[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20130304022A1 - Catheter with direction orientation - Google Patents

Catheter with direction orientation Download PDF

Info

Publication number
US20130304022A1
US20130304022A1 US13/900,584 US201313900584A US2013304022A1 US 20130304022 A1 US20130304022 A1 US 20130304022A1 US 201313900584 A US201313900584 A US 201313900584A US 2013304022 A1 US2013304022 A1 US 2013304022A1
Authority
US
United States
Prior art keywords
catheter
cannula
tubing
distal end
configuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/900,584
Inventor
David Jason Tucker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Medical ASD Inc
Original Assignee
Smiths Medical ASD Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Medical ASD Inc filed Critical Smiths Medical ASD Inc
Priority to US13/900,584 priority Critical patent/US20130304022A1/en
Publication of US20130304022A1 publication Critical patent/US20130304022A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3401Puncturing needles for the peridural or subarachnoid space or the plexus, e.g. for anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0054Catheters; Hollow probes characterised by structural features with regions for increasing flexibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0007Epidural catheters

Definitions

  • the present invention relates generally to catheters such as for example regional anesthesia catheters including epidural catheters that provide local anesthesia to a patient and more particularly to a catheter that has a built-in direction orientation that enhances the movement of the catheter to a particular location inside the patient.
  • catheters such as for example regional anesthesia catheters including epidural catheters that provide local anesthesia to a patient and more particularly to a catheter that has a built-in direction orientation that enhances the movement of the catheter to a particular location inside the patient.
  • a cathether such as an epidural catheter is used to introduce anesthetic agents to the nerves for example at the spine of a patient.
  • an epidural needle such as a Tuohy needle is used by the anaesthesiologist.
  • the Tuohy needle is inserted into the nerve sheath, alongside a nerve plexus of the patient.
  • the Tuohy needle has a sharp distal end that has a beveled aperture, the sharp distal end adapted to readily pierce the nerve sheath at the spinal column of the patient.
  • the anaesthesiologist believes that she has placed the epidural needle at the appropriate location in the patient, she would insert the catheter into the needle and move the catheter until its distal end extends out from the beveled end of the needle cannula.
  • the catheter is usually marked along its length so that the anaesthesiologist knows approximately how much the distal end of the catheter extends beyond the distal tip of the needle cannula.
  • the direction in which the catheter is moved inside the patient depends, to a large extent, on the insertion and placement of the needle cannula inside the patient by the anaesthesiologist and the skill of anaesthesiologist in maneuvering the catheter.
  • an anaesthesiologist experienced or not, may have a difficult time maneuvering the distal end of the catheter to the desired location.
  • a larger than necessary dose of anesthetic agent may be required to be delivered to the patient to locally anaesthetize the patient.
  • the catheter of the instant invention has at a portion proximate to its distal end, whereby anesthetic agent is output to a patient, a cross-sectional profile that predefines or predisposes the distal end of the catheter to be bent or headed to a given direction, once the catheter is no longer constrained by the guide or needle cannula wherethrough it passes.
  • a catheter usually has a uniform circular cross sectional configuration throughout.
  • At least one portion of the catheter is configured to have a cross-section, which may or may not be circular, that predefines or predisposes the distal end of the catheter to move in a given direction.
  • a cross-section which may or may not be circular
  • One of the cross-sectional profiles that may be used is an oval shaped configuration that causes, or predisposes, the catheter to be bent in the direction of the width of the greater cross-section width.
  • Another sectional profile that may be used at the one portion of the catheter is C-shaped so that the distal end of the catheter is predisposed to bend toward the direction represented by the open mouth of the C.
  • the one portion that is configured to cause the distal end of the catheter to bend at a distal direction could have a different thickness at a section thereof so that, even though from the outside diameter the catheter may appear to be no different from the rest of the catheter, the inside diameter at the one portion is dimensioned to have thicker and thinner sections so that, once the one portion is outside of the needle cannula or guide, subject to additional movement, the catheter would tend to bend at a predefined orientation to a given direction, thereby enhancing the movement of the distal end of the catheter inside the patient.
  • the instant invention therefore relates to a catheter to be used with and passable through a guide for insertion to a patient.
  • the catheter includes a tubing that has at least one portion having a cross-sectional profile that is configured to bend or orient the tubing in a given direction so that when the one portion of the tubing extends out of the guide, the tubing is predisposed to be routed or headed in a given direction.
  • the instant invention also relates to a combination of a hollow guide and a catheter passably fitted to and moveable along the guide.
  • the catheter has a substantially circular cross-sectional profile along its entire length except for at least one portion between its distal and proximal ends. This one portion has a cross-sectional profile configured to predispose the distal end of the catheter toward a given direction so as to cause the catheter to move toward the given direction once the one portion of the catheter is no longer constrained by the guide.
  • the instant invention further relates to a catheter that has a distal portion connected to a main portion by a junction that has a cross-section that is different from the respective cross-sections of the main and distal portions.
  • the distal portion if unguided, points to and is movable along a first direction; and the main portion, if unguided, would point to and is movable along a second direction not in alignment with the first direction.
  • the catheter is insertable into and movable along a hollow guide extending along a given axis.
  • the junction that connects the distal portion with the main portion is configured to have a cross-sectional profile that causes the distal portion to bend or head toward the first direction once the distal portion and the junction are no longer confined within the guide after the catheter has been inserted to the guide and moved therealong.
  • the instant invention yet further relates to an apparatus that comprises a needle cannula and a regional anesthesia catheter such as an epidural catheter having a distal end and a proximal end.
  • a regional anesthesia catheter such as an epidural catheter having a distal end and a proximal end.
  • the catheter is movably fitted to the cannula with its distal end being inserted first into the first end of the cannula so that the catheter is movable along the cannula.
  • the catheter has a substantially circular cross-section along its entire length except for at least one portion proximate to its distal end. This one portion has a non-circular cross-section configured to cause the distal end of the catheter to move in a direction predefined by the configuration of the one portion when the distal end and then the one portion of the catheter exit outside the cannula through its distal end.
  • the instant invention moreover relates to a method for introducing a catheter into a patient in which a hollow cannula is provided.
  • the catheter has at least one portion between its distal and proximal ends that is configured to cause the distal end of the catheter to be predisposably moved toward a direction not in alignment with the cannula when the one portion is not confined within or constrained by the cannula.
  • the cannula is inserted into the patient proximate to a location where anesthesia is desired.
  • a catheter is inserted into and moved along the cannula.
  • the distal end of the catheter is first inserted into the cannula. Thereafter, the catheter is continuously moved into the cannula until at least the one portion of the catheter is extended beyond the distal end of the cannula to predisposedly move the distal end of the catheter to the desired placement within the patient.
  • a catheter such as for example a regional anesthesia catheter that has a cross sectional profile that extends longitudinally along the entire length of the catheter.
  • the cross sectional profile is configured to cause the catheter to move in a predefined direction.
  • the catheter of this embodiment comprises a tubing passable through a guide for insertion into a patient, the tubing having a given length and the cross sectional profile of the tubing along its entire length is configured to cause the catheter to bend, curve or move in a given direction.
  • the cross sectional profile of the catheter of the instant invention at the one portion as noted above or along the entire length of the catheter may be configured to be oval shaped or C shaped, or other non-circular shapes for example.
  • the cross sectional profile may also be configured to be partially concaved inwards toward the center axis of the catheter or tubing, or may have a section of the wall where its thickness is different from that of the rest of the catheter.
  • FIG. 1 is a plan view of the catheter system of the instant invention showing a guide in the form of a needle cannula such as an epidural needle, and the regional anesthesia catheter of the instant invention that is to be fitted into and passes through the needle cannula;
  • a needle cannula such as an epidural needle
  • the regional anesthesia catheter of the instant invention that is to be fitted into and passes through the needle cannula;
  • FIG. 2 is the cross-sectional view at A-A of the catheter of the instant invention
  • FIG. 3 is the cross-sectional view B-B of the catheter of the instant invention.
  • FIG. 4 is another cross-sectional view at B-B of the catheter of the instant invention.
  • FIG. 5 is yet another cross-sectional view at B-B of the catheter of the instant invention.
  • FIG. 6 is a plan view showing the distal end of the catheter of the instant invention having been extended outside the distal tip of the needle cannula through which the catheter of the instant invention is fitted and guidedly moved;
