US20240032448A1 - Tilling apparatus - Google Patents
Tilling apparatus Download PDFInfo
- Publication number
- US20240032448A1 US20240032448A1 US18/481,349 US202318481349A US2024032448A1 US 20240032448 A1 US20240032448 A1 US 20240032448A1 US 202318481349 A US202318481349 A US 202318481349A US 2024032448 A1 US2024032448 A1 US 2024032448A1
- Authority
- US
- United States
- Prior art keywords
- soil
- tilling apparatus
- trench
- cutters
- tilling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002689 soil Substances 0.000 claims abstract description 285
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims description 42
- 238000005056 compaction Methods 0.000 claims description 13
- 238000010276 construction Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 230000003993 interaction Effects 0.000 claims 3
- 239000008187 granular material Substances 0.000 abstract description 32
- 230000008635 plant growth Effects 0.000 abstract description 12
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000009987 spinning Methods 0.000 abstract 2
- 230000000712 assembly Effects 0.000 abstract 1
- 238000000429 assembly Methods 0.000 abstract 1
- 230000003450 growing effect Effects 0.000 abstract 1
- 238000005520 cutting process Methods 0.000 description 27
- 241000196324 Embryophyta Species 0.000 description 24
- 230000033001 locomotion Effects 0.000 description 18
- 230000009471 action Effects 0.000 description 13
- 239000011435 rock Substances 0.000 description 13
- 230000037361 pathway Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 235000015097 nutrients Nutrition 0.000 description 9
- 238000005273 aeration Methods 0.000 description 7
- 239000003337 fertilizer Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 3
- 230000035784 germination Effects 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000002386 leaching Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 230000009920 chelation Effects 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 241000902900 cellular organisms Species 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
- 230000021749 root development Effects 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B33/00—Tilling implements with rotary driven tools, e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs
- A01B33/02—Tilling implements with rotary driven tools, e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs with tools on horizontal shaft transverse to direction of travel
- A01B33/021—Tilling implements with rotary driven tools, e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs with tools on horizontal shaft transverse to direction of travel with rigid tools
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B33/00—Tilling implements with rotary driven tools, e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs
- A01B33/02—Tilling implements with rotary driven tools, e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs with tools on horizontal shaft transverse to direction of travel
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B33/00—Tilling implements with rotary driven tools, e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs
- A01B33/08—Tools; Details, e.g. adaptations of transmissions or gearings
- A01B33/10—Structural or functional features of the tools ; Theoretical aspects of the cutting action
- A01B33/103—Structural or functional features of the tools ; Theoretical aspects of the cutting action the rotating shaft being oriented horizontally
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B49/00—Combined machines
- A01B49/02—Combined machines with two or more soil-working tools of different kind
- A01B49/022—Combined machines with two or more soil-working tools of different kind at least one tool being actively driven
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B49/00—Combined machines
- A01B49/04—Combinations of soil-working tools with non-soil-working tools, e.g. planting tools
- A01B49/06—Combinations of soil-working tools with non-soil-working tools, e.g. planting tools for sowing or fertilising
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B49/00—Combined machines
- A01B49/04—Combinations of soil-working tools with non-soil-working tools, e.g. planting tools
- A01B49/06—Combinations of soil-working tools with non-soil-working tools, e.g. planting tools for sowing or fertilising
- A01B49/065—Combinations of soil-working tools with non-soil-working tools, e.g. planting tools for sowing or fertilising the soil-working tools being actively driven
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C5/00—Making or covering furrows or holes for sowing, planting or manuring
- A01C5/06—Machines for making or covering drills or furrows for sowing or planting
- A01C5/062—Devices for making drills or furrows
- A01C5/064—Devices for making drills or furrows with rotating tools
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C7/00—Sowing
- A01C7/006—Minimum till seeding
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C7/00—Sowing
- A01C7/08—Broadcast seeders; Seeders depositing seeds in rows
Definitions
- the present invention relates to tilling and/or renovating apparatus for use in cultivating soil and/or renovating soil.
- the present invention relates to a tilling apparatus for tilling, cultivating or renovating the soil to enhance the growth of both existing plants and newly sown or planted plants in the soil which has been worked upon by the apparatus.
- the present invention relates to a one pass tilling system using a tilling apparatus as one part of the system so that the soil being worked upon by the tilling apparatus is renovated or rejuvenated by a single pass of the tilling apparatus.
- the present invention relates to a tilling apparatus which aerates the soil in close proximity to where the soil has been tilled by the apparatus so that the tilled aerated soil promotes growth of plants occurring in close proximity to the tilled soil formed by the apparatus.
- the present invention finds particular application as a tilling system having a number of different components which till, cultivate or renovate the soil so as to aerate the soil in close proximity to the tilled soil to enable plants to more readily access nutrients in order to enhance the growth of plants within the tilled soil.
- Compaction of soil is undesirable since the compaction of the soil inhibits growth of plants located within the compact soil.
- Compact soil retards the development of roots of plants already growing in the soil and prevents correct root development of newly planted plants or seeds which leads to less than optimal plant growth and thus less than expected yields of the plants growing in the compacted soil. Therefore, there is a need to reduce compaction of soils.
- Compaction of soil often occurs as a result of multiple passage of farm machinery over the soil, such as for example, repeated passes of farm machinery towing individual components such as ploughs, cultivators, seeders, and the like over the same ground.
- farm machinery towing individual components such as ploughs, cultivators, seeders, and the like over the same ground.
- the weight of the farm machinery, poor soil, grazing and fertiliser management adds to the compaction.
- a cutter for a tilling apparatus suitable for working soil comprising a first part capable of being fixedly connected to a part of the tilling apparatus so as to allow the cutter to rotate in use, and a second part capable of working the soil in use to form a worked portion of soil, in which one dimension of the worked portion of soil corresponds to one dimension of the second part of the cutter, the second part being located at or towards one end of the first part to extend from the first part on one or on both sides of the first part for contacting the soil, wherein rotary movement of the first part of the cutter causes corresponding rotary movement of the second part of the cutter such that when the second part of the cutter contacts the soil is granulated to form soil particles, wherein a first part of the granulated soil forms a layer of soil particles interspersed with cavities and voids to form an aerated array of soil particles within the worked portion of the soil and a second part of the granulated soil is deposited to at least one side of the
- a cutting assembly for forming a portion of worked earth or soil, said cutting assembly including a multitude of cutters mounted for simultaneous rotation wherein each cutter comprises a first part which is fixedly connected to the cutting assembly to rotate in use, and a second part which is capable of working soil to form a worked portion of soil having a dimension which corresponds to one dimension of the second part of the cutter, the second part of the cutter being located at or towards one end of the first part to extend from the first part on at least one side of the first part for contacting the soil wherein rotary movement of the first part of the cutter causes corresponding rotary movement of the second part of the cutter such that when the second part of the cutter contacts the soil, the soil is granulated to form soil particles wherein a first part of the granulated soil forms a layer of soil particles interspersed with cavities and voids to form an aerated array of soil particles within the worked portion of the soil and a second part of the granulated soil is deposited to at least one side of
- a tilling apparatus comprising a cutting assembly having a multitude of individual cutters mounted for rotation about a rotary shaft in groups at spaced apart locations along the length of the rotary shaft to form a multitude of spaced apart rows of worked earth or soil
- the cutter comprises a first part fixedly connected to the tilling apparatus so as to rotate in use, and a second part for contacting soil to form a worked portion of soil which has one dimension corresponding to one dimension of the second part of the cutter, the second part of the cutter being located at or towards one end of the first part of the cutter to extend from the first part on at least one side of the first part of the cutter for contacting the soil
- rotary movement of the first part of the cutter causes corresponding rotary movement of the second part of the cutter such that when the second part of the cutter contacts the soil, the soil is granulated to form soil particles wherein a first part of the granulated soil forms a layer of soil particles interspersed with cavities and voids to form an aerated
- a method of cultivating soil to increase the productivity of soil when cultivated comprising the steps of using a tilling apparatus having a multitude of rotatable cutters to form rows of spaced apart cultivated soil by travelling over the soil, wherein the rotating cutter comprises a shank capable of being fixedly connected to the tilling apparatus so as to allow rotary movement of the cutter, and a blade capable of contacting soil to be worked to form a worked row of soil, in which the width of the row is about at least as wide as the length of the blade, the blade being located at or towards one end of the shank to extend substantially perpendicularly from the shank to one or both sides of the shank for contact with the soil, wherein rotary movement of the shank of the cutter causes corresponding rotary movement of the blade of the cutter such that the action of the blade on contacting the soil causes granulation of the soil to form substantially discrete soil particles in which a first part of the granulated soil forms a layer of soil particles interspersed with cavities and
- an apparatus for tilling soil by forming at least two spaced apart rows of worked soil comprising a frame for supporting a rotatable shaft capable of being driven in rotary motion, a multitude of discs fixedly mounted to the shaft at spaced apart locations along the length of the shaft for rotation with the shaft, each disc having a multitude of tines fixedly mounted to the disc so that part of the tine extends outwardly from the plane of the disc wherein rotation of the shaft causes movement of the tines to form a row of worked soil, such that the action of the tines on the soil causes granulation of the soil within the row of worked soil to form substantially discrete particles of soil wherein a first part of the granulated soil forms a layer of soil particles intermixed with cavities or voids to form an aerated array of soil particles within the row and a second part of the granulated soil is deposited to the side or sides of the row formed by the action of the tines to extend along the edge of the row to provide for enhanced growth
- the tilling apparatus is a renovator, cultivator, plough, tilling device, renovator/planter, renovator/seeder, renovator/smudger or similar for cutting and working the soil to break up the soil to form small size particles of soil such as pieces, clumps, granules, aggregates or the like by repeatedly working the soil, particularly the particles of soil cut from the earth during working of the soil in a one pass operation.
- tilling apparatus is not to be restricted to tilling devices but also includes other similar devices for working the soil and the like, including any device for comminuting the soil into pieces of a size allowing aeration of the soil to take place, and includes combinations of operations such as levelling the soil with a leveller, or smudging or smoothing the soil after cutting or planting or the like.
- the portion of worked soil is a piece, tract, section, stretch or similar of land containing soil which has been treated or worked by the various form of the tilling apparatus. More typically, the portion of worked soil is in rows which are arranged as substantially parallel spaced apart rows corresponding to the width of the working implements of the tilling apparatus.
- the implement for working and/or cutting the soil is a cutter or cutting device or similar for cutting, slicing, tearing, or similar, the soil to aerate the soil.
- the implement can take any suitable, convenient or applicable form for forming the rows of worked soil and/or granules of worked soil, particles of soil or the like.
- the cutter is provided with a blade.
- the blade of the cutter is a cutting blade, plough blade or similar for comminuting the soil into particles.
- each cutter has a single blade or each cutter has two or more blades.
- the blade extends from the one side of the cutter, whereas in other forms, the blades extend from both sides, and where the cutter has two blades, the blades extend from both sides of the cutter, such as for example, the blade is a substantially T-piece blade which can cut the soil on both sides of the cutter to form the row or trench.
- the row of worked soil is or includes, a groove, trench, channel, furrow, concavity, rut, score, slot, ditch, trough, dip, hollow, depression, seedbed or the like.
- the trench or furrow includes an edge of the trench or furrow or the like including an apron, verge, brink, brow, brim, margin, border, rim, skirt or the like.
- FIG. 1 is a rear side perspective view from above of one form of the tilling apparatus connected to a tractor showing the tilling apparatus in situ connected to a power take off shaft for driving the tilling apparatus.
- FIG. 2 is a rear side perspective view of the form of the tilling apparatus of FIG. 1 in isolation showing one form of the cutters.
- FIG. 3 is an exploded view of the form of the tilling apparatus shown in FIGS. 1 and 2 .
- FIG. 4 is a side perspective view of one form of the rotary shaft of the tilling apparatus of FIG. 1 without attached cutters.
- FIG. 5 is an exploded view of one form of the manner in which two oppositely directed cutters are mounted to one disc of the rotary shaft.
- FIG. 6 is a top perspective schematic view of one form of the rows being formed by the tilling apparatus when towed by a tractor.
- FIG. 7 is a schematic cross-sectional view showing the relationship between the cutters and the unworked soil after the formation of the rows by the passage of the tilling apparatus.
- FIG. 8 is a cross-sectional view showing the direction of rotation of the cutters during operation of the tilling apparatus to work the soil so as to cut a trench and to granulate and lift the soil as the trench is being cut.
- FIG. 9 is a schematic cross-sectional view of a stylised trench containing soil formed after passage of the tilling apparatus showing the structure of the soil including the trench and fissures in the side walls of the trench so as to aerate the soil.
- FIG. 10 is a rear perspective view of another embodiment of the tilling apparatus showing a seeder and related hardware mounted to the rear of the tilling apparatus for conveying seeds for planting into the rows formed by passage of the tilling apparatus over the surface of the soil.
- FIG. 10 A is an enlarged view of one form of the distributor of the seeder for distributing seed into the various chutes of the seeder shown in FIG. 10 .
- FIG. 11 is a schematic view of another embodiment of the tilling apparatus suitable for low pass tilling showing one combination of different implements.
- FIG. 12 is a schematic top perspective view of one form of a spreader for spreading and/or levelling the granulated soil after planting.
- FIG. 13 is a schematic side view of one form of a deflector valve for controlling a flow of air to the respective delivery hoses of the planter for planting seeds.
- FIG. 14 is a rear perspective view of another form of the tilling apparatus having a seeder and a leveller for levelling soil after passage of the tilling apparatus.
- FIG. 14 a is an enlarged perspective view of the form of the leveller of FIG. 14 .
- FIG. 15 is a schematic cross-sectional view of another form of a row before passage of the leveller over the top of the row.
- FIG. 16 is a schematic cross-sectional view of the row of FIG. 15 after passage of the leveller showing granulated soil particles returned to the trench.
- FIG. 17 is a schematic end cross-sectional view of the formation of rows using a further embodiment of the tilling apparatus having a protective shear.
- FIG. 18 is a side cross-sectional view of the form of the tilling apparatus of FIG. 17 having the protective shear prior to contacting a solid foreign object.
- FIG. 19 is a side cross-sectional view of the form of the tilling apparatus of FIG. 17 having the protective shear after contacting the solid foreign object.
- tractor 2 typically of a conventional configuration for general farm work, is provided with a power takeoff arrangement, including a power takeoff shaft 4 for driving a tilling apparatus, generally denoted as 20 , through a suitable gearbox 6 and transmission, including a shaft 8 and chain 10 .
- Chain 10 is engaged around an upper gear wheel 12 and a lower gear wheel 14 .
- any suitable power takeoff shaft, gearbox, transmission or components thereof or any motive arrangement or power may be used for driving tilling apparatus 20 in whatever form the tilling apparatus takes, such as for example, the transmission can include a set of gears in meshed relationship for transmitting power to the tilling apparatus.
- the power source and transmission is illustrative of the manner of driving tilling apparatus 20 .
