[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI690112B - 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池 - Google Patents

複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池 Download PDF

Info

Publication number
TWI690112B
TWI690112B TW106129288A TW106129288A TWI690112B TW I690112 B TWI690112 B TW I690112B TW 106129288 A TW106129288 A TW 106129288A TW 106129288 A TW106129288 A TW 106129288A TW I690112 B TWI690112 B TW I690112B
Authority
TW
Taiwan
Prior art keywords
composite electrode
core
patent application
carbon
manufacturing
Prior art date
Application number
TW106129288A
Other languages
English (en)
Other versions
TW201914089A (zh
Inventor
曾永華
偉良 曾
黃韋智
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW106129288A priority Critical patent/TWI690112B/zh
Priority to CN201710831979.0A priority patent/CN109428072A/zh
Priority to US15/828,459 priority patent/US11005091B2/en
Publication of TW201914089A publication Critical patent/TW201914089A/zh
Application granted granted Critical
Publication of TWI690112B publication Critical patent/TWI690112B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本發明係提供一種新穎之複合電極材料及其製作方法、使用此複合電極材料製得之複合電極、及包含此複合電極之鋰電池,其中,本發明之複合電極材料包含:一核心,該核心的材料係至少一選自由Sn、Sb、Si、Ge、C、及其化合物所組成之群組;以及一奈米碳管或一碳纖維,其中,該奈米碳管或該碳纖維係成長於一表面,該表面包括該核心之表面。

Description

複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
本發明提供一種複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池,尤指一種以奈米碳管或碳纖維成長於矽表面並包覆之矽奈米顆粒作為複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池。
鋰離子電池因具有高工作電壓、高能量密度、高功率、儲存壽命長、和多次充電和放電等優點,被視為現今最有效儲存能源的方式之一。目前,商業上所使用的鋰離子電池陽極材料大多為石墨,其理論電容值約為372mAhg-1 ,然而,因首次充電後表面會形成固態電解質膜(solid electrolyte interphase,SEI),造成不可逆的電容流失,因此實際上電容值會低於理論值。重複充電和放電之過程,亦造成層和層石墨結構間之縫隙,以致分離破碎,失去電容量。隨著科技發展,單純的石墨電極已無法符合大眾需求。
矽因具有高達4200mAhg-1 的理論電容值,近年來尤其受到重視,然而,矽的充放電過程造成約高達420%的體積變化率,因此容易造成矽本身粉化(pulverization)碎裂,破碎矽之間失去導電性接觸,導致鋰離子無法順利嵌入和脫嵌,電容量因而減少。同時,碎裂的矽所形成新的表面會消耗電解液並與之反應生成新的SEI膜,多次充放電後,電池內部電解液持續消耗並不斷累積新的SEI膜,導致電池壽命縮短。
因此,目前急需要發展一種複合電極材料,還能克服重複充放電後帶來的缺陷,以提升鋰離子電池之電池壽命,也需要能擁有高電容值。
本發明主要提供一種新穎複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池。其中,本發明之新穎複合電極材料使用一種以奈米碳管(carbon nanotubes,CNT)或碳纖維(carbon fibers,CF)包覆之矽或以矽為主要成分之化合物之奈米顆粒,使鋰電池經過多次充放電後仍能維持良好的電池容量、效率及循環壽命。
本發明提供一種複合電極材料,包含:一核心,該核心的材料係至少一選自由Sn、Sb、Si、Ge、C、及其化合物所組成之群組;以及一奈米碳管或一碳纖維,其中,該奈米碳管或該碳纖維係成長於一表面,該表面包含該核心之表面,該表面也可包含其他奈米碳管或碳纖維之表面,形成包覆核心之多孔洞三度空間之碳結構。
本發明提供一種複合電極材料之製作方法,包含下列步驟:提供一核心,該核心的材料係至少一選自由Sn、Sb、Si、Ge、C、及其化合物所組成之群組;以一催化劑藉由化學氣相沉積法(chemical vapor deposition),於一表面成長一奈米碳管或一碳纖維,其中,該表面包括該核心之表面。
該奈米碳管或該碳纖維之表面,可藉由該催化劑經由化學氣相沉積法,再成長另一奈米碳管或另一碳纖維,形成包覆核心之多孔洞三度空間之碳結構。
於本發明之複合電極材料及其製作方法中,所使用之核心材料較佳為Si,如此可提供高電容值。核心之形狀和大小並無特別限制,較佳為該核心係為一扁平狀顆粒,因扁平狀矽顆粒較具彈性、可撓性,在充放電過程中不易破碎;且扁平狀矽顆粒之表面積遠小於將該扁平狀矽顆粒碎裂後所形成之總體積相同之其他形狀之多數矽顆粒,例如圓形、方形等,因此消耗用於矽表面形成SEI膜之電解液較少,有利延長電池壽命。核心之尺寸並無特別限制,其中該扁平狀核心厚度可為50nm至500nm,較佳為50nm至250nm,和/或該核心長寬平均可為100nm至9μm,較佳為500nm至1200nm。
此外,該奈米碳管或該碳纖維係垂直或以各種角度直立成長於該核心之表面,且多餘的奈米碳管或碳纖維也可成長於其他奈米碳管或碳纖維上,形成包覆矽顆粒之奈米碳管或碳纖維之三度空間(3D)多孔(porous)網狀或海綿狀(sponge)結構。該3D多孔奈米碳管或碳纖維之結構具有多重、多方向膨脹收縮之緩衝功能,可以減少矽顆粒於充放電循環中因矽體積變化所導致之破碎。且因電子可以沿著導電的奈米碳管或碳纖維傳導而提升傳導路徑的效率,因此即使矽顆粒於充放電循環中破碎成更小的顆粒,破碎顆粒上的奈米碳管或碳纖維亦可提供額外所需的導電路徑,使矽顆粒連接至相鄰的矽顆粒及電池的集電器(current collector)。同時,奈米碳管或碳纖維也可保護矽避免其過度與電解液反應,可維持高電極容量及提升電池循環壽命。
於本發明之複合電極材料之製作方法中,該化學氣相沉積法可包含:以一旋轉或攪拌機構均勻混合,使奈米碳管或碳纖維更均勻地成長於各個核心上。在此,旋轉或攪拌的速率無特殊限制,可依照所使用的旋轉或攪拌機構而改變,只要能使奈米碳管或碳纖維可均勻成長於各個核心上即可。此外,該化學氣相沉積法之實施條件並無特殊限制,可以依據所欲成長出之奈米碳管或碳纖維之外型及尺寸進行調整。
本發明之化學氣相沉積法並無特別限制,可使用本領域已知的任何化學氣相沉積法,例如熱化學氣相沉積法(thermal chemical vapor deposition)、電漿輔助化學氣相沈積法(plasma chemical vapor deposition)等,只要能使奈米碳管或碳纖維成長於各個核心上即可。
於本發明之一實施態樣中,將二茂鐵(ferrocene)蒸氣滲透進矽奈米顆粒之間隙,覆蓋在矽表面作為催化劑,再以樟腦(camphor)蒸氣作為碳源滲透至附有二茂鐵之矽奈米顆粒之間隙,藉由熱化學氣相沉積法在矽奈米顆粒表面經催化劑協助下成長奈米碳管或碳纖維。本發明之另一實施態樣中,預先均勻混合矽奈米顆粒及二茂鐵粉末,並將其放入腔體(chamber)中使矽奈米顆粒鍍上二茂鐵,再將鍍有二茂鐵的矽奈米顆粒與樟腦粉末混合,在腔體中使奈米碳管或碳纖維成長於矽奈米顆粒上。本發明之另一實施態樣中,矽奈米顆粒、二茂鐵粉末、及樟腦粉末三者亦可預先均勻混合,並將其放入腔體(chamber)中,在腔體中使奈米碳管或碳纖維成長於矽奈米顆粒上。
其中,可使用Fe、Mo、Ni、Pt、Co等來源作為催化劑,較佳為使用鐵源作為催化劑;且更佳為室溫下為固體,且具有低溫下高揮發度的含鐵源,於加熱後可以氣態方式存在於反應腔體中,例如氯化鐵、二茂鐵等,但本發明並不局限於此,只要能作為奈米碳管或碳纖維成長的催化劑即可。其中,本發明之碳源並無特別限制,可使用本領域已知的任何氣體、固體、或液體碳源,例如甲烷、乙炔、樟腦等,只要能作為成長奈米碳管或碳纖維之碳源即可。較佳為室溫下為固體,且具有低溫下高揮發度的含碳源。
於本發明更提供一種複合電極,包含:一基板,其上方設置一活性材料層,其中,該活性材料層包含:前述之複合電極材料、以及一黏著劑。
於本發明之複合電極中,基板可為一導電金屬基板,其中,導電金屬基板之材料並無特別限制,例如可為本技術領域常用之銅箔。且該銅箔之厚度亦無特別限制,可視需要進行調整。
於本發明之複合電極中,黏著劑並無特別限制,可為本領域常用之羧甲基纖維素鈉(sodium carboxymethyl cellulose,NaCMC)、聚丙烯酸(poly acrylic acid,PAA)等,於本發明之一實施態樣中,使用NaCMC作為黏著劑。
於本發明之複合電極中,複合電極材料係由前述方法所製得,故在此不在贅述。
通常在製作矽基電極時,需要額外加入例如碳黑(carbon black)等輔助導電材料來幫助提升電子傳導於矽顆粒之間和傳導至集電器,然而,額外添加的碳黑會使電極增加更多的重量和體積,卻不能像奈米碳管或碳纖維一樣,提供矽顆粒體積膨脹收縮之緩衝功能。反之因為電子可以沿著奈米碳管或碳纖維傳導,可以提供額外的導電路徑,故在本發明之一實施例中,於製作複合電極時,即使不加入碳黑作為輔助導電路徑,在定電容2000 mAhg-1 下,該複合電極經過100次之充放電仍能維持電容量,沒有像未經成長奈米碳管或碳纖維之矽電極一樣,電容量嚴重下降。
本發明更提供一種鋰電池,包含:前述之複合電極;一鋰對電極;一隔離膜,設置於該複合電極與該鋰對電極之間;以及一電解液,設置於該複合電極與該鋰對電極之間,且設置於該隔離膜之兩側。
如前所述,本發明之複合電極材料具有一特殊結構,透過奈米碳管或碳纖維直接成長於該核心,並形成包覆矽奈米顆粒之3D多孔之奈米碳管或碳纖維,可緩衝核心材料充放電時之體積變化應力,且可避免核心與電解液過度反應,以提升電池的循環壽命,同時奈米碳管或碳纖維可以提供導電路徑,使電子沿著奈米碳管或碳纖維傳導而提升傳導路徑的效率,故在製作複合電極時,即使不加入碳黑也能維持良好的充放電特性。因此,本發明提供之鋰電池具有高電池循環壽命及高電容量,在多次循環下仍具有良好的充放電特性及庫倫效率。
以下係藉由特定的具體實施例說明本發明之實施方式,且以下具體實施例應被解釋為僅僅是說明性的,而不以任何方式限制本說明書所揭示的其餘部分,本領域之技術人員可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效。本發明亦可藉由其他不同的具體實施例加以施行或應用,本說明書中的各項細節亦可針對不同觀點與應用,在不悖離本創作之精神下進行各種修飾與變更。
複合電極材料之製備-製程1
圖1A及1B為本實施例之製程示意圖。將厚度為100nm、長寬平均約850nm之矽粉2(1.86g)置於熱化學氣相沉積系統100之第二區域12的腔體(chamber)1中,並將二茂鐵3(3g)作為鐵源置於腔體1的第一區域11中,先將腔體1抽至高真空後,再將氬氣(600sccm,4分鐘)以A方向回填腔體1,使腔體1維持於1大氣壓力。保持氬氣(600sccm)從A方向通入下,開啟高溫爐確保第一區域11加熱至約160℃、第二區域12加熱至約850℃,使二茂鐵3分解揮發,鐵顆粒可以以蒸汽方式滲透到矽粉2間隙之間,沉積時間約為15分鐘,最後關閉高溫爐,並將腔體1冷卻至室溫,以獲得沉積鐵及鐵化合物之矽粉。接著將樟腦4(13g)作為碳源置於第一區域11,再次將腔體1抽至真空,並將氬氣(600sccm,4分鐘)以A方向回填至1大氣壓。保持氬氣(600sccm)從A方向通入下,開啟高溫爐加熱第一區域11至約160℃、第二區域12加熱至約850℃,使樟腦分解揮發,碳源(樟腦)可以滲透到矽粉之間以成長奈米碳管或碳纖維,沉積時間約為15-60分鐘,最後關閉高溫爐,將腔體冷卻至室溫,獲得奈米碳管或碳纖維包覆之矽奈米顆粒。於本發明之另一實施態樣中,可在第二區域12設置一旋轉或攪拌機構(圖未示)均勻混合,使奈米碳管或碳纖維更均勻地成長於該核心上。
複合電極材料之製備-製程2
圖2為本實施例之製程示意圖。將厚度為100nm、長寬平均約850nm之矽粉2(1.86g)、二茂鐵3(3g)、及樟腦4(13g)置於熱化學氣相沉積系統100之腔體1中,將腔體稀釋去除腔體內的空氣,以氬氣或氮氣從A方向回填腔體至約1大氣壓力後,關閉腔體之氣體之入口和出口。開啟高溫爐加熱腔體至約850℃,使二茂鐵3、及樟腦4揮發,並保留氣相二茂鐵、及樟腦在腔體內,在鐵源(二茂鐵)催化下於矽粉上成長奈米碳管或碳纖維,沉積時間約為30分鐘。最後關閉高溫爐,將腔體冷卻至室溫,獲得奈米碳管或碳纖維包覆之矽奈米顆粒。於本發明之另一實施態樣中,可以設置一旋轉或攪拌機構(圖未示)以均勻混合矽粉2、二茂鐵3、及樟腦4三者,使奈米碳管或碳纖維更均勻地成長於該核心上。
於前述的製程1及製程2中,係於常壓下成長奈米碳管或碳纖維。成長奈米碳管或碳纖維之氣壓不限,於本發明的其他實施態樣中,亦可於低真空,例如1Torr至1000Torr壓力、或較高氣壓下成長奈米碳管或碳纖維。
複合電極材料
圖3A為本實施例之矽粉之SEM圖,其中,使用厚度約100nm、長寬平均約850nm之矽粉,且具有不規則外型。圖3B為本實施例之複合電極材料之SEM圖,由圖中可明顯看出經由熱化學氣相沉積後的矽粉,具有奈米碳管或碳纖維直立成長於矽粉上。圖3C為本實施例之複合電極材料之拉曼光譜圖,其為使用綠光雷射(λ=532nm)之拉曼光譜分析,從圖中可看到1346cm-1 之D帶、1575cm-1 之G帶、以及證明矽表面成長奈米碳管或碳纖維的2682cm-1 之2D帶。經由上述實驗結果證實,本實施例之複合電極材料確實形成具有奈米碳管或碳纖維成長於矽粉上。
複合電極之製備
將前述製得之本發明之複合電極材料、導電碳黑、黏著劑NaCMC以重量比6:3:1混合,加入去離子水,以直流攪拌機攪拌至均勻,製成活性材料。將攪拌均勻之活性材料放入真空腔中抽至低壓,使內部的氣泡去除,接著使用刮刀將30μm厚的活性材料塗佈至10μm的銅箔上,以獲得一電極。將塗佈完之電極放入真空烘箱抽至真空,並在65℃下烘烤8-12小時以移除多餘溶劑。待降溫後,以滾壓機滾壓烘烤完之電極,以提升電極之封裝密度。最後以裁刀裁出所需要的電極大小。於本發明之一實施態樣中,用於製備複合電極之活性材料可不包含導電碳黑。本發明之塗佈活性材料厚度及滾壓施加之壓力不限於本實施例。
鋰半電池之製備
圖4為本實施例之鋰電池5之示意圖。在此,係將前述所製得之複合電極(作為陽極)52、一下金屬蓋51、一鋰對電極54、一隔離膜(Celgard2352)53、一金屬墊片55、一金屬彈簧56、一上金屬蓋57置於一手套箱中,並使用溶於EC/DEC(1:1 v/v)之1M的LiPF6 溶液作為電解液58,依據圖4依序組裝成鈕扣型電池,使用電池封裝機將電池密封,以形成本實施例之鋰半電池。然而此實施例僅為例示性的說明,本發明之鋰半電池並不局限於此。
如圖4所示,本實施例之鋰電池包含:如前述所製得之複合電極52;一鋰對電極54;一隔離膜53,設置於該複合電極52與該鋰對電極54之間;以及一電解液58,設置於該複合電極52與該鋰對電極54之間,且設置於該隔離膜53之兩側。
循環充放電分析
本實施例使用定電流充放電法,前三圈的充放電速率為0.02C,之後充放電速率改為0.1C完成整個試驗。複合電極材料和複合電極係由前述方法所製得,故在此不再贅述。
圖5A和5B分別為矽電極在定電容1200mAhg-1 及2000mAhg-1 下之電容量與循環次數之關係圖。由圖5A可發現矽電極在1200mAhg-1 定電容下,可以充放電循環80圈;若將電容提高至2000mAhg-1 ,矽電極僅能維持10圈的充放電循環,如圖5B。
圖6A和6B分別為複合電極在定電容1200mAhg-1 及2000mAhg-1 下之電容量與循環次數之關係圖。由圖6A及6B可看出,複合電極不管是在低電容1200mAhg-1 或高電容2000mAhg-1 下,均能穩定維持100圈的充放電循環。證明具有奈米碳管或碳纖維成長之矽粉可以緩衝矽粉於充放電時之體積膨脹收縮,減少矽粉破碎的發生,因而延長循環壽命。
圖7A和7B分別為本發明之另一實施例之複合電極在定電容1200mAhg-1 及2000mAhg-1 下之電容量與循環次數之關係圖。其中,本實施例之用於製備複合電極之活性材料不包含導電碳黑,其餘複合電極材料和複合電極係由前述方法所製得,故在此不再贅述。一般在製作電極之活性材料時,會加入導電碳黑作為導電途徑,然而由實驗結果可以發現,本實施例之複合電極即使不加入導電碳黑,在高電容下仍然可維持100圈之充放電循環。因此證明奈米碳管或碳纖維確實可以提供額外的導電路徑,而提升傳導路徑的效率。
以上的實施例應被解釋為僅僅是說明性的,而不以任何方式限制本公開的其餘部分。
100‧‧‧熱化學氣相沉積系統 1‧‧‧腔體 11‧‧‧第一區域 12‧‧‧第二區域 2‧‧‧矽粉 3‧‧‧二茂鐵 4‧‧‧樟腦 5‧‧‧鋰電池 51‧‧‧下金屬蓋 52‧‧‧複合電極 53‧‧‧隔離膜 54‧‧‧鋰對電極 55‧‧‧金屬墊片 56‧‧‧金屬彈簧 57‧‧‧上金屬蓋 58‧‧‧電解液 A‧‧‧氣體通入方向
圖1A及1B為本發明之一實施例之製程示意圖。 圖2為本發明之另一實施例之製程示意圖。 圖3A為本發明一較佳實施例之矽粉之SEM圖。 圖3B為本發明一較佳實施例之複合電極材料之SEM圖。 圖3C為本發明一較佳實施例之複合電極材料之拉曼光譜圖。 圖4為本發明一較佳實施例之鋰電池之示意圖。 圖5A及5B為定電容下矽電極之充放電電容量與循環次數之關係圖。 圖6A及6B為定電容下複合電極之充放電電容量與循環次數之關係圖。 圖7A及7B為定電容且不添加碳黑下複合電極之充放電電容量與循環次數之關係圖。

Claims (16)

  1. 一種複合電極材料,包含:一核心,該核心的材料係至少一選自由Sn、Sb、Si、Ge、C、及其化合物所組成之群組;以及一奈米碳管或一碳纖維,其中,該奈米碳管或該碳纖維係成長於一表面,該表面包含該核心之表面,其中,該核心係為一扁平狀顆粒,該核心長寬平均為100nm至9μm且該核心厚度為100nm至500nm。
  2. 如申請專利範圍第1項所述之複合電極材料,其中,該奈米碳管或該碳纖維係直立成長於該表面。
  3. 如申請專利範圍第1項所述之複合電極材料,其中,該奈米碳管或該碳纖維具有包覆該核心之3D多孔網狀或海綿狀結構。
  4. 一種複合電極材料之製作方法,包含下列步驟:提供一核心,該核心的材料係至少一選自由Sn、Sb、Si、Ge、C、及其化合物所組成之群組;以及以一催化劑藉由一化學氣相沉積法,於一表面成長一奈米碳管或一碳纖維,其中,該表面包含該核心之表面,其中,該製作方法不包含添加溶劑。
  5. 如申請專利範圍第4項所述之製作方法,其中,該化學氣相沉積法包含:以一旋轉或攪拌機構均勻混合。
  6. 如申請專利範圍第4項所述之製作方法,其中,該化學氣相沉積法為熱化學氣相沉積法。
  7. 如申請專利範圍第4項所述之製作方法,其中,該催化劑為一鐵源催化劑。
  8. 如申請專利範圍第4項所述之製作方法,其中,該奈米碳管或該碳纖維係直立成長於該表面。
  9. 如申請專利範圍第4項所述之製作方法,其中,該核心為一扁平狀顆粒。
  10. 如申請專利範圍第4項所述之製作方法,其中,該核心厚度為50nm至500nm。
  11. 如申請專利範圍第4項所述之製作方法,其中,該核心長寬平均為100nm至9μm。
  12. 如申請專利範圍第4項所述之製作方法,其中,該奈米碳管或該碳纖維具有包覆該核心之3D多孔網狀或海綿狀結構。
  13. 一種複合電極,包含:一基板,其上方設置一活性材料層,其中,該活性材料層包含:一如申請專利範圍第1至3項任一項所述之複合電極材料、以及一黏著劑。
  14. 如申請專利範圍第13項所述之複合電極,其中,該基板為一導電金屬板。
  15. 如申請專利範圍第13項所述之複合電極,其中,該複合電極不包含碳黑。
  16. 一種鋰電池,包含:一如申請專利範圍第13至15項任一項所述之複合電極;一鋰對電極; 一隔離膜,設置於該複合電極與該鋰對電極之間;以及一電解液,設置於該複合電極與該鋰對電極之間,且設置於該隔離膜之兩側。
TW106129288A 2017-08-29 2017-08-29 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池 TWI690112B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106129288A TWI690112B (zh) 2017-08-29 2017-08-29 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
CN201710831979.0A CN109428072A (zh) 2017-08-29 2017-09-15 复合电极材料及其制作方法、复合电极、以及锂电池
US15/828,459 US11005091B2 (en) 2017-08-29 2017-12-01 Composite electrode material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106129288A TWI690112B (zh) 2017-08-29 2017-08-29 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池

Publications (2)

Publication Number Publication Date
TW201914089A TW201914089A (zh) 2019-04-01
TWI690112B true TWI690112B (zh) 2020-04-01

Family

ID=65434373

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129288A TWI690112B (zh) 2017-08-29 2017-08-29 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池

Country Status (3)

Country Link
US (1) US11005091B2 (zh)
CN (1) CN109428072A (zh)
TW (1) TWI690112B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI682574B (zh) * 2018-06-21 2020-01-11 國立成功大學 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
WO2020251634A1 (en) * 2019-06-12 2020-12-17 National Cheng Kung University Composite electrode material, method for manufacturing the same, composite electrode comprising the same and lithium-based battery comprising the said composite electrode
CN112510180B (zh) * 2020-12-02 2021-11-09 江苏科技大学 一种氧化硅-碳丝活性材料及其制备方法和应用
CN116072826B (zh) * 2023-01-31 2024-08-16 厦门大学 一种高性能锂离子电池硅碳负极的制备方法
CN118645620A (zh) * 2024-08-12 2024-09-13 浙江华宇钠电新能源科技有限公司 一种高导电聚阴离子正极材料及其制备方法与车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752605A (zh) * 2010-01-12 2010-06-23 东莞市金源电池科技有限公司 一种碳纳米管锂离子电池
US20140127558A1 (en) * 2009-04-09 2014-05-08 Samsung Electronics Co., Ltd. Composite anode active material, method of preparing the composite anode active material, and lithium battery including the composite anode active material
CN105612277A (zh) * 2013-10-07 2016-05-25 Spi公司 用于大量生产硅纳米线和/或纳米带的方法以及使用所述硅纳米线和/或纳米带的锂电池和阳极
US9548491B2 (en) * 2014-02-07 2017-01-17 Samsung Sdi Co., Ltd. Positive electrode active material for rechargeable lithium battery, manufacturing method of same, and rechargeable lithium battery including same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750117B2 (ja) * 2002-11-29 2006-03-01 三井金属鉱業株式会社 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
CN100456533C (zh) * 2005-11-14 2009-01-28 松下电器产业株式会社 非水电解质二次电池用负极及其制造方法、以及二次电池
JP2007273182A (ja) * 2006-03-30 2007-10-18 Sony Corp 集電体、負極及び電池
US8828481B2 (en) * 2007-04-23 2014-09-09 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
KR100913178B1 (ko) * 2007-11-22 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지
DE102009056756B4 (de) * 2009-12-04 2020-10-15 Schott Ag Material für Batterie-Elektroden, dieses enthaltende Batterie-Elektroden sowie Batterien mit diesen Elektroden und Verfahren zu deren Herstellung
JP5557003B2 (ja) * 2010-03-19 2014-07-23 株式会社豊田自動織機 負極材料、非水電解質二次電池および負極材料の製造方法
GB2507535B (en) * 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
CN104103807A (zh) * 2013-04-12 2014-10-15 华为技术有限公司 一种硅碳复合负极材料及其制备方法和锂离子电池
JP6217978B2 (ja) * 2014-03-19 2017-10-25 株式会社豊田自動織機 負極および蓄電装置
KR102486383B1 (ko) * 2015-08-28 2023-01-09 삼성전자주식회사 복합체, 그 제조방법, 이를 포함한 전극 및 리튬 전지
KR102368307B1 (ko) * 2015-09-16 2022-03-02 삼성전자주식회사 전극 활물질, 이를 포함하는 전극 및 이차전지, 및 상기 전극 활물질의 제조방법
CN106129367A (zh) * 2016-08-22 2016-11-16 浙江理工大学 一种硅/碳纳米复合纤维及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127558A1 (en) * 2009-04-09 2014-05-08 Samsung Electronics Co., Ltd. Composite anode active material, method of preparing the composite anode active material, and lithium battery including the composite anode active material
CN101752605A (zh) * 2010-01-12 2010-06-23 东莞市金源电池科技有限公司 一种碳纳米管锂离子电池
CN105612277A (zh) * 2013-10-07 2016-05-25 Spi公司 用于大量生产硅纳米线和/或纳米带的方法以及使用所述硅纳米线和/或纳米带的锂电池和阳极
US9548491B2 (en) * 2014-02-07 2017-01-17 Samsung Sdi Co., Ltd. Positive electrode active material for rechargeable lithium battery, manufacturing method of same, and rechargeable lithium battery including same