  • FIG. 7 is a plan view of another embodiment of the instant invention catheter where the catheter is configured to have a cross sectional profile along its entire length that predisposes the entire catheter to be move in a predefined direction.
  • a hollow guide in the form of a regional anesthetic needle such as for example an epidural needle 2 is shown to include a cannula 4 that has a beveled distal tip 6 having an aperture, not shown.
  • Cannula 4 extends from distal tip 6 to, and through, a needle hub 8 , which for discussion purposes may be considered to be the proximal end of needle cannula 4 .
  • Needle 2 may be a Tuohy needle, but not necessarily so for the operation and understanding of the instant invention.
  • Needle hub 8 is made of a rigid plastic that enables the anesthesiologist to manipulate the needle cannula for insertion into a patient, for example into the nerve sheath, alongside a nerve plexus of the patient.
  • FIG. 1 illustrates an apparatus that comprises an epidural catheter and a needle guide in the form of an epidural needle cannula
  • the instant invention is not limited to epidural catheters. Rather, the instant invention is directed to regional anesthetic catheters which may include, but not limited to, Peripheral Nerve Block catheters, Vascular Access catheters, CV catheters, PICC (Peripherally Inserted Central Catheters) lines, Ureteral catheters, IVF catheters, Oocyte Recovery Suction catheters and Cardiac catheters.
  • Peripheral Nerve Block catheters may include, but not limited to, Peripheral Nerve Block catheters, Vascular Access catheters, CV catheters, PICC (Peripherally Inserted Central Catheters) lines, Ureteral catheters, IVF catheters, Oocyte Recovery Suction catheters and Cardiac catheters.
  • a regional anesthesia catheter such as for example the epidural catheter shown in the embodiment of FIG. 1
  • has a circular cross-section such as that shown in FIG. 2 .
  • the physician has to manipulate the proximal portion of the catheter so as to gently guide the distal end of the catheter to the desired location in the patient.
  • This manipulation of the catheter oftentimes requires a number of trials, even for experienced practitioners.
  • the physician is able to view the catheter, for example via an ultrasound viewing monitor, the placement of the distal end of the catheter nonetheless entails some degree of difficultly. This is possibly due to the fact that the distal end of the catheter, when inside the patient, would usually follow or go in the direction of the least resistance, as the physician moves the catheter.
  • Cannula 4 is adapted to receive a catheter 10 .
  • Catheter 10 which has a distal end 12 and a proximal end 14 , is inserted into cannula 4 via its distal end 12 to the opening (not shown) formed by cannula 4 at hub 8 .
  • Catheter 10 is moved so that its distal end 12 passes through cannula 4 , exiting at the latter's distal tip 6 .
  • Catheter 10 may be manufactured from materials such as but not limited to: nylon including polyamides, Teflon, PVC, urethane, silicone and polyolefins such as polypropylene, polyethylene and polybutylene.
  • catheter 10 is shown to include a distal portion 13 and a main portion 15 that are integrally connected by a junction portion 16 .
  • Portion 16 is located proximate to distal end 12 and has a cross-section that is different from the rest of the catheter, i.e., from both distal portion 13 and main portion 15 .
  • Distal portion 13 may be considered to extend from distal end 12 of catheter 10 to portion 16 while main portion 15 of catheter 10 may be considered to extend from portion 16 to proximal end 14 of the catheter.
  • a number of portions 16 may be effected along the length of catheter 10 so that different predefined bends or curves may be configured in a single catheter.
  • both the distal portion 13 and the main portion 15 of the catheter are in alignment along the longitudinal axis defined by the needle cannula.
  • distal portion 13 of catheter 10 of the instant invention is not in alignment with its main portion 15 , as portion 16 is configured to predisposedly position distal portion 13 out of alignment with main portion 15 of the catheter 10 .
  • Portion 16 of catheter 10 may also be configured to have a given flexibility that allows distal portion 13 and main portion 15 of catheter 10 to align along substantially the same longitudinal axis, so long as distal end 12 of catheter 10 does not come into contact with any obstruction.
  • portion 16 may be configured to flexibly bend in a predisposed direction relative to main portion 15 of catheter 10 when distal portion 13 encounters an obstruction. Although shown as being only a part of catheter 10 , portion 16 may in some iterations include the entire catheter.
  • portion 16 of catheter 10 is configured to have a cross-sectional profile that is different from the rest of the catheter.
  • the cross-section profile, per view B-B may be in the shape of an oval, as shown in FIG. 3 .
  • distal end 12 of catheter 10 is predisposed to move in either direction 18 a or 18 b, rather than 20 a or 20 b.
  • distal end 12 of the catheter when distal end 12 , and then portion 16 , of the catheter are moved beyond distal tip 6 of cannula 4 , depending on the orientation of catheter 10 , as it is being manipulated by the anesthesiologist, distal end 12 of the catheter may either go to the direction as indicated by 18 a or the direction as indicated by 18 b. This movement of distal end 12 in a given direction may be governed by the distal tip 6 of needle cannula 4 to a certain extent, as well as the orientation of catheter 10 as it was initially inserted into cannula 4 .
  • portion 16 of the catheter which may be made from polyamide, may have a different thickness than that of the rest of the catheter. The difference in thickness may be effected during the extrusion process by stretching portion 16 more than the rest of the catheter. To effect an oval shape, portion 26 may be compressed by an appropriate tool after the catheter has been extruded or during extrusion. In any event, to effect the predisposed bending of the distal end 12 of the catheter relative to the remaining portion of the catheter, portion 16 may have a length from approximately 3 mm to 15 cm, depending on the length of the catheter.
  • FIG. 4 shows another cross-sectional profile for portion 16 of catheter 10 of the instant invention.
  • portion 16 has a cross-section in a shape of a C in which a section 22 of the catheter is constructed to have a concave shape toward the center of the catheter.
  • distal end 12 tends to bend in the direction as shown by directional arrow 24 .
  • the bend may be a built-in curve where distal end 12 would not lie in alignment with the remainder portion of the catheter even when the catheter is not confined within a hollow guide such as for example needle cannula 4 .
  • the bend may be such that it only bends toward direction 24 when obstruction is encountered.
  • FIG. 5 shows yet another cross-sectional profile of portion 16 of the catheter of the instant invention.
  • the cross-section is configured to be thicker at section 26 and thinner at section 28 .
  • section 28 is more flexible, or pliable, than section 26 at portion 16 .
  • distal end 12 of the catheter is predisposed to move in the direction as indicated by directional arrow 30 .
  • FIG. 6 shows the apparatus of the instant invention in which catheter 10 has been inserted into epidural needle 2 and moved such that its distal end 12 and portion 16 extend out of distal tip 6 of cannula 4 .
  • distal end 12 of catheter 10 curves toward the direction indicated by directional arrow 32 , due to portion 16 having been configured to have a cross-sectional profile that predisposes distal end 12 to point toward direction 32 , once distal end 12 and portion 16 are no longer confined within cannula 4 .
  • a physician is provided with a hollow guide, such as needle cannula 4 .
  • the cannula is inserted into the patient proximate to a desired location where the catheter is to be placed.
  • the catheter, and more particularly the distal end of the catheter is inserted into the needle cannula and moved therealong, so that distal portion 13 , portion 16 , and main portion 15 of catheter 10 are confined within the cannula and are therefore in alignment along the longitudinal axis of the cannula.
  • the catheter is moved further until distal end 12 , and then portion 16 , exit distal tip 6 of cannula 4 .
  • the orientation of distal end 12 of catheter 10 , relative to cannula 4 is rotatably adjusted or oriented by the physician prior to her inserting the catheter into the cannula so that the distal end of the catheter would exit from the distal tip of the cannula in the direction of the desired location in the patient.
  • FIG. 7 is a plan view illustrating another embodiment of the catheter of the instant invention.
  • the needle cannula to be used with the catheter of the FIG. 7 embodiment is the same as the needle cannula shown in FIG. 1 , no further discussion thereof is needed.
  • catheter 34 of the FIG. 7 note that the entire length of the catheter is configured, per cross-section view C-C, with a cross-sectional profile that may be represented, for example, by any one of the profiles shown in FIGS. 3 , 4 and 5 .
  • the catheter of FIG. 7 may have along its entire length a section configured to have a flexibility characteristic that is different from the other sections of the catheter.
  • catheter 34 as shown in FIG. 7 , may have a naturally curved or biased orientation, even when the catheter is at rest and not being constrained or confined within the needle cannula 4 .
  • catheter 34 of the FIG. 7 embodiment is configured to bend or move in the predefined direction as indicated by directional arrow 36 .
  • catheter 34 when catheter 34 is inserted into needle cannula 4 , assuming that it remains oriented in the position as shown in FIG. 7 , when it is moved by the physician and its distal end exits distal tip 6 of needle cannula 4 , catheter 34 would move in the direction designated by directional arrow 40 , as the distal portion of catheter 34 , shown by dotted line, is naturally biased to and therefore is movable in the predefined direction.
  • Catheter 34 thereby enabling the physician to readily place the distal end 38 of the catheter at the desired location within the patient for the supplying the anesthetic agent to the patient.
  • the catheter of the instant invention has been described thus far as used for supplying an anesthetic agent to a patient, it should be noted that other treatment agents may also be supplied via the inventive catheter.
  • Such other treatment agents may include for example electrical energy, radio frequency (RF), microwave and ultrasound waves that may be transmitted by the catheter.
  • RF radio frequency
  • the catheter may be imbedded with an electrical conductive material such as carbon or includes a wire extending along its length.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