- Tilling apparatus 20 includes a main framework arrangement 22 comprising, in one form, two transversely extending front and rear frame members 24 , 26 and two longitudinally extending side frame plates 28 , 30 interconnecting both of the two transverse front and rear members 24 , 26 to form the generally rectangular rigid framework arrangement 22 to which the other components of tilling apparatus 20 may be mounted or connected as will be described in more detail below.
- a pair of inboard longitudinally extending braces 31 a, b are provided to extend between transverse framework members 24 , 26 inboard of side plates 28 , 30 to provide increased strength and rigidly to framework arrangement 22 . As shown in phantom in FIG.
- movable flap 16 is hingedly connected to transverse framework member 26 by hinges 18 which are located at spaced apart locations along the length of rear transverse member 26 . Flap 16 is movable between a raised position as shown in phantom in FIG. 1 and a lowered position as shown in phantom in FIG. 10 .
- flap 16 In usual operation of tilling apparatus 20 , flap 16 is in the lowered position allowing rotational operation of apparatus 20 .
- flap 16 When flap 16 is in the raised position as shown in FIGS. 1 and 6 , less of the particles of soil being granulated by the cutters fall back into the trench and when flap 16 is in the lowered position as shown in FIG. 10 , more of the particles of soil fall into the trench.
- flap 16 acts on the particles of soil to assist in breaking up any clumps of soil and/or to spread the particles more evenly over the sides of the row and in the trench. In this position, flap 16 acts like a smoother or smudger to spread and/or level the soil particles evenly over the width of the tilling apparatus.
- apparatus 20 is provided with guides or shrouds connected to the rear of apparatus 20 for providing a permanent fitting to deflect said particles back onto the ground into the trench and sides of the trench.
- the shroud is a one piece construction whereas in other forms, the shroud is a two piece constructions.
- the shroud is provided with a generally T-shaped cut-out or aperture through which the shank and blade of a cutter can pass when rotating.
- shroud takes the place of flap 16 to retain and/or deflect soil particles being thrown up by the rotation of the cutters. It is to be noted that the shroud or housing at the rear of the tilling apparatus can have any suitable or convenient shape or arrangement.
- rotary shaft 32 is journalled in bearings 33 located within suitable housings at or towards either transverse side of apparatus 20 , such as for example on or near to side plates 28 , 30 for mounting rotary shaft 32 for rotation during use of tilling apparatus 20 .
- One end of rotary shaft 32 is connected to lower gear wheel 14 permitting rotation of rotary shaft 32 in the direction of arrow A of FIG. 1 in use of tilling apparatus 20 .
- the direction of rotation can be either direction, i.e. in direction A or in the opposite direction.
- Shaft 32 is provided with a multitude of rotary discs 34 fixedly connected to shaft 32 located at regularly spaced apart locations on shaft 32 .
- Each rotary disc 34 is provided with a multitude of spaced apart apertures 36 located circumferentially around the edge of disc 34 .
- any number of discs 34 can be provided on shaft 32 depending upon the width of tilling apparatus 20 and the length of shaft 32 , and the amount of working required of the soil and the nature and type of the soil to be cultivated.
- the spacing between adjacent discs 34 can be any suitable spacing to suit requirements.
- rotary discs 34 can be replaced with any suitable connector or the like for connecting the cutters to the tilling apparatus.
- the distance between adjacent discs 34 can be any suitable spacing, such as for example, between from about 200 mm to about 2000 mm, with a typical spacing being about 500 mm. Additionally, the diameter of disc 34 can extend from being about 200 mm to about 4000 mm with diameters typically being in the range of from about 250 mm to 3000 mm and preferably from about 300 mm to about 2000 mm. Typically, the diameter of the disc is from about 400 mm to 2000 mm depending upon the depth of cut of the trench required when cultivating the soil using tilling apparatus 20 as will be described in more detail later in this specification.
- a multitude of cutters in the form of tines 40 are fixedly connected to each rotary disc 34 such as for example by bolts 38 received through apertures 36 located around the periphery of each disc 34 at or towards the circumference of each disc as shown in the drawings, particularly FIGS. 1 , 2 , 3 and 4 .
- the number of separate tines 40 connected or mounted on each disc 34 can vary from about 2 to about 60 depending upon the size of disc 34 and the types of soil being worked, as well as the size, shape or type of tine being used as well as the size of the trench being formed. However, depending upon the diameter of the disc 34 , the number of individual tines is typically from about 4 to about 12 , with 6 being typically the preferred number of tines as illustrated in the drawings. In one embodiment of tilling apparatus 20 , tines 40 can be connected directly to shaft 32 or any other form of suitable intermediate connector can be used between rotary shaft 32 and tines 40 to mount the tines.
- tines 40 are generally of an L-shaped configuration having a connecting shank 42 which is substantially straight or planar and a blade 44 which is arranged to extend transversely of the plane of shank 42 , such as for example, preferably to extend substantially perpendicularly from connecting shank 42 as illustrated in the drawings.
- tines 40 can have any suitable or convenient shape.
- One other possible shape is that other forms of tines can be generally T-shaped in which the blades extend substantially perpendicularly outwardly from the shank on both sides of the plane of the shank.
- the cutters can be of either type attached to rotary disc 34 so that the apparatus has a combination of different types or orientations of tines.
- the blades include straight blades having a cutting surface or edge located at one end, i.e. the distal end and/or along one side edge, i.e. the leading edge when rotating.
- the blade is a spike or similar having a substantially straight shaft extending radially from rotating shaft 32 and/or disc 34 provided with a sharpened end in the form of a point or the like.
- the blade is a curved blade, typically curved in the lengthwise extending direction or in the direction transverse to the longitudinal axis or both.
- the blade is a twisted or bent blade having a cutting surface, edge or end out of the plane of the blade in a manner similar to the blade of a lawn mower or similar cutting tool.
- the blade is twisted out of the plane of the blade in the lengthwise extending direction so that the cutting surface, edge or end is arranged to extend transversely to the plane of the shaft of the blade.
- Shank 42 is provided with a pair of spaced apart apertures 43 for receiving bolts 38 therethrough to attach tines 40 to discs 34 as shown more particularly in FIG. 5 .
- tine 40 is of a generally rectangular or trapezium-like shape having two substantially parallel straight sides, one side at right angles to the two parallel sides and one side being angularly inclined to both parallel sides, as shown in the drawings.
- One lengthwise extending edge of shank 42 which is the cutting edge 47 is substantially straight, whereas the other edge of shank 42 being the tailing edge 45 is also substantially straight so that shank 42 has a generally quadrilateral shape.
- any suitable or functional shape is possible, such as curved blades, truncated blades, trapezium-like blades or the like, including blades having straight cutting edges, twisted cutting edges, serrated cutting edges, or having curved cutting edges.
- Blade 44 is typically of a truncated form and extends for about 70 mm from shank 42 .
- the end of the tine can have any length or width as required as well as having any orientation or shape.
- the purpose of tine 40 is to cut, chop or otherwise disturb the soil and reduce the soil to granules or other smaller sized particles, i.e. to comminute the soil so as to allow aeration of the soil or the like when the soil particles collect in the trench or to the sides of the trench.
- the position, location or orientation of the blades is such that there are overlapping cuts from two adjacent blades 44 on the one side or on both sides of shank 42 to further work the soil being cut to form granulated particles of soil.
- blades 44 of adjacent tines 40 are arranged to extend in alternately opposite directions to one another so as to be capable of forming a row or trench of cut earth or soil having a width which is about twice the length of the blade 44 located at the end of tine 40 in use of tilling apparatus 20 .
- the width of the trench being formed by the tilling apparatus is twice the length of blade 44 plus the width of disc 34 shown more particularly in FIG. 7 .
- tine 40 is connected to disc 34 by a suitable connector in the form of a fastener.
- the suitable fastener includes a main bolt of a size and strength to fixedly connect tine 40 to disc 34 , such as for example, of a size and strength comparable to bolt 38 , and a second part of the fastener, which in one form is a shear bolt (not shown), which is received through aligned apertures of shank 42 of tine 40 and apertures 36 of disc 34 .
- the shear bolt is of a size and type that ruptures when subjected to a force or impact greater than a threshold amount of force or impact.
- tine 40 contacts a foreign object such as for example, a hard object or immovable object, such as for example a rock embedded under the surface of the soil being worked
- a foreign object such as for example, a hard object or immovable object, such as for example a rock embedded under the surface of the soil being worked
- the force or impact of blade 44 contacting the rock causes the shear bolt to break, allowing tine 40 to pivot about the main bolt so that blade 44 can swing out of contact with the rock and the tilling apparatus can continue operating, thereby preventing unnecessary damage to tine 40 , disc 34 or tilling apparatus 20 .
- a replacement shear bolt can be inserted through the aligned apertures of tine 40 and disc 34 to fully reattach tine 40 to disc 34 so that tilling apparatus 20 is ready for further work once again.
- FIGS. 17 to 19 One such arrangement is shown in FIGS. 17 to 19 which will be described later in this specification.
- rotation of power takeoff shaft 4 causes rotation of discs 34 and tines 40 to enable blades 44 to cut a trench or row as will now be described in more detail with particular reference to FIGS. 6 to 9 .
- the speed of rotation of shaft 32 is from just above zero to about 2000 rpm, usually in the range of about 50 to 400 rpm and preferably in the range of about 100 to 300 rpm.
- tines 40 are caused to rotate typically in the direction of arrow A of FIG. 1 , so that blades 44 cut the soil to form four substantially parallel rows 52 of worked earth or worked soil caused by the rotation of blades 44 at the respective ends of tines 40 cutting through the earth in order to till or otherwise cultivate the soil to form rows 52 .
- flap 16 is in a partially raised position as shown in phantom in FIG. 6 .
- the soil in the immediate vicinity of tines 40 is granulated to form small lumps or particles of soil of typically, a generally spherical shape which can be loosely stacked or packed with each other to form a well ventilated or aerated array of spherical lumps or particles of soil within trench 54 as trench 54 is being formed within row 52 .
- trench 54 will now be described with particular reference to FIGS. 7 to 9 .
- Trench 54 has a width in accordance with the length of blade 44 or blades 44 of tine 40 , as shown more particularly in FIG. 7 .
- the width of trench 54 is about or slightly greater than twice the length of blade 44 .
- blades 44 impact the soil within trench 54 to work the soil within the trench so as to form small soil granules 60 by the repeated cutting action of blades 44 against the soil in the trench as blades 44 rotate within trench 54 .
- the speed of rotation of shaft 32 is very much greater than the speed of travel of tractor 2 , and hence tilling apparatus 20 , over land 50 so that there are repeated cuts of substantially the same soil by blades 44 .
- Soil granules 60 are moved around within trench 54 in a manner such that some of the granules are lifted out of trench 54 by the rotary action of blades 44 contacting the undersurface of the granules which are deposited at or along the longitudinally extending side edges 56 of trench 54 so as to form a layer of granulated soil 57 along the periphery, rim or apron of the trench, and other of the granules 60 are lifted and tumbled over one another within trench 54 by blades 44 so as to fall back into trench 54 so as to remain within trench 54 to form an aerated array or stack of granules 59 in trench 54 .
- the granules from the top soil and subsoil are mixed which allows water infiltration and retention which results in increased oxygen detoxification of gas build up in the soil.
- soil granules 60 are not lifted fully out of the trench but rather fall back into the trench so as to remain in the trench to form an array or assemblage 59 of granules or particles 60 .
- granules 60 remaining in trench 54 are not hard packed or clumped together within the trench, but are loosely arranged within the trench in a stacked array with voids, cavities or the like 61 , formed between them so as to form an aerated mixture of granules 60 , and cavities 61 , or voids allowing air to access the interior of the trench and allowing seeds deposited in the trench to germinate and grow within the trench by having access to nutrients in the granules and soil within the trench more easily than if the soil was compacted or packed.
- seeds planted simultaneously with cutting and spreading the soil particles within and to either side of the trench are also provided with an enhanced chance of flourishing and growing after germination without competition from other plants until the root systems of the plants develop from the recently planted seeds are well established.
- the rotary action of blades 44 lifts the soil in the immediate vicinity of the side walls 58 of trench 54 as illustrated schematically in FIG. 8 , so as to separate the side walls of the trench into segments 64 by forming a multitude of cracks, fissures or other elongate cavities 66 in the strata of soil at and/or towards either edge 58 , or side wall of the trench.
- rotary action of the blades of the tines within the trench not only granulates the soil within the trench but also lifts and separates the soil in segmented layers 64 to form fissures or cracks 66 alternately with layers of soil at the sides of the trench.
- cracks or fissures can be formed within the sidewalls of the trench, typically, about three or four separate cracks or fissures 66 are formed in either sidewall of the trench, depending upon factors, such as for example, the diameter of disc 34 , the length of shank 42 , the length, orientation and number of blades 44 and the like, including the type of soil and the condition of the soil, atmospheric condition and the like. Cracks or fissures 66 allow air to penetrate the strata of soil to increase the aeration of the soil. Typically, each crack or fissure extends up to about 150 mm from the edge of the trench and to a height of up to about 6 mm.
- each fissure or crack is substantially tapered in cross-section profile from a relatively wider gap at or towards the opening in the edge 58 of the trench to a relatively narrow gap at the blind end of the crack or fissure in the body of the soil profile, depending on the nature and condition of the soil.
- the lifting of the granules out of the trench, depositing the granules along the edges of the trench and the formation of the fissures at the sides of the trench are all illustrated schematically in FIG. 9 .
- the more open structure of the soil adjacent the edges of the trench and the aerated granules within the trench promote improved growth of plants or seeds in the trench and in close proximity to the trench because of the increased access of air, particularly oxygen to the roots of the plants located within the soil, including existing plants and newly planted plants such as plants developing from seeds lodged within the trench.
- Operation of the tilling apparatus 20 therefore promotes improved growth and health of plants located within the trench and immediately adjacent the edges of the trench by providing increased access to nutrients within the soil close to the plants and increased access to oxygen which are allowed to penetrate into and within the trench and to the soil immediately adjacent the trench having the cracks or fissures. It is to be noted that the aerated structure of the soil promotes green manure cropping with its attendant benefits both within the trench and between the trenches.
- the depth of the trench can extend from about 10 mm to about 2000 mm with a depth of about 100 mm being typical.
- the width of the trench can be from about 2 mm to about 600 mm wide, with typical widths being in the range from about 25 mm to 250 mm, and preferably widths of about from 75 mm to 150 mm.
- distance between the centrelines of adjacent trenches can be from about 100 mm to about 3000 mm with typical widths being about from 200 mm to about 2000 mm, and preferably widths of about 250 mm to about 1500 mm, with widths of about 450 mm being usual.
- FIGS. 10 and 10 A illustrate a form of the tilling apparatus as previously described but with one form of an additional component or subassembly in the form of a seeder, generally denoted as 70 , mounted or otherwise connected to the top of the tilling apparatus, such as for example, fixedly connected to the front transverse frame 24 , or front and rear transverse frame members 24 , 26 of tilling apparatus 20 .
