RU2598990C2 - Электромагнитная дипольная антенна - Google Patents
Электромагнитная дипольная антенна Download PDFInfo
- Publication number
- RU2598990C2 RU2598990C2 RU2015102760/08A RU2015102760A RU2598990C2 RU 2598990 C2 RU2598990 C2 RU 2598990C2 RU 2015102760/08 A RU2015102760/08 A RU 2015102760/08A RU 2015102760 A RU2015102760 A RU 2015102760A RU 2598990 C2 RU2598990 C2 RU 2598990C2
- Authority
- RU
- Russia
- Prior art keywords
- metal
- antenna
- horizontal
- electromagnetic
- conductive strip
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
- H01Q21/26—Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/10—Resonant antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
- H01Q5/385—Two or more parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/26—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
- H01Q9/265—Open ring dipoles; Circular dipoles
Landscapes
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Support Of Aerials (AREA)
Abstract
Изобретение относится к антенной технике. Технический результат - преимущества малого размера и низкопрофильности, способствующие простоте обработки антенны. Для этого электромагнитная дипольная антенна включает в себя устройство излучения антенны и металлическую «землю», причем устройство излучения антенны в целом включает в себя вертикальный электрический диполь и горизонтальный магнитный диполь, причем вертикальный электрический диполь и горизонтальный магнитный диполь совместно формируют структуру электромагнитного соединения. 5 з.п. ф-лы, 10 ил.
Description
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Настоящее изобретение относится к электромагнитной дипольной антенне и, в частности, к миниатюризированной беспроводной антенне для системы мобильной связи.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
[0002] Быстрое развитие и применение технологий мобильной связи фактически способствует развитию современной связи по направлению к миниатюризации, интеграции и многофункциональности (многополосности, множественной поляризации и универсальности). Антенна является одной из наиболее важных частей в системе беспроводной связи, и размер антенны становится одним из узких мест, которые ограничивают дополнительную миниатюризацию систем связи. Вследствие этого, конструирование миниатюризированных, интегрированных и многофункциональных антенн в настоящее время стало центром исследования антенной промышленности.
[0003] Имеется много документов о миниатюризированных многополосных антеннах, опубликованных в этой стране и за рубежом, среди которых «Influence of Miniaturized Base Station Antennas», опубликованная в «Information Technology» 25 декабря 2011 г., является самой типичной статьей. Эта статья в основном представляет трехполосную антенну базовой станции, которая может применяться на 806-960 МГц, 1710-2170 МГц и 1710-2170 МГц. Размер антенны равен 1340 мм ×380 мм ×380 мм. Однако для новой системы связи с увеличивающимся требованием к миниатюризации антенны такая антенна все же является чрезмерно большой, и миниатюризированные антенны, особенно миниатюризированные антенны низкопрофильного вида, должны быть дополнительно исследованы таким образом, чтобы облегчить размещение и установку антенн.
[0004] «Dual-Polarized Magneto-Electric Dipole With Dielectric Loading» - статья, опубликованная в «IEEE TRANS ON AP», vol. 57, №3, March 2009. Структура электромагнитной дипольной антенны, упомянутой в статье, изображена на фиг.1. Фиг. 1 - схематическая диаграмма электромагнитной дипольной антенны в предшествующем уровне техники, на которой структура включает в себя традиционный электрический диполь 102 и L-образный магнитный диполь 103, 101 - металлическая «земля» и 104 - интерфейс, через который радиочастотный электрический сигнал проходит через разъем SMA.
[0005] Несмотря на то, что антенна, изображенная на фиг.1, имеет большую толщину, ее трудно обрабатывать.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0006] Варианты осуществления настоящего изобретения предоставляют электромагнитную дипольную антенну, включающую в себя устройство излучения антенны и металлическую «землю», при этом устройство излучения антенны в основном включает в себя вертикальный электрический диполь и горизонтальный магнитный диполь, при этом вертикальный электрический диполь и горизонтальный магнитный диполь совместно формируют структуру электромагнитного соединения.
[0007] Настоящее изобретение представляет электромагнитную дипольную антенну, которая может применяться в системе беспроводной связи. Антенна является малоразмерной и низкопрофильной и может покрывать множество полос частот, а также может оптимально покрывать определенную полосу частот.
[0008] Антенна, предоставленная в настоящем изобретении, в основном включает в себя устройство излучения антенны, металлическую «землю» и структуру электромагнитного соединения, при этом структура электромагнитного соединения расположена между устройством излучения антенны и металлической «землей».
[0009] Устройство излучения антенны включает в себя группу вертикальных электрических диполей и группу горизонтальных магнитных диполей, при этом электромагнитное соединение осуществлено между вертикальным электрическим диполем и горизонтальным магнитным диполем через диэлектрик. Металлическая «земля» может иметь планарную структуру «земли» и может также иметь непланарную структуру «земли».
[0010] Группа вертикальных электрических диполей в основном включает в себя n1 Т-образных структур схем возбуждения. Каждая Т-образная структура схемы возбуждения сформирована с помощью горизонтальной проводящей структуры в виде шляпки и металлической стержневидной структуры, при этом горизонтальная проводящая структура в виде шляпки помещена наверху, а металлическая стержневидная структура вертикально электрически соединена с горизонтальной проводящей структурой в виде шляпки. В частных вариантах осуществления число n1 вертикальных электрических диполей, стержневидных структур и структур в виде шляпок могут быть оптимизированы.
[0011] Группа горизонтальных магнитных диполей включает в себя несколько горизонтальных замкнутых плоских металлических кольцевых структур, или крестообразную проводящую полосковую структуру, соединенную с кольцевыми структурами, описанными выше, при этом каждый горизонтальный магнитный диполь в основном включает в себя один или более слоев металлических проводящих полосок, и каждый слой металлической проводящей полоски может быть сформирован с помощью замкнутого плоского металлического кольца, диэлектрический заполняющий материал может быть заложен между слоями металлических проводящих полосок, и металлические проводящие полоски могут электрически соединяться через металлическое переходное отверстие.
[0012] Процесс работы антенны является следующим: р1 источников возбуждения осуществляют электрическое возбуждение в электрическом диполе через пространственную структуру, помещенную между нижним слоем и основанием Т-образной структуры, часть шляпки Т-образных структур схем возбуждения осуществляет электромагнитное соединение с горизонтальными магнитными диполями через диэлектрик, и при совместном действии вышеупомянутых источников возбуждения и части шляпки осуществляется излучение электромагнитной энергии.
[0013] Логическая схематическая диаграмма миниатюризированной электромагнитной дипольной антенны, содержащейся в настоящем изобретении, изображена на фиг.10.
[0014] Низкопрофильный механизм антенны, предоставленной в настоящем изобретении, является следующим: в соответствии с принципом дуализма электромагнитного поля, отраженный магнитный ток горизонтального магнитного диполя над пластиной хорошего проводника проходит в том же направлении, что и магнитный ток (магнитный ток источника для краткости) горизонтального магнитного диполя, вследствие этого, электромагнитные поля, которые создаются в половине пространства, где расположены источники возбуждения, могут изображаться с помощью 2-х элементной решетки, сформированной с помощью магнитного тока источника и отраженного магнитного тока горизонтального магнитного диполя. Когда интервал 2-х элементной решетки меньше, чем половина длины волны, то есть интервал между магнитным диполем и хорошим проводником меньше четверти длины волны, электромагнитные поля, создаваемые с помощью решетки, описанной выше, усиливаются посредством суперпозиции. Вследствие этого, при использовании горизонтального магнитного диполя над хорошим проводником может быть осуществлена низкопрофильность.
[0015] Широкополосный механизм антенны, предоставленной в настоящем изобретении, является следующим: горизонтальный магнитный диполь, сформированный с помощью нескольких горизонтальных замкнутых плоских металлических колец или крестообразной проводящей полоски, соединенной с кольцевыми структурами, описанными выше, является многорежимным излучателем, и каждый режим излучения многорежимного излучателя соответствует одной резонансной частоте, при этом половина длины окружности одного металлического кольца горизонтального магнитного диполя соответствует минимальной резонансной частоте излучателя, а половина длины крестообразной проводящей полоски, соединенной с кольцевыми структурами, описанными выше, соответствует максимальной резонансной частоте излучателя. Вследствие этого, с одной стороны, горизонтальный магнитный диполь, предоставленный в настоящем изобретении, может осуществлять электромагнитное излучение в широком диапазоне частот, а с другой стороны, вертикальный электрический диполь может рассматриваться как несимметричная антенна с верхней частью, подлежащей электромагнитной нагрузке, и используемая для передачи и излучения электромагнитных волн. Поскольку эффект нагрузки является очевидным, электромагнитное соединение между вертикальным электрическим диполем и горизонтальным магнитным диполем является главным фактором передачи энергии в антенне. Электромагнитное соединение также имеет эффект изменений импеданса между вертикальным электрическим диполем и горизонтальным магнитным диполем, таким образом, расширяя ширину полосы импеданса антенны.
[0016] Механизм +-45-градусной двойной поляризации антенны, предоставленной в настоящем изобретении, является следующим: в настоящем изобретении применяются четырехпортовые структуры схем возбуждения, которые используют геометрически центральную точку как центр симметрии, и последовательно принимают угловую разность, равную 90 градусов, в горизонтальном направлении, и применяется режим возбуждения, в котором диагональные порты являются парами портов дифференциального возбуждения, таким образом, обеспечивая излучение электромагнитных волн +-45-градусной двойной поляризации.
[0017] Механизм способности сохранения формы антенны, предоставленной в настоящем изобретении, является следующим: для того чтобы дополнительно увеличить ширину полосы частот диаграммы направленности излучения устройства излучения, то есть увеличить способность сохранения формы диаграммы направленности излучения устройства излучения, применяется восьмиугольный металлический патч-излучатель с центральным круглым отверстием, который добавляется на верхнем слое восьмиугольного металлического кольца, таким образом, что путь тока, первоначально ограниченный поверхностью восьмиугольного металлического кольца, увеличивается до пути тока на поверхности восьмиугольного металлического кольца и пути тока на восьмиугольном металлическом патч-излучателе, таким образом, увеличивая число путей тока на поверхности устройства излучения, и способствуя увеличению способности сохранения формы диаграммы направленности излучения на разных частотах.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0018] Чтобы описать технические решения в вариантах осуществления настоящего изобретения более понятно, последующее кратко представляет сопровождающие чертежи, необходимые для описания вариантов осуществления или предшествующего уровня техники. Очевидно, сопровождающие чертежи в следующем описании изображают только некоторые варианты осуществления настоящего изобретения, и специалист в данной области техники может, тем не менее, получить аналогичные решения из этих сопровождающих чертежей без творческих усилий.
[0019] Фиг. 1 - схематическая диаграмма электромагнитной дипольной антенны в предшествующем уровне техники.
[0020] Фиг. 2 - физическая схематическая диаграмма электромагнитной дипольной антенны в соответствии с вариантом осуществления настоящего изобретения.
[0021] Фиг. 3 - схематическая диаграмма вертикальных электрических диполей в соответствии с вариантом осуществления настоящего изобретения.
[0022] Фиг. 4 - схематическая структурная диаграмма горизонтального магнитного диполя с удаленной верхней металлической проводящей полоской в соответствии с вариантом осуществления настоящего изобретения.
[0023] Фиг. 5 - схематическая диаграмма верхней металлической проводящей полоски на одном горизонтальном магнитном диполе в соответствии с вариантом осуществления настоящего изобретения.
[0024] Фиг. 6 - кривая коэффициента стоячей волны электромагнитной дипольной антенны в соответствии с вариантом осуществления настоящего изобретения.
[0025] Фиг. 7 - диаграмма направленности электромагнитной дипольной антенны на 1,8 ГГц в соответствии с вариантом осуществления настоящего изобретения.
[0026] Фиг. 8 - диаграмма направленности электромагнитной дипольной антенны на 2,1 ГГц в соответствии с вариантом осуществления настоящего изобретения.
[0027] Фиг. 9 - диаграмма направленности электромагнитной дипольной антенны на 2,4 ГГц в соответствии с вариантом осуществления настоящего изобретения.
[0028] Фиг. 10 - схематическая диаграмма принципов работы электромагнитной дипольной антенны.
ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[0029] Последующее понятно и полностью описывает технические решения в вариантах осуществления настоящего изобретения со ссылкой на сопровождающие чертежи в вариантах осуществления настоящего изобретения. Очевидно, описанные варианты осуществления являются только частью, а не всеми из вариантов осуществления настоящего изобретения. Все другие варианты осуществления, полученные специалистом в данной области техники на основе вариантов осуществления настоящего изобретения без творческих усилий, находятся в рамках объема охраны настоящего изобретения.
[0030] Настоящее изобретение представляет электромагнитную дипольную антенну, которая может применяться в системе беспроводной связи, такой как базовая станция. Размер антенны может быть уменьшен до 65 мм ×65 мм ×23 мм, и антенна может покрывать множество полос частот, таких как 1,8 ГГц, 2,1 ГГц и 2,4 ГГц.
[0031] Фиг. 2 - физическая схематическая диаграмма электромагнитной дипольной антенны в соответствии с вариантом осуществления настоящего изобретения. Как изображено на фиг. 2, электромагнитная дипольная антенна в соответствии с вариантом осуществления настоящего изобретения включает в себя устройство 210 излучения антенны и металлическую «землю» 220. Устройство 210 излучения антенны включает в себя группу 230 вертикальных электрических диполей и группу 240 горизонтальных магнитных диполей. Группа 230 вертикальных электрических диполей и группа 240 горизонтальных магнитных диполей 250 формируют структуру 250 электромагнитного соединения.
[0032] Металлическая «земля» 220 имеет квадратную плоскую структуру и может быть 150 мм ×150 мм ×1 мм по размеру.
[0033] Фиг. 3 - схематическая диаграмма вертикальных электрических диполей в соответствии с вариантом осуществления настоящего изобретения. Группа вертикальных электрических диполей, сформированная с помощью четырех электрических диполей, изображена на фиг. 3. Каждый вертикальный электрический диполь является Т-образной структурой 330, и Т-образная структура 330 сформирована с помощью горизонтальной проводящей структуры 331 в виде шляпки, помещенной наверху, и металлической стержневидной структуры 332, электрически соединенной с горизонтальной проводящей структурой 331 в виде шляпки. В варианте осуществления металлическая стержневидная структура 332 может быть цилиндрической с радиусом 1,29 мм, и 17,6 мм. Горизонтальная проводящая структура 331 в виде шляпки может быть диском с радиусом 5,3 мм и толщиной 0,5 мм.
[0034] Фиг. 4 - схематическая структурная диаграмма горизонтального магнитного диполя с удаленной верхней металлической проводящей полоской в соответствии с вариантом осуществления настоящего изобретения. Как изображено на фиг. 4, горизонтальный магнитный диполь является горизонтальной замкнутой плоской металлической кольцевой структурой. Фиг. 4 изображает только восьмиугольное металлическое кольцо 441 и нижнюю металлическую проводящую полоску 442 горизонтального магнитного диполя. Нижняя металлическая проводящая полоска 442 является крестообразной. Металлическое кольцо 441 равно 27,4 мм по внешнему диаметру и 3,64 мм в ширину.
[0035] Фиг. 5 - схематическая диаграмма верхней металлической проводящей полоски на одном горизонтальном магнитном диполе в соответствии с вариантом осуществления настоящего изобретения. Как изображено на фиг. 5, верхняя металлическая проводящая полоска 543 на горизонтальном магнитном диполе также является крестообразной проводящей полоской. Переходное отверстие 544 расположено на хвостовом конце верхней металлической проводящей полоски 544, и верхняя металлическая проводящая полоска 543 электрически соединена с металлическим кольцом 441 через переходное отверстие 544. Ссылаясь на фиг. 2, диэлектрический материал с диэлектрической постоянной 2,55 заложен между двумя слоями металлических проводящих полосок.
[0036] Коэффициент стоячей волны электромагнитной дипольной антенны в соответствии с вариантом осуществления: кривая параметра S11 изображена на фиг. 6. Фиг. 6 - кривая коэффициента стоячей волны электромагнитной дипольной антенны в соответствии с вариантом осуществления настоящего изобретения, на которой параметр меньше -10 дБ на базовых частотах, таких как 1,8 ГГц, 2,1 ГГц и 2,4 ГГц. Параметр может регулироваться, чтобы быть меньше -14, через цепь обратной связи, таким образом, чтобы удовлетворять требованиям антенны базовой станции макросоты.
[0037] Фиг. 7, фиг. 8 и фиг. 9 - диаграммы направленности электромагнитной дипольной антенны на 1,8 ГГц, 2,1 ГГц и 2,4 ГГц в соответствии с вариантом осуществления настоящего изобретения, при этом Фиг. 7 - диаграмма направленности электромагнитной дипольной антенны на 1,8 ГГц в соответствии с вариантом осуществления настоящего изобретения, фиг. 8 - диаграмма направленности электромагнитной дипольной антенны на 2,1 ГГц в соответствии с вариантом осуществления настоящего изобретения и фиг. 9 - диаграмма направленности электромагнитной дипольной антенны на 2,4 ГГц в соответствии с вариантом осуществления настоящего изобретения.
[0038] Фиг. 10 - схематическая диаграмма принципов работы электромагнитной дипольной антенны. Фиг. 10 - схематическая диаграмма принципов работы электромагнитной дипольной антенны в соответствии с другим вариантом осуществления настоящего изобретения. Группа 1030 вертикальных электрических диполей включает в себя n1 Т-образных структур. В частном варианте осуществления число n1 вертикальных электрических диполей может регулироваться соответствующим образом. Формы металлической стержневидной структуры и горизонтальной проводящей структуры в виде шляпки могут регулироваться соответствующим образом.
[0039] Группа 1040 горизонтальных магнитных диполей может включать в себя металлическое кольцо и металлическую проводящую полоску, при этом металлическая проводящая полоска является крестообразной. Металлическое кольцо может быть сформировано с помощью слоя металла, а может быть также сформировано с помощью множества слоев металлов, и диэлектрический заполняющий материал может быть заложен между слоями металлов. Одна металлическая проводящая полоска может включать в себя только слой металла, а может также включать в себя два слоя металлов или даже множество слоев металлов, и диэлектрический заполняющий материал может быть заложен между слоями металлов проводящей полоски. Металлическая проводящая полоска и металлическое кольцо электрически соединены через переходные отверстия.
[0040] Группа горизонтальных магнитных диполей может быть сформирована с помощью множества горизонтальных замкнутых плоских металлических кольцевых структур.
[0041] Электромагнитное соединение между вертикальным электрическим диполем и горизонтальным магнитным диполем осуществлено через диэлектрик. Металлическая «земля» может иметь планарную структуру, а может также иметь непланарную структуру.
[0042] Процесс работы антенны является следующим: p1 источников возбуждения осуществляют электромагнитное возбуждение в электрических диполях, помещенных на металлическую землю 1020 и T-образную структуру, горизонтальные проводящие структуры в виде шляпок T-образной структуры осуществляют электромагнитное соединение с горизонтальными магнитными диполями через диэлектрик, и при совместном действии вышеупомянутых источников возбуждения и горизонтальных проводящих структур в виде шляпок осуществляется излучение электромагнитной энергии электромагнитного диполя.
[0043] Специалист в данной области техники может понять, что структуры, раскрытые в настоящей заявке, являются только иллюстративными. Помимо содержания, перечисленного выше, структуры могут быть изменены соответствующим образом в соответствии с потребностями частных применений. Специалист в данной области техники может использовать разные структуры для каждого частного применения, но не следует считать, что осуществления проходят за пределами рамок объема настоящего изобретения.
[0044] Несмотря на то, что описаны некоторые варианты настоящего изобретения, специалист в данной области техники должен понять, что различные модификации могут быть сделаны в эти варианты осуществления, не отступая от принципов и сущности настоящего изобретения, и все модификации будут находиться в рамках объема настоящего изобретения.
Claims (6)
1. Электромагнитная дипольная антенна, содержащая устройство излучения антенны и металлическую «землю», причем устройство излучения антенны содержит четыре вертикальные Т-образные структуры и горизонтальную структуру, причем упомянутые четыре вертикальные Т-образные структуры и горизонтальная структура совместно формируют структуру электромагнитного соединения;
причем горизонтальная структура содержит горизонтальную замкнутую плоскую металлическую кольцевую структуру и металлическую проводящую полоску, электрически соединенную с горизонтальной замкнутой плоской металлической кольцевой структурой;
причем металлическая проводящая полоска содержит верхнюю металлическую проводящую полоску и нижнюю металлическую проводящую полоску, которые обе являются крестообразными, причем нижняя металлическая проводящая полоска электрически соединена с горизонтальной замкнутой плоской металлической кольцевой структурой, а верхняя металлическая проводящая полоска электрически соединена с горизонтальной замкнутой плоской металлической кольцевой структурой через четыре переходных отверстия.
причем горизонтальная структура содержит горизонтальную замкнутую плоскую металлическую кольцевую структуру и металлическую проводящую полоску, электрически соединенную с горизонтальной замкнутой плоской металлической кольцевой структурой;
причем металлическая проводящая полоска содержит верхнюю металлическую проводящую полоску и нижнюю металлическую проводящую полоску, которые обе являются крестообразными, причем нижняя металлическая проводящая полоска электрически соединена с горизонтальной замкнутой плоской металлической кольцевой структурой, а верхняя металлическая проводящая полоска электрически соединена с горизонтальной замкнутой плоской металлической кольцевой структурой через четыре переходных отверстия.
2. Антенна по п. 1, в которой Т-образная структура сформирована с помощью горизонтальной проводящей структуры в виде шляпки и металлической стержневидной структуры, и причем металлическая стержневидная структура вертикально электрически соединена с горизонтальной проводящей структурой в виде шляпки.
3. Антенна по п. 2, в которой между горизонтальной проводящей структурой в виде шляпки и горизонтальной замкнутой плоской металлической кольцевой структурой заложен первый диэлектрик.
4. Антенна по п. 1, в которой горизонтальная замкнутая плоская металлическая кольцевая структура содержит, по меньшей мере, два слоя металлов и между этими слоями металлов заложен второй диэлектрик.
5. Антенна по п. 4, в которой металлическая проводящая полоска содержит, по меньшей мере, два слоя металлов и между этими слоями металлов заложен третий диэлектрик.
6. Антенна по п. 1, в которой электромагнитное соединение осуществлено между вертикальными Т-образными структурами и горизонтальной структурой через диэлектрик.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210222545 | 2012-06-29 | ||
CN201210222545.8 | 2012-06-29 | ||
CN201210319106.9 | 2012-08-31 | ||
CN201210319106 | 2012-08-31 | ||
CN201210345654.9 | 2012-09-18 | ||
CN201210345654.9A CN102882004B (zh) | 2012-06-29 | 2012-09-18 | 一种电磁耦极子天线 |
PCT/CN2013/077783 WO2014000614A1 (zh) | 2012-06-29 | 2013-06-24 | 电磁耦极子天线 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015102760A RU2015102760A (ru) | 2016-08-20 |
RU2598990C2 true RU2598990C2 (ru) | 2016-10-10 |
Family
ID=47483240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015102760/08A RU2598990C2 (ru) | 2012-06-29 | 2013-06-24 | Электромагнитная дипольная антенна |
Country Status (6)
Country | Link |
---|---|
US (1) | US9590320B2 (ru) |
EP (1) | EP2854216B1 (ru) |
JP (1) | JP6120299B2 (ru) |
CN (2) | CN106207405A (ru) |
RU (1) | RU2598990C2 (ru) |
WO (1) | WO2014000614A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2777219C2 (ru) * | 2017-12-04 | 2022-08-02 | Грин Эрайз Лтд | Конвертер для преобразования электромагнитной волны в постоянный электрический ток |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106207405A (zh) | 2012-06-29 | 2016-12-07 | 华为技术有限公司 | 一种电磁耦极子天线 |
CN107135018A (zh) | 2012-10-10 | 2017-09-05 | 华为技术有限公司 | 通过分布式天线阵列系统进行通信的方法及阵列系统 |
WO2014110508A1 (en) * | 2013-01-11 | 2014-07-17 | Chi-Chih Chen | Multiple-input multiple-output ultra-wideband antennas |
WO2014127540A1 (zh) * | 2013-02-25 | 2014-08-28 | 华为技术有限公司 | 电磁耦极子天线 |
CN103700923B (zh) * | 2013-11-27 | 2015-11-04 | 西安电子科技大学 | 一种高增益双频基站天线 |
CN104009299B (zh) * | 2014-05-14 | 2016-06-01 | 上海交通大学 | 双极化基站天线 |
CN106549215A (zh) * | 2015-09-23 | 2017-03-29 | 华为技术有限公司 | 用于天线的导带和天线 |
JP6569915B2 (ja) | 2016-10-28 | 2019-09-04 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | アンテナ及びこれを備えるアンテナモジュール |
KR102399600B1 (ko) * | 2017-09-25 | 2022-05-18 | 삼성전자주식회사 | 상호 결합된 안테나 소자들을 포함하는 안테나 장치 |
CN109802231B (zh) * | 2018-07-17 | 2024-02-23 | 云南大学 | 基于人工磁导体的宽带电磁偶极子天线 |
CN109361073B (zh) * | 2018-11-30 | 2024-03-15 | 深圳市锦鸿无线科技有限公司 | 背腔激励的双极化电磁偶极子阵列天线 |
CN109672023B (zh) * | 2018-12-22 | 2024-02-27 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | 一种基于开口谐振环的差分双极化贴片天线 |
US10886627B2 (en) | 2019-06-05 | 2021-01-05 | Joymax Electronics Co., Ltd. | Wideband antenna device |
CN110718742A (zh) * | 2019-10-21 | 2020-01-21 | 深圳市博想信息有限公司 | 一种小型化高增益rfid读写器天线 |
CN110867655B (zh) * | 2019-12-05 | 2022-02-18 | 惠州硕贝德无线科技股份有限公司 | 一种高前后比定向天线 |
WO2021148858A1 (en) * | 2020-01-24 | 2021-07-29 | Sun Dial Technology Limited | A magneto-electric dipole antenna |
CN111581848B (zh) * | 2020-05-25 | 2024-03-22 | 西安科技大学 | 一种小型化磁电偶极子天线的设计方法 |
CN111786115B (zh) * | 2020-06-24 | 2021-12-28 | 西安交通大学 | 一种低剖面探地雷达天线 |
CN113937482A (zh) * | 2020-06-29 | 2022-01-14 | 南京锐码毫米波太赫兹技术研究院有限公司 | 一种天线及移动终端 |
CN112271447B (zh) * | 2020-09-14 | 2023-09-15 | 广东盛路通信科技股份有限公司 | 毫米波磁电偶极子天线 |
CN112490640B (zh) * | 2020-11-09 | 2023-01-03 | 南京理工大学 | 一种宽带电磁偶极子圆极化天线 |
KR102403313B1 (ko) * | 2020-12-01 | 2022-06-02 | 울산대학교 산학협력단 | 이중 레이어 메타표면 단위 셀 기반 투과배열 |
CN113991293B (zh) * | 2021-10-28 | 2023-06-16 | 南通大学 | 一种正方形的宽带高增益介质双极化电磁偶极子天线 |
CN113991308B (zh) * | 2021-10-28 | 2023-06-20 | 中天通信技术有限公司 | 一种高增益宽带电磁偶极子介质天线 |
CN114464990B (zh) * | 2022-04-14 | 2022-07-08 | 佛山市粤海信通讯有限公司 | 一种低剖面高隔离度的双极化天线辐射单元 |
CN114976667B (zh) * | 2022-07-29 | 2022-11-15 | 安徽大学 | 一种3bit双极化相位可调的可重构智能超表面 |
CN116053776B (zh) * | 2023-01-17 | 2023-08-18 | 广东工业大学 | 双宽带双极化磁电偶极子基站天线及通信设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000019564A1 (en) * | 1998-09-28 | 2000-04-06 | Allgon Ab | A radio communication device and an antenna system |
US6700539B2 (en) * | 1999-04-02 | 2004-03-02 | Qualcomm Incorporated | Dielectric-patch resonator antenna |
RU2264005C1 (ru) * | 2004-06-17 | 2005-11-10 | ЗАО "Интеграционная промышленная система" | Способ возбуждения сегнетоэлектрической антенны и ее устройство |
EP2081256A1 (en) * | 2006-08-24 | 2009-07-22 | Hitachi Kokusai Electric Inc. | Antenna device |
US7701395B2 (en) * | 2007-02-26 | 2010-04-20 | The Board Of Trustees Of The University Of Illinois | Increasing isolation between multiple antennas with a grounded meander line structure |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5753684B2 (ru) * | 1973-06-15 | 1982-11-15 | ||
JPH05145319A (ja) * | 1991-11-20 | 1993-06-11 | Harada Ind Co Ltd | 車両用非接地形平板状アンテナ |
JPH10290113A (ja) * | 1997-04-11 | 1998-10-27 | Toyo Commun Equip Co Ltd | トップロードアンテナ |
RU2123459C1 (ru) * | 1997-04-17 | 1998-12-20 | Московский технический университет связи и информатики | Развертываемая кольцеобразная конструкция |
DE10021274A1 (de) | 2000-04-26 | 2001-10-31 | Siemens Ag | Anreihbares Gerüst eines Schaltfeldes für mehrfeldrige Schaltanlagen |
JP2005176294A (ja) * | 2003-11-20 | 2005-06-30 | Matsushita Electric Ind Co Ltd | アンテナ装置 |
JP4114618B2 (ja) * | 2004-02-23 | 2008-07-09 | 旭硝子株式会社 | アンテナおよびその製造方法 |
EP1617515B1 (en) * | 2004-07-13 | 2007-09-19 | TDK Corporation | PxM antenna for high-power, broadband applications |
US6956529B1 (en) * | 2005-03-15 | 2005-10-18 | Emtac Technology Corp. | Disk-shaped antenna with polarization adjustment arrangement |
RU2285984C1 (ru) | 2005-04-29 | 2006-10-20 | Новосибирский государственный технический университет | Директорная антенна |
US7315248B2 (en) * | 2005-05-13 | 2008-01-01 | 3M Innovative Properties Company | Radio frequency identification tags for use on metal or other conductive objects |
JP2007150863A (ja) * | 2005-11-29 | 2007-06-14 | Murata Mfg Co Ltd | 無線通信機能付き装置 |
JP2007221774A (ja) * | 2006-01-23 | 2007-08-30 | Yokowo Co Ltd | 平面型アンテナ |
JP5024826B2 (ja) * | 2006-08-24 | 2012-09-12 | 株式会社日立国際電気 | アンテナ装置 |
DE102009011542A1 (de) * | 2009-03-03 | 2010-09-09 | Heinz Prof. Dr.-Ing. Lindenmeier | Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale |
WO2010116675A1 (ja) | 2009-03-30 | 2010-10-14 | 日本電気株式会社 | 共振器アンテナ |
CN101587984B (zh) * | 2009-06-18 | 2013-09-11 | 上海交通大学 | 位于圆柱导体平台上的宽频带小型化四端口天线 |
US8427385B2 (en) * | 2009-08-03 | 2013-04-23 | Venti Group, LLC | Cross-dipole antenna |
JPWO2011040328A1 (ja) * | 2009-09-29 | 2013-02-28 | 東京エレクトロン株式会社 | 表面波プラズマ発生用アンテナ、マイクロ波導入機構、および表面波プラズマ処理装置 |
CN101752664B (zh) * | 2010-01-15 | 2013-07-24 | 华南理工大学 | 基于正交耦合馈电的环形圆极化陶瓷天线 |
CN201797047U (zh) * | 2010-04-29 | 2011-04-13 | 华为技术有限公司 | 双极化基站天线和基站 |
CN101916910A (zh) * | 2010-07-08 | 2010-12-15 | 华为技术有限公司 | 基站天线单元及基站天线 |
CN102299420A (zh) * | 2011-06-17 | 2011-12-28 | 哈尔滨工程大学 | 一种环形多陷波超宽带天线 |
JP5514779B2 (ja) * | 2011-08-30 | 2014-06-04 | 日本電業工作株式会社 | 偏波共用アンテナ |
CN102971910B (zh) * | 2012-01-21 | 2015-12-23 | 华为技术有限公司 | 天线单元和天线 |
CN106207405A (zh) * | 2012-06-29 | 2016-12-07 | 华为技术有限公司 | 一种电磁耦极子天线 |
CN202797284U (zh) * | 2012-10-10 | 2013-03-13 | 华为技术有限公司 | 一种馈电网络、天线及双极化天线阵列馈电电路 |
-
2012
- 2012-09-18 CN CN201610465310.XA patent/CN106207405A/zh active Pending
- 2012-09-18 CN CN201210345654.9A patent/CN102882004B/zh active Active
-
2013
- 2013-06-24 EP EP13810087.0A patent/EP2854216B1/en active Active
- 2013-06-24 JP JP2015518808A patent/JP6120299B2/ja active Active
- 2013-06-24 WO PCT/CN2013/077783 patent/WO2014000614A1/zh active Application Filing
- 2013-06-24 RU RU2015102760/08A patent/RU2598990C2/ru active
-
2014
- 2014-12-29 US US14/584,679 patent/US9590320B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000019564A1 (en) * | 1998-09-28 | 2000-04-06 | Allgon Ab | A radio communication device and an antenna system |
US6700539B2 (en) * | 1999-04-02 | 2004-03-02 | Qualcomm Incorporated | Dielectric-patch resonator antenna |
RU2264005C1 (ru) * | 2004-06-17 | 2005-11-10 | ЗАО "Интеграционная промышленная система" | Способ возбуждения сегнетоэлектрической антенны и ее устройство |
EP2081256A1 (en) * | 2006-08-24 | 2009-07-22 | Hitachi Kokusai Electric Inc. | Antenna device |
US7701395B2 (en) * | 2007-02-26 | 2010-04-20 | The Board Of Trustees Of The University Of Illinois | Increasing isolation between multiple antennas with a grounded meander line structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2777219C2 (ru) * | 2017-12-04 | 2022-08-02 | Грин Эрайз Лтд | Конвертер для преобразования электромагнитной волны в постоянный электрический ток |
Also Published As
Publication number | Publication date |
---|---|
EP2854216A4 (en) | 2015-11-11 |
US20150116173A1 (en) | 2015-04-30 |
EP2854216B1 (en) | 2017-01-04 |
RU2015102760A (ru) | 2016-08-20 |
CN106207405A (zh) | 2016-12-07 |
EP2854216A1 (en) | 2015-04-01 |
WO2014000614A1 (zh) | 2014-01-03 |
JP2015521822A (ja) | 2015-07-30 |
JP6120299B2 (ja) | 2017-04-26 |
US9590320B2 (en) | 2017-03-07 |
CN102882004B (zh) | 2016-08-03 |
CN102882004A (zh) | 2013-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2598990C2 (ru) | Электромагнитная дипольная антенна | |
Chaturvedi et al. | An integrated SIW cavity-backed slot antenna-triplexer | |
Parchin et al. | Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications | |
Zhou et al. | Design of a novel wideband and dual-polarized magnetoelectric dipole antenna | |
Jang et al. | Size reduction of patch antenna array using CSRRs loaded ground plane | |
CN102610909A (zh) | 单馈双频宽波束圆极化天线 | |
Wei et al. | Design of a dualband omnidirectional planar microstrip antenna array | |
Xie et al. | A wideband dual-polarized patch antenna with electric probe and magnetic loop feeds | |
Sharawi | Printed multi-band MIMO antenna systems: Techniques and Isolation mechanisms | |
Wang et al. | A wideband circularly polarized filtering antenna based on slot-patch structure | |
Abhilash et al. | Four-element compact and dual-band MIMO antenna with self-decoupled mechanism for 5G applications | |
Kumar et al. | Mutual coupling reduction techniques for UWB—MIMO antenna for band notch characteristics: A comprehensive review | |
Chen et al. | A triple band arc-shaped slot patch antenna for UAV GPS/Wi-Fi applications | |
Quan et al. | A novel broadband omni-directional circularly polarized antenna for mobile communications | |
CN104009299A (zh) | 双极化基站天线 | |
CN201946748U (zh) | 单点馈电双频圆极化混合天线 | |
Feng et al. | A printed dual-wideband magneto-electric dipole antenna for WWAN/LTE applications | |
Hasan et al. | Dual band slotted printed circular patch antenna with superstrate and EBG structure for 5G applications | |
Lu et al. | Design of high gain planar dipole array antenna for WLAN application | |
Wei et al. | A compact CPW‐FED circular patch antenna with pattern and polarization diversities | |
Ding et al. | A novel loop-like monopole antenna with dual-band circular polarization | |
Xie et al. | Wideband Dual-polarized SIW cavity-backed patch antenna with multimode characteristics | |
Lei et al. | Metamaterial-enhanced dual polarized HMSIW antenna for MIMO applications | |
CN102097678A (zh) | 单点馈电双频圆极化混合天线 | |
Song et al. | Dual-polarized antenna based on metal ring and microstrip patch |