Also Published As

Publication number Publication date
US20190067681A1 (en) 2019-02-28
TW201914089A (zh) 2019-04-01
CN109428072A (zh) 2019-03-05
US11005091B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
TWI690112B (zh) 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
Zhang et al. Structural Engineering of Hierarchical Micro‐nanostructured Ge–C Framework by Controlling the Nucleation for Ultralong‐Life Li Storage
Yao et al. Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high‐rate performance for application in lithium‐ion batteries
Yan et al. High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction
Pan et al. Micro-sized spherical silicon@ carbon@ graphene prepared by spray drying as anode material for lithium-ion batteries
Yi et al. TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage
Zheng et al. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries
Shu et al. Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries
TWI682574B (zh) 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
Park et al. Synthesis process of CoSeO3 microspheres for unordinary Li‐ion storage performances and mechanism of their conversion reaction with Li ions
CN111342030B (zh) 一种多元复合高首效锂电池负极材料及其制备方法
JP2023130342A (ja) シリコン含有複合体、その製造方法、それを利用した炭素複合体、それを含んだ電極、該リチウム電池及び該電子素子
TWI525888B (zh) Lithium sulfur secondary battery for the positive and its formation method
TWI638481B (zh) 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
Wu et al. High-performance SiO/C as anode materials for lithium-ion batteries using commercial SiO and glucose as raw materials
Im et al. Two-dimensional, P-doped Si/SiOx alternating veneer-like microparticles for high-capacity lithium-ion battery composite
CN108306009B (zh) 一种氧化硅碳复合负极材料、其制备方法及锂离子电池
Zhang et al. Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials
JP6536301B2 (ja) 被覆負極活物質
CN114068887A (zh) 非水电解质二次电池用负极材料及其制备方法
Tan et al. High performance sodium ion anodes based on Sn4P3 encapsulated within amphiphilic graphene tubes
Sun et al. High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage
CN110729471B (zh) 一种锂离子电池硅@石墨烯/cvd碳复合负极材料及其制备方法和应用
CN108923037A (zh) 一种富硅SiOx-C材料及其制备方法和应用
Wang et al. Ultrafine nano-Si material prepared from NaCl-assisted magnesiothermic reduction of scalable silicate: graphene-enhanced Li-storage properties as advanced anode for lithium-ion batteries