- seeder 70 comprises a generally rectangular framework arrangement 72 comprising a transversely extending frame member 74 , a longitudinally extending frame member 76 , and a number of upwardly extending frame members 78 a, 78 b, 78 c so as to form a box-like structure having open sides.
- a hopper 80 is provided at or towards the top of open framework arrangement 72 for storing seeds of desired crops or plants being sown using tilling apparatus 20 , optionally with other additives, such as for example, fertilisers, nutrients, growth enhancers, or the like, since a range of different plants can be sown simultaneously from a mixture of seeds.
- Hopper 80 is provided with a pair of oppositely inclined sloping walls 82 a, 82 b along which seed deposited in hopper 80 can slide in a downwards direction.
- a slot 84 or chute or similar, is provided intermediate the two oppositely inclined sliding walls 82 a, 82 b along the lower surface or base of hopper 80 .
- slot 84 extends transversely from one longitudinal side of hopper 80 to the other longitudinal side, whereas in other forms, the slot is a chute or similar.
- the opening of intermediate slot 84 allows individual seeds to fall through the slot intermediate the sloping walls so as to be delivered from hopper 80 into a distributor 86 located underneath hopper 80 .
- Distributor 86 is located immediately below slot 84 .
- distributor 86 is provided with four individual chutes 90 forming four individual pathways for seeds to travel along after being received from slot 84 .
- Individual chutes 90 are formed from divider walls 92 located in spaced apart relationship to one another to define the four pathways.
- a movable conveyor belt 94 in the form of an endless loop, having a width approximating the width of the seeder and accordingly, the four individual pathways is arranged to rotate immediately beneath distributor 86 to convey seed received through slot 84 to distributor 86 by moving the seed along the four chutes 90 forming the four individual pathways of the distributor.
- the direction of movement of conveyor belt 93 is shown by arrows B of FIG. 10 .
- Each individual pathway formed by divider walls 92 is provided with a generally perpendicular discharge portion 94 in fluid communication with the pathways respectively.
- An intermediate conduit typically in the form of a cylindrical hollow tube 96 is connected at one end to discharge portion 94 of each pathway for receiving seed deposited onto the pathway by hopper 80 .
- One end of a flexible hose 98 is fixedly connected to downstream end of discharge tube 96 and is arranged to be mounted on apparatus 20 , such as for example on flap 16 , so as to form a delivery pipe for seed directed into this pathway by distributor 86 .
- Each of the four individual pathways is provided with a dedicated flexible hose 98 so that there are four flexible hoses 98 spanning the width of tilling apparatus 20 , particularly the width of flap 16 .
- any number of flexible hoses 98 can be provided depending upon the width and size of tilling apparatus 16 . Further, it is to be noted that the number of delivery hoses 98 corresponds to the number of trenches formed by the tilling apparatus so that a mixture of seeds is deposited in and along the margins of each respective trench.
- each flexible hose 98 is provided with an outlet, in the form of a drop tube 100 or fitting through which seed conveyed through flexible hose 98 is passed so as to be deposited within the corresponding trench 54 being formed by the respective blades 44 as tilling apparatus 20 moves forward over the surface of land 50 .
- the soil is tilled and/or cultivated immediately prior to seed and/or fertiliser being planted within the trench so as to reduce the number of passes machinery must make over the surface of the land to cultivate the land, including planting of seed and/or fertiliser so as to further reduce compaction of the soil. This assists in low-till working of the soil by requiring a single pass only.
- conveyor 94 is driven by a transmission connected to the gearbox or other parts of tilling apparatus 20 so as to rotate as the tilling apparatus is in operation.
- the speed of rotation of conveyor belt 94 as shown more particularly in FIG. 10 , is independent of the speed of rotation of the tilling apparatus, whereas in other forms, the speeds of the conveyor and apparatus correspond to one another.
- the engine speed determines the speed of movement via the power take off, whereas in other forms, the speed of movement is determined by the ground speed of the tilling apparatus, or rather the speed of the ground wheels of the apparatus.
- the speed of the conveyor is determined by the speed provided by an adjustable speed electric motor dedicated to driving the conveyor.
- the tilling apparatus in whatever form or configuration it is used, can be employed to rejuvenate any type of soil or pasture.
- the apparatus can be applied to pasture, to cropping, to over sowing existing pasture or barren ground.
- the soil in whatever form it is treated, can be conditioned to improve the soil.
- the tilling apparatus includes further components for treating and/or cultivating the soil.
- the combined apparatus which is generally denoted as 110 , comprises a coulter cutter 112 located immediately after and adjacent to tractor 2 for cutting or mulching stubble or vegetation growing on the surface of soil which is about to be cultivated and/or worked so as to reduce the chances that vegetation will collect around tilling apparatus 110 which could prevent tilling apparatus 110 , or any of the individual components of the combination of components of a particular tilling apparatus 110 from working correctly or efficiently thereby resulting in inefficient operation of the tilling apparatus.
- coulter cutter 112 reduces the length of vegetation immediately prior to be cultivated by cutting or shredding the vegetation.
- ripper 114 Located behind coulter cutter 112 is a ripper 114 , or similar, such as for example a spade or chisel head plough, or the like for forming a preliminary cut or groove in the surface of soil 50 in preparation for forming trench 54 .
- ripper 114 is used to increase the depth of trench 54 by forming a channel of narrower width then trench 54 prior to the formation of the trench, but at a depth that is greater than the depth of trench 54 so that the bottom of trench 54 is a narrow channel or slot extending further into the subsoil or soil profile than is the usual depth of the trench.
- Ripper 114 or chisel plough can have any suitable or desirable shape or configuration or size. Although one configuration is shown in FIG. 11 , in which ripper 114 is curved forwardly, in other configurations ripper 114 is curved rearwardly.
- the width of the cutting or ripping element of ripper 114 can be greater or less than, usually less than, the corresponding width and/or diameter of disc 34 and tines 40 , particularly of the alternately oriented blades 42 , so that a preliminary groove or cut formed by ripper 114 is located in alignment with corresponding disc 34 and tine 40 arrangement of tilling apparatus 20 so as to form a generally deeper but narrower cut immediately preceding the formation of the trench, but in the same location to assist tines 40 in being able to form trench 54 particularly to allow blades 44 to contact the soil in order to form trench 54 with granulated soil and fissures at the side of the trench as described previously in alignment with the preliminary cut or groove.
- ripper 114 could be located in between adjacent rotating rotor discs 34 .
- tilling apparatus 20 having a multitude of rotary discs 34 and tines 40 arrangements for forming the trench as described previously.
- the tilling apparatus has a seeder 80 located at or towards the rear of the tilling apparatus to plant seed and/or apply fertiliser simultaneously as the tractor moves forward.
- this form of tilling apparatus 110 results in low till of the soil by reducing the number of separate passes of the tractor and other farm machinery over the same stretch or tract of land thereby reducing the amount of compaction of the soil and allowing increased amount of aeration to be formed by the tines when cutting the trench and forming the fissures at the side of the trench.
- the seeder section of the tilling apparatus is optionally provided with a valve or deflector for metering the distribution of air and/or seed and/or fertiliser to one or more of the delivery hoses for planting the seed and/or fertiliser mixture so as to achieve a more or less uniform distribution of the mixture into each of the trenches.
- the valve is a pendulum valve, generally denoted as 120 , or similar, for use when the tilling apparatus traverses uneven ground.
- the valve could be a hinged valve having a hinged deflector, more typically, a weighted hinged deflector or be a weighted deflector that is pivotally mounted for swinging movement from side to side.
- the seed mixture is pneumatically conveyed from the individual pathways of the conveyor into each respective delivery hose by a stream of air formed by an electrically controlled fan and motor combination in the form of a blower, typically a low cost 12 volt blower for ease of operation.
- a blower typically a low cost 12 volt blower for ease of operation.
- the pendulum valve 122 will swing to the opposite side of plenum chamber 124 or similar as shown in position “X” of FIG. 13 , to restrict the flow to the exits 128 a, 128 b located on that side, i.e.
- the pendulum valve being pivotally mounted about pivot 126 , whilst simultaneously opening the exits 128 c, 128 d of plenum chamber 124 leading to the upper side hoses in order to even out the flow of seed mixture to all delivery hoses in an attempt to have a uniform flow of seed mixture in all of the separate delivery hoses despite the orientation of the tilling apparatus.
- the pendulum valve will swing to the other side denoted as position “Y” in which exits 128 a, 128 b are opened more and exits 128 c, 128 d are restricted.
- FIG. 12 shows the spreader in the form of a smudger, generally denoted as 140 , having a multitude of panels 142 fixedly angularly inclined to one another to form a generally boustrophedonic shape or generally zig-zag shape in which adjacent panels extend in opposite directions about drop pipe 100 .
- a hinge 144 is located at the inboard end 146 of the junction of two adjacent panels to connect smudger 140 to the hinges 18 , of the tilling apparatus in place of flap 16 which is substituted by smudger 140 .
- Tubes 100 at the distal end of delivery hoses 98 are located at or towards the internal apexes 148 of the outboard junctions to plant the seed mixture in the respective trenches so that as tractor 2 travels further, the lower edges 150 of each of panels 142 of smudger 140 spreads the granulated soil within trench 54 over the seed mixture or spreads the granular particles of soil from the margins of the trench along the edges of the trench and/or into the trench.
- the tilling apparatus smudger 140 , replaces flap 16 whereas in another form, smudger 140 is located at or towards the rear of the tilling apparatus in addition to flap 16 remaining in place such that smudger 140 is located outboard of flap 16 towards the rear of the tilling apparatus.
- the apparatus 20 is provided with a leveller or similar in the form of ridge forming bar or similar, 160 , for levelling the edges of trench 54 to reduce the height of the soil deposited on the apron to the trench and/or to fill in trench 54 so that the row of worked soil is substantially even over the area of the worked portion of soil by passage of tilling apparatus 20 .
- leveller 160 is of a generally bent rod configuration having a first substantially straight portion 162 pivotally connected to the outside surface of flap 16 or of the shroud or housing optionally located at the rear of the tilling apparatus by a pivot connector 166 allowing leveller 160 to move up and down over the surface of the worked soil.
- the pivot connector provides a spring loaded connector so that each leveller 160 is capable of independent up and down movement which is biased downwards as the tilling apparatus moves forward.
- a second substantially straight portion 164 is located to extend transversely to first portion 162 , typically about perpendicularly to the first portion 162 . Second portion 164 is in contact with the soil so that movement of the second portion over the surface of the soil spreads the soil to level the soil and to push soil into the top of the trench after the seeds have been planted, as shown more particularly in FIG. 16 .
- levellers 160 are arranged in pairs on either side of drop pipe 100 in opposed face-to-face relationship with the respective second portions 164 directed towards one another.
- a shear or similar for protecting the rotating blades 44 against contact with a solid foreign object such as for example, a buried rock 168 or the like as the apparatus moves over the surface of the ground in operation.
- the purpose or function of the shear is to strike the rock in preference to the rotating blades to lift the apparatus including the rotating blades over rock 168 thereby preventing contact between the rock and the blades.
- FIGS. 17 to 19 One form of the shear and its operation is illustrated in FIGS. 17 to 19 and will now be described.
- Shear generally denoted as 170 , includes a generally arcuate member 172 extending in an arc from being fixedly connected at one end to front transverse member 24 in front of rotating cutter 40 at one end to being fixedly connected to downwardly depending strut 174 located at or towards the rear of rotating shaft 32 and cutters 40 . It is to be noted that shear 170 has a thin cross-section and a sharpened leading edge 173 so as to cut through the soil ahead of rotating cutters so as to form a groove in the soil. As the shear 170 is located directly in front of and in alignment with disc 34 , shear 170 clears a path for the rotating blades located immediately rearward thereof.
- a flute arrangement 176 in the form of individual flutes 178 a , 178 b are provided on either side of the rear end of shear 170 to guide movement of shear 170 through the soil to cut the groove in front of cutters 40 by applying a downwardly directed force to shear 170 so as to maintain shear 270 beneath the surface of the soil so as to provide protection for blades 44 .
- flutes 178 a, 178 b also lift and aerate the soil at a lower level than the trench formed by blades 44 so that aeration of the soil can occur at a level which is deeper than the floor of the trench.
- Shears 170 are located in spaced apart relationship over the width of apparatus 20 in which the spacing corresponds to the spacing of cutters 40 on shaft 32 so that every cutter is protected by a shear.
- shear 170 is shown as being a generally arcuate thin cutting blade for forming a groove in the soil ahead of cutters, shear 170 can have any suitable or convenient form which provides protection for the rotating blades in use.
- the soil being worked is aerated which promotes improved pasture increasing yield for farmers.
- the various forms of the tilling apparatus of the present invention assist in the physical processes for the formation and/or conversion of soils, chemical and physical processes, such as for example, including weathering, leaching, new mineral formation or similar.
- the tilling apparatus rejuvenates the soil by not only physically disturbing the soil to reduce compaction, but also exposing the soil particles to other processes, including chemical processes, such as for example, hydrolysis, oxidation, chelation, leaching or the like, which can take place more efficiently because of the formation of granules of soil.
- Hydrolysis is enhanced by improved water holding capacity. Oxidation is increased by aeration taking place and exposing some soil and sub soil elements to atmosphere.
- Chelation increases the amount of minerals or nutrients which can bind to the soil particles to provide for, and/or increase the volume and diversity of plants, micro-organisms and decaying organic matter that not only produces the chelating agents, but also that can be bound by the chelating agents.
- the amount of leaching is reduced which maintains mineral and nutrient elements in an available form for use by plants by eliminating oxygen deficiency and water logging.
- the above chemical reactions, and other chemical reactions for changing rock materials into soil can occur, in addition to other chemical reactions for changing one soil type into another soil type, such as for example, converting a silicate material obtained from weathering of rock material into clay type materials by weathering, such as for example, kaolin materials, including kaolinite.
- weathering processes include hydration/dehydration, biological activity, solubilisation in aqueous solutions, and other beneficial processes.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Soil Working Implements (AREA)
- Sowing (AREA)
Abstract
A tilling apparatus and a method of tilling soils which includes the use of a rotational shaft having a number of cutter assemblies located at spaced apart locations on the shaft in which each cutter assembly has a multitude of blades which rotate as the rotary shaft rotates to form a plurality of spaced apart trenches having the same spacing as the spacing of the cutters, and a width caused by the width of the blades. As the blades dig the trench, the soil contacted by the blades is granulated and is tossed about by the spinning blades so that some soil falls back into the trench and some falls along the periphery of the trench to form rows of aerated granules which promote enhanced growth of plants or seeds in the trench and along the edge of the trench to improve the yield of pasture having the trenches. Various attachments can be provided on the tilling apparatus, either in front of or towards the rear of the spinning blades for different purposes, such as rippers, seeders, levellers, or similar. The advantage of the tilling apparatus is that the soil is formed into granules which are used to form an aerated array of soil granules having enhanced growing properties for plants.
Description
- This application is a continuation of U.S. patent application Ser. No. 15/333,599, filed Oct. 25, 2016, which is a divisional of U.S. patent application Ser. No. 14/185,330, filed Feb. 20, 2014, which is a continuation of PCT/AU2012/001048, filed Sep. 5, 2012, which claims priority to Australian Application Serial No. 2011903588, filed Sep. 5, 2011, and U.S. Provisional Application Ser. No. 61/535,555, filed Sep. 16, 2011.
- The present invention relates to tilling and/or renovating apparatus for use in cultivating soil and/or renovating soil.
- In one form the present invention relates to a tilling apparatus for tilling, cultivating or renovating the soil to enhance the growth of both existing plants and newly sown or planted plants in the soil which has been worked upon by the apparatus.
- In one form, the present invention relates to a one pass tilling system using a tilling apparatus as one part of the system so that the soil being worked upon by the tilling apparatus is renovated or rejuvenated by a single pass of the tilling apparatus.
- In one form, the present invention relates to a tilling apparatus which aerates the soil in close proximity to where the soil has been tilled by the apparatus so that the tilled aerated soil promotes growth of plants occurring in close proximity to the tilled soil formed by the apparatus.
- The present invention finds particular application as a tilling system having a number of different components which till, cultivate or renovate the soil so as to aerate the soil in close proximity to the tilled soil to enable plants to more readily access nutrients in order to enhance the growth of plants within the tilled soil.
- Although the present invention will be described with particular reference to one or more embodiments of the present invention it is to be noted that the scope of the present invention is not limited to the described embodiments but rather the scope of the invention is more extensive so as to include other forms and arrangements of the various components of the tilling system and the use of the variable forms and arrangements of the apparatus and components of the apparatus and of the system for purposes other than specifically described.
- Compaction of soil is undesirable since the compaction of the soil inhibits growth of plants located within the compact soil. Compact soil retards the development of roots of plants already growing in the soil and prevents correct root development of newly planted plants or seeds which leads to less than optimal plant growth and thus less than expected yields of the plants growing in the compacted soil. Therefore, there is a need to reduce compaction of soils.
- Compaction of soil often occurs as a result of multiple passage of farm machinery over the soil, such as for example, repeated passes of farm machinery towing individual components such as ploughs, cultivators, seeders, and the like over the same ground. The weight of the farm machinery, poor soil, grazing and fertiliser management adds to the compaction.
- One of the effects of compaction of soil is that there is reduced access to nutrients and oxygen for plants grown or planted in the soil. The lack of access to oxygen and/or nutrients within the soil reduces the value of pasture or crop or the like being produced in the fields or paddocks having the compacted soil. Thus there is a need to have a system of working the land which results in less compaction of the soil.
- Accordingly, it is an aim of the present invention to provide a tilling apparatus which results in less compaction of the soil.
- Accordingly, it is an aim of the present invention to provide a cultivation or renovation system which requires less passes of farm machinery over the soil when being worked by providing a system and/or apparatus having multiple components.
- Accordingly, it is an aim of the present invention to provide a tilling apparatus and/or a tilling system which produce improved aeration of the soil in use.
- Accordingly, it is an aim of the present invention to provide a tilling apparatus and/or a tilling system which produces improved access to nutrients within the soil and enhances geological epimorphism and soil mineral hydrolysis.
- According to one form of the present invention there is provided a cutter for a tilling apparatus suitable for working soil, said cutter comprising a first part capable of being fixedly connected to a part of the tilling apparatus so as to allow the cutter to rotate in use, and a second part capable of working the soil in use to form a worked portion of soil, in which one dimension of the worked portion of soil corresponds to one dimension of the second part of the cutter, the second part being located at or towards one end of the first part to extend from the first part on one or on both sides of the first part for contacting the soil, wherein rotary movement of the first part of the cutter causes corresponding rotary movement of the second part of the cutter such that when the second part of the cutter contacts the soil is granulated to form soil particles, wherein a first part of the granulated soil forms a layer of soil particles interspersed with cavities and voids to form an aerated array of soil particles within the worked portion of the soil and a second part of the granulated soil is deposited to at least one side of the portion of worked soil formed by the action of the cutter such that the first part and the second part of the granulated soil provides enhanced growth of plants in the worked portion of the soil.
- According to one form of the present invention there is provided a cutting assembly for forming a portion of worked earth or soil, said cutting assembly including a multitude of cutters mounted for simultaneous rotation wherein each cutter comprises a first part which is fixedly connected to the cutting assembly to rotate in use, and a second part which is capable of working soil to form a worked portion of soil having a dimension which corresponds to one dimension of the second part of the cutter, the second part of the cutter being located at or towards one end of the first part to extend from the first part on at least one side of the first part for contacting the soil wherein rotary movement of the first part of the cutter causes corresponding rotary movement of the second part of the cutter such that when the second part of the cutter contacts the soil, the soil is granulated to form soil particles wherein a first part of the granulated soil forms a layer of soil particles interspersed with cavities and voids to form an aerated array of soil particles within the worked portion of the soil and a second part of the granulated soil is deposited to at least one side of the worked portion of soil formed by the action of the cutter such that the first part and the second part of the granulated soil provides enhanced growth of plants in the worked portion of soil.
- According to one form of the present invention there is provided a tilling apparatus comprising a cutting assembly having a multitude of individual cutters mounted for rotation about a rotary shaft in groups at spaced apart locations along the length of the rotary shaft to form a multitude of spaced apart rows of worked earth or soil wherein the cutter comprises a first part fixedly connected to the tilling apparatus so as to rotate in use, and a second part for contacting soil to form a worked portion of soil which has one dimension corresponding to one dimension of the second part of the cutter, the second part of the cutter being located at or towards one end of the first part of the cutter to extend from the first part on at least one side of the first part of the cutter for contacting the soil wherein rotary movement of the first part of the cutter causes corresponding rotary movement of the second part of the cutter such that when the second part of the cutter contacts the soil, the soil is granulated to form soil particles wherein a first part of the granulated soil forms a layer of soil particles interspersed with cavities and voids to form an aerated array of soil particles within the worked portion of soil and a second part of the granulated soil is deposited to at least one side of the worked portion of soil formed by the action of the cutter such that the first part and the second part of granulated soil provides enhanced growth of plants in the worked portion of soil.
- According to one form of the present invention, there is provided a method of cultivating soil to increase the productivity of soil when cultivated comprising the steps of using a tilling apparatus having a multitude of rotatable cutters to form rows of spaced apart cultivated soil by travelling over the soil, wherein the rotating cutter comprises a shank capable of being fixedly connected to the tilling apparatus so as to allow rotary movement of the cutter, and a blade capable of contacting soil to be worked to form a worked row of soil, in which the width of the row is about at least as wide as the length of the blade, the blade being located at or towards one end of the shank to extend substantially perpendicularly from the shank to one or both sides of the shank for contact with the soil, wherein rotary movement of the shank of the cutter causes corresponding rotary movement of the blade of the cutter such that the action of the blade on contacting the soil causes granulation of the soil to form substantially discrete soil particles in which a first part of the granulated soil forms a layer of soil particles interspersed with cavities and voids to form an aerated array of soil particles within the row of worked soil and a second part of the granulated soil is deposited to the side or sides of the row being formed by the action of the cutter so as to extend along the row, said first part and second part of the granulated soil providing enhanced growth of plants along the sides of the row and within the row.
- According to one form of the present invention there is provided an apparatus for tilling soil by forming at least two spaced apart rows of worked soil comprising a frame for supporting a rotatable shaft capable of being driven in rotary motion, a multitude of discs fixedly mounted to the shaft at spaced apart locations along the length of the shaft for rotation with the shaft, each disc having a multitude of tines fixedly mounted to the disc so that part of the tine extends outwardly from the plane of the disc wherein rotation of the shaft causes movement of the tines to form a row of worked soil, such that the action of the tines on the soil causes granulation of the soil within the row of worked soil to form substantially discrete particles of soil wherein a first part of the granulated soil forms a layer of soil particles intermixed with cavities or voids to form an aerated array of soil particles within the row and a second part of the granulated soil is deposited to the side or sides of the row formed by the action of the tines to extend along the edge of the row to provide for enhanced growth of plants along the edge of the row and within the row.
- Typically, the tilling apparatus is a renovator, cultivator, plough, tilling device, renovator/planter, renovator/seeder, renovator/smudger or similar for cutting and working the soil to break up the soil to form small size particles of soil such as pieces, clumps, granules, aggregates or the like by repeatedly working the soil, particularly the particles of soil cut from the earth during working of the soil in a one pass operation. It is to be noted that the term, tilling apparatus, is not to be restricted to tilling devices but also includes other similar devices for working the soil and the like, including any device for comminuting the soil into pieces of a size allowing aeration of the soil to take place, and includes combinations of operations such as levelling the soil with a leveller, or smudging or smoothing the soil after cutting or planting or the like.
- Typically, the portion of worked soil is a piece, tract, section, stretch or similar of land containing soil which has been treated or worked by the various form of the tilling apparatus. More typically, the portion of worked soil is in rows which are arranged as substantially parallel spaced apart rows corresponding to the width of the working implements of the tilling apparatus.
- Typically, the implement for working and/or cutting the soil is a cutter or cutting device or similar for cutting, slicing, tearing, or similar, the soil to aerate the soil. The implement can take any suitable, convenient or applicable form for forming the rows of worked soil and/or granules of worked soil, particles of soil or the like.
- In one form, the cutter is provided with a blade. Typically, the blade of the cutter is a cutting blade, plough blade or similar for comminuting the soil into particles. In one form, each cutter has a single blade or each cutter has two or more blades. In one form, the blade extends from the one side of the cutter, whereas in other forms, the blades extend from both sides, and where the cutter has two blades, the blades extend from both sides of the cutter, such as for example, the blade is a substantially T-piece blade which can cut the soil on both sides of the cutter to form the row or trench.
- In one form, the row of worked soil is or includes, a groove, trench, channel, furrow, concavity, rut, score, slot, ditch, trough, dip, hollow, depression, seedbed or the like.
- In one form, the trench or furrow includes an edge of the trench or furrow or the like including an apron, verge, brink, brow, brim, margin, border, rim, skirt or the like.
- One example of one form of a tilling apparatus will now be described with reference to the accompanying drawings in which:
-
FIG. 1 is a rear side perspective view from above of one form of the tilling apparatus connected to a tractor showing the tilling apparatus in situ connected to a power take off shaft for driving the tilling apparatus. -
FIG. 2 is a rear side perspective view of the form of the tilling apparatus ofFIG. 1 in isolation showing one form of the cutters. -
FIG. 3 is an exploded view of the form of the tilling apparatus shown inFIGS. 1 and 2 . -
FIG. 4 is a side perspective view of one form of the rotary shaft of the tilling apparatus ofFIG. 1 without attached cutters. -
FIG. 5 is an exploded view of one form of the manner in which two oppositely directed cutters are mounted to one disc of the rotary shaft. -
FIG. 6 is a top perspective schematic view of one form of the rows being formed by the tilling apparatus when towed by a tractor. -
FIG. 7 is a schematic cross-sectional view showing the relationship between the cutters and the unworked soil after the formation of the rows by the passage of the tilling apparatus. -
FIG. 8 is a cross-sectional view showing the direction of rotation of the cutters during operation of the tilling apparatus to work the soil so as to cut a trench and to granulate and lift the soil as the trench is being cut. -
FIG. 9 is a schematic cross-sectional view of a stylised trench containing soil formed after passage of the tilling apparatus showing the structure of the soil including the trench and fissures in the side walls of the trench so as to aerate the soil. -
FIG. 10 is a rear perspective view of another embodiment of the tilling apparatus showing a seeder and related hardware mounted to the rear of the tilling apparatus for conveying seeds for planting into the rows formed by passage of the tilling apparatus over the surface of the soil. -
FIG. 10A is an enlarged view of one form of the distributor of the seeder for distributing seed into the various chutes of the seeder shown inFIG. 10 . -
FIG. 11 is a schematic view of another embodiment of the tilling apparatus suitable for low pass tilling showing one combination of different implements. -
FIG. 12 is a schematic top perspective view of one form of a spreader for spreading and/or levelling the granulated soil after planting. -
FIG. 13 is a schematic side view of one form of a deflector valve for controlling a flow of air to the respective delivery hoses of the planter for planting seeds. -
FIG. 14 is a rear perspective view of another form of the tilling apparatus having a seeder and a leveller for levelling soil after passage of the tilling apparatus. -
FIG. 14 a is an enlarged perspective view of the form of the leveller ofFIG. 14 . -
FIG. 15 is a schematic cross-sectional view of another form of a row before passage of the leveller over the top of the row. -
FIG. 16 is a schematic cross-sectional view of the row ofFIG. 15 after passage of the leveller showing granulated soil particles returned to the trench. -
FIG. 17 is a schematic end cross-sectional view of the formation of rows using a further embodiment of the tilling apparatus having a protective shear. -
FIG. 18 is a side cross-sectional view of the form of the tilling apparatus ofFIG. 17 having the protective shear prior to contacting a solid foreign object. -
FIG. 19 is a side cross-sectional view of the form of the tilling apparatus ofFIG. 17 having the protective shear after contacting the solid foreign object. - One form of a tilling apparatus and/or tilling system will now be described with reference to the accompanying drawings.