A regional anesthesia catheter used with a guide, for example a cannula, has a distal portion integrally connected to its main portion by a junction portion that has a cross-sectional profile different from the distal and main portions, so as to predispose the distal portion of the catheter to move in a given direction when it is not constrained by the guide. The cross-sectional profile of the junction portion may be configured in a particular shape, or be constructed to have a flexibility that predisposes the distal portion to bend, curve or move toward a given direction. A number of portions of a catheter may be configured to bend at a predefined direction. Further, a catheter may be configured to have a cross sectional profile or a predefined flexibility along its entire length to cause the catheter to move in a predefined direction.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to catheters such as for example regional anesthesia catheters including epidural catheters that provide local anesthesia to a patient and more particularly to a catheter that has a built-in direction orientation that enhances the movement of the catheter to a particular location inside the patient.
  • BACKGROUND OF THE INVENTION
  • For regional anesthesia, a cathether such as an epidural catheter is used to introduce anesthetic agents to the nerves for example at the spine of a patient. To place a catheter close to the nerve spinal column, an epidural needle such as a Tuohy needle is used by the anaesthesiologist. The Tuohy needle is inserted into the nerve sheath, alongside a nerve plexus of the patient. The Tuohy needle has a sharp distal end that has a beveled aperture, the sharp distal end adapted to readily pierce the nerve sheath at the spinal column of the patient. Once the anaesthesiologist believes that she has placed the epidural needle at the appropriate location in the patient, she would insert the catheter into the needle and move the catheter until its distal end extends out from the beveled end of the needle cannula. The catheter is usually marked along its length so that the anaesthesiologist knows approximately how much the distal end of the catheter extends beyond the distal tip of the needle cannula. The direction in which the catheter is moved inside the patient depends, to a large extent, on the insertion and placement of the needle cannula inside the patient by the anaesthesiologist and the skill of anaesthesiologist in maneuvering the catheter. Oftentimes, an anaesthesiologist, experienced or not, may have a difficult time maneuvering the distal end of the catheter to the desired location. As a result, a larger than necessary dose of anesthetic agent may be required to be delivered to the patient to locally anaesthetize the patient.
  • There is therefore a need to provide a catheter that can readily be maneuvered by the physician to a desired location inside a patient.
  • SUMMARY OF THE PRESENT INVENTION
  • To assist a physician or an anaesthesiologist with the placement of a catheter for supplying local anesthetic to a patient, the catheter of the instant invention has at a portion proximate to its distal end, whereby anesthetic agent is output to a patient, a cross-sectional profile that predefines or predisposes the distal end of the catheter to be bent or headed to a given direction, once the catheter is no longer constrained by the guide or needle cannula wherethrough it passes. Conventionally, a catheter usually has a uniform circular cross sectional configuration throughout. For the instant invention, at least one portion of the catheter, preferably at a distance proximate to the distal end of the catheter, is configured to have a cross-section, which may or may not be circular, that predefines or predisposes the distal end of the catheter to move in a given direction. One of the cross-sectional profiles that may be used is an oval shaped configuration that causes, or predisposes, the catheter to be bent in the direction of the width of the greater cross-section width. Another sectional profile that may be used at the one portion of the catheter is C-shaped so that the distal end of the catheter is predisposed to bend toward the direction represented by the open mouth of the C.
  • In addition to having different cross-sectional profiles, the one portion that is configured to cause the distal end of the catheter to bend at a distal direction could have a different thickness at a section thereof so that, even though from the outside diameter the catheter may appear to be no different from the rest of the catheter, the inside diameter at the one portion is dimensioned to have thicker and thinner sections so that, once the one portion is outside of the needle cannula or guide, subject to additional movement, the catheter would tend to bend at a predefined orientation to a given direction, thereby enhancing the movement of the distal end of the catheter inside the patient.
  • The instant invention therefore relates to a catheter to be used with and passable through a guide for insertion to a patient. The catheter includes a tubing that has at least one portion having a cross-sectional profile that is configured to bend or orient the tubing in a given direction so that when the one portion of the tubing extends out of the guide, the tubing is predisposed to be routed or headed in a given direction.
  • The instant invention also relates to a combination of a hollow guide and a catheter passably fitted to and moveable along the guide. The catheter has a substantially circular cross-sectional profile along its entire length except for at least one portion between its distal and proximal ends. This one portion has a cross-sectional profile configured to predispose the distal end of the catheter toward a given direction so as to cause the catheter to move toward the given direction once the one portion of the catheter is no longer constrained by the guide.
  • The instant invention further relates to a catheter that has a distal portion connected to a main portion by a junction that has a cross-section that is different from the respective cross-sections of the main and distal portions. The distal portion, if unguided, points to and is movable along a first direction; and the main portion, if unguided, would point to and is movable along a second direction not in alignment with the first direction. The catheter is insertable into and movable along a hollow guide extending along a given axis. The junction that connects the distal portion with the main portion is configured to have a cross-sectional profile that causes the distal portion to bend or head toward the first direction once the distal portion and the junction are no longer confined within the guide after the catheter has been inserted to the guide and moved therealong.
  • The instant invention yet further relates to an apparatus that comprises a needle cannula and a regional anesthesia catheter such as an epidural catheter having a distal end and a proximal end. The catheter is movably fitted to the cannula with its distal end being inserted first into the first end of the cannula so that the catheter is movable along the cannula. The catheter has a substantially circular cross-section along its entire length except for at least one portion proximate to its distal end. This one portion has a non-circular cross-section configured to cause the distal end of the catheter to move in a direction predefined by the configuration of the one portion when the distal end and then the one portion of the catheter exit outside the cannula through its distal end.
