[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1994002534A1 - Copolymeres d'oxiranne et de dioxolane, leur procede de preparation et materiaux a conduction ionique les contenant - Google Patents

Copolymeres d'oxiranne et de dioxolane, leur procede de preparation et materiaux a conduction ionique les contenant Download PDF

Info

Publication number
WO1994002534A1
WO1994002534A1 PCT/FR1993/000701 FR9300701W WO9402534A1 WO 1994002534 A1 WO1994002534 A1 WO 1994002534A1 FR 9300701 W FR9300701 W FR 9300701W WO 9402534 A1 WO9402534 A1 WO 9402534A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
copolymer
representing
chosen
copolymer according
Prior art date
Application number
PCT/FR1993/000701
Other languages
English (en)
Inventor
Jean-Yves Sanchez
Glaura Goulart Silva
Yves Choquette
Michel Armand
Jean-Pierre Petit
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Hydro-Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs), Hydro-Quebec filed Critical Centre National De La Recherche Scientifique (Cnrs)
Priority to EP93914825A priority Critical patent/EP0603370A1/fr
Priority to JP6504194A priority patent/JPH06511285A/ja
Priority to US08/193,134 priority patent/US5552510A/en
Priority to CA002118946A priority patent/CA2118946A1/fr
Publication of WO1994002534A1 publication Critical patent/WO1994002534A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G4/00Condensation polymers of aldehydes or ketones with polyalcohols; Addition polymers of heterocyclic oxygen compounds containing in the ring at least once the grouping —O—C—O—
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring

Definitions

  • Oxirane and dioxoiane copolymers their preparation process and ionically conductive materials containing them.
  • the present invention relates to copolymers, their preparation process and their use for the preparation of ionically conductive materials.
  • Polymer electrolytes obtained by disso ⁇ lution of a salt in a solvating polymer comprising hetero atoms are known.
  • Such electrolytes the solvent of which is a polyethylene oxide or an ethylene oxide copolymer, are described, for example, in EP-A-13199 (M. Armand, M. Duclot).
  • These polymer electrolytes have many applications, in particular in the field of electrochemical generators, light modulation systems (M. Armand et al, EP-87401555), sensors, for example for selective membranes or reference (A. Hammou et al, FR-86.09602).
  • Polyethylene oxide is a semi-crystalline polymer which forms with salts stoichiometric complexes.
  • the amorphous conductive phases of these complexes only exist above a eutectic temperature generally between 40 ° C and 65 "C depending on the nature of the complexed salts.
  • Good conductivities at ordinary temperature are only obtained with macromolecular systems with little or no crystallinity. Numerous studies have been carried out to improve the conduction properties of these materials. They have resulted, for example, in the formation of oxide-based copolymers.
  • ethylene M. Armand et al, FR-83.09886
  • Dioxoiane homopolymers are also known which are very crystalline and which have melting temperatures close to 55 "C.
  • the conductivity of the poly-dioxolane / salt complexes at temperatures below 25 ° C. is therefore poor.
  • it is difficult to obtain by cationic polymerization of dioxoiane high-mass polymers the mechanical properties of the electrolytes prepared from these homopolymers are therefore poor at temperatures above 80 ° C.
  • the purpose of the present invention is to provide materials with ion conduction comprising a solid polymer electrolyte and having both good conductivity and good mechanical strength.
  • the present invention relates to a family of crosslinkable copolymers having a low crystallinity.
  • the invention also relates to a process for the preparation of said copolymers.
  • the subject of the invention is materials with ionic conduction, the solvent of which consists essentially of the abovementioned copolymer.
  • a copolymer according to the invention consists of monomer units corresponding to the formula -CH 2 -0-CHR-CH 2 -0- (I) and monomer units corresponding to the formula -CH 2 -CHR'-0- ( II) in which:
  • - R represents a hydrogen atom, a linear or branched al yl radical containing from 1 to 8 carbon atoms or a CH 3 (-0-CH 2 -CH 2 ) n -0-CH 2 - radical, in which 1 ⁇ n ⁇ 10; - R 'represents an aliphatic radical having an unsaturation which can be polymerized by the radical route and which is inert under the cationic polymerization conditions.
  • radicals R, H and CH 3 are very particularly preferred.
  • the monomer units (I) and the monomer units (II) constituting a copolymer of the present invention are derived respectively from a dioxoiane and an oxirane.
  • the ratio p / (p + m) is between approximately 3% and approximately 30%, more particularly between approximately 5% and approximately 10%, p representing the number of monomer units (II) and m representing the number of monomer units (I) constituting a copolymer of the present invention.
  • the copolymer thus obtained has long blocks (40 to 60 monomer units) of polydioxolane and short blocks of oxirane. However, the overall distribution of the monomer units exhibits a statistical trend.
  • copolymers of the present invention can be obtained by cationic polymerization of oxirane
  • BF3 O2H5
  • C5H5COX 1 C6H5CH2 1 in which X 1 represents SbF 6 , PF 6 , AsF 6 , BF, SbF 6 or CF 3 SO 3 , SbFg being particularly preferred, or pCl- c 6 H 4 N 2 ⁇ 1 ' ⁇ l representing PF 6 or BF 4 .
  • the cationic polymerization can be carried out in bulk, the dioxoiane then serving simultaneously as solvent and comonomer.
  • the cationic polymerization can also be carried out in a concentrated solution of monomers in an aprotic solvent. Among these solvents, mention may be made of dichloromethane and nitromethane.
  • the addition of the oxirane can be carried out at once, several times discontinuously, or continuously throughout the duration of the polymerization. The last two modes of addition are preferred because the copolymers obtained give, after crosslinking, a higher rate of insolubles.
  • the copolymers according to the present invention in which the p / (p + m) ratio is between 3% and 30%, are particularly useful for the preparation of materials with ionic conduction.
  • the ion-conducting materials of the present invention essentially consist of an easily dissociable salt and a polymer obtained by crosslinking of a copolymer according to the present invention, preferably a copolymer in which the ratio p / (p + m) is between approximately 3% and approximately 30%, more particularly between approximately 5% and approximately 10%.
  • the salt introduced into the copolymer before crosslinking or in the crosslinked polymer is chosen from the salts usually used for solid materials with ionic conduction.
  • X representing an anion with delocalized electronic charge, for example Br ⁇ , ClO ⁇ -, AsF 6 ⁇ , R F S0 3 ⁇ , (R F S0 2 ) 2 N ⁇ , (R F S ⁇ 2 ) 3 C ⁇ , R F representing a perfluoroalkyl or perfluoroaryl group.
  • the salt can also be chosen from the salts corresponding to the formula (l / nM) + [(RpS0 2 ) 2CY] "in which Y represents an electron-attracting group chosen from -C ⁇ N and the groups RZ- in which Z represents a carbonyl group, a sulfonyl group or a phosphonyl group and R represents a monovalent organic group, M represents a metal having the valence n or an organic group which may exist in cationic form, Rp represents a perfluoroalkyl or perfluoroaryl group.
  • Such compounds can be prepared by reacting a compound (1 / nM) + [(RpS0 2 ) CH] "with a compound YX in the presence of a nucleotic aprotic base Nu, X representing a halogen or a pseudo-halogen.
  • a compound YX in the presence of a nucleotic aprotic base Nu, X representing a halogen or a pseudo-halogen.
  • the lithium salts are particularly preferred, more especially (CF 3 S0 2 ) 2 N ⁇ L i + and (CF3SO2) 3C ⁇ Li + . Mixtures of salts can be used.
  • the ionically conductive materials of the present invention may also contain additives usually used in ionically conductive materials such as plasticizers or stabilizers, depending on the final properties sought.
  • an ionically conductive material is obtained by dissolving the copolymer, the salt and the initiator in a common solvent.
  • the amount of initiator used is advantageously from 2 to 5% by weight relative to the copolymer.
  • the solvent is chosen from volatile solvents; by way of example of such a solvent, mention may be made of acetonitrile, tetrahydrofuran and acetone.
  • the viscous solution obtained is degassed, then spread on an appropriate support, for example a PTFE plate. After evaporation of the solvent, the film obtained is brought to a temperature between 70 ° C. and 120 ° C. depending on the initiator used, for 4 hours.
  • L 1 cross-linking initiator can be chosen by example among benzoyl peroxide, azobis isobutyronitrile (AIBN) or dicumylperoxide (Dicup). Benzoyl peroxide is particularly preferred.
  • the crosslinking of the copolymer in solution in a solvent similar to that described above is carried out first, in the absence of salt, and a membrane is produced in the same manner as above. is lying.
  • the salt is then introduced into the membrane as follows: a very concentrated solution of the salt in acetonitrile is produced, it is made to absorb by the membrane, then the solvent is evaporated.
  • the amount of salt introduced is determined by the difference between the initial weight of the membrane and its final weight.
  • the crosslinking of a copolymer of the present invention is carried out in solution in an appropriate solvent using a radical polymerization initiator, in the presence of a monomer carrying an ionic group and a group crosslinkable by radical route.
  • a monomer carrying an ionic group and a group crosslinkable by radical route can be chosen from those which correspond to the general formula (1) ACFX 2 -S0 2 Z 2 in which:
  • A represents one of the groups R 1 R 2 N-C0-, R 3 -0-CF 2 - or
  • - Z 2 represents an ionic group
  • - X 2 represents F, Cl, H or R F ;
  • radicals R 1 , R 2 and R 3 which are identical or different, are chosen from non-perfluorinated organic radicals comprising a function which can be polymerized by the radical route;
  • R F is chosen from perfluoroalkyl radicals and perfluoroaryl radicals.
  • the ionic group Z 2 is advantageously chosen from l / mM ⁇ -O] " , l / mM" * [- NS0 2 Q] " , l / mM ⁇ f-CH (S0Q)] ⁇ and l / mM m + [- C (S0 2 Q) 2 ] ⁇ , Q representing -R F or -CFX-A and M "representing an ion of a metal having the valence m, chosen from alkali metals, alkaline earth metals, transition metals and rare earths, or ammonium, amidinium or guanidinium ions.
  • the monomers (1) can be prepared by reaction of an acid fluoride sulfonyl acetic F-COCFX-S0 2 F with an amine R 1 R 2 NH in the presence of a base.
  • the monomers (1) can be obtained from the sulfonylacetic acid fluoride by a three-step process: reaction of the sulfonylacetic acid fluoride with a fluoride M 'F; bringing the perfluoroalkoxide obtained into contact with a reagent R 3 Y to obtain the compound R 3 0-CF-CFX-SO 2 F; reaction of this compound with the appropriate reagent to replace the fluorine of the SO 2 F group with an ionic group chosen from l / mM ⁇ CO] -, l / mM + [-NS0 2 R F ] ⁇ , 1 / mM "[- CH (S0 2 R F )] " or
  • the monomers (1) are obtained from the sulfonylacetic acid fluoride by a three-step process.
  • a first step the sulfonylacetic acid fluoride is treated with water, which causes hydrolysis followed by decarboxylation.
  • the compound obtained has on the ⁇ carbon a proton having an acidic character allowing the formation of a carbion which gives rise, during a second step, to a nucleophilic substitution reaction in the presence of a base.
  • the compound obtained is reacted with the appropriate reagent to replace the fluorine of the SO 2 F group with an ionic group.
  • Such monomers are described in FR92.02027 deposited on February 21, 1992, to which reference will be made for more details.
  • those which are monomers derived from perhalogenated sultones are particularly interesting.
  • the ion conduction materials obtained, consisting of a crosslinked polymer and a salt, can be used as solid polymer electrolyte in an electrochemical cell. They are particularly useful for electrochemical generators, rechargeable or not. They are also useful in other electrochemical systems such as electrochromic systems, light modulation systems, for the development of selective membranes or reference membranes in membrane sensors.
  • the present invention is illustrated by the following examples given by way of illustration but not limitation.
  • EXAMPLE 1 37 g of dioxoiane were dissolved in dichloromethane so as to obtain a solution of 5 moles / liter. To this solution, maintained under argon at -20 ° C, was added 1.12 g of benzoyl hexafluoroanti onate in solution in dichloromethane (0.034 mol / liter), then 4.312 g of 1,2-epoxy-hexene -5 in the form of a 0.44 mol / liter solution in dichloromethane, in 0.2 cm 3 fractions every 20 min. The polymerization is considered to be complete after two hours.
  • the copolymer obtained is purified by dissolution in tetrahydrofuran and precipitation in pentane.
  • the precipitate is filtered, then dried under vacuum at 40 ° C.
  • Example 2 4 g of the copolymer obtained in Example 1 are dissolved in acetonitrile, and 80 mg of benzoyl peroxide are added thereto. The solution is spread on a support, and degassed. After evaporation of the solvent, a membrane is obtained which is brought to 70 ° C. for 4 hours, then washed with Soxhlet at
  • the conductivity is 2.10 -6 S / cm at 5 ° C, 4.10 "5 S / cm at 25 ° C and reaches 10 ⁇ 3 S / cm at 70 ° C.
  • the range of electrochemical stability compared to lithium is 4.5 volts.
  • EXAMPLE 5 An electrochemical generator was developed comprising a negative lithium electrode, an ionically conductive material according to the invention as an electrolyte, and a composite positive electrode.
  • the negative electrode consisted of a layer of lithium having a thickness of 50 ⁇ m deposited on a polypropylene film of 8 ⁇ m metallized by a layer of 100 nm of nickel.
  • the electrolyte was obtained in the following manner. A copolymer analogous to that used in Example 4 was brought to 40 ° C., and then added thereto without using a solvent 3% by weight of benzoyl peroxide and 35% by weight of salt (CF3SO2) 2 NIj i le O / Li atomic ratio being 14. The mixture was spread on a 30 ⁇ m polypropylene film.
  • the positive electrode used was constituted by a composite material containing 45% by volume of lithium manganite of spinel structure LiMn 2 0 4 in grains of approximately 8 ⁇ , 5% by volume of acetylene black and 50% by volume d 'a material obtained by incorporating the salt (CF3S ⁇ 2) 2 NIj i in a copolymer similar to that used for the electrolyte but not crosslinked, in an amount of 35% by weight of salt relative to the copolymer.
  • the various constituents were mixed at 50 ° C., without the addition of solvent, and the mixture was then spread on a current collector similar to that of the negative electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

La présente invention concerne des copolymères, leur procédé de préparation et leur utilisation pour l'élaboration de matériaux à conduction ionique. Un copolymère selon l'invention est constitué par des unités monomères répondant à la formule -CH2-O-CHR-CH2-O- (I) et des unités monomères répondant à la formule -CH2-CHR'-O- (II) dans lesquelles: R représente un atome d'hydrogène, un radical alkyle linéaire ou ramifié comportant de 1 à 8 atomes de carbone ou un radical CH3(-O-CH2-CH2)n-O-CH2-, dans lequel 1 « n « 10; R' représente un radical aliphatique présentant une insaturation polymérisable par voie radicalaire et inerte dans les conditions de polymérisation cationique. Les copolymères peuvent être obtenus par polymérisation cationiques de l'oxiranne et du dioxolane appropriés. Application à l'élaboration de matériaux à conduction ionique.

Description

Copolymères d'oxiranne et de dioxoiane, leur procédé de préparation et matériaux à conduction ionique les contenant.
La présente invention concerne des copolymères, leur procédé de préparation et leur utilisation pour l'élaboration de matériaux à conduction ionique.
On connaît les électrolytes polymères obtenus par disso¬ lution d'un sel dans un polymère solvatant comportant des hétéroatomes. De tels électrolytes dont le solvant est un polyoxyde d'éthylène ou un copolymère d'oxyde d'éthylène, sont décrits par exemple dans EP-A-13199 (M. Armand, M. Duclot) . Ces électrolytes polymères ont de nombreuses appli¬ cations, en particulier dans le domaine des générateurs élec- trochimiques, des systèmes de modulation de la lumière (M. Armand et al, EP-87401555) , des capteurs, par exemple pour des membranes sélectives ou de référence (A. Hammou et al, FR-86.09602) .
Le polyoxyde d'éthylène est un polymère semi-cristallin qui forme avec les sels des complexes stoechiométriques. Les phases amorphes conductrices de ces complexes n'existent qu'au-dessus d'une température eutectique comprise en général entre 40°C et 65"C selon la nature des sels complexés. De bonnes conductivités à température ordinaire ne sont obtenues qu'avec des systèmes macromoléculaires ne présentant pas ou peu de cristallinité. De nombreux travaux ont été effectués pour l'amélioration des propriétés de conduction de ces maté¬ riaux. Ils ont abouti par exemple à la formation de copolymè¬ res à base d'oxyde d'éthylène (M. Armand et al, FR-83.09886) . La copolymérisation d'oxyde d'éthylène avec d'autres époxydes tels que l'oxyde de propylène ou le éthylglycidyl éther diminue sensiblement la cristallinité du matériau. Toutefois, 1 ' introduction statistique de défauts se traduit par une perte notable du pouvoir solvatant et dissociant de la séquence régulière polyoxyde d'éthylène. La préparation de copolymères ayant des masses macromoléculaires élevées, supé¬ rieures à 105, et de bonnes propriétés mécaniques, exige des réactifs de grande pureté et le contrôle reproductible du taux de co-monomèreε introduits est difficile du fait de la différence de réactivite entre l'oxyde d'éthylène et ses homologues.
Par polycondensation des oligooxyéthylène glycols (Mw ≈ 200 - 1000) avec le dichlorométhane, on a obtenu des polymè- res amorphes ayant une bonne conductivité, mais une tenue mécanique médiocre [C.V. Nicholas, D.J. Wilson, C. Booth & R.J.M. Gilles, Brit. Polym. J. 2.0 289 (1988)]. En outre, ces matériaux qui sont à base de polyoxyde d'éthylène, ne présen¬ tent pas de fonctions réactives et ne peuvent donc pas être réticulés.
On connaît également les homopolymères du dioxoiane qui sont très cristallins et qui présentent des températures de fusion proches de 55"C. La conductivité des complexes poly- dioxolane/sel aux températures inférieures à 25°C est donc médiocre. En outre, il est difficile d'obtenir par polyméri¬ sation cationique du dioxoiane des polymères de haute masse ; les propriétés mécaniques des électrolytes préparés à partir de ces homopolymères sont donc médiocres aux températures supérieures à 80°C. La présente invention a pour but de fournir des maté¬ riaux à conduction ionique comportant un électrolyte solide polymère et présentant à la fois une bonne conductivité et une bonne tenue mécanique.
A cet effet, la présente invention a pour objet une famille de copolymères reticulables ayant une faible cristal¬ linité.
L'invention a également pour objet un procédé de prépa¬ ration des dits copolymères.
Enfin, l'invention a pour objet des matériaux à conduc- tion ionique dont le solvant est constitué essentiellement par un copolymère précité.
Un copolymère selon 1 ' invention est constitué par des unités monomères répondant à la formule -CH2-0-CHR-CH2-0- (I) et des unités monomères répondant à la formule -CH2-CHR'-0- (II) dans lesquelles :
- R représente un atome d'hydrogène, un radical al yle linéaire ou ramifié comportant de 1 à 8 atomes de carbone ou un radical CH3(-0-CH2-CH2)n-0-CH2-, dans lequel 1 < n < 10; - R' représente un radical aliphatique présentant une insatu- ration polymérisable par voie radicalaire et inerte dans les conditions de polymérisation cationique.
Parmi les radicaux R, on préfère tout particulièrement H et CH3.
Le radical R' peut-être choisi parmi ceux qui comportent une insaturation éthylénique, tels que par exemple les radi¬ caux alkényles CH2=CH-(CH2)q- dans lesquels 1 < q < 6 et les radicaux CH3- (CH2)y-CH=CH-(CH2)X- dans lesquels 0 < x+y < 5 et 0 < x ; parmi ces radicaux, on peut citer à titre d'exemple le radical -CH2-CH2-CH=CH2. R' peut également être choisi parmi les radicaux allyloxyalkylène ayant de 4 à 8 atomes de carbone ; à titre d'exemple, on peut citer -CH2-0-CH2-CH=CH2. R' peut en outre être choisi parmi les radicaux acryloxyalky- lène et les radicaux méthacryloxyalkylène, parmi lesquels - CH2-0-CO-CH=CH et -CH2-0-CO-C(CH3)=CH2 sont particulièrement préférés.
Les unités monomères (I) et les unités monomères (II) constituant un copolymère de la présente invention sont déri- vées respectivement d'un dioxoiane et d'un oxiranne.
De préférence, lorsque les copolymères de la présente invention sont destinés à être utilisés comme solvant pour des matériaux à conduction ionique, le rapport p/ (p+m) est compris entre environ 3% et environ 30%, plus particulière- ment entre environ 5% et environ 10%, p représentant le nombre d'unités monomères (II) et m représentant le nombre d'unités monomères (I) constituant un copolymère de la présente invention. Le copolymère ainsi obtenu présente de longues séquences (40 à 60 unités monomères) de polydioxolane et de courtes séquences d'oxiranne. Toutefois, la répartition globale des unités monomères présente une tendance statisti¬ que.
Les copolymères de la présente invention peuvent être obtenus par polymérisation cationique de 1 'oxiranne
1 1 i 1 0-CH -CHR' et du dioxoiane CH -0-CHR-CH -0 appropriés. Différents amorceurs de polymérisation peuvent être utilisés, parmi lesquels on peut citer BF3(OC2H5)2, C5H5COX1 ou C6H5CH2 1 dans lesquels X1 représente SbF6, PF6, AsF6, BF , SbF6 ou CF3SO3, SbFg étant particulièrement préféré, ou pCl- c6H 4 N2γ1' γl représentant PF6 ou BF4.
La polymérisation cationique peut être effectuée en masse, le dioxoiane servant alors simultanément de solvant et de comonomère. La polymérisation cationique peut également être effectuée dans une solution concentrée de monomères dans un solvant aprotique. Parmi ces solvants, on peut citer le dichlorométhane et le nitrométhane.
Il est particulièrement avantageux d'ajouter 1 'amorceur d'abord au dioxoiane, et d'introduire ensuite seulement 1 'oxiranne afin d'éviter une polymérisation des seules molécules oxiranne qui sont plus réactives vis à vis de 1 'amorceur de polymérisation cationique que les molécules de dioxoiane. L'addition de l'oxiranne peut être effectuée en une seule fois, en plusieurs fois de manière discontinue, ou en continu pendant toute la durée de la polymérisation. Les deux derniers modes d'addition sont préférés car les copolymères obtenus donnent après réticulation un taux d'insolubles plus important. Les copolymères selon la présente invention, dans lesquels le rapport p/(p+m) est compris entre 3% et 30%, sont particulièrement utiles pour l'élaboration de matériaux à conduction ionique.
Les matériaux à conduction ionique de la présente inven- tion sont essentiellement constitués par un sel facilement dissociable et un polymère obtenu par réticulation d'un copo¬ lymère selon la présente invention, de préférence un copoly¬ mère dans lequel le rapport p/ (p+m) est compris entre environ 3% et environ 30%, plus particulièrement entre environ 5% et environ 10%. L'utilisation de cette catégorie particulière de copolymères permet de limiter le nombre de points de réticu¬ lation qui rigidifieraient le polymère obtenu par réticula¬ tion.
Le sel introduit dans le copolymère avant réticulation ou dans le polymère réticulé est choisi parmi les sels utili¬ sés habituellement pour les matériaux solides à conduction ionique. A titre d'exemple on peut citer les sels (l/nM)+X~, M représentant un cation métallique, un cation organique du type ammonium, amidiniu ou guanidinium; n étant la valence du cation M ; X représentant un anion à charge électronique délocalisée, par exemple Br~, ClO^-, AsF6~, RFS03 ~, (RFS02)2N~, (RF2)3C~, RF représentant un groupement perfluoroalkyle ou perfluoroaryle. Le sel peut également être choisi parmi les sels répon¬ dant à la formule (l/nM)+[ (RpS02) 2CY] " dans laquelle Y repré¬ sente un groupement attracteur d'électrons choisi parmi -CΞN et les groupements RZ- dans lesquels Z représente un groupe¬ ment carbonyle, un groupement sulfonyle ou un groupement phosphonyle et R représente un groupement organique monova¬ lent, M représente un métal ayant la valence n ou un groupe organique pouvant exister sous forme cationique, Rp repré¬ sente un groupement perfluoroalkyle ou perfluoroaryle. De tels composés peuvent être préparés par réaction d'un composé (l/nM)+[ (RpS02) CH] " avec un composé YX en présence d'une base aprotique nucléophile Nu, X représentant un halogène ou un pseudo-halogène. Ces sels et leur procédé de préparation sont décrits dans FR91.13789 déposé le 8.11.1991, auquel on se référera pour plus de détails. Les sels de lithium sont particulièrement préférés, plus spécialement (CF3S02)2N~Li+ et (CF3SO2) 3C~Li+. Des mélanges de sels peuvent être utilisés.
Bien entendu, les matériaux à conduction ionique de la présente invention peuvent contenir en outre des additifs utilisés habituellement dans les matériaux à conduction ioni¬ que tels que des plastifiants ou des stabilisants, suivant les propriétés finales recherchées.
Dans un premier mode de réalisation, un matériau à conduction ionique est obtenu par dissolution du copolymère, du sel et de 1 'amorceur dans un solvant commun. La quantité d'amorceur utilisée est avantageusement de 2 à 5% en poids par rapport au copolymère. Le solvant est choisi parmi les solvants volatils ; à titre d'exemple de tel solvant on peut citer 1 'acétonitrile, le tétrahydrofurane et l'acétone. La solution visqueuse obtenue est dégazée, puis épandue sur un support approprié, par exemple une plaque de PTFE. Après évaporation du solvant, le film obtenu est porté à une tempé¬ rature entre 70'C et 120°C selon 1 'amorceur utilisé, pendant 4 heures. L1amorceur de réticulation peut être choisi par exemple parmi le peroxyde de benzoyle, l'azobis isobutyroni- trile (AIBN) ou le dicumylperoxyde (Dicup) . Le peroxyde de benzoyle est particulièrement préféré.
Dans un autre mode de réalisation, on effectue d'abord la réticulation du copolymère en solution dans un solvant analogue à celui décrit ci-dessus, en l'absence de sel, et l'on élabore une membrane de la même manière que précédem¬ ment. Le sel est alors introduit dans la membrane de la manière suivante : on réalise une solution très concentrée du sel dans 1 'acétonitrile, on la fait absorber par la membrane, puis l'on évapore le solvant. La quantité de sel introduite est déterminée par différence entre le poids initial de la membrane et son poids final.
Dans un troisième mode de réalisation, la réticulation d'un copolymère de la présente invention est effectuée en solution dans un solvant approprié à l'aide d'un amorceur de polymérisation radicalaire, en présence d'un monomère portant un groupement ionique et un groupement réticulable par voie radicalaire. Un tel monomère peut être choisi parmi ceux qui répondent à la formule générale (1) ACFX2-S02Z2 dans laquelle :
- A représente l'un des groupes R1R2N-C0-, R3-0-CF2- ou
R3- ;
- Z2 représente un groupement ionique ; - X2 représente F, Cl, H ou RF ;
- les radicaux R1, R2 et R3 identiques ou différents, sont choisis parmi les radicaux organiques non perfluorés comportant une fonction polymérisable par voie radicalaire;
- RF est choisi parmi les radicaux perfluoroalkyle et les radicaux perfluoroaryle.
Le groupement ionique Z2 est avantageusement choisi parmi l/mM^-O]", l/mM"*[-NS02Q]", l/mM^f-CH(S0Q) ]~ et l/mMm+[-C(S02Q)2]~, Q représentant -RF ou -CFX-A et M" repré¬ sentant un ion d'un métal ayant la valence m, choisi parmi les métaux alcalins, les métaux alcalino-terreux, les métaux de transition et les terres rares, ou les ions ammonium, amidinium ou guanidinium.
Lorsque A représente un groupe R1R2N-CO-, les monomères (1) peuvent être préparés par réaction d'un fluorure d'acide sulfonyl acétique F-COCFX-S02F avec une aminé R1R2NH en présence d'une base.
Lorsque A représente un groupe R3-0-CF2~, les monomères (1) peuvent être obtenus à partir du fluorure d'acide sulfonyl- acétique par un procédé en trois étapes : réaction du fluorure d'acide sulfonylacétique avec un fluorure M'F ; mise en contact du perfluoroalcoxyde obtenu avec un réactif R3Y pour obtenir le composé R30-CF-CFX-SO2F ; réaction de ce composé avec le réactif approprié pour remplacer le fluor du groupe SO2F par un groupement ionique choisi parmi l/mM^C-O]-, l/mM+[-NS02RF]~, 1/mM" [-CH(S02RF) ]" ou
Figure imgf000009_0001
Lorsque le groupe A est R3-, les monomères (1) sont obtenus à partir du fluorure d'acide sulfonylacétique par un procédé en trois étapes. Au cours d'une première étape, le fluorure d'acide sulfonylacétique est traité par l'eau, ce qui provoque une hydrolyse suivie d'une décarboxylation. Le composé obtenu possède sur le carbone en α un proton présen¬ tant un caractère acide permettant la formation d'un carba- nion qui donne lieu, au cours d'une deuxième étape, à une réaction de substitution nucléophile en présence d'une base. Au cours d'une troisième étape, on fait réagir le composé obtenu avec le réactif approprié pour remplacer le fluor du groupe S02F par un groupement ionique. De tels monomères sont décrits dans FR92.02027 déposé le 21.02.1992, auquel on se reportera pour plus de détails. Parmi les monomères précités, ceux qui sont des monomères dérivés de sultones perhalogénées sont particulièrement inté¬ ressants. Les matériaux à conduction ionique obtenus, constitués par un polymère réticulé et un sel, sont utilisables comme électrolyte solide polymère dans une cellule électrochimique. Ils sont particulièrement utiles pour les générateurs élec- trochimiques rechargeables ou non. Ils sont également utiles dans d'autres systèmes électrochi iques tels que les systèmes électrochromes, les systèmes de modulation de lumière, pour l'élaboration de membranes sélectives ou membranes de réfé¬ rence dans les capteurs à membrane. La présente invention est illustrée par les exemples suivants donnés à titre illustratif mais non limitatif.
EXEMPLE 1 On a dissous 37 g de dioxoiane dans le dichlorométhane de manière à obtenir une solution à 5 moles/litre. A cette solution, maintenue sous argon à -20°C, on a ajouté 1,12 g d'hexafluoroanti onate de benzoyle en solution dans le dichlorométhane (0,034 mole/litre), puis 4,312 g d'époxy-1,2- hexène-5 sous forme d'une solution à 0,44 mole/litre dans le dichlorométhane, par fractions de 0,2 cm3 toutes les 20 min. La polymérisation est considérée comme terminée au bout de deux heures.
L'analyse par chromatographie en phase gazeuse montre la disparition totale de 1 'époxy-hexène et la consommation d'en- viron 90% du dioxoiane. Les proportions respectives des deux monomères dans le copolymère obtenu, déterminées par les spectres de résonance magnétique Hl enregistrés dans CD3CN, sont de 12% pour 1 'époxy-hexène et de 88% pour le dioxoiane.
Après désactivation des chaînes macromoléculaires par addition d'une solution d'ethanolate de sodium dans 1 'éthanol à une concentration 5 fois plus forte que celle de 1 'amor¬ ceur, le copolymère obtenu est purifié par dissolution dans le tétrahydrofurane et précipitation dans le pentane. Le précipité est filtré, puis séché sous vide à 40°C. Les masses molaires, exprimées en équivalent polysty¬ rène, ont été déterminées par analyse par chromatographie d'exclusion stérique effectuée dans le THF en utilisant un jeu de trois colonnes d'Ultrastyragel® (commercialisé par la société Micropore) ayant respectivement une porosité de 500, de 103 et de 104 Â. Elles sont : Mp = 68000 g/mole et Mn = 19000 g/mole.
L'analyse par calorimétrie différentielle à balayage (DSC) de l'échantillon montre la présence de deux pics de fusion à 29"C et 40°C. Après fusion et trempe de 1 'échan- tillon, le thermogramme ne montre plus de phase cristalline et la température de transition vitreuse mesurée est de 209 K. EXEMPLE 2
4 g du copolymère obtenu dans l'exemple 1 sont dissous dans 1 'acétonitrile, et on y ajoute 80 mg de peroxyde de benzoyle. La solution est épandue sur un support, et dégazée. Après évaporation du solvant, on obtient une membrane qui est portée à 70°C pendant 4 heures, puis lavée au Soxhlet à
1 'acétonitrile pendant 24 heures. On a ainsi constaté que 90% du copolymère a été effectivement réticulé. Le thermogramme
DSC ne révèle plus de pic de fusion et la température de transition vitreuse mesurée est de 217 K.
L'incorporation à cette membrane de bis(trifluoro- sulfonyl) imidure de lithium (avec un rapport de concen¬ tration oxygène/lithium de 14) permet d'obtenir un élec- trolyte polymère stable jusqu'à la température de 250°C, ainsi qu'en atteste l'analyse thermogravimétrique réalisée sous hélium, ledit électrolyte polymère étant parfaitement amorphe dans le domaine de température exploré (200 à 450 K) avec une température de transition vitreuse de 235 K.
La conductivité est de 2.10-6 S/cm à 5°C, de 4.10"5 S/cm à 25°C et atteint 10~3 S/cm à 70°C. Le domaine de stabilité électrochimique par rapport au lithium est de 4,5 volts.
EXEMPLE 3
On a dissous 1,5 g du copolymère obtenu dans l'exemple 1 dans 5 ml d'acétonitrile ; on a ajouté 0,205 g de (CF3S02)2NLi (O/Li = 30), et 0,06 g d'AIBN. Après dégazage, la solution visqueuse est coulée dans un anneau de verre posé sur une plaque de PTFE de 10 cm2. Après évaporation du solvant, la membrane est maintenue à 75°C pendant 5 heures pour achever la réticulation. Le film obtenu présente une conductivité de 6.10-6 S/cm à 5°C, de 9.10"5 S/cm à 30°C et de 2.10"3 S/cm à 65°C.
EXEMPLE 4 A une solution dans 1 'acétonitrile de 2 g d'un copoly¬ mère dioxolane/époxy-1, 2-hexène-5 comportant 7% en mole d'époxy hexène et ayant une masse Mn = 17000 g/mole, on a ajouté 1,17 g de monomère (CH2=CH-CH2) 2NCO-C(CF3) F-S03Li et 0,100 g de peroxyde de benzoyle. La solution visqueuse obte¬ nue a été coulée dans un anneau de verre posé sur une plaque de PTFE de 10 cm2. Après évaporation du solvant, la membrane est maintenue à 70°C pendant 4 heures pour achever la réticu¬ lation. Un film ayant une bonne tenue mécanique est obtenu. Après lavage du film à 1 'acétonitrile au Soxhlet, l'analyse des extraits de lavage montre que tout le sel introduit a été incorporé au polymère réticulé. L'analyse DCS montre l'ab¬ sence de phase cristalline. La température de transition vitreuse mesurée est de -61°C.
On a ainsi obtenu un électrolyte à anion greffé présen¬ tant une conductivité de 10~6 S/cm à 25°C, de 10~4 S/cm à 70°C.
EXEMPLE 5 On a élaboré un générateur électrochimique comportant une électrode négative de lithium, un matériau à conduction ionique selon l'invention comme électrolyte, et une électrode positive composite.
L'électrode négative était constituée par une couche de lithium ayant une épaisseur de 50 μm déposée sur un film de polypropylène de 8 μm métallisé par une couche de 100 nm de nickel. L'électrolyte a été obtenu de la manière suivante. Un copolymère analogue à celui utilisé dans l'exemple 4 a été porté à 40°C, puis on y a ajouté sans utiliser de solvant 3% en poids de peroxyde de benzoyle et 35% en poids de sel (CF3SO2) 2NIji le rapport atomique O/Li étant de 14. Le mélange a été épandu sur un film de polypropylène de 30 μm. Après chauffage pendant 4 heures à 80°C, un film d'une épais¬ seur de 55 μm a été décollé du support et placé sur l'élec¬ trode de lithium dans une boîte à gants sous atmosphère d'ar¬ gon. L'électrode positive utilisée était constituée par un matériau composite contenant 45% en volume de manganite de lithium de structure spinelle LiMn204 en grains d'environ 8 μ, 5% en volume de noir d'acétylène et 50% en volume d'un matériau obtenu par incorporation du sel (CF3Sθ2)2NIji dans un copolymère analogue à celui utilisé pour 1 'électrolyte mais non réticulé, à raison de 35% en poids de sel par rapport au copolymère. Les différents constituants .ont été mélangés à 50°C, sans addition de solvant, et le mélange a ensuite été épandu sur un collecteur du courant similaire à celui de 1 'électrode négative.
On a ainsi obtenu un générateur souple de 190 μm d'épaisseur ayant une f.e.m. de 3 volts et un débit de 400 μA/cm2 à 50°C pour une tension de 2,8 volts.

Claims

REVENDICATIONS
1. Copolymère constitué par des unités monomères répon¬ dant à la formule -(CH2-O-CHR-CH2-0) - (I) et des unités mono- mères répondant à la formule ~(CH2-CHR'-O) - (II), dans lesquelles :
- R représente un atome d'hydrogène, un radical alkyle, linéaire ou ramifié, comportant de 1 à 8 atomes de carbone, un radical CH3(-0-CH2-CH2)n-0-CH2- , avec 1 < n < 10; - R' représente un radical aliphatique présentant une insaturation polymérisable par voie radicalaire et inerte dans les conditions de polymérisation cationique.
2. Copolymère selon la revendication 1, caractérisé en ce que R' est un radical CH2=CH-(CH2)q- avec 1 < q < 6, ou un radical CH3- (CH2)y-CH=CH-(CH2)χ-, avec 0 < x+y < 5 et 0 < x.
3. Copolymère selon la revendication 1, caractérisé en ce que R' est un radical allyloxy alkylène ayant de 4 à 8 atomes de carbone.
4. Copolymère selon la revendication 1, caractérisé en ce que R' est un radical acryloxyalkylène ou un radical méthacryloxyalkylène.
5. Copolymère selon la revendication 1, caractérisé en ce que R' est choisi parmi -CH2-CH2-CH=CH2, -CH2-0-CH2-CH=CH2, -CH2-0-CO-CH=CH2 ou -CH2-0-CO-C(CH3)=CH2.
6. Copolymère selon la revendication 1, caractérisé en ce que R est H ou CH .
7. Copolymère selon la revendication 1, caractérisé en ce que 0,03 < p/m+p < 0,3, p représentant le nombre d'unités monomères (II) et m le nombre d'unités monomères (I) consti- tuant le copolymère.
8. Copolymère selon la revendication 7, caractérisé en ce que 0,05 < p/m+p < 0,1.
9. Procédé de préparation d'un copolymère selon la revendication 1, caractérisé en ce qu'il consiste à effectuer une polymérisation d'un monomère dioxoiane répondant à la formule CH -O-CHR-CH -0 et d'un monomère répondant la formule 0-CH2-CΗR' en présence d'un amorceur de polymérisation catio¬ nique.
10. Procédé selon la revendication 9, caractérisé en ce que la polymérisation est effectuée en masse.
11. Procédé selon la revendication 9, caractérisé en ce que les monomères sont dissous dans un solvant commun choisi parmi les solvants aprotiques.
12. Procédé selon l'une des revendications 9 à 11, caractérisé en ce que 1 'amorceur de polymérisation est choisi parmi BF3(OC2H5)2, CgHsCOX1 ou
Figure imgf000015_0001
dans lesquels X1 représente SbFô, PF5, AsF6, BF4, SbF6, CF3SO3, ou pCl-C6H4N2Y1, Y1 représentant PF6 ou BF .
13. Matériau à conduction ionique, contenant un sel et un solvant solide polymère, caractérisé en ce que le solvant polymère est constitué essentiellement par au moins un poly¬ mère obtenu par réticulation d'un copolymère selon la reven- dication 1.
14. Matériau selon la revendication 13, caractérisé en ce que le copolymère est choisi parmi ceux pour lesquels le rapport p/(m+p) est compris entre environ 3% et environ 30%.
15. Matériau selon la revendication 13, caractérisé en ce que le sel est choisi parmi les sels (l/n)M+X~, M repré¬ sentant un cation métallique, un cation organique du type ammonium, amidinium ou guanidinium; n étant la valence du cation M ; X représentant un anion à charge électronique délocalisée, par exemple Br~, CIO/,-, AsFg", RFS03-, (RFS02)2N~, (RFS02)3C~ ou (RF2)2CY~, RF représentant un groupement perfluoroalkyle ou perfluoroaryle et Y représentant un groupe attracteur d'électrons.
16. Matériau selon la revendication 13, caractérisé en ce que le copolymère est réticulé en présence d'un monomère comportant un groupement ionique et un groupement polymérisa- ble par voie radicalaire.
PCT/FR1993/000701 1992-07-15 1993-07-07 Copolymeres d'oxiranne et de dioxolane, leur procede de preparation et materiaux a conduction ionique les contenant WO1994002534A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP93914825A EP0603370A1 (fr) 1992-07-15 1993-07-07 Copolymeres d'oxiranne et de dioxolane, leur procede de preparation et materiaux a conduction ionique les contenant
JP6504194A JPH06511285A (ja) 1992-07-15 1993-07-07 オキシランとジオキソランの共重合体、それらの製造方法およびそれらを含有するイオン的に伝導性の材料
US08/193,134 US5552510A (en) 1992-07-15 1993-07-07 Oxirane and dioxolane copolymers, process for their preparation and ionic conduction materials containing same
CA002118946A CA2118946A1 (fr) 1992-07-15 1993-07-07 Copolymeres d'oxiranne et de dioxolane, leur procede de preparation et materiaux a conduction ionique les contenant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9208716A FR2693731B1 (fr) 1992-07-15 1992-07-15 Copolymères d'oxirane et de dioxolane, leur procédé de préparation et matériaux à conduction ionique les contenant.
FR92/08716 1992-07-15

Publications (1)

Publication Number Publication Date
WO1994002534A1 true WO1994002534A1 (fr) 1994-02-03

Family

ID=9431894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000701 WO1994002534A1 (fr) 1992-07-15 1993-07-07 Copolymeres d'oxiranne et de dioxolane, leur procede de preparation et materiaux a conduction ionique les contenant

Country Status (6)

Country Link
US (1) US5552510A (fr)
EP (1) EP0603370A1 (fr)
JP (1) JPH06511285A (fr)
CA (1) CA2118946A1 (fr)
FR (1) FR2693731B1 (fr)
WO (1) WO1994002534A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713646B1 (fr) * 1993-12-09 1996-02-23 Centre Nat Rech Scient Procédé de préparation d'un terpolymère du type poly(oxyalkylène) par hydrogénation.
FR2723098B1 (fr) * 1994-07-28 1996-10-04 Centre Nat Rech Scient Materiau macromoleculaire comportant des substituants ioniques et son utilisation dans les systemes electrochimiques
CA2175950C (fr) * 1995-05-08 2008-12-02 Shinzo Kohjiya Electrolyte solide a base de polymeres
US7094501B2 (en) * 2001-09-25 2006-08-22 E. I. Du Pont De Nemours And Company Graft oligomeric electrolytes
JP5207937B2 (ja) * 2008-11-27 2013-06-12 株式会社クラレ 繊維状変形センサおよび布帛状変形センサ
CN105908542B (zh) * 2016-05-17 2017-12-08 武汉纺织大学 一种苎麻织物液氨溶剂染色的固色剂及其制备方法与应用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2563382A1 (fr) * 1984-04-24 1985-10-25 Elf Aquitaine Nouveau generateur electrochimique a electrode composite
US4702974A (en) * 1985-11-19 1987-10-27 The Dow Chemical Company Electrochemical generator utilizing solid polymer-salt complex
JPH03285914A (ja) * 1990-03-30 1991-12-17 Kanegafuchi Chem Ind Co Ltd アクリルアミド基含有共重合体及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275604A (en) * 1963-07-19 1966-09-27 Celanese Corp Moldable oxymethylene copolymers and method of preparing same
DE2247692A1 (de) * 1972-09-28 1974-04-11 Basf Ag Verfahren zur herstellung von doppelbindungen enthaltenden polyformalen
US5260145A (en) * 1986-10-30 1993-11-09 Hydro-Quebec Production of organic cation radicals in an electrochemical cell
US5162177A (en) * 1986-10-30 1992-11-10 Hydro-Quebec Ion conductive material composed of a salt in solution in a liquid electrolyte
FR2606217B1 (fr) * 1986-10-30 1990-12-14 Elf Aquitaine Nouveau materiau a conduction ionique constitue par un sel en solution dans un electrolyte liquide
FR2645533B1 (fr) * 1989-04-06 1991-07-12 Centre Nat Rech Scient Procede de synthese de sulfonylimidures
FR2645534B1 (fr) * 1989-04-06 1991-07-12 Centre Nat Rech Scient Procede de preparation de sulfonylmethanes et de leurs derives
US5286808A (en) * 1991-07-25 1994-02-15 Hoechst Celanese Corporation Elastomeric crosslinked poly(1,3-dioxlane)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2563382A1 (fr) * 1984-04-24 1985-10-25 Elf Aquitaine Nouveau generateur electrochimique a electrode composite
US4702974A (en) * 1985-11-19 1987-10-27 The Dow Chemical Company Electrochemical generator utilizing solid polymer-salt complex
JPH03285914A (ja) * 1990-03-30 1991-12-17 Kanegafuchi Chem Ind Co Ltd アクリルアミド基含有共重合体及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALAMGIR M. ET AL: "Lithium conductive polymer electrolytes derived from poly(1,3.dioxolane ) and polytetrahydrofuran", ELECTROCHIMICA ACTA, vol. 36, no. 5/6, 1991, OXFORD,GB, pages 773 - 782 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 114 (C - 921) 30 March 1992 (1992-03-30) *

Also Published As

Publication number Publication date
CA2118946A1 (fr) 1994-02-03
US5552510A (en) 1996-09-03
FR2693731A1 (fr) 1994-01-21
EP0603370A1 (fr) 1994-06-29
JPH06511285A (ja) 1994-12-15
FR2693731B1 (fr) 1994-10-21

Similar Documents

Publication Publication Date Title
EP1693390B1 (fr) Polymères à base de monomères polymérisables en séquences et leur utilisation dans la production de conducteurs ioniques.
EP0585162B1 (fr) Copolymères réticulables obtenus par polycondensation et matériau à conduction ionique les contenant
EP0699349B1 (fr) Materiau a conduction ionique presentant de bonnes proprietes anti-corrosion
EP0290511B1 (fr) Nouveau materiau a conduction ionique constitue par un sel en solution dans un electrolyte liquide
CA2138372C (fr) Materiau a conduction ionique, comportant comme solvant un copolymere bloc
CA1310366C (fr) Materiau a conduction ionique
EP2220143B1 (fr) Système polymère conducteur d&#39;ions pouvant être réticulé à température ambiante
EP0584328B1 (fr) Monomeres derives de sultones perhalogenees et polymeres obtenus a partir de ces monomeres
EP0671386B1 (fr) Monomères dérivés de sultones perhalogénées et polymères obtenus à partir de ces monomères
CA2111047C (fr) Copolymere d&#39;oxyde d&#39;ethylene et d&#39;au moins un oxiranne substitue portant une fonction reticulable, procede pour sa preparation, et son utilisation pour l&#39;elaboration de materiauxa conduction ionique
EP0213985B1 (fr) Matériau macromoléculaire à conduction ionique
EP0672291B1 (fr) Copolymeres a proprietes redox et leur utilisation pour l&#39;elaboration de materiaux a conduction mixte
WO1994002534A1 (fr) Copolymeres d&#39;oxiranne et de dioxolane, leur procede de preparation et materiaux a conduction ionique les contenant
EP0683801B1 (fr) Procede de preparation d&#39;un terpolymere du type poly(oxyalkylene) par hydrogenation
EP1790030B1 (fr) Materiau a conduction ionique contenant un oligoether sulfate
EP4011947A1 (fr) Préparation d&#39;un électrolyte solide à base de polycarbonates
EP4057376A1 (fr) Électrode composite comportant un électrolyte solide à base de polycarbonates
EP0641489B1 (fr) Electrolyte solide et procede de fabrication d&#39;un generateur en couches minces comportant un tel electrolyte solide
JPH03190960A (ja) リチウムイオン伝導性ポリマー電解質
EP4011946A1 (fr) Préparation d&#39;un électrolyte solide à base de polycarbonates
CA2275736C (fr) Polymeres obtenus a partir de monomeres permettant leur polymerisation sequentielle, et leurs utilisations, notamment pour la preparation de conducteurs ioniques
CA2155567C (fr) Procede de preparation d&#39;un terpolymere du type poly(oxyalkylene) par hydrogenation
FR2753976A1 (fr) Polymeres comportant des unites oxyeniques, leur procede de preparation et leur utilisation en electrochimie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993914825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2118946

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08193134

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993914825

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 648387

Country of ref document: US

Date of ref document: 19960515

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 1993914825

Country of ref document: EP