- In one form,
tractor 2, typically of a conventional configuration for general farm work, is provided with a power takeoff arrangement, including apower takeoff shaft 4 for driving a tilling apparatus, generally denoted as 20, through asuitable gearbox 6 and transmission, including ashaft 8 andchain 10.Chain 10 is engaged around anupper gear wheel 12 and alower gear wheel 14. It is to be noted that any suitable power takeoff shaft, gearbox, transmission or components thereof or any motive arrangement or power may be used for driving tillingapparatus 20 in whatever form the tilling apparatus takes, such as for example, the transmission can include a set of gears in meshed relationship for transmitting power to the tilling apparatus. The power source and transmission is illustrative of the manner of driving tillingapparatus 20. - Tilling
apparatus 20 includes amain framework arrangement 22 comprising, in one form, two transversely extending front andrear frame members side frame plates rear members rigid framework arrangement 22 to which the other components of tillingapparatus 20 may be mounted or connected as will be described in more detail below. A pair of inboard longitudinally extendingbraces 31 a, b are provided to extend betweentransverse framework members side plates framework arrangement 22. As shown in phantom inFIG. 1 ,movable flap 16 is hingedly connected totransverse framework member 26 byhinges 18 which are located at spaced apart locations along the length of reartransverse member 26.Flap 16 is movable between a raised position as shown in phantom inFIG. 1 and a lowered position as shown in phantom inFIG. 10 . - In usual operation of tilling
apparatus 20,flap 16 is in the lowered position allowing rotational operation ofapparatus 20. Whenflap 16 is in the raised position as shown inFIGS. 1 and 6 , less of the particles of soil being granulated by the cutters fall back into the trench and whenflap 16 is in the lowered position as shown inFIG. 10 , more of the particles of soil fall into the trench. Also, whenflap 16 is in the lowered position,flap 16 acts on the particles of soil to assist in breaking up any clumps of soil and/or to spread the particles more evenly over the sides of the row and in the trench. In this position,flap 16 acts like a smoother or smudger to spread and/or level the soil particles evenly over the width of the tilling apparatus. - When
flap 16 is in the raised position, rotation of the tilling apparatus allows the soil to be granulated into small substantially spherical pieces or the like and thrown from the apparatus. In this configuration, the flap assists in deflecting the granules into the trench or to the side of the trench as the particles are being raised by the rotary action of the tilling apparatus as will be described in more detail later in this specification. - When
flap 16 is in the lowered position, as the tillingapparatus 20 travels over the surface of the soil, the granules of soil on the surface are redistributed by the action of the flap being dragged through the granules which has a tendency to spread the granulated soil particles over the seeds, both to the sides of the trench and in the trench, to cover the seeds in order to promote germination of the seeds and other germination development of the roots of the plant and growth of the plant. - Optionally,
apparatus 20 is provided with guides or shrouds connected to the rear ofapparatus 20 for providing a permanent fitting to deflect said particles back onto the ground into the trench and sides of the trench. In one form, the shroud is a one piece construction whereas in other forms, the shroud is a two piece constructions. - In one form, the shroud is provided with a generally T-shaped cut-out or aperture through which the shank and blade of a cutter can pass when rotating. In one form, shroud takes the place of
flap 16 to retain and/or deflect soil particles being thrown up by the rotation of the cutters. It is to be noted that the shroud or housing at the rear of the tilling apparatus can have any suitable or convenient shape or arrangement. - Returning now to the description of the tilling apparatus,
rotary shaft 32 is journalled inbearings 33 located within suitable housings at or towards either transverse side ofapparatus 20, such as for example on or near toside plates rotary shaft 32 for rotation during use of tillingapparatus 20. One end ofrotary shaft 32 is connected tolower gear wheel 14 permitting rotation ofrotary shaft 32 in the direction of arrow A ofFIG. 1 in use of tillingapparatus 20. Although the rotation is in the direction of arrow A ofFIG. 1 , it is to be noted that the direction of rotation can be either direction, i.e. in direction A or in the opposite direction. -
Shaft 32 is provided with a multitude ofrotary discs 34 fixedly connected toshaft 32 located at regularly spaced apart locations onshaft 32. Eachrotary disc 34 is provided with a multitude of spaced apart apertures 36 located circumferentially around the edge ofdisc 34. In one form, there are fourrotary discs 34 located at 500 mm centres onshaft 32. However, it is to be noted that any number ofdiscs 34 can be provided onshaft 32 depending upon the width of tillingapparatus 20 and the length ofshaft 32, and the amount of working required of the soil and the nature and type of the soil to be cultivated. Additionally, the spacing betweenadjacent discs 34 can be any suitable spacing to suit requirements. Further, it is to be noted that in some embodiments,rotary discs 34 can be replaced with any suitable connector or the like for connecting the cutters to the tilling apparatus. - The distance between
adjacent discs 34 can be any suitable spacing, such as for example, between from about 200 mm to about 2000 mm, with a typical spacing being about 500 mm. Additionally, the diameter ofdisc 34 can extend from being about 200 mm to about 4000 mm with diameters typically being in the range of from about 250 mm to 3000 mm and preferably from about 300 mm to about 2000 mm. Typically, the diameter of the disc is from about 400 mm to 2000 mm depending upon the depth of cut of the trench required when cultivating the soil using tillingapparatus 20 as will be described in more detail later in this specification. - In one form, a multitude of cutters in the form of
tines 40, are fixedly connected to eachrotary disc 34 such as for example bybolts 38 received throughapertures 36 located around the periphery of eachdisc 34 at or towards the circumference of each disc as shown in the drawings, particularlyFIGS. 1, 2, 3 and 4 . - It is to be noted that the number of
separate tines 40 connected or mounted on eachdisc 34 can vary from about 2 to about 60 depending upon the size ofdisc 34 and the types of soil being worked, as well as the size, shape or type of tine being used as well as the size of the trench being formed. However, depending upon the diameter of thedisc 34, the number of individual tines is typically from about 4 to about 12, with 6 being typically the preferred number of tines as illustrated in the drawings. In one embodiment of tillingapparatus 20,tines 40 can be connected directly toshaft 32 or any other form of suitable intermediate connector can be used betweenrotary shaft 32 andtines 40 to mount the tines. - In one form,
tines 40 are generally of an L-shaped configuration having a connectingshank 42 which is substantially straight or planar and ablade 44 which is arranged to extend transversely of the plane ofshank 42, such as for example, preferably to extend substantially perpendicularly from connectingshank 42 as illustrated in the drawings. However,tines 40 can have any suitable or convenient shape. One other possible shape is that other forms of tines can be generally T-shaped in which the blades extend substantially perpendicularly outwardly from the shank on both sides of the plane of the shank. In other forms, the cutters can be of either type attached torotary disc 34 so that the apparatus has a combination of different types or orientations of tines. - Other forms of the blades include straight blades having a cutting surface or edge located at one end, i.e. the distal end and/or along one side edge, i.e. the leading edge when rotating. In one form, the blade is a spike or similar having a substantially straight shaft extending radially from rotating
shaft 32 and/ordisc 34 provided with a sharpened end in the form of a point or the like. - In another form, the blade is a curved blade, typically curved in the lengthwise extending direction or in the direction transverse to the longitudinal axis or both.
- In another form, the blade is a twisted or bent blade having a cutting surface, edge or end out of the plane of the blade in a manner similar to the blade of a lawn mower or similar cutting tool. In another form, the blade is twisted out of the plane of the blade in the lengthwise extending direction so that the cutting surface, edge or end is arranged to extend transversely to the plane of the shaft of the blade.
-
Shank 42 is provided with a pair of spaced apart apertures 43 for receivingbolts 38 therethrough to attachtines 40 todiscs 34 as shown more particularly inFIG. 5 . In one form,tine 40 is of a generally rectangular or trapezium-like shape having two substantially parallel straight sides, one side at right angles to the two parallel sides and one side being angularly inclined to both parallel sides, as shown in the drawings. One lengthwise extending edge ofshank 42 which is thecutting edge 47, is substantially straight, whereas the other edge ofshank 42 being the tailingedge 45 is also substantially straight so thatshank 42 has a generally quadrilateral shape. However, any suitable or functional shape is possible, such as curved blades, truncated blades, trapezium-like blades or the like, including blades having straight cutting edges, twisted cutting edges, serrated cutting edges, or having curved cutting edges.Blade 44 is typically of a truncated form and extends for about 70 mm fromshank 42. However, the end of the tine can have any length or width as required as well as having any orientation or shape. It is to be noted that the purpose oftine 40 is to cut, chop or otherwise disturb the soil and reduce the soil to granules or other smaller sized particles, i.e. to comminute the soil so as to allow aeration of the soil or the like when the soil particles collect in the trench or to the sides of the trench. - It is also to be noted that the position, location or orientation of the blades is such that there are overlapping cuts from two
adjacent blades 44 on the one side or on both sides ofshank 42 to further work the soil being cut to form granulated particles of soil. - In one form,
blades 44 ofadjacent tines 40 are arranged to extend in alternately opposite directions to one another so as to be capable of forming a row or trench of cut earth or soil having a width which is about twice the length of theblade 44 located at the end oftine 40 in use of tillingapparatus 20. In one form (not shown), the width of the trench being formed by the tilling apparatus is twice the length ofblade 44 plus the width ofdisc 34 shown more particularly inFIG. 7 . - In one form,
tine 40 is connected todisc 34 by a suitable connector in the form of a fastener. In one form, the suitable fastener includes a main bolt of a size and strength to fixedly connecttine 40 todisc 34, such as for example, of a size and strength comparable to bolt 38, and a second part of the fastener, which in one form is a shear bolt (not shown), which is received through aligned apertures ofshank 42 oftine 40 andapertures 36 ofdisc 34. The shear bolt is of a size and type that ruptures when subjected to a force or impact greater than a threshold amount of force or impact. During operation, iftine 40 contacts a foreign object such as for example, a hard object or immovable object, such as for example a rock embedded under the surface of the soil being worked, the force or impact ofblade 44 contacting the rock causes the shear bolt to break, allowingtine 40 to pivot about the main bolt so thatblade 44 can swing out of contact with the rock and the tilling apparatus can continue operating, thereby preventing unnecessary damage totine 40,disc 34 or tillingapparatus 20. When convenient, a replacement shear bolt can be inserted through the aligned apertures oftine 40 anddisc 34 to fully reattachtine 40 todisc 34 so that tillingapparatus 20 is ready for further work once again. However, it is to be noted that other forms of arrangements for preventing damage to the tilling apparatus and/or to deflect the tilling apparatus away from the solid foreign object. One such arrangement is shown inFIGS. 17 to 19 which will be described later in this specification. - Operation of tilling
apparatus 20 and the tilling system involving the use of tillingapparatus 20 will now be described. - In operation, rotation of
power takeoff shaft 4 causes rotation ofdiscs 34 andtines 40 to enableblades 44 to cut a trench or row as will now be described in more detail with particular reference toFIGS. 6 to 9 . Typically, the speed of rotation ofshaft 32 is from just above zero to about 2000 rpm, usually in the range of about 50 to 400 rpm and preferably in the range of about 100 to 300 rpm. - With particular reference to
FIG. 6 , astractor 2 travels along the surface ofsoil 50, such as for example, traversing a paddock, field, or other tract of land,tines 40 are caused to rotate typically in the direction of arrow A ofFIG. 1 , so thatblades 44 cut the soil to form four substantiallyparallel rows 52 of worked earth or worked soil caused by the rotation ofblades 44 at the respective ends oftines 40 cutting through the earth in order to till or otherwise cultivate the soil to formrows 52. It is to be noted that in this configuration,flap 16 is in a partially raised position as shown in phantom inFIG. 6 . - In forming
rows 52, the soil in the immediate vicinity oftines 40 is granulated to form small lumps or particles of soil of typically, a generally spherical shape which can be loosely stacked or packed with each other to form a well ventilated or aerated array of spherical lumps or particles of soil withintrench 54 astrench 54 is being formed withinrow 52. - The formation of
trench 54 will now be described with particular reference toFIGS. 7 to 9 . - As
tractor 2 travels over the surface of the earth orland 50,tines 40 rotate to formtrenches 54 which is the central longitudinally extending part ofrow 52.Trench 54 has a width in accordance with the length ofblade 44 orblades 44 oftine 40, as shown more particularly inFIG. 7 . In particular, the width oftrench 54 is about or slightly greater than twice the length ofblade 44. In addition to formingtrench 54,blades 44 impact the soil withintrench 54 to work the soil within the trench so as to formsmall soil granules 60 by the repeated cutting action ofblades 44 against the soil in the trench asblades 44 rotate withintrench 54. It is to be noted that the speed of rotation ofshaft 32 is very much greater than the speed of travel oftractor 2, and hence tillingapparatus 20, overland 50 so that there are repeated cuts of substantially the same soil byblades 44. -
Soil granules 60 are moved around withintrench 54 in a manner such that some of the granules are lifted out oftrench 54 by the rotary action ofblades 44 contacting the undersurface of the granules which are deposited at or along the longitudinally extending side edges 56 oftrench 54 so as to form a layer ofgranulated soil 57 along the periphery, rim or apron of the trench, and other of thegranules 60 are lifted and tumbled over one another withintrench 54 byblades 44 so as to fall back intotrench 54 so as to remain withintrench 54 to form an aerated array or stack ofgranules 59 intrench 54. In one form, it is noted that the granules from the top soil and subsoil are mixed which allows water infiltration and retention which results in increased oxygen detoxification of gas build up in the soil. - It is to be noted that some of
soil granules 60 are not lifted fully out of the trench but rather fall back into the trench so as to remain in the trench to form an array orassemblage 59 of granules orparticles 60. However,granules 60 remaining intrench 54 are not hard packed or clumped together within the trench, but are loosely arranged within the trench in a stacked array with voids, cavities or the like 61, formed between them so as to form an aerated mixture ofgranules 60, andcavities 61, or voids allowing air to access the interior of the trench and allowing seeds deposited in the trench to germinate and grow within the trench by having access to nutrients in the granules and soil within the trench more easily than if the soil was compacted or packed. Also, it is to be noted that seeds planted simultaneously with cutting and spreading the soil particles within and to either side of the trench, are also provided with an enhanced chance of flourishing and growing after germination without competition from other plants until the root systems of the plants develop from the recently planted seeds are well established. - It is to be noted that typically, about 50% of the soil remains in the trench in the form of granules and about 50% of the granules are lifted from the trench and deposited on one or both sides, typically on either side, of the trench to a distance of up to about 300 mm from the edge of the trench on both sides of the trench because of the arrangement of
blades 44 extending in opposite directions alternately to each other to form an aerated layer ofgranules 56 on the surface of the soil which provides suitable conditions for increased or improved growth of plants along the sides, edges or aprons ofrows 52 formed by tillingapparatus 20 and/or suitable conditions for colonisation by beneficial insects, soil biota, or the like, such as for example soil organisms, worms or similar, which further improves the health and development of plants either growing in the vicinity of the rows, such as along the layer ofgranules 56, or about to be planted withintrench 54. - Simultaneously with the formation of
granules 60 from the soil within the trench, the rotary action ofblades 44 lifts the soil in the immediate vicinity of theside walls 58 oftrench 54 as illustrated schematically inFIG. 8 , so as to separate the side walls of the trench intosegments 64 by forming a multitude of cracks, fissures or otherelongate cavities 66 in the strata of soil at and/or towards eitheredge 58, or side wall of the trench. Thus, rotary action of the blades of the tines within the trench not only granulates the soil within the trench but also lifts and separates the soil insegmented layers 64 to form fissures or cracks 66 alternately with layers of soil at the sides of the trench. Although any number of cracks or fissures can be formed within the sidewalls of the trench, typically, about three or four separate cracks orfissures 66 are formed in either sidewall of the trench, depending upon factors, such as for example, the diameter ofdisc 34, the length ofshank 42, the length, orientation and number ofblades 44 and the like, including the type of soil and the condition of the soil, atmospheric condition and the like. Cracks or fissures 66 allow air to penetrate the strata of soil to increase the aeration of the soil. Typically, each crack or fissure extends up to about 150 mm from the edge of the trench and to a height of up to about 6 mm. Further, it is to be noted that each fissure or crack is substantially tapered in cross-section profile from a relatively wider gap at or towards the opening in theedge 58 of the trench to a relatively narrow gap at the blind end of the crack or fissure in the body of the soil profile, depending on the nature and condition of the soil. The lifting of the granules out of the trench, depositing the granules along the edges of the trench and the formation of the fissures at the sides of the trench are all illustrated schematically inFIG. 9 . - It is to be noted that the more open structure of the soil adjacent the edges of the trench and the aerated granules within the trench promote improved growth of plants or seeds in the trench and in close proximity to the trench because of the increased access of air, particularly oxygen to the roots of the plants located within the soil, including existing plants and newly planted plants such as plants developing from seeds lodged within the trench.
- Operation of the tilling
apparatus 20 therefore promotes improved growth and health of plants located within the trench and immediately adjacent the edges of the trench by providing increased access to nutrients within the soil close to the plants and increased access to oxygen which are allowed to penetrate into and within the trench and to the soil immediately adjacent the trench having the cracks or fissures. It is to be noted that the aerated structure of the soil promotes green manure cropping with its attendant benefits both within the trench and between the trenches. - It is to be noted that the depth of the trench can extend from about 10 mm to about 2000 mm with a depth of about 100 mm being typical.
- Further, it is to be noted that the width of the trench can be from about 2 mm to about 600 mm wide, with typical widths being in the range from about 25 mm to 250 mm, and preferably widths of about from 75 mm to 150 mm.
- Furthermore, it is to be noted that distance between the centrelines of adjacent trenches can be from about 100 mm to about 3000 mm with typical widths being about from 200 mm to about 2000 mm, and preferably widths of about 250 mm to about 1500 mm, with widths of about 450 mm being usual.
- A further embodiment of the tilling apparatus will now be described with reference to
FIGS. 10 and 10A which illustrate a form of the tilling apparatus as previously described but with one form of an additional component or subassembly in the form of a seeder, generally denoted as 70, mounted or otherwise connected to the top of the tilling apparatus, such as for example, fixedly connected to the fronttransverse frame 24, or front and reartransverse frame members apparatus 20. - In one form,
seeder 70 comprises a generallyrectangular framework arrangement 72 comprising a transversely extendingframe member 74, a longitudinally extendingframe member 76, and a number of upwardly extendingframe members - A
hopper 80, is provided at or towards the top ofopen framework arrangement 72 for storing seeds of desired crops or plants being sown using tillingapparatus 20, optionally with other additives, such as for example, fertilisers, nutrients, growth enhancers, or the like, since a range of different plants can be sown simultaneously from a mixture of seeds.Hopper 80 is provided with a pair of oppositely inclined slopingwalls hopper 80 can slide in a downwards direction. Aslot 84, or chute or similar, is provided intermediate the two oppositely inclined slidingwalls hopper 80. In one form,slot 84 extends transversely from one longitudinal side ofhopper 80 to the other longitudinal side, whereas in other forms, the slot is a chute or similar. The opening ofintermediate slot 84 allows individual seeds to fall through the slot intermediate the sloping walls so as to be delivered fromhopper 80 into adistributor 86 located underneathhopper 80. -
Distributor 86 is located immediately belowslot 84. In one form,distributor 86 is provided with fourindividual chutes 90 forming four individual pathways for seeds to travel along after being received fromslot 84.Individual chutes 90 are formed fromdivider walls 92 located in spaced apart relationship to one another to define the four pathways. Amovable conveyor belt 94 in the form of an endless loop, having a width approximating the width of the seeder and accordingly, the four individual pathways is arranged to rotate immediately beneathdistributor 86 to convey seed received throughslot 84 todistributor 86 by moving the seed along the fourchutes 90 forming the four individual pathways of the distributor. The direction of movement of conveyor belt 93 is shown by arrows B ofFIG. 10 . - Each individual pathway formed by
divider walls 92, is provided with a generallyperpendicular discharge portion 94 in fluid communication with the pathways respectively. An intermediate conduit, typically in the form of a cylindricalhollow tube 96 is connected at one end to dischargeportion 94 of each pathway for receiving seed deposited onto the pathway byhopper 80. One end of aflexible hose 98 is fixedly connected to downstream end ofdischarge tube 96 and is arranged to be mounted onapparatus 20, such as for example onflap 16, so as to form a delivery pipe for seed directed into this pathway bydistributor 86. Each of the four individual pathways is provided with a dedicatedflexible hose 98 so that there are fourflexible hoses 98 spanning the width of tillingapparatus 20, particularly the width offlap 16. - It is to be noted that any number of
flexible hoses 98 can be provided depending upon the width and size of tillingapparatus 16. Further, it is to be noted that the number ofdelivery hoses 98 corresponds to the number of trenches formed by the tilling apparatus so that a mixture of seeds is deposited in and along the margins of each respective trench. - The other end of each
flexible hose 98 is provided with an outlet, in the form of adrop tube 100 or fitting through which seed conveyed throughflexible hose 98 is passed so as to be deposited within the correspondingtrench 54 being formed by therespective blades 44 as tillingapparatus 20 moves forward over the surface ofland 50. Thus, in this embodiment, the soil is tilled and/or cultivated immediately prior to seed and/or fertiliser being planted within the trench so as to reduce the number of passes machinery must make over the surface of the land to cultivate the land, including planting of seed and/or fertiliser so as to further reduce compaction of the soil. This assists in low-till working of the soil by requiring a single pass only. - In this embodiment,
conveyor 94 is driven by a transmission connected to the gearbox or other parts of tillingapparatus 20 so as to rotate as the tilling apparatus is in operation. In one form, the speed of rotation ofconveyor belt 94 as shown more particularly inFIG. 10 , is independent of the speed of rotation of the tilling apparatus, whereas in other forms, the speeds of the conveyor and apparatus correspond to one another. In one form, the engine speed determines the speed of movement via the power take off, whereas in other forms, the speed of movement is determined by the ground speed of the tilling apparatus, or rather the speed of the ground wheels of the apparatus. In still other forms, the speed of the conveyor is determined by the speed provided by an adjustable speed electric motor dedicated to driving the conveyor. - It is to be noted that the tilling apparatus in whatever form or configuration it is used, can be employed to rejuvenate any type of soil or pasture. In particular, the apparatus can be applied to pasture, to cropping, to over sowing existing pasture or barren ground. The soil in whatever form it is treated, can be conditioned to improve the soil.
- It is to be noted that other forms of the planter are possible.
- In a still further embodiment of the present invention, the tilling apparatus includes further components for treating and/or cultivating the soil. In one form, such as the embodiment illustrated in
FIG. 11 , the combined apparatus which is generally denoted as 110, comprises acoulter cutter 112 located immediately after and adjacent totractor 2 for cutting or mulching stubble or vegetation growing on the surface of soil which is about to be cultivated and/or worked so as to reduce the chances that vegetation will collect around tillingapparatus 110 which could prevent tillingapparatus 110, or any of the individual components of the combination of components of aparticular tilling apparatus 110 from working correctly or efficiently thereby resulting in inefficient operation of the tilling apparatus. Thus,coulter cutter 112 reduces the length of vegetation immediately prior to be cultivated by cutting or shredding the vegetation. - Immediately behind
coulter cutter 112 is aripper 114, or similar, such as for example a spade or chisel head plough, or the like for forming a preliminary cut or groove in the surface ofsoil 50 in preparation for formingtrench 54. In one form,ripper 114 is used to increase the depth oftrench 54 by forming a channel of narrower width then trench 54 prior to the formation of the trench, but at a depth that is greater than the depth oftrench 54 so that the bottom oftrench 54 is a narrow channel or slot extending further into the subsoil or soil profile than is the usual depth of the trench. -
Ripper 114 or chisel plough can have any suitable or desirable shape or configuration or size. Although one configuration is shown inFIG. 11 , in whichripper 114 is curved forwardly, inother configurations ripper 114 is curved rearwardly. However, it is to be noted that the width of the cutting or ripping element ofripper 114 can be greater or less than, usually less than, the corresponding width and/or diameter ofdisc 34 andtines 40, particularly of the alternately orientedblades 42, so that a preliminary groove or cut formed byripper 114 is located in alignment withcorresponding disc 34 andtine 40 arrangement of tillingapparatus 20 so as to form a generally deeper but narrower cut immediately preceding the formation of the trench, but in the same location to assisttines 40 in being able to formtrench 54 particularly to allowblades 44 to contact the soil in order to formtrench 54 with granulated soil and fissures at the side of the trench as described previously in alignment with the preliminary cut or groove. In one form,ripper 114 could be located in between adjacentrotating rotor discs 34. - Immediately behind
ripper 114, is located tillingapparatus 20 having a multitude ofrotary discs 34 andtines 40 arrangements for forming the trench as described previously. - Optionally, the tilling apparatus has a
seeder 80 located at or towards the rear of the tilling apparatus to plant seed and/or apply fertiliser simultaneously as the tractor moves forward. - Use of this form of tilling
apparatus 110 results in low till of the soil by reducing the number of separate passes of the tractor and other farm machinery over the same stretch or tract of land thereby reducing the amount of compaction of the soil and allowing increased amount of aeration to be formed by the tines when cutting the trench and forming the fissures at the side of the trench. - The seeder section of the tilling apparatus is optionally provided with a valve or deflector for metering the distribution of air and/or seed and/or fertiliser to one or more of the delivery hoses for planting the seed and/or fertiliser mixture so as to achieve a more or less uniform distribution of the mixture into each of the trenches. With particular reference to
FIG. 13 , in one form, the valve is a pendulum valve, generally denoted as 120, or similar, for use when the tilling apparatus traverses uneven ground. Alternatively, the valve could be a hinged valve having a hinged deflector, more typically, a weighted hinged deflector or be a weighted deflector that is pivotally mounted for swinging movement from side to side. In one form, the seed mixture is pneumatically conveyed from the individual pathways of the conveyor into each respective delivery hose by a stream of air formed by an electrically controlled fan and motor combination in the form of a blower, typically alow cost 12 volt blower for ease of operation. As the apparatus traverses uneven ground, one side will be at a higher level than the other, particularly as the apparatus crosses contours or travels along contours of a field or paddock being worked. As one side of the apparatus raises, thependulum valve 122 will swing to the opposite side ofplenum chamber 124 or similar as shown in position “X” ofFIG. 13 , to restrict the flow to theexits pivot 126, whilst simultaneously opening theexits plenum chamber 124 leading to the upper side hoses in order to even out the flow of seed mixture to all delivery hoses in an attempt to have a uniform flow of seed mixture in all of the separate delivery hoses despite the orientation of the tilling apparatus. Alternatively, if the other side of the apparatus raises, the pendulum valve will swing to the other side denoted as position “Y” in which exits 128 a, 128 b are opened more and exits 128 c, 128 d are restricted. - One form of a spreader that is optionally included as another component of the combination of components of the tilling apparatus will now be described with reference to
FIG. 12 which shows the spreader in the form of a smudger, generally denoted as 140, having a multitude ofpanels 142 fixedly angularly inclined to one another to form a generally boustrophedonic shape or generally zig-zag shape in which adjacent panels extend in opposite directions aboutdrop pipe 100. Ahinge 144 is located at theinboard end 146 of the junction of two adjacent panels to connectsmudger 140 to thehinges 18, of the tilling apparatus in place offlap 16 which is substituted bysmudger 140.Tubes 100 at the distal end ofdelivery hoses 98 are located at or towards theinternal apexes 148 of the outboard junctions to plant the seed mixture in the respective trenches so that astractor 2 travels further, thelower edges 150 of each ofpanels 142 ofsmudger 140 spreads the granulated soil withintrench 54 over the seed mixture or spreads the granular particles of soil from the margins of the trench along the edges of the trench and/or into the trench. - In one form, the tilling
apparatus smudger 140, replacesflap 16 whereas in another form,smudger 140 is located at or towards the rear of the tilling apparatus in addition toflap 16 remaining in place such thatsmudger 140 is located outboard offlap 16 towards the rear of the tilling apparatus. - Other optional forms of the tilling apparatus include the following:
- In the embodiment of the tilling apparatus shown in
FIG. 14 , theapparatus 20 is provided with a leveller or similar in the form of ridge forming bar or similar, 160, for levelling the edges oftrench 54 to reduce the height of the soil deposited on the apron to the trench and/or to fill intrench 54 so that the row of worked soil is substantially even over the area of the worked portion of soil by passage of tillingapparatus 20. In one form,leveller 160 is of a generally bent rod configuration having a first substantiallystraight portion 162 pivotally connected to the outside surface offlap 16 or of the shroud or housing optionally located at the rear of the tilling apparatus by apivot connector 166 allowingleveller 160 to move up and down over the surface of the worked soil. In one form, the pivot connector provides a spring loaded connector so that eachleveller 160 is capable of independent up and down movement which is biased downwards as the tilling apparatus moves forward. A second substantiallystraight portion 164 is located to extend transversely tofirst portion 162, typically about perpendicularly to thefirst portion 162.Second portion 164 is in contact with the soil so that movement of the second portion over the surface of the soil spreads the soil to level the soil and to push soil into the top of the trench after the seeds have been planted, as shown more particularly inFIG. 16 . It is to be noted thatlevellers 160 are arranged in pairs on either side ofdrop pipe 100 in opposed face-to-face relationship with the respectivesecond portions 164 directed towards one another. - Another component that can be provided optionally on tilling
apparatus 20 is a shear or similar for protecting therotating blades 44 against contact with a solid foreign object such as for example, a buriedrock 168 or the like as the apparatus moves over the surface of the ground in operation. The purpose or function of the shear is to strike the rock in preference to the rotating blades to lift the apparatus including the rotating blades overrock 168 thereby preventing contact between the rock and the blades. - One form of the shear and its operation is illustrated in
FIGS. 17 to 19 and will now be described. - Shear, generally denoted as 170, includes a generally
arcuate member 172 extending in an arc from being fixedly connected at one end to fronttransverse member 24 in front ofrotating cutter 40 at one end to being fixedly connected to downwardly dependingstrut 174 located at or towards the rear of rotatingshaft 32 andcutters 40. It is to be noted thatshear 170 has a thin cross-section and a sharpenedleading edge 173 so as to cut through the soil ahead of rotating cutters so as to form a groove in the soil. As theshear 170 is located directly in front of and in alignment withdisc 34,shear 170 clears a path for the rotating blades located immediately rearward thereof. Aflute arrangement 176 in the form ofindividual flutes shear 170 to guide movement ofshear 170 through the soil to cut the groove in front ofcutters 40 by applying a downwardly directed force to shear 170 so as to maintain shear 270 beneath the surface of the soil so as to provide protection forblades 44. It is to be notedflutes blades 44 so that aeration of the soil can occur at a level which is deeper than the floor of the trench. - During operation of the tilling apparatus, if there is a buried rock or similar in the path of one of the cutters, because
individual shears 170 are located forwardly and in alignment of each of the respective cutters, the front edge ofshear 170 contacts the rock to forceshear 170 in an upwards direction as indicated by arrows “C” ofFIG. 19 as the apparatus moves forward thereby lifting the apparatus over the rock so that the rotating blades of the cutter are clear ofrock 168 thereby avoiding damage to the blades. It is to be noted that there is ashear 170 located forwardly and in alignment with each of therotating cutters 40 as shown more particularly inFIG. 17 .Shears 170 are located in spaced apart relationship over the width ofapparatus 20 in which the spacing corresponds to the spacing ofcutters 40 onshaft 32 so that every cutter is protected by a shear. Althoughshear 170 is shown as being a generally arcuate thin cutting blade for forming a groove in the soil ahead of cutters,shear 170 can have any suitable or convenient form which provides protection for the rotating blades in use. - Advantages of the present invention include the following:
- The use of forms of the tilling apparatus saves time, saves fuel costs, and increases crop yields and the like.
- The soil being worked is aerated which promotes improved pasture increasing yield for farmers.
- The various forms of the tilling apparatus of the present invention assist in the physical processes for the formation and/or conversion of soils, chemical and physical processes, such as for example, including weathering, leaching, new mineral formation or similar. In particular, the tilling apparatus rejuvenates the soil by not only physically disturbing the soil to reduce compaction, but also exposing the soil particles to other processes, including chemical processes, such as for example, hydrolysis, oxidation, chelation, leaching or the like, which can take place more efficiently because of the formation of granules of soil. Hydrolysis is enhanced by improved water holding capacity. Oxidation is increased by aeration taking place and exposing some soil and sub soil elements to atmosphere. Chelation increases the amount of minerals or nutrients which can bind to the soil particles to provide for, and/or increase the volume and diversity of plants, micro-organisms and decaying organic matter that not only produces the chelating agents, but also that can be bound by the chelating agents. The amount of leaching is reduced which maintains mineral and nutrient elements in an available form for use by plants by eliminating oxygen deficiency and water logging.
- The above chemical reactions, and other chemical reactions for changing rock materials into soil can occur, in addition to other chemical reactions for changing one soil type into another soil type, such as for example, converting a silicate material obtained from weathering of rock material into clay type materials by weathering, such as for example, kaolin materials, including kaolinite. Further examples of weathering processes include hydration/dehydration, biological activity, solubilisation in aqueous solutions, and other beneficial processes.
Claims (17)
1. A method of reducing compaction through at least one of tilling, cultivating or renovating of soil that has been exposed to passing farm machinery, the method comprising:
placing a tilling apparatus in cooperation with the farm machinery such that the tilling apparatus engages the soil in a location aft of the farm machinery, the tilling apparatus comprising:
a rotatable shaft that is responsive to rotational power provided thereto by the farm machinery;
a plurality of cutters secured to the rotatable shaft and spaced apart from one another along an axial dimension thereof, wherein each of the cutters defines a disc with a plurality of bladed tines secured on opposing surfaces and about the periphery thereof; and
a leveller disposed aft of the plurality of cutters; and
upon having the tilling apparatus traverse over the soil that is in the path of at least one ground wheel of the farm machinery, using the rotational interaction of the plurality of cutters to comminute the soil through rotational interaction therewith such that an entirety of the reducing compaction of the soil is achieved through the plurality of cutters while a plurality of rows of worked soil are formed in unworked soil at least a portion of which has been compacted by contact with the at least one ground wheel, wherein each of the plurality of rows of worked soil defines a trench comprising a first granulated soil part and a second granulated soil part such that the first granulated soil part comprises an aerated array of soil particles within each of the trenches while the second granulated soil part forms a deposited layer of aerated soil particles onto an apron of the unworked soil, wherein the height of the deposited layer is subsequently reduced upon contact with the leveller.
2. The method of claim 1 , wherein the leveller comprises a plurality of levellers each aligned with a corresponding one of the plurality of rows of worked soil.
3. The method of claim 1 , wherein substantially reducing the height of the deposited layer comprises making the deposited layer substantially even over the area of at least one of the plurality of rows of worked soil by returning at least a portion of the second granulated soil part to the trench.
4. The method of claim 1 , wherein the tilling apparatus further comprises a flap disposed aft of the plurality of cutters, the flap being movable between a raised position and a lowered position.
5. The method of claim 4 , wherein the leveller is pivotably secured to the flap disposed to extend rearwardly therefrom.
6. The method of claim 1 , wherein each of the plurality of bladed tines defining an L-shaped construction.
7. The method of claim 1 , further comprising dispensing seeds from a seeder that is cooperative with the tilling apparatus such that upon such dispensing, at least a portion of the seeds are placed into the trenches prior to passage of the leveller.
8. The method of claim 7 , wherein the leveller comprises a plurality of spring-loaded levellers each aligned with a corresponding one of the plurality of rows of worked soil, wherein each of the plurality of spring-loaded levellers within a particular one of the plurality of rows of worked soil operates independently of the plurality of levellers within other ones of the plurality of rows of worked soil.
9. A tilling apparatus comprising:
a rotatable shaft that is responsive to rotational power provided thereto by farm machinery;
a plurality of cutters secured to the rotatable shaft and spaced apart from one another along an axial dimension thereof, wherein each of the cutters defines a disc with a plurality of bladed tines secured on opposing surfaces and about the periphery thereof such that upon having the tilling apparatus traverse over soil that is in the path of at least one ground wheel of the farm machinery, the rotational interaction of the plurality of cutters comminutes the soil to create a plurality of rows of worked soil at least a portion of which has been compacted by contact with the at least one ground wheel, wherein each of the plurality of rows of worked soil defines a trench comprising a first granulated soil part and a second granulated soil part such that the first granulated soil part comprises an aerated array of soil particles within each of the trenches while the second granulated soil part forms a deposited layer of aerated soil particles onto an apron of the unworked soil;
at least one of:
a plurality of independently movable levellers at least one of each is disposed aft of a corresponding one of the plurality of cutters and configured to contact the plurality of rows of worked soil to reduce a height of the deposited layer; or
a smudger disposed aft of the plurality of cutters and configured to contact the plurality of rows of worked soil; and
a seeder configured to dispense seeds into each of the trenches prior to passage of the at least one of the leveller or spreader thereover.
10. The tilling apparatus of claim 9 further comprising a flap disposed aft of the plurality of cutters, the flap being movable between a raised position and a lowered position.
11. The tilling apparatus of claim 10 , wherein the leveller is pivotably secured to the flap disposed to extend rearwardly therefrom.
12. The tilling apparatus of claim 9 , wherein the seeder comprises:
a hopper to contain seed; and
a plurality delivery hoses in fluid communication with the hopper, wherein a distal end of each of the plurality of delivery hoses is disposed aft of a corresponding one of the plurality of cutters such that a substantial entirety of seeds being dispensed from the distal end are placed in a corresponding one of the trenches.
13. The tilling apparatus of claim 12 , wherein the seeder further comprises a valve for metering the distribution of the seed from the hopper to the plurality of delivery hoses.
14. The tilling apparatus of claim 13 , wherein the valve comprises a pendulum valve.
15. The tilling apparatus of claim 13 , wherein the valve comprises a deflector valve.
16. The tilling apparatus of claim 9 , further comprising a coulter cutter disposed fore of the plurality of cutters.
17. The tilling apparatus of claim 16 , further comprising a ripper disposed aft of the coulter cutter and fore of the plurality of cutters.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/481,349 US20240032448A1 (en) | 2011-09-05 | 2023-10-05 | Tilling apparatus |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2011903588A AU2011903588A0 (en) | 2011-09-05 | Tilling apparatus | |
AU2011903588 | 2011-09-05 | ||
US201161535555P | 2011-09-16 | 2011-09-16 | |
PCT/AU2012/001048 WO2013033764A1 (en) | 2011-09-05 | 2012-09-05 | Tilling apparatus |
US14/185,330 US9516799B2 (en) | 2011-09-05 | 2014-02-20 | Tilling apparatus |
US15/333,599 US11805716B2 (en) | 2011-09-05 | 2016-10-25 | Tilling apparatus |
US18/481,349 US20240032448A1 (en) | 2011-09-05 | 2023-10-05 | Tilling apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/333,599 Continuation US11805716B2 (en) | 2011-09-05 | 2016-10-25 | Tilling apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20240032448A1 true US20240032448A1 (en) | 2024-02-01 |
Family
ID=47831349
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/185,330 Active US9516799B2 (en) | 2011-09-05 | 2014-02-20 | Tilling apparatus |
US15/333,599 Active 2033-02-26 US11805716B2 (en) | 2011-09-05 | 2016-10-25 | Tilling apparatus |
US18/481,349 Pending US20240032448A1 (en) | 2011-09-05 | 2023-10-05 | Tilling apparatus |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/185,330 Active US9516799B2 (en) | 2011-09-05 | 2014-02-20 | Tilling apparatus |
US15/333,599 Active 2033-02-26 US11805716B2 (en) | 2011-09-05 | 2016-10-25 | Tilling apparatus |
Country Status (17)
Country | Link |
---|---|
US (3) | US9516799B2 (en) |
EP (1) | EP2753163B1 (en) |
CN (1) | CN103917081B (en) |
AU (1) | AU2012307078B2 (en) |
BR (1) | BR112014005088B1 (en) |
CA (1) | CA2845022C (en) |
DK (1) | DK2753163T3 (en) |
EA (1) | EA027708B8 (en) |
ES (1) | ES2659188T3 (en) |
HU (1) | HUE036447T2 (en) |
IN (1) | IN2014KN00758A (en) |
PL (1) | PL2753163T3 (en) |
PT (1) | PT2753163T (en) |
RS (1) | RS56970B1 (en) |
SI (1) | SI2753163T1 (en) |
WO (1) | WO2013033764A1 (en) |
ZA (1) | ZA201401667B (en) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2753163T3 (en) * | 2011-09-05 | 2018-05-30 | Soilkee Pty Ltd | Tilling apparatus |
DE102011117770A1 (en) * | 2011-11-07 | 2013-05-08 | Artur Willibald | vehicle device |
US9723773B2 (en) * | 2014-10-09 | 2017-08-08 | Ben Jordan | Soil tillage apparatus and method |
US10125472B2 (en) * | 2014-11-27 | 2018-11-13 | Dynamic Ditchers Inc. | Ditch forming implement |
DE202016100748U1 (en) * | 2015-09-15 | 2016-05-18 | Sima Investment Ag | Strip milling machine with at least two mutually spaced milling to produce Fräskanälen |
JP6745108B2 (en) * | 2015-12-28 | 2020-08-26 | 松山株式会社 | Farm work machine |
CN105766144B (en) * | 2016-04-15 | 2018-05-22 | 罗杰 | A kind of digging apparatus for proportion of crop planting |
US20170356160A1 (en) * | 2016-06-14 | 2017-12-14 | Dureen D. Reed | Tiller Back Blade Attachment |
US10231371B2 (en) * | 2016-07-18 | 2019-03-19 | Tribine Industries Llc | Soil compaction mitigation assembly and method |
US20180042165A1 (en) * | 2016-08-12 | 2018-02-15 | Jack Janzen | Hardpan Apparatus |
AU2017276303B2 (en) * | 2016-12-14 | 2024-02-29 | Aqua Tech International Pty Ltd | A Vertical Cultivation Tool |
US10681852B2 (en) | 2017-01-17 | 2020-06-16 | Cnh Industrial Canada, Ltd. | Hybrid tillage implement for vertical tillage and aeration of soil |
US10212873B2 (en) | 2017-01-17 | 2019-02-26 | Cnh Industrial Canada, Ltd. | Hybrid tillage implement for vertical tillage and aeration of soil with deposit of soil additive |
CN106941794A (en) * | 2017-03-09 | 2017-07-14 | 戴新杰 | A kind of agriculture implanted device that loosened the soil with high reliability |
US10414603B2 (en) | 2017-06-19 | 2019-09-17 | Cnh Industrial Canada, Ltd. | Connector for an agricultural vehicle |
CN107360789A (en) * | 2017-09-22 | 2017-11-21 | 太仓宇佳食品有限公司 | One kind automation arable land equipment |
CN109526267A (en) * | 2017-09-22 | 2019-03-29 | 江苏智谋科技有限公司 | The harrow structure of rotary cultivator |
CN107517609A (en) * | 2017-09-26 | 2017-12-29 | 辽宁省农业科学院 | One kind sprays biogas slurry and stalk equipment and layering returning to the field method are buried in upset |
JP7161739B2 (en) * | 2018-03-29 | 2022-10-27 | 小橋工業株式会社 | work machine |
WO2019231340A1 (en) * | 2018-05-31 | 2019-12-05 | Links Innovation Limited | An agricultural implement |
CN109201716B (en) * | 2018-09-21 | 2021-02-02 | 航天凯天环保科技股份有限公司 | Soil turns over throwing device |
EP3856686B1 (en) | 2018-09-27 | 2024-08-14 | Abydoz Environmental Inc. | Apparatus for in-situ reconditioning of a media used in an effluent treatment bed |
CN109168450A (en) * | 2018-11-13 | 2019-01-11 | 山东理工大学 | Plough of the wide seedling with seeder |
KR200488846Y1 (en) | 2019-01-14 | 2019-03-27 | 김창규 | Rotary tilling blade of garlic planter trailed by agricultural machinery |
US11464172B2 (en) * | 2019-01-27 | 2022-10-11 | Homero Sepulveda | Horticultural smudging system and method |
RU193066U1 (en) * | 2019-04-30 | 2019-10-11 | Федеральное государственное бюджетное образовательное Учреждение высшего образования "Воронежский государственный аграрный университет имени императора Петра 1" (ФГБОУ ВО Воронежский ГАУ) | Mounted implement for cavity tillage |
CN110121962B (en) * | 2019-06-20 | 2021-11-09 | 白银帝尧农业机械制造有限责任公司 | Saline-alkali soil comprehensive improvement device |
WO2021064744A1 (en) * | 2019-10-01 | 2021-04-08 | Dharam Singh | A seeder machine for synchronously performing tilling, rolling, seeding and fertilizing |
CN111034421A (en) * | 2019-12-06 | 2020-04-21 | 泰安市农业科学研究院 | Adjustable wide-width green manure crop seeder |
CN111034423A (en) * | 2019-12-06 | 2020-04-21 | 泰安市农业科学研究院 | Single-rotation single-shaft green manure crop seeder |
CN111034424A (en) * | 2019-12-06 | 2020-04-21 | 泰安市农业科学研究院 | Single-rotation double-shaft green manure crop mixed sowing machine |
CN111034420A (en) * | 2019-12-06 | 2020-04-21 | 泰安市农业科学研究院 | Wide-width precise mixed sowing machine for green manure crops |
CN111034422A (en) * | 2019-12-06 | 2020-04-21 | 泰安市农业科学研究院 | Double-shaft wide-width green manure crop seeder |
CN111010911A (en) * | 2020-01-20 | 2020-04-17 | 山东驰象机械科技有限公司 | Tillage equipment for ditching, backfilling and soil replacement |
US11122724B1 (en) | 2020-03-09 | 2021-09-21 | Joshua Zulu | Ground engaging tiller with involute profile |
CN111448854B (en) * | 2020-04-09 | 2022-01-21 | 华中农业大学 | Rotary tillage rotor anti-sticking device based on resonance excitation and rotary cultivator with same |
WO2021220298A1 (en) * | 2020-04-29 | 2021-11-04 | Patel Dr Chaitanya A | Multi-drill culti-rotavator |
CN111448860B (en) * | 2020-05-15 | 2023-09-26 | 广西粉垄科技发展有限公司 | Vertical two-knife type powder ridge tillage machine |
DE102020123519A1 (en) * | 2020-09-09 | 2022-03-10 | Müthing GmbH & Co. KG | Device and method for processing ground cover areas |
RU2749354C1 (en) * | 2020-10-19 | 2021-06-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Горский государственный аграрный университет" | Tillage machine for stony soils |
FR3120281B3 (en) * | 2021-03-04 | 2024-04-19 | Nicolas Froment | Devices intended for working the soil in agriculture, arboriculture and truffle farming |
CN115250659B (en) * | 2022-08-19 | 2023-06-20 | 中国农业科学院农田灌溉研究所 | Auxiliary device for improving germination rate of cotton seeds in saline-alkali soil |
WO2024077334A1 (en) * | 2022-10-10 | 2024-04-18 | K S Paterson Nominees Pty Ltd | Agricultural tillage implement and assemblies |
EP4449839A1 (en) * | 2023-04-18 | 2024-10-23 | Trust Dora | Improved shredder for agricultural machinery |
CN117501863A (en) * | 2023-12-04 | 2024-02-06 | 济南济金所农林商品交易有限公司 | Crop rooter |
CN118235561B (en) * | 2024-05-22 | 2024-11-01 | 山东农业大学 | Wheat seed sowing device and application method thereof |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3128831A (en) * | 1964-04-14 | Arndt | ||
CH182307A (en) * | 1934-12-20 | 1936-02-15 | Mozer Rene | Machine for tillage, etc. |
US2644386A (en) * | 1947-10-09 | 1953-07-07 | John H Sutton | Rotary soil tiller |
US2694969A (en) * | 1952-03-24 | 1954-11-23 | Robert C Chattin | Encircling shield for groundworking tools |
US2974888A (en) * | 1958-06-27 | 1961-03-14 | Int Harvester Co | Flail type chopper rotor |
US3080929A (en) * | 1959-10-08 | 1963-03-12 | Beaver Ind Inc | Cultivator for use on a four-wheel tractor |
US3029879A (en) * | 1959-10-21 | 1962-04-17 | Jr Le Roy Wells | Ground mulching machine |
US3128729A (en) * | 1960-05-24 | 1964-04-14 | James A Henson | All-purpose farm machine |
US3194193A (en) * | 1963-02-13 | 1965-07-13 | Great Western Sugar Co | System and apparatus for preparing soil for row crop planting |
US3348619A (en) * | 1964-08-31 | 1967-10-24 | Reynolds Res & Mfg Corp | Rotary tiller |
US3388750A (en) * | 1964-09-14 | 1968-06-18 | Norman R. Hamm | Ground preparing apparatus |
US3347188A (en) * | 1965-02-04 | 1967-10-17 | Massey Ferguson Inc | Soil incorporator |
NL150658C (en) * | 1965-10-20 | 1977-02-15 | Lely Nv C Van Der | Soil tillage implement |
US3490541A (en) * | 1966-07-01 | 1970-01-20 | Fmc Corp | Apparatus for preparing soil |
US3398707A (en) * | 1966-08-12 | 1968-08-27 | Robert W. Mcclenny | Apparatus for working, treating and planting soil |
GB1313744A (en) * | 1969-08-01 | 1973-04-18 | Rotary Hoes Ltd | Rotary cultivator machine |
BE758539A (en) * | 1969-11-05 | 1971-04-16 | Cantone Natale | AGRICULTURAL MACHINE FOR TILLING THE LAND |
US3661213A (en) * | 1970-03-19 | 1972-05-09 | Clyde L Taylor | Agricultural apparatus for shaped beds |
US3768572A (en) * | 1972-01-21 | 1973-10-30 | Hesston Corp | Structure for eliminating mud collections in farm implements |
CA966005A (en) * | 1972-08-09 | 1975-04-15 | John R. Clover | Depth control skid for land working machine |
US3866552A (en) * | 1973-10-11 | 1975-02-18 | Raymond H Leidig | Roto sod seeder |
US3888196A (en) * | 1974-01-31 | 1975-06-10 | William E Glenn | Dispensing and hood assembly for rotary tiller |
NL174213C (en) * | 1974-04-23 | 1984-05-16 | Lely Nv C Van Der | COMBINATION OF A GROUND TILLING MACHINE AND A MACHINE FOR GROUNDING MATERIAL. |
US3970012A (en) * | 1975-02-21 | 1976-07-20 | Jones Sr Donald F | Soil agitating device |
US4062408A (en) * | 1975-11-03 | 1977-12-13 | Gilson Brothers Company | Rotary tiller tine assembly |
DE2913815A1 (en) * | 1978-04-12 | 1979-10-18 | Patent Concern Nv | TILLAGE MACHINE |
DK369278A (en) * | 1978-08-21 | 1980-02-22 | Anpartselskab Af 4 3 1972 | GARDEN TOOLS WITH A DRUM |
AU523208B2 (en) * | 1978-08-21 | 1982-07-15 | Not Systems Inc | Apparatus for farming row crops |
JPS586817B2 (en) * | 1979-12-04 | 1983-02-07 | 井関農機株式会社 | Rotary type trencher used in orchards, etc. |
US4360065A (en) * | 1980-05-16 | 1982-11-23 | Eugene Jenison | Cultivator for high efficiency windrow disintegration and aeration, row forming, and the like |
US4421176A (en) * | 1980-11-24 | 1983-12-20 | Emerson Electric Co. | Portable power operated cultivator with axially adjustable shield |
US4386661A (en) * | 1981-09-08 | 1983-06-07 | Hesston Corporation | Rear mounted rotary tiller |
US4365673A (en) * | 1981-09-10 | 1982-12-28 | Faulkner Arnold T | Tiller head with shiftable blades |
GB2122061B (en) * | 1982-06-15 | 1985-12-18 | Nat Res Dev | Agricultural soil working implements for ridging soil |
US5303662A (en) * | 1982-11-22 | 1994-04-19 | Denny Drake | Minimum tillage tool bar and method for using same |
US4624197A (en) * | 1982-11-22 | 1986-11-25 | Denny Drake | Minimum tillage toolbar and method for using same |
US4586444A (en) * | 1984-05-07 | 1986-05-06 | Cornelius Thiessen | Liquid chemical incorporator assembly |
US4619412A (en) * | 1985-08-19 | 1986-10-28 | Jack Willingham | Poultry litter disintegrating machine |
US4805704A (en) * | 1985-10-12 | 1989-02-21 | Kobashi Kogyo Co., Ltd. | Rotary tilling device |
JPS62118804A (en) * | 1985-11-20 | 1987-05-30 | 小橋工業株式会社 | Plowing and reaping apparatus |
US4658910A (en) * | 1986-01-15 | 1987-04-21 | Garriss Thurman W | Garden tiller plow tine assembly |
US5287934A (en) * | 1988-12-02 | 1994-02-22 | Brian Porter | Soil working implement |
US5048616A (en) * | 1990-03-05 | 1991-09-17 | Hoffco, Inc. | Garden tiller tine assembly |
US5103624A (en) * | 1991-01-03 | 1992-04-14 | Marshall James W | Method and means for sweeping stalks from furrows onto ridges and shredding same |
US6017169A (en) * | 1993-08-30 | 2000-01-25 | Itex, Division Of Irm, L.P. | Remediation of earthen material |
AU685976B2 (en) * | 1994-07-05 | 1998-01-29 | Wolfram Michael Fix | Cultivator |
US5524711A (en) * | 1994-10-24 | 1996-06-11 | Harris; Tom J. | Agricultural implement for forming planting rows |
US6347593B1 (en) * | 1999-11-02 | 2002-02-19 | Bluebird International, Inc. | Modular dethatcher and seeder |
US6431287B1 (en) * | 2000-04-05 | 2002-08-13 | Russell Ramp | Soil tiller assembly and method for tilling soil |
JP2003189703A (en) * | 2001-12-28 | 2003-07-08 | Mitsubishi Agricult Mach Co Ltd | Rotary tilling machine |
US20060070753A1 (en) * | 2004-06-01 | 2006-04-06 | Kevin Lephart | Ground improvement device |
WO2006128210A1 (en) | 2005-06-03 | 2006-12-07 | John Arthur Notaras | A tiller |
ITPE20050010A1 (en) * | 2005-09-16 | 2005-12-16 | Girolamo Gianluca Di | MECHANICAL MECHANICAL DEVICE OF STERPAGES FOR MILLING MACHINES AND AGRICULTURAL MOTORBIKES |
CN201100986Y (en) * | 2007-10-09 | 2008-08-20 | 卢建祥 | Rotary blade type countryside administration machine opener with variable-ratio |
CN101731030A (en) * | 2008-11-24 | 2010-06-16 | 郝俊峰 | Disk digging type ploughing machine |
US7814984B1 (en) * | 2009-03-23 | 2010-10-19 | King Kutter, Inc. | Tiller apparatus and method |
DE102009060481B4 (en) * | 2009-12-18 | 2012-10-04 | Kässbohrer Geländefahrzeug AG | Rear tiller for a snowcat for snowplow design and care |
PL2753163T3 (en) * | 2011-09-05 | 2018-05-30 | Soilkee Pty Ltd | Tilling apparatus |
US20160029541A1 (en) * | 2014-07-29 | 2016-02-04 | Daniel Richard Martindale | Elastic Rubber Suspension for an Agricultural Implement |
-
2012
- 2012-09-05 PL PL12830633T patent/PL2753163T3/en unknown
- 2012-09-05 RS RS20180139A patent/RS56970B1/en unknown
- 2012-09-05 AU AU2012307078A patent/AU2012307078B2/en active Active
- 2012-09-05 DK DK12830633.9T patent/DK2753163T3/en active
- 2012-09-05 WO PCT/AU2012/001048 patent/WO2013033764A1/en active Application Filing
- 2012-09-05 EA EA201490483A patent/EA027708B8/en unknown
- 2012-09-05 EP EP12830633.9A patent/EP2753163B1/en active Active
- 2012-09-05 SI SI201231205T patent/SI2753163T1/en unknown
- 2012-09-05 ES ES12830633.9T patent/ES2659188T3/en active Active
- 2012-09-05 BR BR112014005088-0A patent/BR112014005088B1/en active IP Right Grant
- 2012-09-05 CN CN201280054314.9A patent/CN103917081B/en active Active
- 2012-09-05 PT PT128306339T patent/PT2753163T/en unknown
- 2012-09-05 CA CA2845022A patent/CA2845022C/en active Active
- 2012-09-05 HU HUE12830633A patent/HUE036447T2/en unknown
-
2014
- 2014-02-20 US US14/185,330 patent/US9516799B2/en active Active
- 2014-03-06 ZA ZA2014/01667A patent/ZA201401667B/en unknown
- 2014-04-03 IN IN758/KOLNP/2014A patent/IN2014KN00758A/en unknown
-
2016
- 2016-10-25 US US15/333,599 patent/US11805716B2/en active Active
-
2023
- 2023-10-05 US US18/481,349 patent/US20240032448A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
AU2012307078B2 (en) | 2017-03-30 |
BR112014005088A2 (en) | 2017-03-28 |
US11805716B2 (en) | 2023-11-07 |
CN103917081B (en) | 2018-03-30 |
CN103917081A (en) | 2014-07-09 |
US20170034984A1 (en) | 2017-02-09 |
US9516799B2 (en) | 2016-12-13 |
EA027708B1 (en) | 2017-08-31 |
WO2013033764A1 (en) | 2013-03-14 |
ZA201401667B (en) | 2014-11-26 |
RS56970B1 (en) | 2018-05-31 |
AU2012307078A1 (en) | 2014-03-20 |
IN2014KN00758A (en) | 2015-10-02 |
DK2753163T3 (en) | 2018-02-05 |
EP2753163A4 (en) | 2015-01-21 |
BR112014005088B1 (en) | 2020-11-10 |
CA2845022A1 (en) | 2013-03-14 |
HUE036447T2 (en) | 2018-07-30 |
EP2753163B1 (en) | 2017-11-08 |
EA027708B8 (en) | 2017-10-31 |
US20140166320A1 (en) | 2014-06-19 |
EP2753163A1 (en) | 2014-07-16 |
PT2753163T (en) | 2018-02-13 |
EA201490483A1 (en) | 2014-12-30 |
SI2753163T1 (en) | 2018-04-30 |
NZ621218A (en) | 2016-03-31 |
ES2659188T3 (en) | 2018-03-14 |
CA2845022C (en) | 2020-08-04 |
PL2753163T3 (en) | 2018-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240032448A1 (en) | Tilling apparatus | |
US4361191A (en) | Seedbed preparation implement | |
CA1166900A (en) | Method for spreading seeds and preparing a seed bed and a combination of implements for carrying out the method | |
US6952998B1 (en) | Minimum till seeding knife | |
US9723773B2 (en) | Soil tillage apparatus and method | |
US6431287B1 (en) | Soil tiller assembly and method for tilling soil | |
US20130199807A1 (en) | Tillage System with Interchangeable Modules | |
RU2696034C1 (en) | Combined device for biomelioration of strongly acidic soils with desalinization and complex treatment of degraded rainfed lands | |
GB1601779A (en) | Method and device for mechanically producing seed or plant drills | |
US3685469A (en) | Combination soil conditioner and seeder | |
US4199030A (en) | Method and apparatus for farming row crops | |
US4331204A (en) | Tillage implement | |
JPS6181705A (en) | Combination of working method and working machine for performing soil agitation and formation of seeding bed | |
JPH08140441A (en) | Disseminator, feeder, fertilizer application in rice plant culture and rice seed disseminator in direct sowing culture | |
Stevens et al. | Mechanical plant control | |
CN113396790A (en) | Mechanized dry direct seeding furrow cultivation method for rice | |
NZ621218B2 (en) | Tilling apparatus | |
JP3593561B2 (en) | Fertilizer application system for slurry tanker used in shallow slurry injector | |
CA2997283C (en) | Soil tillage apparatus and method | |
CN117296495B (en) | No-tillage planter | |
GB2176982A (en) | Rotary cultivator | |
DE102015009166A1 (en) | Invention of a method and a machine in agriculture for peeling mulch with at least a double full-surface undercut for the comminution of high mulch and superficial tailing with sprung split on an x K | |
JP2001352804A (en) | Method and apparatus for tilling, fertilizing and ridge formation | |
PL241511B1 (en) | Machine for growing and fertilizing grasslands and method for growing and fertilizing grasslands | |
Evans et al. | Strip Tillage on Sprinkler Irrigated Sugar Beet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |