[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20190141639A - 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지 - Google Patents

양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지 Download PDF

Info

Publication number
KR20190141639A
KR20190141639A KR1020190168722A KR20190168722A KR20190141639A KR 20190141639 A KR20190141639 A KR 20190141639A KR 1020190168722 A KR1020190168722 A KR 1020190168722A KR 20190168722 A KR20190168722 A KR 20190168722A KR 20190141639 A KR20190141639 A KR 20190141639A
Authority
KR
South Korea
Prior art keywords
region
positive electrode
secondary battery
aluminum
active material
Prior art date
Application number
KR1020190168722A
Other languages
English (en)
Other versions
KR102277636B1 (ko
Inventor
요헤이 맘마
타카히로 카와카미
테루아키 오치아이
마사히로 타카하시
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62147269&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20190141639(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20190141639A publication Critical patent/KR20190141639A/ko
Application granted granted Critical
Publication of KR102277636B1 publication Critical patent/KR102277636B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/466Magnesium based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명은 사이클 특성이 우수하고, 고용량의 리튬 이온 이차 전지용 양극 활물질을 제공한다.
양극 활물질의 표층부에, 알루미늄을 포함하는 피복층과, 마그네슘을 포함하는 피복층을 제공한다. 마그네슘을 포함하는 피복층은 알루미늄을 포함하는 피복층보다 입자의 표면에 가까운 영역에 존재한다. 알루미늄을 포함하는 피복층은 알루미늄알콕사이드를 사용한 졸겔법에 의하여 형성할 수 있다. 마그네슘을 포함하는 피복층은 출발 원료에 마그네슘과 플루오린을 혼합해 두고 졸겔법 후에 가열을 행함으로써 마그네슘을 편석시켜 형성할 수 있다.

Description

양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지{POSITIVE ELECTRODE ACTIVE MATERIAL, METHOD FOR MANUFACTURING POSITIVE ELECTRODE ACTIVE MATERIAL, AND SECONDARY BATTERY}
본 발명의 일 형태는 물건, 방법, 또는 제작 방법에 관한 것이다. 또는, 본 발명은 공정(process), 기계(machine), 제품(manufacture), 또는 조성물(composition of matter)에 관한 것이다. 본 발명의 일 형태는 반도체 장치, 표시 장치, 발광 장치, 축전 장치, 조명 장치 또는 전자 기기의 제작 방법에 관한 것이다. 특히 전자 기기 및 그 운영 체계에 관한 것이다.
또한, 본 명세서 중에 있어서, 축전 장치란, 축전 기능을 갖는 소자 및 장치 전반을 가리키는 것이다. 예를 들어, 리튬 이온 이차 전지 등의 축전지(이차 전지라고도 함), 리튬 이온 커패시터 및 전기 이중층 커패시터 등을 포함한다.
또한, 본 명세서 중에서 전자 기기란, 축전 장치를 갖는 장치 전반을 가리키고, 축전 장치를 갖는 전기 광학 장치, 축전 장치를 갖는 정보 단말 장치 등은 모두 전자 기기이다.
최근에는, 리튬 이온 이차 전지, 리튬 이온 커패시터, 공기 전지 등, 여러가지 축전 장치의 개발이 활발히 행해지고 있다. 특히, 고출력, 고용량인 리튬 이온 이차 전지는, 휴대 전화, 스마트폰, 또는 노트북형 컴퓨터 등의 휴대 정보 단말, 휴대 음악 플레이어, 디지털 카메라, 의료 기기, 또는 하이브리드차(HEV), 전기 자동차(EV), 또는 플러그인 하이브리드차(PHEV) 등의 차세대 클린 에너지 자동차 등, 반도체 산업의 발전과 함께 급속하게 그 수요가 확대되어, 충전 가능한 에너지의 공급원으로서 현대의 정보화 사회에 불가결한 것이 되고 있다.
현재, 리튬 이온 이차 전지에 요구되는 특성으로서는 한층 더한 고에너지 밀도화, 사이클 특성의 향상, 및 다양한 동작 환경하에서의 안전성, 장기 신뢰성의 향상 등을 들 수 있다.
그러므로, 리튬 이온 이차 전지의 사이클 특성의 향상 및 고용량화를 목표로 한 양극 활물질의 개량이 검토되고 있다(특허문헌 1, 특허문헌 2, 및 특허문헌 3 참조).
일본 공개특허공보 특개평8-236114호 일본 공개특허공보 특개2002-124262호 일본 공개특허공보 특개2002-358953호
그러나, 리튬 이온 이차 전지 및 그에 사용되는 양극 활물질에는 사이클 특성, 용량, 나아가서는 충방전 특성, 신뢰성, 안전성, 또는 비용 등 다양한 면에서 아직 개량의 여지가 남아 있다.
본 발명의 일 형태는 리튬 이온 이차 전지에 사용함으로써 충방전 사이클에 따른 용량 저하가 억제되는 양극 활물질을 제공하는 것을 과제 중 하나로 한다. 또는, 본 발명의 일 형태는 고용량의 이차 전지를 제공하는 것을 과제 중 하나로 한다. 또는, 본 발명의 일 형태는 충방전 특성이 우수한 이차 전지를 제공하는 것을 과제 중 하나로 한다. 또는, 본 발명의 일 형태는 안전성 또는 신뢰성이 높은 이차 전지를 제공하는 것을 과제 중 하나로 한다.
또는 본 발명의 일 형태는 신규 물질, 활물질, 축전 장치, 또는 이들의 제작 방법을 제공하는 것을 과제 중 하나로 한다.
또한, 이들 과제의 기재는 다른 과제의 존재를 방해하는 것은 아니다. 또한, 본 발명의 일 형태는 이들 과제 모두를 해결할 필요는 없다. 또한, 명세서, 도면, 청구항의 기재로부터, 이들 이외의 과제를 추출하는 것이 가능하다.
상술한 목적을 달성하기 위하여 본 발명의 일 형태는 양극 활물질의 표층부에 알루미늄을 포함하는 피복층과, 마그네슘을 포함하는 피복층을 제공하는 것을 특징으로 한다.
본 발명의 일 형태는 양극 활물질이고, 양극 활물질은 제 1 영역과, 제 2 영역과, 제 3 영역을 포함하고, 제 1 영역은 양극 활물질의 내부에 존재하고, 제 2 영역은 제 1 영역 중 적어도 일부를 피복하고, 제 3 영역은 제 2 영역 중 적어도 일부를 피복하고, 제 1 영역은 리튬과, 전이 금속(transition metal)과, 산소를 포함하고, 제 2 영역은 리튬과, 알루미늄과, 전이 금속과, 산소를 포함하고, 제 3 영역은 마그네슘과, 산소를 포함하는 양극 활물질이다.
상기에 있어서, 제 3 영역은 플루오린을 포함하여도 좋다.
또한, 상기에 있어서, 제 3 영역은 전이 금속을 포함하여도 좋다.
또한, 상기에 있어서, 제 1 영역 및 제 2 영역은 층상 암염형의 결정 구조를 갖고, 제 3 영역은 암염형 결정 구조를 가져도 좋다.
또한, 상기에 있어서, 전이 금속은 코발트로 할 수 있다.
또한, 본 발명의 일 형태는 양극 활물질이고, 양극 활물질은 리튬과, 알루미늄과, 전이 금속과, 마그네슘과, 산소와, 플루오린을 갖고, 양극 활물질의 표층부에 존재하고, X선 광전자 분광으로 측정되는 리튬, 알루미늄, 전이 금속, 마그네슘, 산소, 및 플루오린의 총량을 100atomic%로 하고, 양극 활물질의 표층부에 존재하고, X선 광전자 분광으로 측정되는, 알루미늄 농도가 0.1atomic% 이상 10atomic% 이하이고, 마그네슘 농도가 5atomic% 이상 20atomic% 이하이고, 플루오린 농도가 3.5atomic% 이상 14atomic% 이하인, 양극 활물질이다.
또한, 본 발명의 일 형태는 상기 양극 활물질을 포함하는 양극과, 음극과, 전해액과, 외장체를 포함하는 이차 전지이다.
또한, 본 발명의 일 형태는 알루미늄알콕사이드를 알코올에 용해시키는 공정; 알루미늄알콕사이드가 알코올에 용해된 알루미늄알콕사이드의 알코올 용액에, 리튬과, 전이 금속과, 마그네슘과, 산소와, 플루오린을 갖는 입자를 혼합하는 공정; 알루미늄알콕사이드의 알코올 용액과, 리튬과, 전이 금속과, 마그네슘과, 산소와, 플루오린을 갖는 입자를 혼합시킨 혼합액을 수증기를 포함하는 분위기하에서 교반하는 공정; 혼합액 중에서 침전물을 회수하는 공정; 회수된 침전물을 산소를 포함하는 분위기하에서 500℃ 이상 1200℃ 이하, 유지 시간 50시간 이하의 조건에서 가열하는 공정을 갖는, 양극 활물질의 제작 방법이다.
본 발명의 일 형태에 의하여, 리튬 이온 이차 전지를 사용함으로써 충방전 사이클에 따른 용량 저하가 억제되는 양극 활물질을 제공할 수 있다. 또한, 고용량의 이차 전지를 제공할 수 있다. 또한, 충방전 특성이 우수한 이차 전지를 제공할 수 있다. 또한, 안전성 또는 신뢰성이 높은 이차 전지를 제공할 수 있다. 또한, 신규 물질, 활물질, 축전 장치, 또는 이들의 제작 방법을 제공할 수 있다.
도 1은 양극 활물질의 일례를 설명하기 위한 도면.
도 2는 양극 활물질의 제작 방법의 일례를 설명하기 위한 도면.
도 3은 도전조제로서 그래핀 화합물을 사용한 경우의 활물질층의 단면도.
도 4는 코인형 이차 전지를 설명하기 위한 도면.
도 5는 원통형 이차 전지를 설명하기 위한 도면.
도 6은 이차 전지의 예를 설명하기 위한 도면.
도 7은 이차 전지의 예를 설명하기 위한 도면.
도 8은 이차 전지의 예를 설명하기 위한 도면.
도 9는 이차 전지의 예를 설명하기 위한 도면.
도 10은 이차 전지의 예를 설명하기 위한 도면.
도 11은 래미네이트형 이차 전지를 설명하기 위한 도면.
도 12는 래미네이트형 이차 전지를 설명하기 위한 도면.
도 13은 이차 전지의 외관을 나타낸 도면.
도 14는 이차 전지의 외관을 나타낸 도면.
도 15는 이차 전지의 제작 방법을 설명하기 위한 도면.
도 16은 휠 수 있는 이차 전지를 설명하기 위한 도면.
도 17은 휠 수 있는 이차 전지를 설명하기 위한 도면.
도 18은 전자 기기의 일례를 설명하기 위한 도면.
도 19는 전자 기기의 일례를 설명하기 위한 도면.
도 20은 전자 기기의 일례를 설명하기 위한 도면.
도 21은 전자 기기의 일례를 설명하기 위한 도면.
도 22는 실시예 1의 양극 활물질을 사용한 이차 전지의 사이클 특성을 나타낸 그래프.
도 23은 실시예 2의 양극 활물질의 STEM 이미지.
도 24는 실시예 2의 양극 활물질의 STEM-FFT 이미지.
도 25는 실시예 2의 양극 활물질의 STEM 이미지 및 EDX 원소 매핑.
도 26은 실시예 2의 양극 활물질의 STEM 이미지 및 EDX선 분석.
이하에서는 본 발명의 실시형태에 대하여 도면을 참조하여 자세히 설명한다. 다만, 본 발명은 아래의 설명에 한정되지 않고, 그 형태 및 자세한 사항을 변경할 수 있는 것은 통상의 기술자라면 용이하게 이해할 수 있다. 또한, 본 발명은 이하에 나타내는 실시형태의 기재 내용에 한정하여 해석되는 것이 아니다.
또한, 본 명세서 등에서 결정면 및 방향은 밀러 지수로 나타낸다. 결정면 및 방향의 표기는 결정학상, 숫자에 위첨자의 바를 붙이지만, 본 명세서 등에서의 결정면 및 방향의 표기는 출원 표기의 제약상, 숫자 위에 바를 붙이는 대신 숫자 앞에 -(마이너스 부호)를 붙여 표현한다. 또한, 결정 내의 방향을 나타내는 개별 방위는 [ ]로, 등가의 방향 모두를 나타내는 집합 방위는 < >로, 결정면을 나타내는 개별면은 ( )로, 등가의 대칭성을 갖는 집합면은 { }로 각각 표현한다.
본 명세서에 있어서, 편석이란 복수의 원소(예를 들어 A, B, C)로 이루어지는 고체에서 한 원소(예를 들어 B)가 불균일하게 분포하는 현상을 말한다.
본 명세서에 있어서, 리튬과 전이 금속을 포함하는 복합 산화물이 갖는 층상 암염형의 결정 구조란, 양이온과 음이온이 번갈아 배열되는 암염형의 이온 배열을 갖고, 전이 금속과 리튬이 규칙 배열되어 이차원 평면을 형성하므로, 리튬의 이차원적 확산이 가능한 결정 구조를 말한다. 또한, 양이온 또는 음이온의 결손 등의 결함이 있어도 좋다. 또한, 층상 암염형 결정 구조는 엄밀히 말하면 암염형 결정의 격자가 일그러진 구조인 경우가 있다.