  • The instant invention moreover relates to a method for introducing a catheter into a patient in which a hollow cannula is provided. The catheter has at least one portion between its distal and proximal ends that is configured to cause the distal end of the catheter to be predisposably moved toward a direction not in alignment with the cannula when the one portion is not confined within or constrained by the cannula. The cannula is inserted into the patient proximate to a location where anesthesia is desired. A catheter is inserted into and moved along the cannula. The distal end of the catheter is first inserted into the cannula. Thereafter, the catheter is continuously moved into the cannula until at least the one portion of the catheter is extended beyond the distal end of the cannula to predisposedly move the distal end of the catheter to the desired placement within the patient.
  • Another embodiment of the instant invention features a catheter such as for example a regional anesthesia catheter that has a cross sectional profile that extends longitudinally along the entire length of the catheter. The cross sectional profile is configured to cause the catheter to move in a predefined direction. In particular, the catheter of this embodiment comprises a tubing passable through a guide for insertion into a patient, the tubing having a given length and the cross sectional profile of the tubing along its entire length is configured to cause the catheter to bend, curve or move in a given direction.
  • The cross sectional profile of the catheter of the instant invention at the one portion as noted above or along the entire length of the catheter may be configured to be oval shaped or C shaped, or other non-circular shapes for example. The cross sectional profile may also be configured to be partially concaved inwards toward the center axis of the catheter or tubing, or may have a section of the wall where its thickness is different from that of the rest of the catheter.
  • It is therefore an objective of the instant invention to provide a catheter that is configured to be moved in a predisposed direction inside the patient.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The present invention will become apparent and the invention itself will be best understood with reference to the following description of the present invention taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is a plan view of the catheter system of the instant invention showing a guide in the form of a needle cannula such as an epidural needle, and the regional anesthesia catheter of the instant invention that is to be fitted into and passes through the needle cannula;
  • FIG. 2 is the cross-sectional view at A-A of the catheter of the instant invention;
  • FIG. 3 is the cross-sectional view B-B of the catheter of the instant invention;
  • FIG. 4 is another cross-sectional view at B-B of the catheter of the instant invention;
  • FIG. 5 is yet another cross-sectional view at B-B of the catheter of the instant invention;
  • FIG. 6 is a plan view showing the distal end of the catheter of the instant invention having been extended outside the distal tip of the needle cannula through which the catheter of the instant invention is fitted and guidedly moved; and
  • FIG. 7 is a plan view of another embodiment of the instant invention catheter where the catheter is configured to have a cross sectional profile along its entire length that predisposes the entire catheter to be move in a predefined direction.
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to FIG. 1, a hollow guide in the form of a regional anesthetic needle such as for example an epidural needle 2 is shown to include a cannula 4 that has a beveled distal tip 6 having an aperture, not shown. Cannula 4 extends from distal tip 6 to, and through, a needle hub 8, which for discussion purposes may be considered to be the proximal end of needle cannula 4. Needle 2 may be a Tuohy needle, but not necessarily so for the operation and understanding of the instant invention. Needle hub 8 is made of a rigid plastic that enables the anesthesiologist to manipulate the needle cannula for insertion into a patient, for example into the nerve sheath, alongside a nerve plexus of the patient.
  • Although FIG. 1 illustrates an apparatus that comprises an epidural catheter and a needle guide in the form of an epidural needle cannula, it should be appreciated that the instant invention is not limited to epidural catheters. Rather, the instant invention is directed to regional anesthetic catheters which may include, but not limited to, Peripheral Nerve Block catheters, Vascular Access catheters, CV catheters, PICC (Peripherally Inserted Central Catheters) lines, Ureteral catheters, IVF catheters, Oocyte Recovery Suction catheters and Cardiac catheters.
  • Conventionally, a regional anesthesia catheter, such as for example the epidural catheter shown in the embodiment of FIG. 1, has a circular cross-section such as that shown in FIG. 2. Prior to the instant invention, to move a catheter to a desired location within a patient, after a needle cannula has been properly inserted into the patient, the physician has to manipulate the proximal portion of the catheter so as to gently guide the distal end of the catheter to the desired location in the patient. This manipulation of the catheter oftentimes requires a number of trials, even for experienced practitioners. Even when the physician is able to view the catheter, for example via an ultrasound viewing monitor, the placement of the distal end of the catheter nonetheless entails some degree of difficultly. This is possibly due to the fact that the distal end of the catheter, when inside the patient, would usually follow or go in the direction of the least resistance, as the physician moves the catheter.
  • Cannula 4 is adapted to receive a catheter 10. Catheter 10, which has a distal end 12 and a proximal end 14, is inserted into cannula 4 via its distal end 12 to the opening (not shown) formed by cannula 4 at hub 8. Catheter 10 is moved so that its distal end 12 passes through cannula 4, exiting at the latter's distal tip 6. Catheter 10 may be manufactured from materials such as but not limited to: nylon including polyamides, Teflon, PVC, urethane, silicone and polyolefins such as polypropylene, polyethylene and polybutylene.
  • In FIG. 1, catheter 10 is shown to include a distal portion 13 and a main portion 15 that are integrally connected by a junction portion 16. Portion 16 is located proximate to distal end 12 and has a cross-section that is different from the rest of the catheter, i.e., from both distal portion 13 and main portion 15. Distal portion 13 may be considered to extend from distal end 12 of catheter 10 to portion 16 while main portion 15 of catheter 10 may be considered to extend from portion 16 to proximal end 14 of the catheter. Albeit only one portion 16 is shown in the catheter of FIG. 1 embodiment, in practice, a number of portions 16 may be effected along the length of catheter 10 so that different predefined bends or curves may be configured in a single catheter.
  • When confined within a hollow guide, such as for example needle cannula 4, both the distal portion 13 and the main portion 15 of the catheter, being constrained by the cannula, are in alignment along the longitudinal axis defined by the needle cannula. However, when not confined or constrained, distal portion 13 of catheter 10 of the instant invention is not in alignment with its main portion 15, as portion 16 is configured to predisposedly position distal portion 13 out of alignment with main portion 15 of the catheter 10. Portion 16 of catheter 10 may also be configured to have a given flexibility that allows distal portion 13 and main portion 15 of catheter 10 to align along substantially the same longitudinal axis, so long as distal end 12 of catheter 10 does not come into contact with any obstruction. In other words, portion 16 may be configured to flexibly bend in a predisposed direction relative to main portion 15 of catheter 10 when distal portion 13 encounters an obstruction. Although shown as being only a part of catheter 10, portion 16 may in some iterations include the entire catheter.
  • As noted above, portion 16 of catheter 10 is configured to have a cross-sectional profile that is different from the rest of the catheter. For the FIG. 1 embodiment, the cross-section profile, per view B-B, may be in the shape of an oval, as shown in FIG. 3. With the oval shaped cross-section at portion 16, distal end 12 of catheter 10 is predisposed to move in either direction 18 a or 18 b, rather than 20 a or 20 b. Thus, in practice, when distal end 12, and then portion 16, of the catheter are moved beyond distal tip 6 of cannula 4, depending on the orientation of catheter 10, as it is being manipulated by the anesthesiologist, distal end 12 of the catheter may either go to the direction as indicated by 18 a or the direction as indicated by 18 b. This movement of distal end 12 in a given direction may be governed by the distal tip 6 of needle cannula 4 to a certain extent, as well as the orientation of catheter 10 as it was initially inserted into cannula 4.
  • In the event that obstruction is encountered, distal end 12 would bend in either direction 18 a or direction 18 b, depending on the orientation of the catheter, and the flexibility of the catheter at portion 16. Portion 16 of the catheter, which may be made from polyamide, may have a different thickness than that of the rest of the catheter. The difference in thickness may be effected during the extrusion process by stretching portion 16 more than the rest of the catheter. To effect an oval shape, portion 26 may be compressed by an appropriate tool after the catheter has been extruded or during extrusion. In any event, to effect the predisposed bending of the distal end 12 of the catheter relative to the remaining portion of the catheter, portion 16 may have a length from approximately 3 mm to 15 cm, depending on the length of the catheter.
  • FIG. 4 shows another cross-sectional profile for portion 16 of catheter 10 of the instant invention. As shown, portion 16 has a cross-section in a shape of a C in which a section 22 of the catheter is constructed to have a concave shape toward the center of the catheter. As a consequence, distal end 12 tends to bend in the direction as shown by directional arrow 24. Depending on the flexibility built into portion 16, the bend may be a built-in curve where distal end 12 would not lie in alignment with the remainder portion of the catheter even when the catheter is not confined within a hollow guide such as for example needle cannula 4. Alternatively, the bend may be such that it only bends toward direction 24 when obstruction is encountered.
  • FIG. 5 shows yet another cross-sectional profile of portion 16 of the catheter of the instant invention. In this embodiment, the cross-section is configured to be thicker at section 26 and thinner at section 28. As a consequence, section 28 is more flexible, or pliable, than section 26 at portion 16. Thus, for the embodiment of FIG. 5, distal end 12 of the catheter is predisposed to move in the direction as indicated by directional arrow 30.
  • FIG. 6 shows the apparatus of the instant invention in which catheter 10 has been inserted into epidural needle 2 and moved such that its distal end 12 and portion 16 extend out of distal tip 6 of cannula 4. No longer being constrained by cannula 4, for the embodiment shown in FIG. 6, distal end 12 of catheter 10 curves toward the direction indicated by directional arrow 32, due to portion 16 having been configured to have a cross-sectional profile that predisposes distal end 12 to point toward direction 32, once distal end 12 and portion 16 are no longer confined within cannula 4.
  • In operation, a physician is provided with a hollow guide, such as needle cannula 4. The cannula is inserted into the patient proximate to a desired location where the catheter is to be placed. The catheter, and more particularly the distal end of the catheter, is inserted into the needle cannula and moved therealong, so that distal portion 13, portion 16, and main portion 15 of catheter 10 are confined within the cannula and are therefore in alignment along the longitudinal axis of the cannula. The catheter is moved further until distal end 12, and then portion 16, exit distal tip 6 of cannula 4. The orientation of distal end 12 of catheter 10, relative to cannula 4, is rotatably adjusted or oriented by the physician prior to her inserting the catheter into the cannula so that the distal end of the catheter would exit from the distal tip of the cannula in the direction of the desired location in the patient.
  • FIG. 7 is a plan view illustrating another embodiment of the catheter of the instant invention. Insofar as the needle cannula to be used with the catheter of the FIG. 7 embodiment is the same as the needle cannula shown in FIG. 1, no further discussion thereof is needed.
  • For the catheter 34 of the FIG. 7 embodiment, note that the entire length of the catheter is configured, per cross-section view C-C, with a cross-sectional profile that may be represented, for example, by any one of the profiles shown in FIGS. 3, 4 and 5. In addition to, or as an alternative of, the catheter of FIG. 7 may have along its entire length a section configured to have a flexibility characteristic that is different from the other sections of the catheter. With any one of the non-circular cross-sectional profiles as shown in FIGS. 3-5 and/or the flexible cross-section, catheter 34, as shown in FIG. 7, may have a naturally curved or biased orientation, even when the catheter is at rest and not being constrained or confined within the needle cannula 4. Putting it differently, catheter 34 of the FIG. 7 embodiment is configured to bend or move in the predefined direction as indicated by directional arrow 36. Thus, when catheter 34 is inserted into needle cannula 4, assuming that it remains oriented in the position as shown in FIG. 7, when it is moved by the physician and its distal end exits distal tip 6 of needle cannula 4, catheter 34 would move in the direction designated by directional arrow 40, as the distal portion of catheter 34, shown by dotted line, is naturally biased to and therefore is movable in the predefined direction. Catheter 34 thereby enabling the physician to readily place the distal end 38 of the catheter at the desired location within the patient for the supplying the anesthetic agent to the patient.
  • Although the catheter of the instant invention has been described thus far as used for supplying an anesthetic agent to a patient, it should be noted that other treatment agents may also be supplied via the inventive catheter. Such other treatment agents may include for example electrical energy, radio frequency (RF), microwave and ultrasound waves that may be transmitted by the catheter. In the case of electrical energy, it is envisioned that the catheter may be imbedded with an electrical conductive material such as carbon or includes a wire extending along its length.
  • It should be appreciated that the present invention is subject to many variations, modifications and changes in detail. Thus, it is the intention of the inventor that all matters described throughout this specification and shown in the accompanying drawings be interpreted as illustrative only and not in a limiting sense. Accordingly, it is intended that the invention be limited only by the spirit and scope of the hereto appended claims.

Claims (19)

1-20. (canceled)
21. A method of introducing a catheter into a patient, comprising the steps of:
a) providing a hollow cannula having a proximal end and a distal end;
b) providing a catheter insertable into and movable along said cannula, said catheter having at least one portion between its distal and proximal ends configured to cause the distal end of said catheter to be predisposedly moved toward a direction not in alignment with said cannula when said one portion is not confined within said cannula;
c) inserting said cannula into the patient proximate to a desired location where said catheter is to be located in the patient;
d) inserting said catheter into said cannula by first inserting the distal end of said catheter into said cannula; and
e) continuing to move said catheter into said cannula until at least said one portion of said catheter extends beyond the distal end of said cannula to move the distal end of said catheter to the desired location within the patient.
22. Method of claim 21, further comprising the step of:
orientating said one portion of said catheter relative to the cannula so that the distal end of said catheter is effected to move toward said direction when said one portion of said catheter is not confined by said cannula.
23-41. (canceled)
42. Method of claim 21, wherein the step (b) further comprises the step of:
forming said catheter from a tubing having a circular cross sectional profile except at said one portion.
43. Method of claim 21, wherein the step (b) further comprises the step of:
configuring the cross sectional profile of said one portion of said catheter to be oval shaped.
44. Method of claim 21, wherein the step (b) further comprises the step of:
providing said one portion of said catheter to be approximately 3 mm to 15 cm in length proximate to a distal end of said catheter.
45. Method of claim 21, wherein said cannula comprises an epidural needle, the method further comprising the step of:
inserting the epidural needle into the spine of the patient.
46. Method of claim 21, wherein the step (b) further comprises the step of:
configuring at least one section of said one portion of said catheter to have a wall thickness less than that of the rest of said tubing.
47. Method of claim 21, wherein the step (b) further comprises the step of:
configuring said one portion of said catheter to have a flexibility that is different from that of the rest of said catheter.
45. Method of claim 21, wherein said catheter comprises a regional anesthesia catheter, the method further comprising the step of:
applying an anesthetic or other treatment agent to the desired location within the patient.
46. A method of manufacturing a catheter to be used with and passable through a guide for insertion into a patient, comprising the steps of:
forming a plastic tubing;
configuring said tubing to have a cross sectional profile that causes the tubing to have a naturally biased orientation in a given direction when said one portion of said tubing extends out of said guide, said tubing being routed in said given direction.
47. Method of claim 46, wherein the configuring step comprises configuring the cross sectional profile of said tubing to be oval shaped.
48. Method of claim 46, wherein the configuring step comprises configuring the cross sectional profile of said tubing to be C shaped.
49. Method of claim 46, wherein the configuring step comprises configuring the cross sectional profile of said tubing to be partially concaved inwards toward the center axis of said tubing.
50. Method of claim 46, wherein the configuring step comprises configuring the cross sectional profile of said tubing to be non-circular.
51. A method of directing a distal end of a tubing to move in a given direction, comprising the steps of:
(a) providing a tubing having a distal portion connected to a main portion by a junction that has a cross section different from the respective cross sections of said main and distal portions;
(b) configuring said junction to have a cross sectional profile that causes said distal portion to point to and movable along a first direction and said main portion to point to and move along a second direction not in alignment with said first direction if said tubing is unguided;
(c) positioning a hollow guide relative to said given direction; and
(d) inserting said tubing into and moving said tubing along said guide;
wherein when said distal portion and said junction are no longer confined within said guide, the distal end of said distal portion is caused to move in said given direction.
52. Method of claim 51, wherein said guide comprises a cannula and said tubing comprises a regional anesthesia catheter, the method further comprising the steps of:
positioning said cannula relative to a desired location within the patient; and
inserting said catheter into and moving said catheter along said cannula to position the distal end of the catheter proximate to said desired location so that an anesthetic may be applied directly to said desired location of the patient.
53. Method of claim 51, wherein said tubing is a catheter and said guide is a cannula, wherein the step (b) comprises the steps of:
configuring said catheter to have a substantially circular cross section along its entire length except at said junction; and
configuring said junction to have a non-circular cross section configured to cause the distal portion of said catheter to move in a direction when the distal portion when not confined.
US13/900,584 2004-12-16 2013-05-23 Catheter with direction orientation Abandoned US20130304022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/900,584 US20130304022A1 (en) 2004-12-16 2013-05-23 Catheter with direction orientation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/012,824 US8597260B2 (en) 2004-12-16 2004-12-16 Catheter with direction orientation
US11/012,826 US8348908B2 (en) 2004-12-16 2004-12-16 Catheter with direction orientation
US13/900,584 US20130304022A1 (en) 2004-12-16 2013-05-23 Catheter with direction orientation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/012,824 Division US8597260B2 (en) 2004-12-16 2004-12-16 Catheter with direction orientation

Publications (1)

Publication Number Publication Date
US20130304022A1 true US20130304022A1 (en) 2013-11-14

Family

ID=37735304

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/012,824 Expired - Fee Related US8597260B2 (en) 2004-12-16 2004-12-16 Catheter with direction orientation
US11/012,826 Expired - Fee Related US8348908B2 (en) 2004-12-16 2004-12-16 Catheter with direction orientation
US13/900,584 Abandoned US20130304022A1 (en) 2004-12-16 2013-05-23 Catheter with direction orientation

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/012,824 Expired - Fee Related US8597260B2 (en) 2004-12-16 2004-12-16 Catheter with direction orientation
US11/012,826 Expired - Fee Related US8348908B2 (en) 2004-12-16 2004-12-16 Catheter with direction orientation

Country Status (7)

Country Link
US (3) US8597260B2 (en)
EP (1) EP1824549A2 (en)
JP (1) JP5020094B2 (en)
CN (1) CN101443067B (en)
CA (1) CA2591743A1 (en)
MX (1) MX2007007116A (en)
WO (1) WO2006066009A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2515478A (en) * 2013-06-24 2014-12-31 James Park A multilumen catheter for multimodal single or double lung jet ventilation

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840621B2 (en) 2006-11-03 2014-09-23 Innovative Spine, Inc. Spinal access systems and methods
US8057481B2 (en) 2006-11-03 2011-11-15 Innovative Spine, Llc System and method for providing surgical access to a spine
US10856904B2 (en) * 2006-11-30 2020-12-08 Medtronic, Inc. Flexible introducer
GB0719037D0 (en) * 2007-09-28 2007-11-07 Vitrolife Sweden Ab Sampling needle
CA2704292C (en) * 2007-11-02 2018-01-16 Rex Medical, L.P. Method of inserting a vein filter
US8739133B2 (en) 2007-12-21 2014-05-27 International Business Machines Corporation Multi-threaded debugger support
US8100859B2 (en) * 2008-06-24 2012-01-24 Cook Medical Technologies Llc Bent obturator
WO2010070685A1 (en) * 2008-12-18 2010-06-24 Invatec S.P.A. Guide catheter
US8298187B2 (en) 2009-07-07 2012-10-30 Cook Medical Technologies Llc Fluid injection device
US9108022B2 (en) * 2010-05-11 2015-08-18 Cathrx Ltd Catheter shape release mechanism
US9717883B2 (en) 2011-02-10 2017-08-01 C. R. Bard, Inc. Multi-lumen catheter with enhanced flow features
US9884165B2 (en) 2011-02-10 2018-02-06 C. R. Bard, Inc. Multi-lumen catheter including an elliptical profile
EP2633876B1 (en) 2012-03-02 2014-09-24 Cook Medical Technologies LLC Dilation cap for endoluminal device
EP3495013B1 (en) * 2012-03-09 2020-11-18 Clearstream Technologies Limited Parison for forming blow molded medical balloon with modified portion, medical balloon, and related methods
CN105263831B (en) * 2013-03-15 2017-07-28 纳达拉沙·维斯维什瓦拉 Fluid and nutritional delivery device and method of use
CN104027881B (en) * 2014-06-30 2016-04-06 席刚明 A kind of detachable subdural space conductor
SE1451384A1 (en) * 2014-11-18 2016-05-03 Medvasc Ab Medical device for ablation treatment of defective blood vessels, body cavities, and body ducts
CN107530533A (en) * 2015-03-25 2018-01-02 丹麦国家医院 Conduit of the top with sacculus for continuous nerve block
US12064567B2 (en) 2015-07-20 2024-08-20 Roivios Limited Percutaneous urinary catheter
US11229771B2 (en) 2015-07-20 2022-01-25 Roivios Limited Percutaneous ureteral catheter
US10918827B2 (en) 2015-07-20 2021-02-16 Strataca Systems Limited Catheter device and method for inducing negative pressure in a patient's bladder
US10765834B2 (en) 2015-07-20 2020-09-08 Strataca Systems Limited Ureteral and bladder catheters and methods of inducing negative pressure to increase renal perfusion
US11040180B2 (en) 2015-07-20 2021-06-22 Strataca Systems Limited Systems, kits and methods for inducing negative pressure to increase renal function
US10926062B2 (en) 2015-07-20 2021-02-23 Strataca Systems Limited Ureteral and bladder catheters and methods of inducing negative pressure to increase renal perfusion
US10512713B2 (en) 2015-07-20 2019-12-24 Strataca Systems Limited Method of removing excess fluid from a patient with hemodilution
US11541205B2 (en) 2015-07-20 2023-01-03 Roivios Limited Coated urinary catheter or ureteral stent and method
EP3325078B1 (en) 2015-07-20 2020-02-12 Strataca Systems Limited Ureteral and bladder catheters
US11040172B2 (en) 2015-07-20 2021-06-22 Strataca Systems Limited Ureteral and bladder catheters and methods of inducing negative pressure to increase renal perfusion
US10493232B2 (en) 2015-07-20 2019-12-03 Strataca Systems Limited Ureteral catheters, bladder catheters, systems, kits and methods for inducing negative pressure to increase renal function
CN106510814A (en) * 2016-12-13 2017-03-22 潘楚雄 Special puncture needle for ultrasonic guidance of great auricular nerve block
WO2019038730A1 (en) 2017-08-25 2019-02-28 Strataca Systems Limited Indwelling pump for facilitating removal of urine from the urinary tract
JP2022550190A (en) * 2019-09-30 2022-11-30 アビオメド インコーポレイテッド flexible sheath body
CN111686317A (en) * 2020-06-22 2020-09-22 上海市同济医院 Drilling pipe-placing sealing guiding device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240048A (en) * 1962-08-08 1966-03-15 Walker Mfg Co Method and apparatus for binding pipe
US5980504A (en) * 1996-08-13 1999-11-09 Oratec Interventions, Inc. Method for manipulating tissue of an intervertebral disc
US20100094269A1 (en) * 2008-09-26 2010-04-15 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617019A (en) * 1984-09-28 1986-10-14 Sherwood Medical Company Catheter
US4601713A (en) * 1985-06-11 1986-07-22 Genus Catheter Technologies, Inc. Variable diameter catheter
JPH0824664B2 (en) * 1986-10-31 1996-03-13 オリンパス光学工業株式会社 Medical flexible tube bending assembly
US4920980A (en) 1987-09-14 1990-05-01 Cordis Corporation Catheter with controllable tip
US5569182A (en) * 1990-01-08 1996-10-29 The Curators Of The University Of Missouri Clot resistant multiple lumen catheter and method
JPH08168494A (en) 1994-07-08 1996-07-02 Daig Corp Shape-imparted guiding/introducing equipment for nonsurgicalmapping and medical treatment of atrial arhythmia
US5690611A (en) * 1994-07-08 1997-11-25 Daig Corporation Process for the treatment of atrial arrhythima using a catheter guided by shaped giding introducers
US5522807A (en) * 1994-09-07 1996-06-04 Luther Medical Products, Inc. Dual lumen infusion/aspiration catheter
US5554136A (en) * 1994-09-07 1996-09-10 Luther Medical Products, Inc. Dual lumen infusion/aspiration catheter
DE4440346A1 (en) * 1994-11-13 1996-05-15 Daum Gmbh Puncture instrument
CN2256708Y (en) * 1995-01-26 1997-06-25 株洲市中医院 Guide catheter combined needle for continuous spinal anesthesia
US5700252A (en) * 1995-11-01 1997-12-23 Klingenstein; Ralph James Lumen-seeking nasogastric tube and method
JPH09285546A (en) 1996-04-24 1997-11-04 Nemoto Kyorindo:Kk Catheter
FR2754718B1 (en) * 1996-10-18 1998-11-13 Synthelabo EXTENDED FLEXIBLE BODY CATHETER
US5910129A (en) * 1996-12-19 1999-06-08 Ep Technologies, Inc. Catheter distal assembly with pull wires
US5817071A (en) * 1997-01-09 1998-10-06 Medtronic, Inc. Oval-shaped cardiac cannula
US6146373A (en) * 1997-10-17 2000-11-14 Micro Therapeutics, Inc. Catheter system and method for injection of a liquid embolic composition and a solidification agent
US6217527B1 (en) * 1998-09-30 2001-04-17 Lumend, Inc. Methods and apparatus for crossing vascular occlusions
US6530902B1 (en) * 1998-01-23 2003-03-11 Medtronic, Inc. Cannula placement system
EP0937481A1 (en) 1998-02-19 1999-08-25 Precision Vascular Systems, Inc. Catheter or guidewire with varying flexibility
AU733053C (en) * 1998-02-24 2001-11-29 Boston Scientific Limited High flow rate dialysis catheters and related methods
US6190357B1 (en) * 1998-04-21 2001-02-20 Cardiothoracic Systems, Inc. Expandable cannula for performing cardiopulmonary bypass and method for using same
US6290692B1 (en) * 1998-11-03 2001-09-18 Daniel J. Klima Catheter support structure
JP4342735B2 (en) * 1998-12-09 2009-10-14 クック インコーポレイテッド Hollow and curved super elastic medical needle
US6190371B1 (en) * 1999-01-15 2001-02-20 Maginot Vascular Systems Catheter system having retractable working catheter and associated method
US6551269B2 (en) * 2000-12-18 2003-04-22 Medtronic, Inc. Introducer catheter lead delivery device with collapsible stylet lumen
US6436090B1 (en) * 2000-12-21 2002-08-20 Advanced Cardiovascular Systems, Inc. Multi lumen catheter shaft
US6595952B2 (en) * 2001-01-04 2003-07-22 Scimed Life Systems, Inc. Guide catheter with backup support system
US7018372B2 (en) * 2001-04-17 2006-03-28 Salviac Limited Catheter
US6524302B2 (en) * 2001-04-26 2003-02-25 Scimed Life Systems, Inc. Multi-lumen catheter
PL351182A1 (en) * 2001-12-13 2003-06-16 Abb Sp Zoo Electrostatic separator
US7163524B2 (en) * 2002-02-27 2007-01-16 Terumo Kabushiki Kaisha Catheter
JP2003320032A (en) 2002-02-27 2003-11-11 Terumo Corp Balloon catheter
JP2003275321A (en) * 2002-03-26 2003-09-30 Kawasumi Lab Inc Balloon catheter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240048A (en) * 1962-08-08 1966-03-15 Walker Mfg Co Method and apparatus for binding pipe
US5980504A (en) * 1996-08-13 1999-11-09 Oratec Interventions, Inc. Method for manipulating tissue of an intervertebral disc
US20100094269A1 (en) * 2008-09-26 2010-04-15 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2515478A (en) * 2013-06-24 2014-12-31 James Park A multilumen catheter for multimodal single or double lung jet ventilation

Also Published As

Publication number Publication date
JP5020094B2 (en) 2012-09-05
JP2008526272A (en) 2008-07-24
US8348908B2 (en) 2013-01-08
US20060135915A1 (en) 2006-06-22
CA2591743A1 (en) 2006-06-22
CN101443067B (en) 2012-10-10
EP1824549A2 (en) 2007-08-29
US8597260B2 (en) 2013-12-03
WO2006066009A2 (en) 2006-06-22
MX2007007116A (en) 2007-07-11
US20060135916A1 (en) 2006-06-22
WO2006066009A3 (en) 2009-04-09
CN101443067A (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US8597260B2 (en) Catheter with direction orientation
US11202644B2 (en) Shapeable guide catheters and related methods
US7763196B2 (en) Catheter
CA1190828A (en) Apparatus and method for catheterization permitting use of a smaller gage needle
US20070185522A1 (en) Dilator
US5669882A (en) Curved epidural needle system
EP1286709B1 (en) Multi-lumen biliary catheter with angled guidewire exit
US6248196B1 (en) Method for making a microcannula
US8241267B2 (en) Method and apparatus for curving a catheter
US5209735A (en) External guide wire and enlargement means
CA2504135C (en) Low profile short tapered tip catheter
US20090024089A1 (en) Long tapered dilator
CN113521503A (en) Self-anchoring catheter and method of use
EP1721579B1 (en) Embryo transfer catheter
US20120123389A1 (en) Adjustable Length Access Sheath
US8486089B2 (en) Introducer for lead delivery
JPS59183766A (en) Subcateneous communication with kidney cavity or uterine cavity
US7896888B2 (en) Multiple wire guide introducer system
EP1713536B1 (en) Catheter guide wire
US20070244430A1 (en) Multiple lumen epidural introducer
US20080183103A1 (en) Bulbous distal ended catheter
EP0900546A1 (en) Needle-catheter assembly for medical or veterinarian use
DE102004014560B3 (en) Surgical intubation assistance catheter has kidney-shaped lumen carrying air for breathing and has wire in thickened portion of catheter wall
JP2023012875A (en) Medical puncture needle, and manufacturing method for medical puncture needle

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION