[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2564656C2 - Формовочные смеси, содержащие карбонатные соли, и их применение - Google Patents

Формовочные смеси, содержащие карбонатные соли, и их применение Download PDF

Info

Publication number
RU2564656C2
RU2564656C2 RU2012127880/02A RU2012127880A RU2564656C2 RU 2564656 C2 RU2564656 C2 RU 2564656C2 RU 2012127880/02 A RU2012127880/02 A RU 2012127880/02A RU 2012127880 A RU2012127880 A RU 2012127880A RU 2564656 C2 RU2564656 C2 RU 2564656C2
Authority
RU
Russia
Prior art keywords
molding
mold
sand
molding sand
aggregate
Prior art date
Application number
RU2012127880/02A
Other languages
English (en)
Other versions
RU2012127880A (ru
Inventor
Ральф Е. ШОУМЕН
Шон Б. ХАРМОН
Original Assignee
Аск Кемикалз Л.П.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аск Кемикалз Л.П. filed Critical Аск Кемикалз Л.П.
Publication of RU2012127880A publication Critical patent/RU2012127880A/ru
Application granted granted Critical
Publication of RU2564656C2 publication Critical patent/RU2564656C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/162Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents use of a gaseous treating agent for hardening the binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • C04B14/365Gypsum

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mold Materials And Core Materials (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Изобретение относится к литейному производству. Смесь содержит заполнитель формовочной смеси и карбонатную соль в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси. Обеспечивается снижение образования просечек в металлической отливке. 4 н. и 15 з.п. ф-лы, 1 табл., 7 пр.

Description

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
Данная заявка претендует на приоритет и эффект изобретения в соответствии с предварительной заявкой на патент США с регистрационным номером 61/286913, поданной 16 декабря 2009 г., содержание которой полностью включено в данное описание посредством ссылки.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Кварцевый песок (SiO2, кварц) широко используют в качестве заполнителя в металлолитейной промышленности для изготовления литейных форм и литейных стержней. Его используют как для получения сырой формовочной смеси (песка, связанного водой и глиной), так и для получения химически связанного песка. Используют различные неорганические и органические связующие, в том числе натрийсиликатные связующие, фенолуретановые, фурановые, эпоксиакриловые, фенольные связующие, отверждаемые сложными эфирами, фенольные связующие, отверждаемые кислотами, и др.
Связующие смешивают с песком и смесь уплотняют в модели, чтобы она приняла форму желаемой литейной формы или литейного стержня, затем связующее отверждается и связывает зерна песка друг с другом. Затем детали формы и стержня собирают с получением формы в сборке и заливают в форму металл, который заполняет ее внутренние полости, принимая форму желаемой отливки. Тепло от жидкого металла, в частности, в случае сплавов на основе железа с температурами плавления, превышающими 1100°C, начинает разлагать органическое связующее и нагревать песок. При нагревании кварцевого песка происходит его термическое расширение. Это расширение является относительно линейным до тех пор, пока температура не достигнет примерно 570°C, когда трансформируется кристаллическая структура зерен песка. Эта трансформация структуры сопровождается быстрым изотермическим расширением, за которым следует стадия термической усадки до примерно 980°C, когда происходит другое изменение кристаллической структуры с большим термическим расширением.
Считается, что эти быстрые изменения объема зерен песка вызывают механические напряжения в слоях песка, расположенных вблизи поверхности отливки, что может привести к растрескиванию поверхности формы или стержня, которая контактирует с горячим расплавленным жидким металлом, находящимся в форме. Расплавленный жидкий металл может затечь в эти трещины и сформировать просечки или заливины на поверхности отливки. Это нежелательно, и для удаления таких дефектов требуются время и труд. В критических прикладных задачах с мелкими внутренними проходами в формах просечки могут проходить поперек проходов и блокировать их. Примерами таких критических отливок являются блоки цилиндров и головки двигателей с водяными рубашками охлаждения, которые могут быть блокированы просечками, которые трудно обнаружить и еще труднее удалить.
Для получения «песчаных» литейных форм и стержней можно использовать также другие типы заполнителей, в том числе природный циркон, хромит, оливин и искусственную керамику, а также другие заполнители. Для них характерны меньшие скорости расширения без фазовых изменений и значительно сниженная тенденция к образованию дефектов типа просечек, однако они существенно дороже.
Для того чтобы уменьшить тенденцию к образованию просечек, вместе с кварцевым песком были использованы добавки к формовочным смесям. Эти добавки к формовочным смесям обычно можно разделить на три основные категории в зависимости от механизма их действия.
Первая категория состоит из «заполнителей с низким термическим расширением»; примером является смесь кварцевого и цирконового песка в соотношении 90:10, которая обладает меньшим термическим расширением, чем чистый кварцевый песок. Кроме природных заполнителей, можно использовать искусственные заполнители, такие как керамические (муллитовые) шарики, «микросферы» из силиката алюминия или плавленый кварц.
Вторая категория состоит из «органических демпфирующих материалов», таких как древесная мука, декстрин и крахмал. При смешивании с кварцевым песком они занимают определенный объем между зернами песка. Поэтому, когда расплавленный металл заливают в форму, тепло от расплавленного металла быстро выжигает дополнительный органический материал. Объем, который ранее был занят органическим материалом, затем может служить «амортизатором» или пространством для расширения песка, что снижает развитие напряжений в песке.
Третья категория добавок к формовочной смеси состоит из «флюсов», которые реагируют с поверхностью зерен песка и химически изменяют поверхностный слой песка и соответствующие характеристики расширения песка. Примерами таких флюсов являются оксиды железа - гематит (Fe2O3) и магнетит (Fe3O4), которые издавна используют в качестве добавок к формовочным смесям. Другими добавками к формовочным смесям типа флюсов являются материалы, содержащие оксид титана (TiO2) и оксид лития (Li2O), например сподумен. Также было показано, что использование комбинации нескольких различных добавок типа флюсов может обеспечить полезный эффект. Это относится, в частности, к использованию гематита совместно с другими добавками.
Существующие категории добавок к формовочным смесям могут снизить образование просечек в отливках, но все три категории добавок к формовочным смесям обладают определенными важными недостатками. Агрегаты с низким термическим расширением обычно являются более дорогими, чем кварцевый песок, и их необходимо использовать в относительно больших количествах (более 10% от массы песка). Органические демпфирующие материалы имеют тенденцию увеличивать общее количество газа, выделяемого литейной формой или стержнем при воздействии жидкого металла, и могут значительно снизить прочность формы/стержня, если их используют в количестве, превышающем примерно 1 процент. Добавки к формовочным смесям типа флюсов в настоящее время являются наиболее широко используемыми добавками, однако они также имеют определенные недостатки. Например, оксиды железа при использовании в количестве, превышающем примерно 2 масс.% от массы песка, могут приводить к повышенной проницаемости металла и снижать прочность формы/стержня при использовании в больших количествах. Сподумены, содержащие литий, являются дорогими, и обычно их используют в больших количествах, например в количестве от 4 до 8 масс.% от массы песка.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В заявке описана формовочная смесь, содержащая заполнитель и определенные карбонатные соли. Карбонатные соли можно использовать в количествах менее 4,0 масс.% от массы заполнителя и даже в количествах 1,0 масс.% и менее, для эффективного снижения образования просечек на металлической отливке, изготовленной с использованием формовочной смеси. Также описано применение формовочной смеси для изготовления литейных форм с использованием способов warm-box (ворм-бокс), hot-box (хот-бокс), no-bake (ноу-бэйк) и cold-box (колд-бокс), применение этих литейных форм для изготовления металлических отливок и металлические отливки, изготовленные таким способом. При использовании формовочной смеси согласно настоящему изобретению в металлических отливках, изготовленных с использованием литейных форм для литья металлических деталей, снижается или устраняется образование просечек.
Известно, что карбонатные соли, как чистые, так и входящие в состав природных минералов, например доломита, могут сокращать время обработки песчаных смесей, используемых в cold-box способе для изготовления литейных форм, и снижать химическую активность кислотных катализаторов, используемых для отверждения литейных форм в warm-box, hot-box и no-bake способах. В связи с этим желательно удалять карбонатные соли из формовочных смесей или минимизировать их содержание в формовочных смесях. Несмотря на это препятствие для использования карбонатных солей в формовочных смесях, оценка отливок показала не только то, что добавление карбонатных солей уменьшает образование просечек, но и то, что сопоставимое уменьшение просечек обеспечивается при использовании меньших количеств карбонатных солей (по сравнению с количествами известных добавок к формовочным смесям).
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Карбонатными солями, используемыми в качестве добавок к формовочной смеси, являются такие карбонаты, как карбонат натрия, карбонат калия, карбонат кальция, карбонат магния и их смеси. Можно использовать чистые карбонатные соли и/или природные минералы, содержащие карбонатные соли. Примером природного минерала, содержащего карбонатные соли, является доломит. Доломит обладает преимуществами в качестве источника карбонатных солей благодаря его доступности и низкой цене.
Количество карбонатной соли, используемое в формовочной смеси, - это количество, эффективно снижающее или устраняющее образование просечек в металлических отливках, изготовленных с использованием литейных форм (т.е. форм и стержней), используемых для литья металлических деталей. Эффективное количество карбонатной соли обычно составляет от 0,25 масс.% до 5,0 масс.% от массы заполнителя в формовочной смеси, предпочтительно - от 0,5 масс.% до 3,0 масс.% от массы заполнителя в формовочной смеси и наиболее предпочтительно - от 0,75 масс.% до 2,0 масс.% от массы заполнителя в формовочной смеси.
Кроме карбонатных солей формовочная смесь может также содержать известные добавки для формовочных смесей, такие как красный оксид железа, черный оксид железа и литийсодержащие соединения. Особо предпочтительно использовать совместно с карбонатной солью красный оксид железа. Если с карбонатной солью используют красный оксид железа, то его обычно используют в массовом отношении карбонатной соли к красному оксиду железа в диапазоне от 1:1 до 4:1, предпочтительно - от 1:1 до 2:1.
Формовочная смесь также может содержать связующее для формовочных смесей. Эти связующие для формовочных смесей хорошо известны в данной области техники. Можно использовать любое неорганическое или органическое связующее для способов warm-box, hot-box, no-bake или cold-box, если оно будет в достаточной степени фиксировать литейную форму, а в случае органических связующих - если оно будет полимеризоваться в присутствии катализатора отверждения. Примерами таких органических связующих являются, среди прочих, фенольные смолы, фенолуретановые связующие, фурановые связующие, щелочные фенолрезольные связующие и эпоксиакриловые связующие. Фенолуретановые связующие описаны в патентах США №№3485497 и 3409579, содержание которых полностью включено в данную заявку посредством ссылки. В основе этих связующих лежит двухкомпонентная система, одна часть которой является компонентом фенольной смолы, а вторая часть - полиизоцианатным компонентом. Эпоксиакриловые связующие, отверждаемые диоксидом серы в присутствии окислителя, описаны в патенте США №4526219, содержание которого также полностью включено в данную заявку посредством ссылки.
Необходимое количество связующего является эффективным количеством, обеспечивающим поддержание формы и эффективное отверждение, то есть количеством, которое позволит получить литейную форму, с которой можно будет обращаться после отверждения или которая после отверждения будет самоподдерживающейся. Эффективное количество связующего обычно превышает примерно 0,1 масс.% от массы заполнителя формовочной смеси. Предпочтительно количество связующего лежит в диапазоне от примерно 0,5 масс.% до примерно 5 масс.%, более предпочтительно - от примерно 0,5 до примерно 2 масс.%.
Отверждение формовочной смеси в случае no-bake способа происходит после смешивания жидкого катализатора отверждения с формовочной смесью (альтернативно - после первоначального смешивания жидкого катализатора отверждения с формовочной смесью), формования формовочной смеси, содержащей катализатор, и отверждения сформованной формовочной смеси (обычно при температуре окружающей среды без использования тепла). Warm-box и hot-box способы сходны с no-bake способом, за исключением используемого оборудования и/или того, что литейную форму нагревают для ускорения отверждения. Предпочтительным жидким катализатором отверждения для no-bake способа является третичный амин, описанный в патенте США №3485797, содержание которого полностью включено в данную заявку посредством ссылки. Конкретными примерами таких жидких катализаторов отверждения являются 4-алкилпиридины, алкильная группа которых содержит от одного до четырех атомов углерода, изохинолин, арилпиридины, например фенилпиридин, пиридин, акридин, 2-метоксипиридин, пиридазин, 3-хлорпиридин, хинолин, N-метилимидазол, N-этилимидазол, 4,4'-дипиридин, 4-фенилпропилпиридин, 1-метилбензимидазол и 1,4-тиазин. Если фурановое связующее используют в warm-box, hot-box или no-bake способах, то типичным используемым катализатором является неорганическая или органическая кислота, например сильные кислоты, такие как толуолсульфокислота, ксилолсульфокислота, бензолсульфокислота, HCl и H2SO4. Также можно использовать слабые кислоты, например фосфорную кислоту.
Отверждение литейной формы в cold-box способе происходит при вдувании или набивке формовочной смеси в форму и контакте литейной формы с парообразным или газообразным катализатором. Можно использовать различные пары или смеси паров и газов или газы, например третичные амины, диоксид углерода, метилформиат и диоксид серы, в зависимости от выбранного химического связующего. Специалист в данной области техники сможет определить, какой газообразный отверждающий агент является подходящим для используемого связующего. Например, смесь парообразных/газообразных аминов используют с фенолуретановыми смолами. Диоксид серы (совместно с окислителем) используют с эпоксиакриловой смолой. См. патент США №4526219, содержание которого включено в данную заявку посредством ссылки. Диоксид углерода (см. патент США №4985489, содержание которого включено в данную заявку посредством ссылки) или сложные метиловые эфиры (см. патент США №4750716, содержание которого включено в данную заявку посредством ссылки) используют с щелочными фенолрезольными смолами. Диоксид углерода также используют со связующими на основе силикатов. См. патент США №4391642, содержание которого включено в данную заявку посредством ссылки
Связующим предпочтительно является фенолуретановое cold-box связующее, отверждаемое посредством пропускания газообразного третичного амина, например триэтиламина, через сформованную формовочную смесь способом, описанным в патенте США №3409579, или эпоксиакриловое связующее, отверждаемое диоксидом серы в присутствии окислителя, как описано в патенте США №4526219.
Специалисту в данной области техники будет очевидно, что к формовочной смеси могут быть добавлены другие добавки, например разделительные композиции, растворители, средства, увеличивающие время обработки, силиконовые соединения и т.п.
ОПИСАНИЕ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
В Примере А (сравнительный пример) и в Примерах 1-3 литейные стержни для испытаний (цилиндрические стержни диаметром 2” и высотой 2”) были изготовлены с использованием warm-box процесса посредством смешивания кварцевого песка Badger 5574 с фурановым связующим CHEM-REZ® (коммерчески доступным в компании Ashland Inc.) в количестве, равном 1,25% от массы песка, катализатором CHEM-REZ FC521 (коммерчески доступным в компании Ashland Inc.) в количестве, равном 20% от массы связующего, и добавкой для формовочной смеси, вид и количество которой (в процентах от массы песка) указаны в Таблице 1, и вдувания смеси в стержневой ящик, температуру которого поддерживали на уровне примерно 235°C.
В Примере В (сравнительный пример) и в Примерах 4-5 литейные стержни для испытаний были изготовлены с использованием cold-box процесса посредством смешивания кварцевого песка Wedron 540 с фенолуретановым связующим ISOCURE® TKW 10/20 (двухкомпонентное фенолуретановое связующее, коммерчески доступное в компании Ashland Inc., в котором соотношение Части I к Части II равно 1:1) в количестве, равном 1,25% от массы песка, катализатором CHEM-REZ FC521 (коммерчески доступным в компании Ashland Inc.) в количестве, равном 1% и указанном в Таблице 1, вдувания смеси в стержневой ящик с цилиндрическими полостями диаметром 2” и высотой 2” и отверждения стержней с использованием катализатора триэтилалюминия (TEA).
Характеристики образования просечек на стержнях для испытаний были измерены после проведения пробного литья для испытания на «пенетрацию», для которого стержни для испытаний были вклеены в литейную форму в сборке. Затем в литейную форму в сборке, содержавшую стержни для испытаний, залили расплавленный серый литейный чугун Класса 30, имевший температуру около 1450°C. Результаты испытания на пенетрацию в отношении образования просечек и механической пенетрации описаны авторами Tordoff and Tenaglia в AFS Transactions, стр.149-158 (84-е ежегодное совещание AFS, Сент-Луис, Миссури, 21-25 апреля 1980 г.). Дефекты поверхности определяли посредством визуального наблюдения, а оценка отливок была основана на опыте исследователей и фотографиях испытательных отливок.
Отливку охлаждали, очищали посредством пескоструйной обработки и внутренние поверхности полостей, образованных стержнями, оценивали на образование просечек, сравнивали друг с другом и оценивали по шкале от 1 до 5, где 5 обозначает наиболее выраженное образование просечек, а 1 обозначает отсутствие просечек. Результаты представлены в Таблице 1, приведенной ниже.
Таблица 1
Характеристики образования просечек на стержнях для испытаний
Пример Добавка Общее количество добавки, препятствующей образованию просечек (в % от массы песка) Образование просечек (оценка)
A (warm-box) Нет Нет 4,0
1 (warm-box) Смесь карбоната кальция и карбоната магния (доломит) В общей сложности 1 процент1 1,5
2 (warm-box) Смесь карбоната кальция и карбоната магния (доломит) В общей сложности 1 процент2 1,0
3 (warm-box) Смесь карбоната кальция и карбоната магния (доломит) В общей сложности 2 процента3 1,0
В (cold-box) Нет Нет 3,0
4 (cold-box) Смесь карбоната кальция и карбоната магния (доломит) + сульфат кальция (гипс) (50/50) В общей сложности 1 процент2 1,0
5 (cold-box) Смесь карбоната кальция и карбоната магния (доломит) + сульфат кальция (гипс) (50/50) В общей сложности 2 процента2 1,0
1 - без добавления оксида железа
2 - для контроля пенетрации также добавлено 0,5 процента оксида железа
3 - для контроля пенетрации также добавлен 1 процент оксида железа
Данные Таблицы 1 четко показывают, что стержни для испытаний, изготовленные из формовочной смеси, содержащей карбонатную соль, снижают образование просечек в исследуемой отливке даже в концентрации, равной 1 масс.% от массы песка.
В описании и примерах осуществления настоящего изобретения возможны различные комбинации, модификации и изменения параметров, которые входят в объем формулы изобретения, так что формулу изобретения следует толковать как включающую альтернативные варианты его осуществления.

Claims (19)

1. Формовочная смесь, содержащая:
(а) заполнитель формовочной смеси, и
(б) карбонатную соль в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси для снижения образования просечек в металлической отливке, изготовленной с использованием формовочной смеси.
2. Формовочная смесь по п. 1, отличающаяся тем, что она дополнительно содержит оксид железа, выбранный из группы, состоящей из красного оксида железа, черного оксида железа и их смесей.
3. Формовочная смесь по п. 2, отличающаяся тем, что оксидом железа является красный оксид железа.
4. Формовочная смесь по п. 3, отличающаяся тем, что заполнитель для формовочной смеси содержит кварцевый песок.
5. Формовочная смесь по п. 4, отличающаяся тем, что карбонатная соль выбрана из группы, состоящей из карбоната кальция, карбоната магния и их смесей.
6. Формовочная смесь по п. 5, отличающаяся тем, что в качестве источника карбоната кальция и/или карбоната магния она содержит доломит.
7. Формовочная смесь по п. 4, отличающаяся тем, что она дополнительно содержит гипс.
8. Формовочная смесь по пп. 5, 6 или 7, отличающаяся тем, что массовое соотношение карбонатной соли и красного оксида железа лежит в диапазоне от 1:1 до 4:1.
9. Формовочная смесь по п. 8, отличающаяся тем, что массовое соотношение карбонатной соли и красного оксида железа лежит в диапазоне от 1:1 до 2:1.
10. Формовочная смесь по п. 9, отличающаяся тем, что она содержит органическое связующее.
11. Формовочная смесь по п. 10, отличающаяся тем, что связующим является фенолуретановое связующее или эпоксиакрилатное связующее.
12. Формовочная смесь по п. 11, отличающаяся тем, что она содержит жидкий катализатор.
13. Формовочная смесь по п. 11, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 4,0 мас.% от массы заполнителя для формовочной смеси.
14. Формовочная смесь по п. 12, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 4,0 мас.% от массы заполнителя для формовочной смеси.
15. Формовочная смесь по п. 11, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 2,5 мас.% от массы заполнителя для формовочной смеси.
16. Формовочная смесь по п. 12, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 2,5 мас.% от массы заполнителя для формовочной смеси.
17. Способ изготовления литейной формы, включающий:
(а) помещение формовочной смеси по п. 1 в модель для получения литейной формы,
(б) применение одного из следующих трех этапов обработки:
(б.1) обеспечение контакта литейной формы, полученной на стадии (а), с газообразным или парообразным катализатором отверждения, способным отвердить форму, или
(б.2) обеспечение контакта литейной формы, полученной на стадии (а), с жидким катализатором отверждения, способным отвердить форму, или
(б.3) нагревание литейной формы, полученной на стадии (а), до температуры в диапазоне от 150°C до 260°C,
(в) отверждение литейной формы, полученной на стадии (б), до тех пор, пока эта форма не станет пригодной для обращения, и
(г) извлечение, по меньшей мере, частично отвержденной литейной формы из модели.
18. Способ литья металлических деталей, включающий:
(а) введение отвержденной литейной формы, изготовленной способом по п. 17, в литейную форму в сборе,
(б) заливку металла, находящегося в жидком состоянии, в форму в сборе,
(в) охлаждение и отверждение металла, и
(г) отделение отлитой металлической детали от формы в сборе.
19. Применение карбонатной соли в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси, содержащей заполнитель формовочной смеси для снижения образования просечек в металлической отливке, изготовленной с использованием указанной формовочной смеси.
RU2012127880/02A 2009-12-16 2010-10-27 Формовочные смеси, содержащие карбонатные соли, и их применение RU2564656C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US28691309P 2009-12-16 2009-12-16
US61/286,913 2009-12-16
US12/873,789 US20110139309A1 (en) 2009-12-16 2010-09-01 Foundry mixes contaiing carbonate salts and their uses
US12/873,789 2010-09-01
PCT/US2010/054256 WO2011075220A1 (en) 2009-12-16 2010-10-27 Foundry mixes containing carbonate salts and their uses

Publications (2)

Publication Number Publication Date
RU2012127880A RU2012127880A (ru) 2014-01-27
RU2564656C2 true RU2564656C2 (ru) 2015-10-10

Family

ID=44141592

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2012127879/02A RU2566108C2 (ru) 2009-12-16 2010-10-27 Формовочные смеси, содержащие сульфатные и/или нитратные соли, и их применение
RU2012127880/02A RU2564656C2 (ru) 2009-12-16 2010-10-27 Формовочные смеси, содержащие карбонатные соли, и их применение
RU2012127878/02A RU2567932C2 (ru) 2009-12-16 2010-10-28 Формовочные смеси, содержащие соль органической кислоты, и их применение

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2012127879/02A RU2566108C2 (ru) 2009-12-16 2010-10-27 Формовочные смеси, содержащие сульфатные и/или нитратные соли, и их применение

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2012127878/02A RU2567932C2 (ru) 2009-12-16 2010-10-28 Формовочные смеси, содержащие соль органической кислоты, и их применение

Country Status (17)

Country Link
US (3) US8426493B2 (ru)
EP (3) EP2513005B1 (ru)
JP (5) JP2013514189A (ru)
KR (3) KR20120123049A (ru)
CN (3) CN102762512A (ru)
BR (3) BR112012014778A2 (ru)
CA (4) CA2783978C (ru)
ES (3) ES2714224T3 (ru)
HU (2) HUE042635T2 (ru)
MX (3) MX344790B (ru)
PL (3) PL2513005T3 (ru)
PT (2) PT2513005T (ru)
RS (1) RS58496B1 (ru)
RU (3) RU2566108C2 (ru)
UA (3) UA105681C2 (ru)
WO (3) WO2011075221A1 (ru)
ZA (3) ZA201204327B (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5249447B1 (ja) * 2012-05-17 2013-07-31 株式会社木村鋳造所 三次元積層造型用の鋳物砂
US9789533B2 (en) * 2012-11-19 2017-10-17 Sintokogio, Ltd. Sand for casting mold, manufacturing method for sand casting-mold, and core for metal casting
EP3159073B1 (en) 2014-06-20 2023-04-05 Asahi Yukizai Corporation Mold manufacturing method and mold
JP6470542B2 (ja) * 2014-10-23 2019-02-13 旭有機材株式会社 積層鋳型の造型方法
CN104942219B (zh) * 2015-07-31 2017-01-18 南昌航空大学 一种适合于水玻璃精密铸造型壳的硬化剂及其制备方法
CN108778557B (zh) * 2015-12-18 2020-03-06 亚世科化学有限责任公司 用于非铁金属铸造的造型材料
DE102016211930A1 (de) * 2016-06-30 2018-01-04 Wobben Properties Gmbh Schlichtezusammensetzung zur Herstellung von Formüberzügen auf verlorenen Formen bzw. auf Kernen für den Eisen- und Stahlguss
KR102478505B1 (ko) 2016-12-23 2022-12-15 현대자동차주식회사 알루미늄 주조용 솔트코어 및 이의 제조방법
US10610923B2 (en) * 2017-01-23 2020-04-07 Novis Works, LLC Foundry mix including resorcinol
JP7109444B2 (ja) * 2017-08-03 2022-07-29 旭有機材株式会社 鋳型材料及びその製造方法、鋳型の製造方法、並びに回収耐火性骨材の再生方法
CN107971451A (zh) * 2017-11-02 2018-05-01 深圳市爱能森科技有限公司 一种基于三元熔盐体系的可溶型芯及其制备方法与应用
JP6910332B2 (ja) * 2018-11-26 2021-07-28 花王株式会社 鋳型造型用粘結剤組成物
DE102019002802A1 (de) * 2019-04-16 2020-10-22 Ask Chemicals Gmbh Schlichtezusammensetzung, Verfahren zur Beschichtung einer Gießform, Verwendung der Schlichtezusammensetzung zur Beschichtung einer Gießform und Gießform
CN112404418A (zh) * 2019-08-22 2021-02-26 冯师金 智能环保铸造壳模生产工艺
CN111154298A (zh) * 2019-12-24 2020-05-15 江阴硕人节能环保科技有限公司 一种防粘涂料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1748916A1 (ru) * 1990-09-06 1992-07-23 Челябинский Политехнический Институт Им.Ленинского Комсомола Св зующее дл изготовлени литейных стержней и форм теплового отверждени
US5646199A (en) * 1991-07-22 1997-07-08 Kao Corporation Composition for mold
US20030155098A1 (en) * 2002-11-08 2003-08-21 Brown Richard K. Sand casting foundry composition and method using thermally collapsible clay minerals as an anti-veining agent
US20050155741A1 (en) * 2001-05-01 2005-07-21 Baker Stephen G. Casting sand cores and expansion control methods therefor

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1078666A (en) 1964-08-20 1967-08-09 Foseco Int Additives to sand moulds and cores
US3485797A (en) * 1966-03-14 1969-12-23 Ashland Oil Inc Phenolic resins containing benzylic ether linkages and unsubstituted para positions
US3429848A (en) * 1966-08-01 1969-02-25 Ashland Oil Inc Foundry binder composition comprising benzylic ether resin,polyisocyanate,and tertiary amine
US3804641A (en) * 1972-04-11 1974-04-16 V Bortnik Method of producing foundry moulds and cores
GB1413779A (en) 1974-05-24 1975-11-12 Tsniitmash Self-hardening moulding mixture of making foundry moulds and cores
US4020027A (en) * 1976-06-14 1977-04-26 The British Cast Iron Research Association Foundry moulding materials
DE3060730D1 (en) 1979-02-27 1982-09-30 Foseco Int Alkali metal silicate binder compositions
US4526219A (en) * 1980-01-07 1985-07-02 Ashland Oil, Inc. Process of forming foundry cores and molds utilizing binder curable by free radical polymerization
US4284121A (en) 1980-02-28 1981-08-18 Precision Metalsmiths, Inc. Process and materials for making refractory cores
US4321186A (en) * 1980-04-09 1982-03-23 Phillips Petroleum Company Foundry refractory binder
JPS5877738A (ja) * 1981-11-02 1983-05-11 Sumitomo Deyurezu Kk レジンコ−テツドサンド
US4711669A (en) * 1985-11-05 1987-12-08 American Cyanamid Company Method of manufacturing a bonded particulate article by reacting a hydrolyzed amylaceous product and a heterocyclic compound
JPS5970438A (ja) * 1982-10-14 1984-04-20 Osamu Madono シエル中子の崩壊性の改良方法
JPS60180643A (ja) * 1984-02-29 1985-09-14 Nissan Motor Co Ltd 鋳物砂用粘結剤に用いる崩壊助剤
US4750716A (en) 1986-04-04 1988-06-14 Ashland Oil, Inc. Injection lance
AU605943B2 (en) * 1987-12-24 1991-01-24 Foseco International Limited Production of articles of bonded particulate material and binder compositions for use therein
JP2504638B2 (ja) * 1990-07-05 1996-06-05 花王株式会社 硬化性鋳型製造用添加剤及び鋳型の製造方法
JP3092981B2 (ja) * 1991-07-22 2000-09-25 花王株式会社 鋳型用樹脂組成物、鋳型用粘結剤組成物及び鋳型組成物、鋳型の製造法
JP2790231B2 (ja) * 1992-10-13 1998-08-27 宇部興産株式会社 崩壊性砂中子の製造方法
US5911269A (en) * 1992-11-16 1999-06-15 Industrial Gypsum Co., Inc. Method of making silica sand molds and cores for metal founding
JP2668641B2 (ja) * 1993-10-05 1997-10-27 正光 三木 鋳物用生型の製造方法
CA2124759A1 (en) * 1993-11-15 1995-05-16 Borden Chemical, Inc. Addition for promotion of bench life extension in a hot box binder system
US6598654B2 (en) 1996-12-27 2003-07-29 Iberia Ashland Chemical, S.A. Molding sand appropriate for the fabrication of cores and molds
JP3239209B2 (ja) * 1997-05-22 2001-12-17 正光 三木 鋳物用発熱体の製造方法
CN1174103A (zh) * 1997-07-04 1998-02-25 严德富 铸型砂模粘结剂
DE19738755C2 (de) * 1997-09-04 2002-01-17 Ashland Suedchemie Kernfest Phenolharz und Bindemittel für die Herstellung von Formen und Kernen nach dem Phenolharz-Polyurethan-Verfahren
JP4119515B2 (ja) * 1998-03-05 2008-07-16 リグナイト株式会社 鋳型用レジンコーテッドサンド
AT2581U1 (de) * 1998-03-20 1999-01-25 Kaerntner Montanindustrie Ges Verwendung von eisenglimmer bei der herstellung von gussformen
JP2000117415A (ja) * 1998-10-16 2000-04-25 Noritake Co Ltd 鋳型材の除去方法および網目構造金属体の製造方法
JP2002531368A (ja) * 1998-12-08 2002-09-24 マックナルティ、ウイリアム、ジェイ.ジュニア 無機セメント質物質
US20020035171A1 (en) * 2000-07-28 2002-03-21 Skoglund Michael J. Foundry binder compositions and mixes that contain a divalent sulfur compound
DE10227512B4 (de) * 2002-06-19 2004-07-08 Georg Fischer Gmbh & Co.Kg Verfahren zur Herstellung von Giesskernen oder Formen, sowie nach diesem Verfahren hergestellte Giesskerne oder Formen
RU2324706C2 (ru) * 2002-10-04 2008-05-20 Е Энд Е Текнолоджи Инк. Отверждающаяся без нагрева композиция связующего и способ получения формованного изделия с ее использованием
JP4323187B2 (ja) * 2003-02-27 2009-09-02 旭有機材工業株式会社 鋳型用有機粘結剤及びこれを用いて得られる鋳物砂組成物並びに鋳型
US20050087323A1 (en) * 2003-10-28 2005-04-28 Thomas Hathaway Foundry casting material composition
US7938169B2 (en) 2008-06-20 2011-05-10 Prince Minerals, Inc. Anti-veining agent for metal casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1748916A1 (ru) * 1990-09-06 1992-07-23 Челябинский Политехнический Институт Им.Ленинского Комсомола Св зующее дл изготовлени литейных стержней и форм теплового отверждени
US5646199A (en) * 1991-07-22 1997-07-08 Kao Corporation Composition for mold
US20050155741A1 (en) * 2001-05-01 2005-07-21 Baker Stephen G. Casting sand cores and expansion control methods therefor
US20030155098A1 (en) * 2002-11-08 2003-08-21 Brown Richard K. Sand casting foundry composition and method using thermally collapsible clay minerals as an anti-veining agent

Also Published As

Publication number Publication date
EP2513005A1 (en) 2012-10-24
JP6266584B2 (ja) 2018-01-24
CA2783984A1 (en) 2011-06-23
KR20120099278A (ko) 2012-09-07
UA105681C2 (ru) 2014-06-10
ES2638550T3 (es) 2017-10-23
WO2011075221A1 (en) 2011-06-23
JP2013514190A (ja) 2013-04-25
MX2012006583A (es) 2012-09-07
US8426493B2 (en) 2013-04-23
BR112012014676A2 (pt) 2016-04-05
ZA201204329B (en) 2013-02-27
JP2013514189A (ja) 2013-04-25
US20110139310A1 (en) 2011-06-16
PT2513005T (pt) 2017-11-08
ES2714224T3 (es) 2019-05-27
EP2513004A4 (en) 2015-12-09
RS58496B1 (sr) 2019-04-30
CA3005549A1 (en) 2011-06-23
WO2011075220A1 (en) 2011-06-23
KR20120123049A (ko) 2012-11-07
CA2783978A1 (en) 2011-06-23
JP2013514191A (ja) 2013-04-25
EP2513006B1 (en) 2020-09-02
JP2016104494A (ja) 2016-06-09
US20110139309A1 (en) 2011-06-16
UA106258C2 (ru) 2014-08-11
RU2012127880A (ru) 2014-01-27
BR112012014778A2 (pt) 2016-06-07
MX2012006582A (es) 2012-09-07
CN102762513B (zh) 2014-08-27
EP2513004A1 (en) 2012-10-24
RU2012127878A (ru) 2014-01-27
HUE042635T2 (hu) 2019-07-29
RU2012127879A (ru) 2014-01-27
PL2513004T3 (pl) 2019-07-31
EP2513006A1 (en) 2012-10-24
CN102762513A (zh) 2012-10-31
MX2012006584A (es) 2012-09-07
ES2822335T3 (es) 2021-04-30
CA2783983A1 (en) 2011-06-23
ZA201204327B (en) 2013-02-27
MX344790B (es) 2017-01-06
CA2783978C (en) 2018-07-10
EP2513005B1 (en) 2017-07-26
RU2567932C2 (ru) 2015-11-10
EP2513006A4 (en) 2015-12-16
BR112012014676B1 (pt) 2019-12-31
ZA201204328B (en) 2013-02-27
CN102762512A (zh) 2012-10-31
PL2513005T3 (pl) 2018-01-31
PT2513006T (pt) 2020-11-12
HUE051515T2 (hu) 2021-03-01
RU2566108C2 (ru) 2015-10-20
PL2513006T3 (pl) 2021-02-22
UA107004C2 (ru) 2014-11-10
WO2011075222A1 (en) 2011-06-23
KR20120102122A (ko) 2012-09-17
CN102762514A (zh) 2012-10-31
US20110139311A1 (en) 2011-06-16
EP2513005A4 (en) 2015-09-23
BR112012014691A2 (pt) 2016-04-12
EP2513004B1 (en) 2018-12-05
JP2016074038A (ja) 2016-05-12

Similar Documents

Publication Publication Date Title
RU2564656C2 (ru) Формовочные смеси, содержащие карбонатные соли, и их применение
JP5537067B2 (ja) 鋳型の製造方法
WO2017141337A1 (ja) 粒状材料、3次元積層造形鋳型、3次元積層造形鋳型の製造方法および3次元積層造形鋳型の製造装置
JP4315685B2 (ja) 鋳物サンドコア及びそのための膨張制御方法
US20120199309A1 (en) Sand additives for molds/cores for metal casting
RU2299781C2 (ru) Вставка, способ ее изготовления и смесь для изготовления указанной вставки

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20200609