또한, 본 명세서에 있어서, 암염형의 결정 구조란, 양이온과 음이온이 번갈아 배열되어 있는 구조를 말한다. 또한, 양이온 또는 음이온의 결손이 있어도 좋다.
층상 암염형 결정 및 암염형 결정의 음이온은 입방 최밀 충전 구조(면심 입방 격자 구조)를 취한다. 층상 암염형 결정과 암염형 결정이 접촉할 때 음이온으로 구성되는 입방 최밀 충전 구조의 방향이 같게 되는 결정면이 존재한다. 다만, 층상 암염형 결정의 공간군은 R-3m이고, 암염형 결정의 공간군 Fm-3m(일반적인 암염형 결정의 공간군) 및 Fd-3m(가장 단순한 대칭성을 갖는 암염형 결정의 공간군)과 상이하므로, 상술한 조건을 만족시키는 결정면의 밀러 지수는 층상 암염형 결정과 암염형 결정에서 상이하다. 본 명세서에서는, 층상 암염형 결정 및 암염형 결정에서 음이온으로 구성되는 입방 최밀 충전 구조의 방향이 같게 될 때, "결정의 배향이 대략 일치한다"고 하는 것으로 한다.
2개의 영역의 결정의 배향이 일치되는 것은, TEM(투과 전자 현미경) 이미지, STEM(주사 투과 전자 현미경) 이미지, HAADF-STEM(고각 산란 고리상 암시야 주사 투과 전자 현미경) 이미지, ABF-STEM(고리상 명시야 주사 투과 전자 현미경) 이미지 등으로부터 판단할 수 있다. X선 회절, 전자선 회절, 중성자선 회절 등도 판단의 재료로 할 수 있다. TEM 이미지 등에서는 양이온과 음이온의 배열이 명선과 암선의 반복으로서 관찰된다. 층상 암염형 결정과 암염형 결정에서 입방 최밀 충전 구조의 방향이 같게 되면 결정 간에서 명선과 암선의 반복이 이루는 각도가 5° 이하, 더 바람직하게는 2.5° 이하인 것을 관찰할 수 있다. 다만, TEM 이미지 등에서 산소, 플루오린을 비롯한 경원소는 명확하게 관찰되지 못하는 경우가 있지만, 그러한 경우는 금속 원소의 배열로 배향의 일치를 판단할 수 있다.
(실시형태 1)
[양극 활물질의 구조]
먼저, 도 1을 사용하여 본 발명의 일 형태인 양극 활물질(100)에 대하여 설명한다. 도 1의 (A) 및 (B)에 도시된 바와 같이, 양극 활물질(100)은 제 1 영역(101)과, 제 2 영역(102)과, 제 3 영역(103)을 갖는다. 제 1 영역(101)은 양극 활물질(100)의 내부에 존재한다. 제 2 영역(102)은 제 1 영역(101) 중 적어도 일부를 피복한다. 제 3 영역(103)은 제 2 영역(102) 중 적어도 일부를 피복한다.
또한, 도 1의 (B)에 도시된 바와 같이, 양극 활물질(100)의 내부에 제 3 영역(103)이 존재하여도 좋다. 예를 들어, 제 1 영역(101)이 다결정일 때, 입계 근방에 제 3 영역(103)이 존재하여도 좋다. 또한, 양극 활물질(100)의 결정 결함 중 어떤 부분 근방에 제 3 영역(103)이 존재하여도 좋다. 도 1에서는 입계의 일부를 점선으로 나타내었다. 또한, 본 명세서 등에서, 결정 결함이란 TEM 이미지 등으로 관찰 가능한 결함, 즉, 결정 중에 다른 원소가 들어간 구조, 공동 등을 말하는 것으로 한다.
또한, 도시하지 않았지만, 양극 활물질(100)의 내부에 제 2 영역(102)이 존재하여도 좋다. 예를 들어, 제 1 영역(101)이 다결정일 때, 입계 근방에 제 2 영역(102)이 존재하여도 좋다. 또한, 양극 활물질(100)의 결정 결함 중 어떤 부분 근방에 제 2 영역(102)이 존재하여도 좋다.
또한, 제 2 영역(102)은 제 1 영역(101) 모두를 피복하지 않아도 된다. 마찬가지로, 제 3 영역(103)은 제 2 영역(102) 모두를 피복하지 않아도 된다. 또한, 제 1 영역(101)에 접촉하여 제 3 영역(103)이 존재하여도 좋다.
바꿔 말하면, 제 1 영역(101)은 양극 활물질(100)의 내부에 존재하고, 제 2 영역(102) 및 제 3 영역(103)은 양극 활물질(100)의 표층부에 존재한다. 표층부의 제 2 영역(102) 및 제 3 영역(103)은 양극 활물질의 피복층으로서 기능한다. 또한, 제 3 영역(103) 및 제 2 영역(102)은 양극 활물질(100)의 입자의 내부에 존재하여도 좋다.
양극 활물질(100)의 입경은 지나치게 크면 리튬의 확산이 어려워지거나 집전체에 도포하였을 때 활물질층의 표면이 지나치게 거칠어진다는 등의 문제가 있다. 한편, 지나치게 작으면 집전체로의 도포가 어렵게 되거나 전해액과의 반응이 과잉으로 진행된다는 등의 문제점도 생긴다. 그러므로, D50(메디안경이라고도 함)이 0.1μm 이상 100μm 이하인 것이 바람직하고, 1μm 이상 40μm 이하인 것이 더 바람직하다.
또한, 양극 활물질층을 고밀도화하기 위해서는 큰 입자(20μm 정도 이상, 40μm 정도 이하)와 작은 입자(1μm 정도)를 혼합하여 큰 입자의 간격을 작은 입자로 메우는 것도 효과적이다. 그러므로, 입도 분포의 피크는 2개 이상 있어도 좋다.
<제 1 영역(101)>
제 1 영역(101)은 리튬과, 전이 금속과, 산소를 갖는다. 제 1 영역(101)은 리튬과 전이 금속을 포함하는 복합 산화물을 갖는다고 하여도 좋다.
제 1 영역(101)이 갖는 전이 금속으로서는 리튬과 함께 층상 암염형 복합 산화물을 형성할 수 있는 금속을 사용하는 것이 바람직하다. 예를 들어, 망가니즈, 코발트, 니켈 중 하나 이상 또는 복수를 사용할 수 있다. 즉, 제 1 영역(101)이 갖는 전이 금속으로서 코발트만을 사용하여도 좋고, 코발트와 망가니즈의 2종류를 사용하여도 좋고, 코발트, 망가니즈, 니켈의 3종류를 사용하여도 좋다. 또한, 제 1 영역(101)은 전이 금속에 더하여 알루미늄을 비롯한 전이 금속 이외의 금속을 가져도 좋다.
즉, 제 1 영역(101)은, 코발트산 리튬, 니켈산 리튬, 코발트의 일부가 망가니즈로 치환된 코발트산 리튬, 니켈-망가니즈-코발트산 리튬, 니켈-코발트-알루미늄산 리튬 등, 리튬과 전이 금속을 포함하는 복합 산화물을 가질 수 있다.
제 1 영역(101)은 양극 활물질(100) 중에서도 특히 충방전 반응에 기여하는 영역이다. 양극 활물질(100)을 이차 전지에 사용한 경우의 용량을 크게 하기 위하여, 제 1 영역(101)은 제 2 영역(102) 및 제 3 영역(103)보다 체적이 큰 것이 바람직하다.
또한, 제 1 영역(101)은 단결정이어도 좋고 다결정이어도 좋다. 예를 들어 제 1 영역(101)은 결정자 크기의 평균이 280nm 이상 630nm 이하인 다결정이어도 좋다. 다결정인 경우, TEM 등으로 결정립계가 관찰될 수 있는 경우가 있다. 또한 결정립계의 평균은 XRD의 반값폭으로부터 계산할 수 있다.
다결정은 명료한 결정 구조를 갖기 때문에, 리튬 이온의 이차원적인 확산 경로는 충분히 확보된다. 이에 더하여 단결정보다 생산이 용이하므로 제 1 영역(101)으로서 바람직하다.
층상 암염형의 결정 구조는 리튬이 이차원적으로 확산되기 쉬우므로 제 1 영역(101)으로서 바람직하다. 또한, 제 1 영역(101)이 층상 암염형의 결정 구조를 갖는 경우, 생각 외로 후술하는 마그네슘의 편석이 일어나기 쉽다. 그러나, 제 1 영역(101) 모두가 층상 암염형의 결정 구조가 아니어도 좋다. 예를 들어 제 1 영역(101)의 일부에 결정 결함이 있어도 좋고, 제 1 영역(101)의 일부가 비정질이어도 좋고, 제 1 영역(101)이 그 외의 결정 구조를 가져도 좋다.
<제 2 영역(102)>
제 2 영역(102)은 리튬과, 알루미늄과, 전이 금속과, 산소를 갖는다. 리튬과 전이 금속을 갖는 복합 산화물의 일부의 전이 금속 사이트가 알루미늄으로 치환되어 있다고 하여도 좋다. 제 2 영역(102)이 갖는 전이 금속은 제 1 영역(101)이 갖는 전이 금속과 같은 원소인 것이 바람직하다. 또한, 본 명세서에 있어서 사이트란, 결정에 있어서 어떤 원소가 차지해야 할 위치를 말하는 것으로 한다.
또한, 제 2 영역(102)은 플루오린을 가져도 좋다.
제 2 영역(102)이 알루미늄을 가짐으로써, 양극 활물질(100)의 사이클 특성을 향상시킬 수 있다. 또한, 제 2 영역(102)이 갖는 알루미늄은 농도 구배를 가져도 좋다. 또한, 알루미늄은 리튬과 전이 금속을 갖는 복합 산화물의 일부의 전이 금속 사이트에 존재하는 것이 바람직하지만, 그 외의 상태로 존재하여도 좋다. 예를 들어, 산화 알루미늄(Al2O3)으로서 존재하여도 좋다.
일반적으로 양극 활물질은 충방전을 반복하면서 코발트나 망가니즈 등의 전이 금속이 전해액으로 용출되거나, 산소가 탈리되거나, 결정 구조가 불안정하게 된다는 등의 부반응이 일어나 열화가 진행된다. 그러나, 본 발명의 일 형태의 양극 활물질(100)은 표층부에 알루미늄을 갖는 제 2 영역(102)을 가지므로 제 1 영역(101)이 갖는 리튬과 전이 금속을 포함하는 복합 산화물의 결정 구조를 더 안정적으로 할 수 있다. 그러므로, 양극 활물질(100)을 갖는 이차 전지의 사이클 특성을 향상시킬 수 있다.
제 2 영역(102)은 층상 암염형의 결정 구조를 갖는 것이 바람직하다. 제 2 영역(102)이 층상 암염형의 결정 구조를 가짐으로써, 제 1 영역(101) 및 제 3 영역(103)과 결정의 배향이 일치하기 쉬워진다. 제 1 영역(101), 제 2 영역(102) 및 제 3 영역(103)의 결정 배향이 대략 일치하면 제 2 영역(102) 및 제 3 영역(103)은 더 안정적인 피복층으로서 기능할 수 있다.
제 2 영역(102)은 지나치게 얇으면 피복층으로서의 기능이 저하되지만, 지나치게 두껍게 되어도 용량의 저하를 일으킬 우려가 있다. 그러므로, 제 2 영역(102)은 양극 활물질(100)의 표면에서 깊이 방향으로 30nm, 더 바람직하게는 15nm까지에 존재하는 것이 바람직하다.
<제 3 영역(103)>
제 3 영역(103)은 마그네슘과, 산소를 갖는다. 제 3 영역(103)은 산화 마그네슘을 갖는다고 하여도 좋다.
또한, 제 3 영역(103)은 제 1 영역(101) 및 제 2 영역(102)과 같은 전이 금속을 가져도 좋다. 또한, 제 3 영역(103)은 플루오린을 가져도 좋다. 제 3 영역(103)이 플루오린을 갖는 경우, 산화 마그네슘의 산소의 일부가 플루오린으로 치환되어도 좋다.
제 3 영역(103)이 갖는 산화 마그네슘은 전기 화학적으로 안정된 재료이므로 충방전을 반복하여도 열화가 일어나기 어려워 피복층으로서 적합하다. 즉, 양극 활물질(100)은 표층부에 제 2 영역(102)에 더하여 제 3 영역(103)을 가짐으로써 제 1 영역(101)이 갖는 리튬과 전이 금속을 포함하는 복합 산화물의 결정 구조를 더 안정적으로 할 수 있다. 그러므로, 양극 활물질(100)을 갖는 이차 전지의 사이클 특성을 향상시킬 수 있다. 또한, 4.3V(vs. Li/Li+)를 넘을 만한 전압, 특히 4.5V(vs. Li/Li+) 이상의 고전압으로 충방전을 행하는 경우에 본 발명의 일 형태의 구성은 현저한 효과를 발휘한다.
제 3 영역(103)은 암염형의 결정 구조를 가지면, 제 2 영역(102)과 결정의 배향이 일치하기 쉬워져 안정된 피복층으로서 기능하기 쉬우므로 바람직하다. 그러나, 제 3 영역(103) 모두가 암염형의 결정 구조가 아니어도 좋다. 예를 들어, 제 3 영역(103)의 일부는 비정질이어도 좋고, 제 3 영역(103)은 그 외의 결정 구조를 가져도 좋다.
