in an angular rate sensor |
GB9208190D0 (en) * | 1992-04-11 | 1992-05-27 | Elcometer Instr Ltd | Measuring instrument |
DE59205028D1 (de) * | 1992-08-14 | 1996-02-22 | Siemens Ag | Verfahren zur Erkennung und Korrektur von Fehlern bei der Zeitmessung an sich drehenden Wellen |
US5377127A (en) * | 1993-11-15 | 1994-12-27 | Ford Motor Company | Software calibration of speed sensors |
US6142026A (en) * | 1994-06-06 | 2000-11-07 | Toyota Jidosha Kabushiki Kaisha | Wheel information estimating apparatus |
GB9413677D0 (en) * | 1994-07-07 | 1994-08-24 | Lucas Ind Plc | Method of and apparatus for calibrating rotary position transducers |
CH690202A5 (de) * | 1994-12-27 | 2000-05-31 | Gegauf Fritz Ag | Messanordnung, Messfühlerr für dieselbe und Verfahren zur Herstellung der- bzw. desselben. |
GB9514008D0 (en) * | 1995-07-10 | 1995-09-06 | Secr Defence | Sensor fault detection system |
-
1997
- 1997-05-23 DE DE19721488A patent/DE19721488A1/de not_active Withdrawn
-
1998
- 1998-04-18 EP EP98922742A patent/EP0983518A1/de not_active Withdrawn
- 1998-04-18 US US09/424,310 patent/US6446018B1/en not_active Expired - Fee Related
- 1998-04-18 WO PCT/EP1998/002303 patent/WO1998053329A1/de not_active Application Discontinuation
- 1998-04-18 JP JP54985298A patent/JP2002500760A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4133679A1 (de) * | 1991-10-11 | 1993-04-22 | Bosch Gmbh Robert | Verfahren zur adaption von mechanischen toleranzen eines geberrades |
US5541859A (en) * | 1993-03-23 | 1996-07-30 | Nippondenso Co., Ltd. | Speed detecting apparatus for rotating body |
EP0721107A2 (de) * | 1994-12-30 | 1996-07-10 | Lucas Industries Public Limited Company | Verfahren zur Bestimmung der Motordrehzahl einer Brennkraftmaschine |
DE19540674A1 (de) * | 1995-10-31 | 1997-05-07 | Siemens Ag | Adaptionsverfahren zur Korrektur von Toleranzen eines Geberrades |
Also Published As
Publication number | Publication date |
---|---|
US6446018B1 (en) | 2002-09-03 |
DE19721488A1 (de) | 1998-11-26 |
JP2002500760A (ja) | 2002-01-08 |
EP0983518A1 (de) | 2000-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998053329A1 (de) | Verfahren zum ausgleich von abweichungen eines raddrehzahlsensors | |
DE102010010560B3 (de) | Verfahren zur Ermittlung des Feinpositionswertes eines bewegbaren Körpers | |
DE3305054C2 (de) | ||
EP1272858B1 (de) | Verfahren zur kompensation der drehunförmigkeit bei der drehzahlerfassung | |
EP0604466A1 (de) | Verfahren zur kompensation eines magnetischen störfeldes in einem fahrzeug. | |
WO1992008953A1 (de) | Verfahren zur bestimmung des standortes eines landfahrzeugs | |
EP0925485B1 (de) | Verfahren und vorrichtung zur überwachung von sensoren in einem fahrzeug | |
DE3036830C2 (de) | Verfahren zur Korrektur von Meßwerten bei einem digitalen elektrischen Längen- oder Winkelmeßsystem | |
WO2013092398A2 (de) | Verfahren und vorrichtung zum korrigieren eines messwertes eines drehwinkels eines rotors einer elektrischen maschine | |
DE3610642C2 (de) | ||
WO2012139805A1 (de) | Verfahren zur bestimmung einer anfangsposition einer zyklischen bewegung | |
DE3148654A1 (de) | Verfahren und vorrichtung zur geschwindigkeitserfassung | |
EP1596493B1 (de) | Verfahren zum Messen der Drehzahl eines EC-Motors | |
DE3817705C3 (de) | Verfahren zur näherungsweisen Bestimmung niedriger Drehzahlen | |
DE102016209366A1 (de) | Verfahren und Vorrichtung zur Kalibrierung eines Stellgebersystems | |
DE3425472A1 (de) | Verfahren und vorrichtung zur digitalen bestimmung der zahl der umdrehungen sich drehender koerper | |
DE2405921C3 (de) | Einrichtung zum fortlaufenden Bestimmen der Position eines Fahrzeugs | |
DE102009023580A1 (de) | Minimierung von Raddrehzahl- und Radbeschleunigungs-Fehlern | |
DE4130142A1 (de) | Einrichtung und verfahren zur bestimmung eines korrekturwinkels fuer einen lenkwinkelsensor eines fahrzeugs | |
WO1999001718A1 (de) | Verfahren und vorrichtung zur überwachung von sensoren in einem fahrzeug | |
DE3142152C2 (de) | Vorrichtung zum automatischen Abgleich der Kennlinie einer Ablenkeinheit | |
DE10213687B4 (de) | Sensor mit Schwellenregeleinrichtung | |
DE102004029543B4 (de) | Verfahren zur Positionsbestimmung eines Fahrzeugs durch Mehrkanal-Profil-Map-Matching | |
DE102010054532A1 (de) | Verfahren zur automatischen Bestimmung eines Geberradfehlers einer Brennkraftmaschine | |
EP0175950A1 (de) | Verfahren zur Ermittlung der Drehzahl eines sich drehenden Gegenstandes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1998922742 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1998 549852 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1998922742 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09424310 Country of ref document: US |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998922742 Country of ref document: EP |