제 3 영역(103)은 지나치게 얇아도 피복층으로서의 기능이 저하되지만, 지나치게 두꺼워도 용량의 저하를 일으킨다. 그러므로, 제 3 영역(103)은 양극 활물질(100)의 표면에서 깊이 방향으로 0.5nm 이상 50nm 이하에 존재하는 것이 바람직하고, 0.5nm 이상 5nm 이하에 존재하는 것이 더 바람직하다.
또한, 제 3 영역(103)은 전기 화학적으로 안정된 재료를 갖는 것이 중요하므로, 포함되는 원소는 꼭 마그네슘이어야 하는 것은 아니다. 예를 들어, 마그네슘 대신에 또는 마그네슘과 함께 칼슘, 베릴륨 등의 전형 원소를 가져도 좋다. 또한, 플루오린 대신에 또는 플루오린과 함께 염소를 가져도 좋다.
<각 영역끼리의 경계>
제 1 영역(101), 제 2 영역(102), 및 제 3 영역(103)은 상이한 조성을 갖는 영역이다. 그러나 각각의 영역이 갖는 원소는 농도 구배를 갖는 경우가 있다. 예를 들어, 제 2 영역(102)이 갖는 알루미늄은 농도 구배를 갖는 경우가 있다. 또한, 제 3 영역(103)은, 후술하지만 마그네슘이 편석되는 영역인 것이 바람직하므로, 마그네슘의 농도 구배를 갖는 경우가 있다. 그러므로, 각각의 영역의 경계는 명료하지 않은 경우가 있다.
제 1 영역(101), 제 2 영역(102), 및 제 3 영역(103)은 TEM 이미지, STEM 이미지, FFT(고속 푸리에 변환) 해석, EDX(에너지 분산형 X선 분석), ToF-SIMS(비행 시간형 이차 이온 질량 분석법)에 의한 깊이 방향의 분석, XPS(X선 광전자 분광), 오거 전자 분광법(Auger Electron Spectroscopy), TDS(승온 탈리 가스 분석법) 등에 의하여 상이한 조성을 갖는 것을 확인할 수 있다. 또한, EDX 측정 중, 영역 내를 주사하면서 측정하고, 영역 내를 2차원으로 평가하는 것을 EDX의 면 분석이라고 부르는 경우가 있다. 또한, EDX 면분석으로부터 선상의 영역의 데이터를 추출하여, 원자 농도에 대하여 양극 활물질 입자 내의 분포를 평가하는 것을 선 분석이라고 부르는 경우가 있다.
예를 들어, TEM 이미지 및 STEM 이미지에서는 구성 원소의 차이가 이미지의 밝기 차이가 되어 관찰되기 때문에, 제 1 영역(101), 제 2 영역(102), 및 제 3 영역(103)의 구성 원소가 상이한 것을 관찰할 수 있다. 또한, EDX의 면 분석(예를 들어, 원소 매핑)에서도 제 1 영역(101), 제 2 영역(102), 및 제 3 영역(103)이 상이한 원소를 갖는 것을 관찰할 수 있다.
또한, EDX의 선 분석 및 ToF-SIMS를 이용한 깊이 방향의 분석에서는 제 1 영역(101), 제 2 영역(102), 및 제 3 영역(103)이 갖는 각 원소의 농도의 피크를 검출할 수 있다.
그러나, 각 분석에 의하여 제 1 영역(101), 제 2 영역(102), 및 제 3 영역(103)의 명확한 경계가 꼭 관찰되어야 하는 것은 아니다.
본 명세서 등에서, 양극 활물질(100)의 표층부에 존재하는 제 3 영역(103)은 양극 활물질(100)의 표면에서 마그네슘의 농도가 피크의 1/5가 될 때까지의 범위의 영역을 말하는 것으로 한다. 분석 방법으로서는 상술한 EDX의 선 분석 및 ToF-SIMS를 이용한 깊이 방향의 분석 등을 적용할 수 있다.
또한, 마그네슘의 농도의 피크는 양극 활물질(100)의 표면으로부터 중심을 향한 깊이 3nm까지에 존재하는 것이 바람직하고, 깊이 1nm까지에 존재하는 것이 더 바람직하고, 깊이 0.5nm까지에 존재하는 것이 더 바람직하다.
마그네슘의 농도가 피크의 1/5가 되는 깊이는 제작 방법에 따라 다르지만, 후술하는 제작 방법의 경우, 양극 활물질의 표면에서 대략 2nm 내지 5nm 정도이다.
제 1 영역(101) 내부에 존재하는 제 3 영역(103)에 대해서도, 깊이 방향 분석으로 검출되는 전형 원소의 농도가 피크의 1/5 이상인 영역을 말하는 것으로 한다.
양극 활물질(100)이 갖는 플루오린의 분포는 마그네슘의 분포와 중첩되는 것이 바람직하다. 그러므로, 플루오린도 농도 구배를 갖고, 플루오린의 농도의 피크는 양극 활물질(100)의 표면으로부터 중심으로 향한 깊이 3nm까지에 존재하는 것이 바람직하고, 깊이 1nm까지에 존재하는 것이 더 바람직하고, 깊이 0.5nm까지에 존재하는 것이 더욱 바람직하다.
또한, 본 명세서 등에서 양극 활물질(100)의 표층부에 존재하는 제 2 영역(102)은 깊이 방향 분석에서 검출되는 알루미늄의 농도가 피크의 1/2 이상인 영역을 말하는 것으로 한다. 입계 근방이나 결정 결함 근방 등의 제 1 영역(101)의 내부에 존재하는 제 2 영역(102)에 대해서도 깊이 방향 분석으로 검출되는 알루미늄의 농도가 피크의 1/2 이상인 영역을 말하는 것으로 한다. 분석 방법으로서는 상술한 EDX의 선 분석 및 ToF-SIMS를 이용한 깊이 방향의 분석 등을 적용할 수 있다.
그러므로, 제 3 영역(103)과 제 2 영역(102)은 중첩되는 경우가 있다. 다만, 제 3 영역(103)은 제 2 영역(102)보다 양극 활물질의 입자 표면에 가까운 영역에 존재하는 것이 바람직하다. 또한, 마그네슘 농도의 피크는 알루미늄 농도의 피크보다 양극 활물질의 입자 표면에 가까운 영역에 존재하는 것이 바람직하다.
알루미늄 농도의 피크는 양극 활물질(100)의 표면으로부터 중심으로 향한 깊이 0.5nm 이상 20nm 이하에 존재하는 것이 바람직하고, 깊이 1nm 이상 5nm 이하에 존재하는 것이 바람직하다.
알루미늄, 마그네슘 및 플루오린의 농도는 상술한 ToF-SIMS, EDX(면 분석 및 선 분석) 외, XPS, 오거 전자 분광법, TDS 등에 의하여 분석할 수 있다.
또한, XPS는 양극 활물질(100)의 표면에서 5nm 정도가 측정 범위이다. 그러므로, 표면에서 5nm 정도에 존재하는 원소 농도를 정량적으로 분석 가능하다. 그러므로, 제 3 영역(103)의 두께가 표면에서 5nm 미만인 경우는 제 3 영역(103) 및 제 2 영역(102)의 일부를 합한 영역, 제 3 영역(103)의 두께가 표면에서 5nm 이상인 경우는 제 3 영역(103)의 원소 농도를 정량적으로 분석할 수 있다.
양극 활물질(100)의 표면으로부터 XPS로 측정되는, 리튬, 알루미늄, 제 1 영역(101)이 갖는 전이 금속, 마그네슘, 산소, 및 플루오린의 총량을 100atomic%로 하였을 때의 알루미늄 농도는 0.1atomic% 이상 10atomic% 이하인 것이 바람직하고, 0.1atomic% 이상 2atomic% 이하인 것이 더 바람직하다. 또한, 마그네슘 농도는 5atomic% 이상 20atomic% 이하인 것이 바람직하다. 또한, 플루오린 농도는 3.5atomic% 이상 14atomic% 이하인 것이 바람직하다.
또한, 상술한 바와 같이, 제 1 영역(101), 제 2 영역(102), 및 제 3 영역(103)이 갖는 원소는 농도 구배를 갖는 경우가 있기 때문에 제 1 영역(101)은 제 2 영역(102) 및 제 3 영역(103)이 갖는 원소를 가져도 좋다. 마찬가지로, 제 3 영역(103)은 제 1 영역(101) 및 제 2 영역(102)이 갖는 원소를 가져도 좋다. 또한, 제 1 영역(101), 제 2 영역(102), 및 제 3 영역(103)은 탄소, 소듐, 칼슘, 염소, 지르코늄 등, 상술한 것 외의 원소를 가져도 좋다.
[제 2 영역의 피복]
제 2 영역(102)은 리튬과 전이 금속을 갖는 복합 산화물의 입자를 알루미늄을 갖는 재료로 피복함으로써 형성할 수 있다.
알루미늄을 갖는 재료로 피복하는 방법으로서는, 졸겔법을 비롯한 액상법, 고상법, 스퍼터링법, 증착법, CVD(화학 기상 성장)법, PLD(펄스 레이저 디포지션)법 등의 방법을 적용할 수 있다. 본 실시형태에서는, 균일한 피복이 기대되고, 대기압에서 처리가 가능한 졸겔법을 적용하는 것으로 한다.
졸겔법을 적용하는 경우, 먼저 알루미늄알콕사이드를 알코올에 용해시키고, 상기 용액에 리튬과 전이 금속을 갖는 복합 산화물의 입자를 혼합하여 수증기를 포함하는 분위기하에서 교반한다. H2O를 포함하는 분위기하에 둠으로써 리튬과 전이 금속을 갖는 복합 산화물 입자 표면에서, 물과 알루미늄알콕사이드의 가수분해 및 중축합 반응이 일어나, 상기 입자 표면에 알루미늄을 포함하는 겔상의 층이 형성된다. 그 후 상기 입자를 회수하고, 건조시킨다. 제작 방법의 자세한 사항에 대해서는 후술한다.
또한 본 실시형태에서, 리튬과 전이 금속을 갖는 복합 산화물의 입자를 양극 집전체에 도포하기 전에 알루미늄을 갖는 재료를 피복하는 예에 대하여 설명하였지만, 본 발명의 일 형태는 이에 한정되지 않는다. 양극 집전체 위에 리튬과 전이 금속을 갖는 복합 산화물의 입자를 포함하는 양극 활물질층을 형성하고 나서 양극 집전체와 양극 활물질층을 알루미늄알콕사이드를 포함하는 용액에 함침(含浸)시켜도 좋다.
[제 3 영역의 편석]
제 3 영역(103)은 스퍼터링법, 고상법, 졸겔법을 비롯한 액상법 등의 방법으로도 형성할 수 있다. 그러나 본 발명자들은 마그네슘원과 플루오린원을 제 1 영역(101)의 재료와 혼합시킨 후, 가열함으로써 마그네슘이 양극 활물질 입자의 최표면에 편석하여 제 3 영역(103)을 형성하는 것을 밝혔다. 또한, 이와 같이 하여 형성된 제 3 영역(103)을 가지면 사이클 특성이 우수한 양극 활물질(100)이 되는 것을 밝혔다.
상술한 바와 같이 가열함으로써 마그네슘을 양극 활물질 입자의 최표면에 편석시켜 제 3 영역(103)을 형성하는 경우, 가열은 리튬, 전이 금속, 마그네슘, 및 플루오린을 갖는 복합 산화물의 입자에, 알루미늄을 포함하는 재료를 피복시킨 후에 행하는 것이 바람직하다. 생각 외로 알루미늄을 포함하는 재료를 피복시킨 후에서도 마그네슘이 양극 활물질 입자의 최표면에 편석되기 때문이다. 제작 방법의 자세한 사항에 대해서는 후술한다.
마그네슘을 편석시키는 경우, 제 1 영역(101)이 갖는 리튬과 전이 금속을 포함하는 복합 산화물이 다결정인 경우나 결정 결함이 존재할 경우에, 표층부뿐만 아니라 리튬과 전이 금속을 포함하는 복합 산화물의 입계 근방이나 결정 결함 근방에도 마그네슘이 편석될 수 있다. 입계 근방이나 결정 결함 근방에 편석된 마그네슘은 제 1 영역(101)이 갖는 리튬과 전이 금속을 포함하는 복합 산화물의 결정 구조의 한층 더한 안정화에 기여할 수 있다.
원료의 마그네슘과 플루오린의 비율이 Mg:F=1:x(1.5≤x≤4)(원자수비)의 범위이면 마그네슘의 편석이 효과적으로 일어나므로 바람직하다. 또한, Mg:F=1:2(원자수비) 정도이면 더 바람직하다.
편석에 의하여 형성된 제 3 영역(103)은 에피택셜 성장에 의하여 형성되므로, 제 2 영역(102)과 제 3 영역(103)의 결정의 배향은 일부에서 실질적으로 일치하는 경우가 있다. 즉 제 2 영역(102)과 제 3 영역(103)이 토포택시(topotexy)가 되는 경우가 있다. 제 2 영역(102)과 제 3 영역(103)의 결정의 배향이 실질적으로 일치하면, 이들은 더 양호한 피복층으로서 기능할 수 있다.
또한 본 명세서 등에 있어서, 3차원적인 구조상 유사성을 갖는 것, 또는 결정학적으로 같은 배향인 것을 토포택시라고 한다. 그러므로, 토포택시인 경우, 단면의 일부를 관찰하면 2개의 영역(예를 들어 하지가 된 영역과 성장하여 형성된 영역)의 결정의 배향이 실질적으로 일치한다.
<제 4 영역(104)>
또한, 여기까지 양극 활물질(100)이 제 1 영역(101), 제 2 영역(102) 및 제 3 영역(103)을 갖는 예에 대하여 설명하였지만, 본 발명의 일 형태는 이에 한정되지 않는다. 예를 들어, 도 1의 (C)에 도시된 바와 같이, 양극 활물질(100)은 제 4 영역(104)을 가져도 좋다. 제 4 영역(104)은 예를 들어, 제 3 영역(103) 중 적어도 일부와 접촉하도록 제공할 수 있다. 제 4 영역(104)은 그래핀 화합물을 비롯한 탄소를 갖는 피막이어도 좋고, 리튬 또는 전해액의 분해 생성물을 갖는 피막이어도 좋다. 제 4 영역(104)이 탄소를 갖는 피막인 경우, 양극 활물질(100)끼리, 및 양극 활물질(100)과 집전체의 도전성을 높일 수 있다. 또한, 제 4 영역(104)이 리튬 또는 전해액의 분해 생성물을 갖는 피막인 경우, 전해액과의 과잉 반응을 억제하여 이차 전지에 사용한 경우에 사이클 특성을 향상시킬 수 있다.
[제작 방법]
제 1 영역(101), 제 2 영역(102) 및 제 3 영역(103)을 갖는 경우의 양극 활물질(100)의 제작 방법의 일례를, 도 2를 참조하여 설명한다. 이 제작 방법의 일례에서는 제 1 영역은 전이 금속으로서 코발트를 갖고, 제 2 영역은 알루미늄알콕사이드를 사용하는 졸겔법에 의하여 형성하는 것으로 한다. 그 후 가열을 행하고, 마그네슘을 표면에 편석시켜 제 3 영역(103)을 형성하는 것으로 한다.
우선, 출발 원료를 준비한다(S11). 출발 원료로서는, 리튬, 코발트, 플루오린, 마그네슘을 포함하는 복합 산화물의 입자를 사용한다.
리튬, 코발트, 플루오린, 마그네슘을 포함하는 복합 산화물의 입자를 합성하는 경우는, 먼저 리튬원, 코발트원, 마그네슘원 및 플루오린원을 각각 칭량한다. 리튬원으로서는 예를 들어 탄산 리튬, 플루오린화 리튬, 수산화 리튬 등을 사용할 수 있다. 코발트원으로서는 예를 들어 산화 코발트, 수산화 코발트, 옥시수산화 코발트, 탄산 코발트, 옥살산 코발트, 황산 코발트 등을 사용할 수 있다. 또한, 마그네슘원으로서는 예를 들어 산화 마그네슘, 플루오린화 마그네슘 등을 사용할 수 있다. 또한, 플루오린원으로서는, 예를 들어 플루오린화 리튬, 플루오린화 마그네슘 등을 사용할 수 있다. 즉, 플루오린화 리튬은 리튬원으로도 플루오린원으로도 사용할 수 있고, 플루오린화 마그네슘은 마그네슘원으로도 플루오린원으로도 사용할 수 있다.
원료의 마그네슘과 플루오린의 원자수비는 Mg:F=1:x(1.5≤x≤4)가 바람직하고, Mg:F=1:2(원자수비) 정도인 것이 더 바람직하다. 상기의 원자수비이면, 나중의 공정에서 가열할 경우에 마그네슘의 편석이 일어나기 쉽다.
다음에, 칭량한 출발 원료를 혼합한다. 혼합에는 예를 들어 볼밀(ball mill), 비드밀(bead mill) 등을 사용할 수 있다.
다음에, 혼합한 출발 원료를 소성(燒成)한다. 소성은 800℃ 이상 1050℃ 이하에서 행하는 것이 바람직하고, 900℃ 이상 1000℃ 이하에서 행하는 것이 더 바람직하다. 소성 시간은 2시간 이상 20시간 이하로 하는 것이 바람직하다. 소성은 건조 공기 등, 건조한 분위기에서 행하는 것이 바람직하다. 건조한 분위기로서는, 예를 들어 노점이 -50℃ 이하가 바람직하고, -100℃ 이하의 분위기가 더 바람직하다. 본 실시형태에서는 1000℃에서 10시간 가열하는 것으로 하고, 승온은 200℃/h, 노점이 -109℃인 건조 공기를 10L/min로 흘리는 것으로 한다. 그 후 가열한 재료를 실온까지 냉각한다.
상술한 공정으로, 리튬, 코발트, 플루오린, 마그네슘을 포함하는 복합 산화물의 입자를 합성할 수 있다.
또한, 출발 원료로서는 미리 합성된 리튬과 코발트의 복합 산화물의 입자를 사용하여도 좋다. 예를 들어, 일본 화학 공업 주식 회사 제조 코발트산 리튬 입자(상품명: C-20F)를 출발 재료로서 사용할 수 있다. 이것은 입경이 약 20μm이고, 표면에서 XPS로 분석 가능한 영역에 플루오린, 마그네슘, 칼슘, 소듐, 실리콘, 황, 인을 포함하는 코발트산 리튬 입자이다. 본 실시형태에서는 출발 원료로서 일본 화학 공업 주식 회사 제조 코발트산 리튬 입자(상품명: C-20F)를 사용하는 것으로 한다.
다음에 알루미늄알콕사이드를 알코올에 용해시키고, 그 용액에 출발 원료의 입자를 혼합한다(S12).
알루미늄알콕사이드로서는 트라이메톡시알루미늄, 트라이에톡시알루미늄, 트라이-n-프로폭시알루미늄, 트라이-i-프로폭시알루미늄, 트라이-n-뷰톡시알루미늄, 트라이-i-뷰톡시알루미늄, 트라이-sec-뷰톡시알루미늄, 트라이-t-뷰톡시알루미늄 등을 사용할 수 있다. 알루미늄알콕사이드를 용해시키는 용매로서는 메탄올, 에탄올, 프로판올, 2-프로판올, 뷰탄올, 2-뷰탄올 등을 사용할 수 있다.
또한, 알루미늄알콕사이드의 알콕사이드기와, 용매에 사용하는 알코올은 종류가 상이한 것을 조합하여도 좋지만 같은 종류이면 특히 바람직하다.
다음으로, 상기 혼합액을 수증기를 포함하는 분위기하에서 교반한다(S13). 이 처리에 의하여 분위기 중의 H2O와 알루미늄아이소프로폭사이드가 가수 분해 및 중축합 반응을 일으킨다. 그리고, 마그네슘과 플루오린을 갖는 코발트산 리튬 입자의 표면에 겔상의 알루미늄을 포함하는 층이 형성된다.
교반은 예를 들어 자석 교반기(magnetic stirrer)로 행할 수 있다. 교반 시간은 분위기 중의 물과 알루미늄아이소프로폭사이드가 가수 분해 및 중축합 반응을 일으키기에 충분한 시간이면 되고, 예를 들어, 4시간, 25℃, 습도 90% RH(Relative Humidity, 상대 습도)의 조건하에서 행할 수 있다.
상술한 바와 같이, 상온으로 알루미늄알콕사이드와 물을 반응시킴으로써, 예를 들어, 용매의 알코올의 비점(沸點)을 넘는, 그런 온도(예를 들어 100℃ 이상)에서 가열을 행하는 경우보다 더 균일하고 양질의 알루미늄을 포함하는 피복층을 형성할 수 있다.
상기 처리를 끝낸 혼합액으로부터 침전물을 회수한다(S14). 회수 방법으로서는 여과, 원심 분리, 건고 등을 적용할 수 있다. 본 실시형태에서는 여과에 의하여 회수하는 것으로 한다. 여과에는 필터를 사용하고, 잔류물은 알루미늄알콕사이드를 용해시킨 용매와 같은 알코올로 세정하는 것으로 한다.
다음으로, 회수한 잔류물을 건조시킨다(S15). 본 실시형태에서는 70℃에서 1시간, 진공 건조하는 것으로 한다.
다음으로, 건조시킨 분말을 가열한다(S16). 이 가열에 의하여 출발 원료에 포함된 마그네슘과 플루오린이 표면에 편석하고, 제 3 영역(103)을 형성한다.
가열은 규정 온도에서의 유지 시간을 50시간 이하로 하여 행하는 것이 바람직하고, 1시간 이상 10시간 이하로 행하는 것이 더 바람직하다. 여기서 규정 온도란 유지를 행하는 온도로 한다. 규정 온도로서는 500℃ 이상 1200℃ 이하가 바람직하고, 700℃ 이상 1000℃ 이하가 더 바람직하고, 800℃ 정도가 더욱 바람직하다. 또한, 산소를 포함하는 분위기하에서 가열하는 것이 바람직하다. 본 실시형태에서는 규정 온도를 800℃로 하여 2시간 동안 유지하는 것으로 하고, 승온은 200℃/h, 건조 공기의 유량은 10L/min로 한다. 또한, 냉각은 승온과 같거나 그 이상의 시간을 거쳐 행하는 것으로 한다.
다음으로, 가열한 분말을 냉각하고, 해쇄(解碎) 처리를 행하는 것이 바람직하다(S17). 해쇄 처리는 예를 들어 체질함으로써 행할 수 있다.
상술한 공정에 의하여 본 발명의 일 형태의 양극 활물질(100)을 제작할 수 있다.
(실시형태 2)
본 실시형태에서는 상술한 실시형태에서 설명한 양극 활물질(100)을 갖는 이차 전지에 사용할 수 있는 재료의 예에 대하여 설명한다. 본 실시형태에서는 양극, 음극, 및 전해액이 외장체로 감싸이는 이차 전지를 예로 들어 설명한다.
[양극]
양극은 양극 활물질층 및 양극 집전체를 갖는다.
<양극 활물질층>
양극 활물질층은 양극 활물질을 갖는다. 또한, 양극 활물질층은 도전조제 및 바인더를 가져도 좋다.
양극 활물질로서, 상술한 실시형태에서 설명한 양극 활물질(100)을 사용할 수 있다. 상술한 실시형태에서 설명한 양극 활물질(100)을 사용함으로써 고용량이며 사이클 특성이 우수한 이차 전지로 할 수 있다.
도전조제로서는, 탄소 재료, 금속 재료, 또는 도전성 세라믹 재료 등을 사용할 수 있다. 또한, 도전조제로서 섬유상의 재료를 사용하여도 좋다. 활물질층의 총량에 대한 도전조제의 함유량은 1wt% 이상 10wt% 이하가 바람직하고, 1wt% 이상 5wt% 이하가 더 바람직하다.
도전조제에 의하여, 전극 내에 전기 전도의 네트워크를 형성할 수 있다. 도전조제에 의하여, 양극 활물질끼리의 전기 전도 경로를 유지할 수 있다. 활물질층 내에 도전조제를 첨가함으로써, 전기 전도성이 높은 활물질층을 구현할 수 있다.
도전조제로서는, 예를 들어, 천연 흑연과, 메소카본 마이크로비즈 등의 인조 흑연과, 탄소 섬유 등을 사용할 수 있다. 탄소 섬유로서는, 예를 들어, 메소페이스 피치계 탄소 섬유와, 등방성 피치계 탄소 섬유 등의 탄소 섬유를 사용할 수 있다. 또한, 탄소 섬유로서, 카본 나노 섬유나 카본 나노튜브 등을 사용할 수 있다. 카본 나노튜브는, 예를 들어, 기상 성장법 등에 의하여 제작될 수 있다. 또한, 도전조제로서, 예를 들어, 카본 블랙(아세틸렌 블랙(AB) 등), 그래파이트(흑연) 입자, 그래핀, 및 풀러렌 등의 탄소 재료를 사용할 수 있다. 또한, 예를 들어, 구리, 니켈, 알루미늄, 은, 또는 금 등의 금속 분말이나 금속 섬유, 또는 도전성 세라믹 재료 등을 사용할 수 있다.
또한, 도전조제로서 그래핀 화합물을 사용하여도 좋다.
그래핀 화합물은 높은 도전성을 갖는다는 우수한 전기 특성과, 높은 유연성 및 높은 기계적 강도를 갖는다는 우수한 물리 특성을 갖는 경우가 있다. 또한, 그래핀 화합물은 평면적인 형상을 갖는다. 그래핀 화합물은 접촉 저항이 낮은 면 접촉을 가능하게 한다. 또한, 얇아도 도전성이 매우 높은 경우가 있고, 적은 양으로 효율적으로 활물질층 내에서 도전 경로를 형성할 수 있다. 그러므로, 그래핀 화합물을 도전조제로서 사용함으로써 활물질과 도전조제와의 접촉 면적을 증대시킬 수 있어 바람직하다. 또한, 전기적인 저항을 감소시킬 수 있는 경우가 있기 때문에 바람직하다. 여기서 그래핀 화합물로서 예를 들어 그래핀, 멀티그래핀, 또는 reduced Graphene Oxide(이하, RGO)를 사용하는 것이 특히 바람직하다. 여기서 RGO는 예를 들어 산화 그래핀(graphene oxide:GO)을 환원하여 얻어지는 화합물을 가리킨다.
입경이 작은(예를 들어 1μm 이하) 활물질을 사용하는 경우에는, 활물질의 비표면적이 크고 활물질들을 접속하는 도전 경로가 더 많이 필요하다. 그러므로, 도전조제의 양이 많게 될 경우가 많아, 상대적으로 활물질의 고정량이 감소되는 경향이 있다. 활물질의 담지량이 감소되면 이차 전지의 용량이 감소된다. 이와 같은 경우에는 도전조제로서 그래핀 화합물을 사용하면 그래핀 화합물은 소량으로도 효율적으로 도전 경로를 형성할 수 있기 때문에 활물질의 고정량을 줄이지 않아도 되어 특히 바람직하다.
이하에서는, 일례로서, 활물질층(200)에 도전조제로서 그래핀 화합물을 사용하는 경우의 단면 구성예를 설명한다.
도 3의 (A)에 활물질층(200)의 종단면도를 도시하였다. 활물질층(200)은 입자상의 양극 활물질(100)과, 도전조제로서의 그래핀 화합물(201)과, 바인더(도시하지 않았음)를 포함한다. 여기서 그래핀 화합물(201)로서 예를 들어, 그래핀 또는 멀티그래핀을 사용하면 좋다. 여기서 그래핀 화합물(201)은 시트상 형상을 갖는 것이 바람직하다. 또한, 그래핀 화합물(201)은 복수의 멀티그래핀 또는/및 복수의 그래핀이 부분적으로 중첩되어 시트상으로 형성되어 있어도 좋다.
활물질층(200)의 종단면에서는 도 3의 (A)에 도시된 바와 같이 활물질층(200) 내부에서 시트상 그래핀 화합물(201)이 실질적으로 균일하게 분산된다. 도 3의 (A)에서는 그래핀 화합물(201)을 굵은 선으로 모식적으로 나타내었지만, 실제로는 탄소 분자의 단층 또는 복수의 층에 대응하는 두께를 갖는 박막이다. 복수의 그래핀 화합물(201)은 복수의 입자상의 양극 활물질(100)을 싸도록, 덮도록, 또는 복수의 입자상의 양극 활물질(100)의 표면 위에 부착되도록 형성되어 있기 때문에, 서로 면접촉하고 있다.
여기서, 복수의 그래핀 화합물끼리가 결합됨으로써, 그물상 그래핀 화합물 시트(이하, 그래핀 화합물 네트 또는 그래핀 네트이라고 함)를 형성할 수 있다. 그래핀 네트로 활물질이 피복되는 경우, 그래핀 네트는 활물질끼리를 결합하는 바인더로서도 기능할 수 있다. 따라서, 바인더의 양을 줄일 수 있거나 또는 바인더를 사용하지 않을 수 있기 때문에 전극 체적이나 전극 중량에서 활물질이 차지하는 비율을 높일 수 있다. 즉, 축전 장치의 용량을 증가시킬 수 있다.
여기서, 그래핀 화합물(201)로서 산화 그래핀을 사용하고, 활물질과 혼합하여 활물질층(200)이 되는 층을 형성한 후, 환원하는 것이 바람직하다. 그래핀 화합물(201)의 형성에 극성 용매 중에서의 분산성이 매우 높은 산화 그래핀을 사용함으로써 그래핀 화합물(201)을 활물질층(200) 내부에서 실질적으로 균일하게 분산시킬 수 있다. 균일하게 분산된 산화 그래핀을 함유하는 분산매로부터 용매를 휘발시켜 제거하고 산화 그래핀을 환원하기 때문에, 활물질층(200)에 잔류한 그래핀 화합물(201)은 부분적으로 중첩되어 서로 면접촉할 정도로 분산됨으로써 삼차원적인 도전 경로를 형성할 수 있다. 또한, 산화 그래핀은 예를 들어, 가열 처리에 의하여 환원되어도 좋고, 환원제를 사용하여 환원되어도 좋다.
따라서, 활물질과 점접촉되는 아세틸렌 블랙 등의 입자상 도전조제와 달리, 그래핀 화합물(201)은 접촉 저항이 낮은 면접촉을 가능하게 하는 것이기 때문에, 보통의 도전조제보다 적은 양으로 입자상의 양극 활물질(100)과 그래핀 화합물(201)과의 전기 전도성을 향상시킬 수 있다. 따라서, 활물질층(200)에서의 입자상의 양극 활물질(100)의 비율을 증가시킬 수 있다. 이에 의하여 축전 장치의 방전 용량을 증가시킬 수 있다.
바인더로서 예를 들어, 스타이렌-뷰타다이엔고무(SBR), 스타이렌-아이소프렌-스타이렌고무, 아크릴로나이트릴-뷰타다이엔고무, 뷰타다이엔고무, 에틸렌-프로필렌-다이엔 공중합체 등의 고무 재료를 사용하는 것이 바람직하다. 또한, 바인더로서 플루오린 고무를 사용할 수 있다.
또한, 바인더로서는, 예를 들어, 수용성 고분자를 사용하는 것이 바람직하다. 수용성 고분자로서는 예를 들어, 다당류 등을 사용할 수 있다. 다당류로서는, 카복시메틸 셀룰로스(CMC), 메틸 셀룰로스, 에틸 셀룰로스, 하이드록시프로필 셀룰로스, 다이아세틸 셀룰로스, 재생 셀룰로스 등의 셀룰로스 유도체나, 전분(starch) 등을 사용할 수 있다. 또한, 이들 수용성 고분자를, 상술한 고무 재료와 아울러 사용하면 더 바람직하다.
또는 바인더로서는 폴리스타이렌, 폴리아크릴산메틸, 폴리메타크릴산메틸(폴리메틸메타크릴레이트(PMMA)), 폴리아크릴산소듐, 폴리바이닐알코올(PVA), 폴리에틸렌옥사이드(PEO), 폴리프로필렌옥사이드, 폴리이미드, 폴리염화바이닐, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아이소뷰틸렌, 폴리에틸렌테레프탈레이트, 나일론, 폴리플루오린화 바이닐리덴(PVdF), 폴리아크릴로나이트릴(PAN), 에틸렌프로필렌다이엔 폴리머, 폴리아세트산바이닐, 나이트로셀룰로스 등의 재료를 사용하는 것이 바람직하다.
바인더는 상술한 재료 중에서 복수를 조합하여 사용하여도 좋다.
예를 들어 점도 조정 효과가 매우 우수한 재료와 다른 재료를 조합하여 사용하여도 좋다. 예를 들어 고무 재료 등은 접착력이나 탄성력이 우수한 반면, 용매에 혼합한 경우에 점도 조정이 어려운 경우가 있다. 이와 같은 경우에는 예를 들어, 점도 조정 효과가 매우 우수한 재료와 혼합하는 것이 바람직하다. 점도 조정 효과가 매우 우수한 재료로서는, 예를 들어 수용성 고분자를 사용하면 좋다. 또한, 점도 조정 효과가 매우 우수한 수용성 고분자로서는 상술한 다당류, 예를 들어 카복시메틸 셀룰로스(CMC), 메틸 셀룰로스, 에틸 셀룰로스, 하이드록시프로필 셀룰로스, 다이아세틸 셀룰로스, 재생 셀룰로스 등의 셀룰로스 유도체, 또는 전분을 사용할 수 있다.
또한, 카복시메틸 셀룰로스 등의 셀룰로스 유도체는 예를 들어 카복시메틸 셀룰로스의 소듐염이나 암모늄염 등의 염으로 하면 용해도가 높아져 점도 조정제로서의 효과가 발휘되기 쉬워진다. 용해도가 높아짐으로써, 전극의 슬러리를 제작할 때에 활물질이나 다른 구성 요소와의 분산성을 높일 수도 있다. 본 명세서에서는 전극의 바인더로서 사용하는 셀룰로스 및 셀룰로스 유도체는 그들의 염도 포함하는 것으로 한다.
수용성 고분자는 물에 용해됨으로써 점도가 안정화되고, 또한 활물질이나 바인더로서 조합되는 다른 재료, 예를 들어, 스타이렌-뷰타다이엔고무 등을 수용액 내에 안정적으로 분산시킬 수 있다. 또한, 관능기를 갖기 때문에 활물질 표면에 안정적으로 흡착되기 쉬울 것이 기대된다. 또한, 예를 들어 카복시메틸 셀룰로스 등의 셀룰로스 유도체에는 예를 들어 수산기나 카복실기 등의 관능기를 갖는 재료가 많고, 관능기를 갖기 때문에 고분자끼리 상호로 작용하여 활물질 표면을 넓게 덮어 존재하는 것이 기대된다.
활물질 표면을 덮거나 표면에 접촉되는 바인더가 막을 형성하는 경우에는 부동태(不動態)막으로서의 역할을 함으로써 전해액 분해가 억제되는 효과도 기대된다. 여기서 부동태막이란, 전자 전도성이 없는 막 또는 전기 전도성이 매우 낮은 막을 말하고, 예를 들어 활물질 표면에 부동태막이 형성되어 있으면 전지 반응 전위에서 전해액이 분해되는 것을 억제할 수 있다. 또한, 부동태막은 전기 전도성을 억제하면서 리튬 이온을 전도할 수 있으면 더 바람직하다.
<양극 집전체>
양극 집전체로서, 스테인리스, 금, 백금, 알루미늄, 타이타늄 등의 금속, 및 이들의 합금 등, 도전성이 높은 재료를 사용할 수 있다. 또한, 양극 집전체에 사용하는 재료는 양극의 전위에서 용출되지 않는 것이 바람직하다. 또한, 실리콘, 타이타늄, 네오디뮴, 스칸듐, 또는 몰리브데넘 등 내열성을 향상시키는 원소가 첨가된 알루미늄 합금을 사용할 수 있다. 또한, 실리콘과 반응하여 실리사이드를 형성하는 금속 원소로 형성하여도 좋다. 실리콘과 반응하여 실리사이드를 형성하는 금속 원소로서는, 지르코늄, 타이타늄, 하프늄, 바나듐, 나이오븀, 탄탈럼, 크로뮴, 몰리브데넘, 텅스텐, 코발트, 니켈 등이 있다. 집전체는, 박(箔) 형상, 판(板) 형상(시트 형상), 그물 형상, 펀칭 메탈(punching-metal) 형상, 강망(expanded-metal) 형상 등의 형상을 적절히 사용할 수 있다. 집전체는 두께가 5μm 이상 30μm 이하인 것을 사용하면 좋다.
[음극]
음극은 음극 활물질 및 음극 집전체를 갖는다. 또한, 음극 활물질은 도전조제 및 바인더를 가져도 좋다.
<음극 활물질>
음극 활물질로서는 예를 들어 합금계 재료나 탄소계 재료 등을 사용할 수 있다.
음극 활물질로서, 리튬과의 합금화 및 탈합금화 반응에 의하여 충방전 반응을 수행할 수 있는 원소를 사용할 수 있다. 그러므로, 음극 활물질에 실리콘을 사용하는 것이 바람직하다. 또한, 이들 원소를 갖는 화합물을 사용하여도 좋다. 예를 들어, 실리콘, 주석, 갈륨, 알루미늄, 저마늄, 납, 안티모니, 비스무트, 은, 아연, 카드뮴, 및 인듐 등 중 적어도 하나를 포함하는 재료를 사용할 수 있다. 이와 같은 원소는, 탄소에 비하여 용량이 크고, 특히 실리콘은 이론 용량이 4200mAh/g로 높다. 예를 들어, SiO, Mg2Si, Mg2Ge, SnO, SnO2, Mg2Sn, SnS2, V2Sn3, FeSn2, CoSn2, Ni3Sn2, Cu6Sn5, Ag3Sn, Ag3Sb, Ni2MnSb, CeSb3, LaSn3, La3Co2Sn7, CoSb3, InSb, SbSn 등이 있다. 여기서, 리튬과의 합금화 및 탈합금화 반응에 의하여 충방전 반응을 수행할 수 있는 원소, 및 상기 원소를 갖는 화합물 등을 합금계 재료라고 부르는 경우가 있다.
본 명세서 등에서, SiO는 예를 들어 일산화 실리콘을 가리킨다. 또는, SiO는 SiOx라고 나타낼 수도 있다. 여기서, x는 1 근방의 값을 갖는 것이 바람직하다. 예를 들어, x는 바람직하게는 0.2 이상 1.5 이하이고, 더 바람직하게는 0.3 이상 1.2 이하이다.
탄소계 재료로서는 흑연, 이흑연화성 탄소(소프트 카본), 난흑연화성 탄소(하드 카본), 카본 나노 튜브, 그래핀, 또는 카본 블랙 등을 사용하면 좋다.
흑연으로서는 인조 흑연이나 천연 흑연 등을 들 수 있다. 인조 흑연으로서는, 예를 들어, 메소카본 마이크로비즈(MCMB), 코크스계 인조 흑연, 및 피치계 인조 흑연 등이 있다. 여기서, 인조 흑연으로서, 구(球)상의 형상을 갖는 구상 흑연을 사용할 수 있다. 예를 들어, MCMB는 구상의 형상을 갖는 경우가 있어 바람직하다. 또한, MCMB는 그 표면적을 작게 하는 것이 비교적 쉬워 바람직한 경우가 있다. 천연 흑연으로서는, 예를 들어, 인편(鱗片) 형상 흑연 및 구상화 천연 흑연 등을 들 수 있다.
흑연은 리튬 이온이 흑연에 삽입되었을 때(리튬-흑연 층간 화합물의 생성 시)에 리튬 금속과 같은 정도로 낮은 전위를 나타낸다(0.05V 이상 0.3V 이하 vs.Li/Li+). 이에 의하여, 리튬 이온 이차 전지는 높은 작동 전압을 나타낼 수 있다. 또한, 흑연은 단위 체적당 용량이 비교적 높고, 체적 팽창이 비교적 작고, 저렴하고, 리튬 금속에 비하여 안전성이 높다는 등의 이점을 갖기 때문에 바람직하다.
또한, 음극 활물질로서, 이산화 타이타늄(TiO2), 리튬 타이타늄 산화물(Li4Ti5O12), 리튬-흑연 층간 화합물(LixC6), 오산화 나이오븀(Nb2O5), 산화 텅스텐(WO2), 산화 몰리브데넘(MoO2) 등의 산화물을 사용할 수 있다.
또한, 음극 활물질로서, 리튬과 전이 금속의 질화물인, Li3N형 구조를 갖는 Li3 - xMxN(M=Co, Ni, Cu)을 사용할 수 있다. 예를 들어, Li2 . 6Co0 . 4N3은 큰 충방전 용량(900mAh/g, 1890mAh/cm3)을 나타내어 바람직하다.
리튬과 전이 금속의 질화물을 사용하면, 음극 활물질 내에 리튬 이온이 포함되기 때문에, 양극 활물질로서 리튬 이온이 포함되지 않는 V2O5, Cr3O8 등의 재료와 조합할 수 있어 바람직하다. 또한, 양극 활물질에 리튬 이온이 포함되는 재료를 사용하는 경우에도, 양극 활물질에 포함되는 리튬 이온을 미리 탈리시킴으로써, 음극 활물질로서 리튬과 전이 금속의 질화물을 사용할 수 있다.
또한, 컨버전 반응(conversion reaction)이 일어나는 재료를 음극 활물질로서 사용할 수도 있다. 예를 들어, 산화 코발트(CoO), 산화 니켈(NiO), 산화 철(FeO) 등의, 리튬과 합금화되지 않는 전이 금속 산화물을 음극 활물질에 사용하여도 좋다. 컨버전 반응이 일어나는 다른 재료로서는, Fe2O3, CuO, Cu2O, RuO2, 및 Cr2O3 등의 산화물, CoS0 .89, NiS, 및 CuS 등의 황화물, Zn3N2, Cu3N, 및 Ge3N4 등의 질화물, NiP2, FeP2, 및 CoP3 등의 인화물, FeF3 및 BiF3 등의 플루오린화물이 있다.
음극 활물질층이 가질 수 있는 도전조제 및 바인더로서는 양극 활물질이 가질 수 있는 도전조제 및 바인더와 같은 재료를 사용할 수 있다.
<음극 집전체>
음극 집전체에는 양극 집전체와 같은 재료를 사용할 수 있다. 또한, 음극 집전체는 리튬 등의 캐리어 이온과 합금화하지 않는 재료를 사용하는 것이 바람직하다.
[전해액]
전해액은 용매와 전해질을 갖는다. 전해액의 용매로서는, 비프로톤성 유기 용매가 바람직하고, 예를 들어, 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 뷰틸렌카보네이트, 클로로에틸렌카보네이트, 바이닐렌카보네이트, γ-뷰티로락톤, γ-발레로락톤, 다이메틸카보네이트(DMC), 다이에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 폼산 메틸, 아세트산 메틸, 아세트산 에틸, 프로피온산 메틸, 프로피온산 에틸, 프로피온산 프로필, 뷰티르산 메틸, 1,3-다이옥세인, 1,4-다이옥세인, 다이메톡시에테인(DME), 다이메틸설폭사이드, 다이에틸에터, 메틸다이글라임, 아세토나이트릴, 벤조나이트릴, 테트라하이드로퓨란, 설폴레인, 및 설톤 등 중에서 1종류, 또는 이들 중 2종류 이상을 임의의 조합 및 비율로 사용할 수 있다.
전해액의 용매로서 겔화된 고분자 재료를 사용함으로써 누액성(漏液性) 등에 대한 안전성이 향상된다. 또한, 이차 전지의 박형화 및 경량화가 가능하다. 겔화된 고분자 재료의 대표적인 예로서는, 실리콘(silicone) 겔, 아크릴 겔, 아크릴로나이트릴 겔, 폴리에틸렌옥사이드계 겔, 폴리프로필렌옥사이드계 겔, 플루오린계 폴리머의 겔 등이 있다.
또한, 전해액의 용매로서, 난연성 및 난휘발성인 이온 액체(상온 용융염)를 하나 또는 복수로 사용하면, 축전 장치가 내부 단락되거나, 과충전 등에 의하여 내부 온도가 상승되더라도 축전 장치의 파열이나 발화 등을 방지할 수 있다. 이온 액체는 양이온과 음이온으로 이루어지며 유기 양이온과, 음이온을 포함한다. 전해액에 사용하는 유기 양이온으로서 4급 암모늄 양이온, 3급 설포늄 양이온, 및 4급 포스포늄 양이온 등의 지방족 오늄 양이온이나, 이미다졸륨 양이온 및 피리디늄 양이온 등의 방향족 양이온을 들 수 있다. 또한, 전해액에 사용하는 음이온으로서, 1가 아마이드계 음이온, 1가 메티드계 음이온, 플루오로설폰산 음이온, 퍼플루오로알킬설폰산 음이온, 테트라플루오로보레이트 음이온, 퍼플루오로알킬보레이트 음이온, 헥사플루오로포스페이트 음이온, 또는 퍼플루오로알킬포스페이트 음이온 등을 들 수 있다.
또한, 상기 용매에 용해시키는 전해질로서는, 예를 들어, LiPF6, LiClO4, LiAsF6, LiBF4, LiAlCl4, LiSCN, LiBr, LiI, Li2SO4, Li2B10Cl10, Li2B12Cl12, LiCF3SO3, LiC4F9SO3, LiC(CF3SO2)3, LiC(C2F5SO2)3, LiN(CF3SO2)2, LiN(C4F9SO2)(CF3SO2), 및 LiN(C2F5SO2)2 등의 리튬염을 1종류, 또는 이들 중 2종류 이상을 임의의 조합 및 비율로 사용할 수 있다.
축전 장치에 사용하는 전해액으로서는 입자상의 먼지나 전해액의 구성 원소 이외의 원소(이하, 단순히 불순물이라고도 함)의 함유량이 적은 고순도화된 전해액을 사용하는 것이 바람직하다. 구체적으로는, 전해액에 대한 불순물의 중량비를 1% 이하, 바람직하게는 0.1% 이하, 더 바람직하게는 0.01% 이하로 한다.
또한, 전해액에 바이닐렌카보네이트, 프로페인설톤(PS), tert-뷰틸벤젠(TBB), 플루오로에틸렌카보네이트(FEC), LiBOB, 또는 숙시노나이트릴, 아디포나이트릴 등의 다이나이트릴 화합물 등의 첨가제를 첨가하여도 좋다. 첨가제의 농도는, 예를 들어 용매 전체에 대하여 0.1wt% 이상 5wt% 이하로 하면 좋다.
또한, 폴리머를 전해액으로 팽윤시킨 폴리머 겔 전해질을 사용하여도 좋다.
폴리머로서는 예를 들어, 폴리에틸렌옥사이드(PEO) 등의 폴리알킬렌옥사이드 구조를 갖는 폴리머, PVDF, 및 폴리아크릴로나이트릴 등, 및 이들을 포함하는 공중합체 등을 사용할 수 있다. 예를 들어, PVDF와 헥사플루오로프로필렌(HFP)의 공중합체인 PVDF-HFP를 사용할 수 있다. 또한, 형성되는 폴리머가 다공질 형상을 가져도 좋다.
또한, 전해액 대신에 황화물계나 산화물계 등의 무기물 재료를 갖는 고체 전해질이나, PEO(폴리에틸렌옥사이드)계 등의 고분자 재료를 갖는 고체 전해질을 사용할 수 있다. 고체 전해질을 사용하는 경우에는, 세퍼레이터나 스페이서가 불필요하다. 또한, 전지 전체를 고체화할 수 있기 때문에, 누액될 우려가 없어져 안전성이 비약적으로 향상된다.
[세퍼레이터]
또한, 이차 전지는 세퍼레이터를 갖는 것이 바람직하다. 세퍼레이터로서는, 예를 들어, 종이를 비롯한 셀룰로스를 갖는 섬유, 부직포, 유리 섬유, 세라믹, 또는 나일론(폴리아마이드), 바이닐론(폴리 바이닐 알코올계 섬유), 폴리에스터, 아크릴, 폴리올레핀, 폴리우레탄을 사용한 합성 섬유 등으로 형성된 것을 사용할 수 있다. 세퍼레이터는 엔벨로프 형상으로 가공하고, 양극 또는 음극 중 어느 한쪽을 감싸도록 배치하는 것이 바람직하다.
세퍼레이터는 다층 구조여도 좋다. 예를 들어 폴리프로필렌, 폴리에틸렌 등의 유기 재료 필름에 세라믹계 재료, 플루오린계 재료, 폴리아마이드계 재료, 또는 이들을 혼합한 것 등을 코팅할 수 있다. 세라믹계 재료로서 예를 들어 산화 알루미늄 입자, 산화 실리콘 입자 등을 사용할 수 있다. 플루오린계 재료로서는 예를 들어 PVDF, 폴리테트라플루오로에틸렌 등을 사용할 수 있다. 폴리아마이드계 재료로서는 예를 들어 나일론, 아라미드(메타계 아라미드, 파라계 아라미드) 등을 사용할 수 있다.
세라믹계 재료를 코팅하면 내산화성이 향상되기 때문에 고전압 충방전 시의 세퍼레이터의 열화를 억제하고, 이차 전지의 신뢰성을 향상시킬 수 있다. 또한, 플루오린계 재료를 코팅하면 세퍼레이터와 전극이 밀착되기 쉬워져 출력 특성을 향상시킬 수 있다. 폴리아마이드계 재료, 특히 아라미드를 코팅하면 내열성이 향상되기 때문에 이차 전지의 안전성을 향상시킬 수 있다.
예를 들어 폴리프로필렌의 필름의 양면에 산화 알루미늄과 아라미드의 혼합 재료를 코팅하여도 좋다. 또한, 폴리프로필렌의 필름의, 양극과 접촉하는 면에 산화 알루미늄과 아라미드의 혼합 재료를 코팅하고, 음극과 접촉하는 면에 플루오린계 재료를 코팅하여도 좋다.
다층 구조의 세퍼레이터를 사용하면, 세퍼레이터 전체의 두께가 얇아도 이차 전지의 안전성을 유지할 수 있기 때문에 이차 전지의 체적당 용량을 크게 할 수 있다.
(실시형태 3)
본 실시형태에서는 상술한 실시형태에서 설명한 양극 활물질(100)을 갖는 이차 전지의 형상의 예에 대하여 설명한다. 본 실시형태에서 설명하는 이차 전지에 사용하는 재료는 상술한 실시형태의 기재를 참작할 수 있다.
[코인형 이차 전지]
먼저, 코인형 이차 전지의 일례에 대하여 설명한다. 도 4의 (A)는 코인형(단층 편평(扁平)형)의 이차 전지의 외관도이고, 도 4의 (B)는 그 단면도이다.
코인형 이차 전지(300)는 양극 단자를 겸하는 양극 캔(301)과 음극 단자를 겸하는 음극 캔(302)이 폴리프로필렌 등으로 형성된 개스킷(303)에 의하여 절연되고 밀봉되어 있다. 양극(304)은 양극 집전체(305)와, 이 양극 집전체(305)와 접촉하도록 제공된 양극 활물질층(306)으로 형성된다. 또한, 음극(307)은 음극 집전체(308)와, 이 음극 집전체(308)와 접촉하도록 제공된 음극 활물질층(309)으로 형성된다.
또한, 코인형 이차 전지(300)에 사용하는 양극(304) 및 음극(307)에는 각각 한쪽 면에만 활물질층을 형성하면 좋다.
양극 캔(301) 및 음극 캔(302)에는 전해액에 대하여 내부식성이 있는 니켈, 알루미늄, 타이타늄 등의 금속, 또는 이들의 합금이나, 이들과 다른 금속과의 합금(예를 들어, 스테인리스강 등)을 사용할 수 있다. 또한, 전해액으로 인한 부식을 방지하기 위하여 니켈이나 알루미늄 등으로 피복하는 것이 바람직하다. 양극 캔(301)은 양극(304)과, 음극 캔(302)은 음극(307)과 각각 전기적으로 접속된다.
상술한 음극(307), 양극(304), 및 세퍼레이터(310)를 전해질에 함침시켜, 도 4의 (B)에 도시된 바와 같이, 양극 캔(301)을 아래로 하여 양극(304), 세퍼레이터(310), 음극(307), 음극 캔(302)을 이 순서대로 적층하고, 양극 캔(301)과 음극 캔(302)을 개스킷(303)을 개재(介在)하여 압착함으로써 코인형 이차 전지(300)를 제작한다.
양극(304)에 상술한 실시형태에서 설명한 양극 활물질을 사용함으로써 고용량이며 사이클 특성이 우수한 코인형 이차 전지(300)로 할 수 있다.
[원통형 이차 전지]
다음으로, 원통형 이차 전지의 예에 대하여 도 5를 참조하여 설명한다. 원통형 이차 전지(600)는 도 5의 (A)에 도시된 바와 같이 상면에 양극 캡(전지 뚜껑)(601)을 갖고, 측면 및 저면에 전지 캔(외장 캔)(602)을 갖는다. 이들 양극 캡(601)과 전지 캔(외장 캔)(602)은, 개스킷(절연 패킹)(610)에 의하여 절연되어 있다.
도 5의 (B)는 원통형 이차 전지의 단면을 모식적으로 도시한 것이다. 중공 원기둥형의 전지 캔(602)의 내측에는 띠 형상의 양극(604)과 음극(606)이 세퍼레이터(605)를 개재하고 권회된 전지 소자가 제공되어 있다. 도시하지 않았지만, 전지 소자는 센터 핀을 중심으로 하여 권회되어 있다. 전지 캔(602)은 한쪽 단부가 닫히고 다른 쪽 단부가 열려 있다. 전지 캔(602)에는 전해액에 대하여 내부식성이 있는 니켈, 알루미늄, 또는 타이타늄 등의 금속, 또는 이들의 합금이나, 이들과 다른 금속과의 합금(예를 들어, 스테인리스강 등)을 사용할 수 있다. 또한, 전해액으로 인한 부식을 방지하기 위하여 니켈이나 알루미늄 등으로 피복하는 것이 바람직하다. 전지 캔(602)의 내측에서, 양극, 음극, 및 세퍼레이터가 권회된 전지 소자는, 대향하는 한 쌍의 절연판(절연판(608), (609))에 끼워져 있다. 또한, 전지 소자가 제공된 전지 캔(602)의 내부는 비수전해액(도시하지 않았음)이 주입되어 있다. 비수전해액은 코인형 이차 전지와 같은 것을 사용할 수 있다.
원통형 이차 전지에 사용되는 양극 및 음극은 권회하기 때문에, 활물질을 집전체 양쪽 면에 형성하는 것이 바람직하다. 양극(604)에 양극 단자(양극 집전 리드)(603)가 접속되고, 음극(606)에 음극 단자(음극 집전 리드)(607)가 접속된다. 양극 단자(603) 및 음극 단자(607)에는 둘 다 알루미늄 등의 금속 재료를 사용할 수 있다. 양극 단자(603)는 안전 밸브 기구(612)에, 음극 단자(607)는 전지 캔(602)의 바닥에 각각 저항 용접된다. 안전 밸브 기구(612)는 PTC(Positive Temperature Coefficient) 소자(611)를 통하여 양극 캡(601)과 전기적으로 접속되어 있다. 안전 밸브 기구(612)는 전지의 내압의 상승이 소정의 문턱값을 넘었을 경우에, 양극 캡(601)과 양극(604)의 전기적 접속을 절단하는 것이다. 또한 PTC 소자(611)는 온도가 상승한 경우에 저항이 증대하는 열감 저항 소자이며, 저항의 증대에 따라 전류량을 제한하여 이상 발열을 방지하는 것이다. PTC 소자에는 타이타늄산 바륨(BaTiO3)계 반도체 세라믹 등을 사용할 수 있다.
양극(604)에 상술한 실시형태에서 설명한 양극 활물질을 사용함으로써 고용량이며 사이클 특성이 우수한 원통형 이차 전지(600)로 할 수 있다.
[축전 장치의 구조예]
축전 장치의 다른 구조예에 대하여 도 6 내지 도 10을 참조하여 설명한다.
도 6의 (A) 및 (B)는 축전 장치의 외관도를 도시한 것이다. 축전 장치는 회로 기판(900)과 이차 전지(913)를 갖는다. 이차 전지(913)에는 라벨(910)이 붙여져 있다. 또한, 도 6의 (B)에 도시된 바와 같이, 축전 장치는 단자(951), 단자(952), 안테나(914), 및 안테나(915)를 갖는다.
회로 기판(900)은 단자(911)와 회로(912)를 갖는다. 단자(911)는 단자(951), 단자(952), 안테나(914), 안테나(915), 및 회로(912)에 접속된다. 또한, 단자(911)를 복수로 제공하고, 복수의 단자(911)의 각각을 제어 신호 입력 단자, 전원 단자 등으로 하여도 좋다.
회로(912)는 회로 기판(900)의 이면에 제공되어도 좋다. 또한, 안테나(914) 및 안테나(915)는 코일 형상에 한정되지 않고, 예를 들어, 선상이어도 좋고, 판 형상이어도 좋다. 또한, 평면 안테나, 개구면 안테나, 진행파 안테나, EH 안테나, 자계(磁界) 안테나, 유전체 안테나 등의 안테나를 사용하여도 좋다. 또는, 안테나(914) 또는 안테나(915)는 평판 형상의 도체라도 좋다. 이 평판 형상의 도체는 전계 결합용의 도체의 하나로서 기능할 수 있다. 즉, 콘덴서가 갖는 2개의 도체 중 하나의 도체로서 안테나(914) 또는 안테나(915)를 기능시켜도 좋다. 이로써, 전자계, 자계뿐만 아니라 전계에 의하여 전력을 교환할 수도 있다.
안테나(914)의 선폭은, 안테나(915)의 선폭보다 큰 것이 바람직하다. 이로써, 안테나(914)에 의하여 수전하는 전력량을 크게 할 수 있다.
축전 장치는 안테나(914) 및 안테나(915)와, 이차 전지(913)와의 사이에 층(916)을 갖는다. 층(916)은 예를 들어, 이차 전지(913)로부터의 전자계를 차폐할 수 있는 기능을 갖는다. 층(916)으로서는, 예를 들어 자성체를 사용할 수 있다.
또한, 축전 장치의 구조는, 도 6에 도시된 구조에 한정되지 않는다.
예를 들어, 도 7의 (A-1) 및 (A-2)에 도시된 바와 같이, 도 6의 (A) 및 (B)에 도시된 이차 전지(913)의, 대향하는 한 쌍의 면 각각에 안테나를 제공하여도 좋다. 도 7의 (A-1)은 상기 한 쌍의 면의 한쪽 방향으로부터 본 외관도이고, 도 7의 (A-2)는 상기 한 쌍의 면의 다른 쪽 방향으로부터 본 외관도이다. 또한, 도 6의 (A) 및 (B)에 도시된 축전 장치와 같은 부분에 대해서는 도 6의 (A) 및 (B)에 도시된 축전 장치의 설명을 적절히 원용할 수 있다.
도 7의 (A-1)에 도시된 바와 같이, 이차 전지(913)의 한 쌍의 면 중 한쪽에 층(916)을 개재하여 안테나(914)가 제공되고, 도 7의 (A-2)에 도시된 바와 같이, 이차 전지(913)의 한 쌍의 면 중 다른 쪽에 층(917)을 개재하여 안테나(915)가 제공된다. 층(917)은 예를 들어 이차 전지(913)에 의한 전자계를 차폐할 수 있는 기능을 갖는다. 층(917)으로서는, 예를 들어 자성체를 사용할 수 있다.
상술한 구조로 함으로써, 안테나(914) 및 안테나(915) 양쪽의 사이즈를 크게 할 수 있다.
또는, 도 7의 (B-1) 및 (B-2)에 도시된 바와 같이, 도 6의 (A) 및 (B)에 도시된 이차 전지(913)에서 대향하는 한 쌍의 면에 각각 다른 안테나를 제공하여도 좋다. 도 7의 (B-1)은 상기 한 쌍의 면의 한쪽 방향으로부터 본 외관도이고, 도 7의 (B-2)는 상기 한 쌍의 면의 다른 쪽 방향으로부터 본 외관도이다. 또한, 도 6의 (A) 및 (B)에 도시된 축전 시스템과 같은 부분에 대해서는 도 6의 (A) 및 (B)에 도시된 축전 시스템의 설명을 적절히 원용할 수 있다.
도 7의 (B-1)에 도시된 바와 같이, 이차 전지(913)의 한 쌍의 면 중 한쪽에 층(916)을 개재하여 안테나(914) 및 안테나(915)가 제공되고, 도 7의 (B-2)에 도시된 바와 같이, 이차 전지(913)의 한 쌍의 면 중 다른 쪽에 층(917)을 개재하여 안테나(918)가 제공된다. 안테나(918)는 예를 들어 외부 기기와 데이터 통신을 할 수 있는 기능을 갖는다. 안테나(918)에는, 예를 들어 안테나(914) 및 안테나(915)에 적용 가능한 형상의 안테나를 적용할 수 있다. 안테나(918)를 통하여 축전 장치와 다른 기기 사이를 통신시키기 위한 방식으로서는 NFC 등 축전 장치와 다른 기기 사이에서 사용할 수 있는 응답 방식 등을 적용할 수 있다.
또는 도 8의 (A)에 도시된 바와 같이, 도 6의 (A) 및 (B)에 도시된 이차 전지(913)에 표시 장치(920)를 제공하여도 좋다. 표시 장치(920)는 단자(919)를 통하여 단자(911)에 전기적으로 접속된다. 또한, 표시 장치(920)가 제공되는 부분에 라벨(910)을 제공하지 않아도 된다. 또한, 도 6의 (A) 및 (B)에 도시된 축전 장치와 같은 부분에 대해서는 도 6의 (A) 및 (B)에 도시된 축전 장치의 설명을 적절히 원용할 수 있다.
표시 장치(920)에는 예를 들어 충전 중인지 여부를 나타내는 화상, 축전량을 나타내는 화상 등을 표시하여도 좋다. 표시 장치(920)로서는 예를 들어, 전자 페이퍼, 액정 표시 장치, 일렉트로루미네선스(EL이라고도 함) 표시 장치 등을 사용할 수 있다. 예를 들어, 전자 페이퍼를 사용함으로써 표시 장치(920)의 소비전력을 저감할 수 있다.
또는 도 8의 (B)에 도시된 바와 같이, 도 6의 (A) 및 (B)에 도시된 이차 전지(913)에 센서(921)를 제공하여도 좋다. 센서(921)는 단자(922)를 통하여 단자(911)에 전기적으로 접속된다. 또한, 도 6의 (A) 및 (B)에 도시된 축전 장치와 같은 부분에 대해서는 도 6의 (A) 및 (B)에 도시된 축전 장치의 설명을 적절히 원용할 수 있다.
센서(921)로서는 예를 들어, 변위, 위치, 속도, 가속도, 각속도, 회전수, 거리, 광, 액체, 자기, 온도, 화학 물질, 음성, 시간, 경도(硬度), 전기장, 전류, 전압, 전력, 방사선, 유량, 습도, 경사도, 진동, 냄새 또는 적외선을 측정할 수 있는 기능을 가지면 좋다. 센서(921)를 제공함으로써, 예를 들어, 축전 장치가 놓여 있는 환경을 나타내는 데이터(온도 등)를 검출하여, 회로(912) 내의 메모리에 기억해 둘 수도 있다.
또한, 이차 전지(913)의 구조예에 대하여 도 9 및 도 10을 참조하여 설명한다.
도 9의 (A)에 도시된 이차 전지(913)는 단자(951)와 단자(952)가 제공된 권회체(950)를 하우징(930) 내부에 갖는다. 권회체(950)는 하우징(930) 내부에서 전해액에 함침된다. 단자(952)는 하우징(930)에 접촉되고, 단자(951)는 절연재 등을 사용함으로써 하우징(930)에 접촉되지 않는다. 또한, 도 9의 (A)에서는 편의상 하우징(930)을 분리시켜 도시하였지만, 실제로는 권회체(950)는 하우징(930)으로 덮이고 단자(951) 및 단자(952)가 하우징(930) 외부로 연장되어 있다. 하우징(930)에는 금속 재료(예를 들어 알루미늄 등) 또는 수지 재료를 사용할 수 있다.
또한, 도 9의 (B)에 도시된 바와 같이, 도 9의 (A)에 도시된 하우징(930)을 복수의 재료로 형성하여도 좋다. 예를 들어, 도 9의 (B)에 도시된 이차 전지(913)는 하우징(930a)과 하우징(930b)이 접합된 것이고, 하우징(930a)과 하우징(930b)으로 둘러싸인 영역에 권회체(950)가 제공된다.
하우징(930a)으로서는, 유기 수지 등, 절연 재료를 사용할 수 있다. 특히, 안테나가 형성되는 면에 유기 수지 등의 재료를 사용함으로써, 이차 전지(913)로 인한 전계의 차폐를 억제할 수 있다. 또한 하우징(930a)으로 인한 전계의 차폐가 작으면, 하우징(930a) 내부에 안테나(914)나 안테나(915) 등의 안테나를 제공하여도 좋다. 하우징(930b)으로서는 예를 들어 금속 재료를 사용할 수 있다.
또한, 권회체(950)의 구조에 대하여 도 10에 도시하였다. 권회체(950)는, 음극(931)과, 양극(932)과, 세퍼레이터(933)를 갖는다. 권회체(950)는 세퍼레이터(933)를 개재하고 음극(931)과 양극(932)이 중첩되어 적층되고, 이 적층 시트를 권회시킨 권회체이다. 또한, 음극(931)과, 양극(932)과, 세퍼레이터(933)의 적층을 더 복수로 중첩하여도 좋다.
음극(931)은 단자(951) 및 단자(952) 중 한쪽을 통하여 도 6에 도시된 단자(911)와 접속된다. 양극(932)은 단자(951) 및 단자(952) 중 다른 쪽을 통하여 도 6에 도시된 단자(911)와 접속된다.
양극(932)에 상술한 실시형태에서 설명한 양극 활물질을 사용함으로써 고용량이며 사이클 특성이 우수한 이차 전지(913)로 할 수 있다.
[래미네이트형 이차 전지]
다음에 래미네이트형 이차 전지의 예에 대하여 도 11 내지 도 16을 참조하여 설명한다. 래미네이트형 이차 전지는 가요성을 갖는 구성으로 하면 가요성을 갖는 부위를 적어도 일부 갖는 전자 기기에 실장하면 전자 기기의 변형에 맞춰서 이차 전지도 휠 수 있다.
도 11을 참조하여 래미네이트형 이차 전지(980)에 대하여 설명한다. 래미네이트형 이차 전지(980)는 도 11의 (A)에 나타낸 권회체(993)를 갖는다. 권회체(993)는 음극(994), 양극(995), 세퍼레이터(996)를 갖는다. 권회체(993)는 도 10에서 설명한 권회체(950)와 마찬가지로 세퍼레이터(996)를 개재하여 음극(994)과 양극(995)이 중첩되어 적층되고, 이 적층 시트를 권회한 것이다.
또한, 음극(994), 양극(995), 및 세퍼레이터(996)로 이루어지는 적층의 개수는, 필요한 용량과 소자 체적에 따라 적절히 설계하면 좋다. 음극(994)은 리드 전극(997) 및 리드 전극(998) 중 한쪽을 통하여 음극 집전체(도시하지 않았음)에 접속되고, 양극(995)은 리드 전극(997) 및 리드 전극(998) 중 다른 쪽을 통하여 양극 집전체(도시하지 않았음)에 접속된다.
도 11의 (B)에 도시된 바와 같이, 외장체가 되는 필름(981)과, 오목부를 갖는 필름(982)을 열압착 등에 의하여 접합하여 형성되는 공간에 상술한 권회체(993)를 수납함으로써 도 11의 (C)에 도시된 바와 같이 이차 전지(980)를 제작할 수 있다. 권회체(993)는 리드 전극(997) 및 리드 전극(998)을 갖고, 필름(981)과, 오목부를 갖는 필름(982)의 내부에서 전해액에 함침된다.
필름(981) 및 오목부를 갖는 필름(982)에는, 예를 들어 알루미늄 등의 금속 재료나 수지 재료를 사용할 수 있다. 필름(981) 및 오목부를 갖는 필름(982)의 재료로서 수지 재료를 사용하면 외부로부터 힘이 가해졌을 때에 필름(981)과, 오목부를 갖는 필름(982)을 변형시킬 수 있어, 가요성을 갖는 이차 전지를 제작할 수 있다.
또한, 도 11의 (B) 및 (C)는 2장의 필름을 사용하는 경우의 예를 도시한 것이지만, 1장의 필름을 접어서 공간을 형성하고, 이 공간에 상술한 권회체(993)를 수납하여도 좋다.
양극(995)에 상술한 실시형태에서 설명한 양극 활물질을 사용함으로써 고용량이며 사이클 특성이 우수한 이차 전지(980)로 할 수 있다.
또한, 도 11에서는 외장체가 되는 필름에 의하여 형성된 공간에 권회체를 갖는 이차 전지(980)의 예에 대하여 설명하였지만, 예를 들어 도 12와 같이 외장체가 되는 필름에 의하여 형성된 공간에 직사각형의 복수의 양극, 세퍼레이터, 및 음극을 갖는 이차 전지로 하여도 좋다.
도 12의 (A)에 도시된 래미네이트형 이차 전지(500)는 양극 집전체(501) 및 양극 활물질층(502)을 갖는 양극(503)과, 음극 집전체(504) 및 음극 활물질층(505)을 갖는 음극(506)과, 세퍼레이터(507)와, 전해액(508)과, 외장체(509)를 갖는다. 외장체(509) 내에 제공된 양극(503)과 음극(506) 사이에 세퍼레이터(507)가 설치되어 있다. 또한, 외장체(509) 내는 전해액(508)으로 채워져 있다. 전해액(508)에는 실시형태 2에서 나타낸 전해액을 사용할 수 있다.
도 12의 (A)에 도시된 래미네이트형 이차 전지(500)에서 양극 집전체(501) 및 음극 집전체(504)는 외부와 전기적으로 접촉되는 단자로서의 역할도 겸한다. 그러므로, 양극 집전체(501) 및 음극 집전체(504)의 일부는 외장체(509)로부터 외측으로 노출되도록 배치하여도 좋다. 또한, 양극 집전체(501) 및 음극 집전체(504)를 외장체(509)의 외측으로 노출시키지 않고 리드 전극을 사용하여 그 리드 전극과, 양극 집전체(501) 또는 음극 집전체(504)를 초음파 접합시켜 리드 전극을 외측으로 노출시키도록 하여도 좋다.
래미네이트형 이차 전지(500)에 있어서, 외장체(509)에는 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 아이오노머, 폴리아마이드 등의 재료로 이루어지는 막 위에 알루미늄, 스테인리스, 구리, 니켈 등의 가요성이 우수한 금속 박막을 제공하고, 또한 이 금속 박막 위에 외장체의 외면으로서 폴리아마이드계 수지, 폴리에스터계 수지 등의 절연성 합성 수지막을 제공한 3층 구조의 래미네이트 필름을 사용할 수 있다.
또한, 래미네이트형 이차 전지(500)의 단면 구조의 일례를 도 12의 (B)에 도시하였다. 도 12의 (A)에서는 간략화를 위하여 2개의 집전체로 구성하는 예를 도시하였지만 실제는 복수의 전극층으로 구성한다.
도 12의 (B)에서는 일례로서, 전극층수를 16으로 하였다. 또한, 전극층수를 16으로 하여도 이차 전지(500)는 가요성을 갖는다. 도 12의 (B)에서는 음극 집전체(504) 8층, 양극 집전체(501) 8층의, 총 16층의 구조를 도시하였다. 또한 도 12의 (B)는 음극의 추출부의 단면을 나타낸 것이고, 8층의 음극 집전체(504)를 초음파 접합시키고 있다. 물론, 전극층수는 16에 한정되지 않으며, 많아도 좋고, 적어도 좋다. 전극층수가 많은 경우에는 더 많은 용량을 갖는 이차 전지로 할 수 있다. 또한, 전극층수가 적은 경우에는 박형화할 수 있어, 가요성이 우수한 이차 전지로 할 수 있다.
여기서, 래미네이트형 이차 전지(500)의 외관도의 일례를 도 13 및 도 14에 도시하였다. 도 13 및 도 14는 양극(503), 음극(506), 세퍼레이터(507), 외장체(509), 양극 리드 전극(510) 및 음극 리드 전극(511)을 갖는다.
도 15의 (A)는 양극(503) 및 음극(506)의 외관도를 도시한 것이다. 양극(503)은 양극 집전체(501)를 갖고, 양극 활물질층(502)은 양극 집전체(501)의 표면에 형성되어 있다. 또한, 양극(503)은 양극 집전체(501)가 일부 노출되는 영역(이하 탭 영역이라고 함)을 갖는다. 음극(506)은 음극 집전체(504)를 갖고, 음극 활물질층(505)은 음극 집전체(504)의 표면에 형성되어 있다. 또한 음극(506)은 음극 집전체(504)가 일부 노출되는 영역, 즉, 탭 영역을 갖는다. 양극 및 음극이 갖는 탭 영역의 면적이나 형상은, 도 15의 (A)에 도시된 예에 한정되지 않는다.
[래미네이트형 이차 전지의 제작 방법]
여기서, 도 13에 외관도를 도시한 래미네이트형 이차 전지의 제작 방법의 일례에 대하여 도 15의 (B) 및 (C)를 참조하여 설명한다.
먼저, 음극(506), 세퍼레이터(507) 및 양극(503)을 적층한다. 도 15의 (B)에 적층된 음극(506), 세퍼레이터(507) 및 양극(503)을 도시하였다. 여기서는 음극을 5쌍, 양극을 4쌍 사용한 예를 나타낸다. 다음에 양극(503)의 탭 영역끼리의 접합과, 최외표면에 위치하는 양극의 탭 영역으로의 양극 리드 전극(510)의 접합을 행한다. 접합에는 예를 들어 초음파 용접 등을 사용하면 좋다. 마찬가지로 음극(506)의 탭 영역끼리의 접합과 최외표면에 위치하는 음극의 탭 영역으로의 음극 리드 전극(511)의 접합을 행한다.
다음에 외장체(509) 위에 음극(506), 세퍼레이터(507) 및 양극(503)을 배치한다.
다음에 도 15의 (C)에 도시된 바와 같이, 외장체(509)를 파선으로 나타낸 부분에서 접는다. 그 후, 외장체(509)의 외주부를 접합한다. 접합에는 예를 들어 열압착 등을 사용하면 좋다. 이때, 나중에 전해액(508)을 도입할 수 있도록 외장체(509)의 일부(또는 한 변)에 접합되지 않는 영역(이하 도입구라고 함)을 제공하였다.
다음에 외장체(509)에 제공된 도입구에서, 전해액(508)을 외장체(509)의 내측으로 도입한다. 전해액(508)의 도입은 감압 분위기하, 또는 불활성 가스 분위기하에서 수행하는 것이 바람직하다. 그리고, 마지막에 도입구를 접합한다. 이와 같이 하여, 래미네이트형 이차 전지인 이차 전지(500)를 제작할 수 있다.
양극(503)에 상술한 실시형태에서 설명한 양극 활물질을 사용함으로써 고용량이며 사이클 특성이 우수한 이차 전지(500)로 할 수 있다.
[휠 수 있는 이차 전지]
다음에 휠 수 있는 이차 전지의 예에 대하여 도 16 및 도 17을 참조하여 설명한다.
도 16의 (A)에 휠 수 있는 전지(250)의 상면 개략도를 나타내었다. 도 16의 (B1), (B2), 및 (C)에는 각각 도 16의 (A) 중의 절단선 C1-C2, 절단선 C3-C4, 절단선 A1-A2에서의 단면 개략도이다. 전지(250)는 외장체(251)와, 외장체(251)의 내부에 수용된 양극(211a) 및 음극(211b)을 갖는다. 양극(211a)과 전기적으로 접속된 리드(212a), 및 음극(211b)과 전기적으로 접속된 리드(212b)는 외장체(251)의 외측에 연장되어 있다. 또한 외장체(251)로 둘러싸인 영역에는 양극(211a) 및 음극(211b)에 더하여 전해액(도시하지 않았음)이 봉입되어 있다.
전지(250)가 갖는 양극(211a) 및 음극(211b)에 대하여 도 17을 참조하여 설명한다. 도 17의 (A)는 양극(211a), 음극(211b), 및 세퍼레이터(214)의 적층 순서를 설명하기 위한 사시도이다. 도 17의 (B)는 양극(211a) 및 음극(211b)에 더하여 리드(212a) 및 리드(212b)를 나타낸 사시도이다.
도 17의 (A)에 도시된 바와 같이 전지(250)는 복수의 직사각형의 양극(211a), 복수의 직사각형의 음극(211b), 및 복수의 세퍼레이터(214)를 갖는다. 양극(211a) 및 음극(211b)은 각각 돌출된 탭 부분과 탭 이외의 부분을 갖는다. 양극(211a) 중 한쪽 면의 탭 이외의 부분에 양극 활물질층이 형성되고, 음극(211b) 중 한쪽 면의 탭 이외의 부분에 음극 활물질층이 형성된다.
양극(211a) 중 양극 활물질층이 형성되지 않은 면끼리 및 음극(211b) 중 음극 활물질층이 형성되지 않은 면끼리가 접촉되도록 양극(211a) 및 음극(211b)은 적층된다.
또한, 양극(211a) 중 양극 활물질층이 형성된 면과 음극(211b) 중 음극 활물질층이 형성된 면 사이에는 세퍼레이터(214)가 제공된다. 도 17의 (A)에서는 보기 쉽게 세퍼레이터(214)를 점선으로 나타내었다.
또한, 도 17의 (B)에 도시된 바와 같이 복수의 양극(211a)과 리드(212a)는 접합부(215a)에서 전기적으로 접속된다. 또한, 복수의 음극(211b)과 리드(212b)는 접합부(215b)에서 전기적으로 접속된다.
다음으로, 외장체(251)에 대하여 도 16의 (B1), (B2), (C), 및 (D)를 참조하여 설명한다.
외장체(251)는 필름상의 형상을 갖고, 양극(211a) 및 음극(211b)을 사이에 두도록 둘로 접혀 있다. 외장체(251)는 접음부(261)와, 한 쌍의 실부(262)와, 실부(263)를 갖는다. 한 쌍의 실부(262)는 양극(211a) 및 음극(211b)을 사이에 두고 제공되며, 사이드 실이라고도 부를 수 있다. 또한, 실부(263)는 리드(212a) 및 리드(212b)와 중첩되는 부분을 가지며, 톱 실이라고도 부를 수 있다.
외장체(251)는 양극(211a) 및 음극(211b)과 중첩되는 부분에 능선(271)과 곡선(谷線)(272)이 교대로 배치된 물결 형상을 갖는 것이 바람직하다. 또한, 외장체(251)의 실부(262) 및 실부(263)는 평탄한 것이 바람직하다.
도 16의 (B1)은 능선(271)과 중첩되는 부분에서 절단한 단면이고, 도 16의 (B2)는 곡선(272)과 중첩되는 부분에서 절단한 단면이다. 도 16의 (B1) 및 (B2)는 둘 다 전지(250) 그리고 양극(211a) 및 음극(211b)의 폭 방향의 단면에 대응한다.
여기서, 음극(211b)의 폭 방향의 단부와 실부(262) 사이의 거리를 거리 La로 한다. 전지(250)에 휨 등의 변형을 가하였을 때, 나중에 기재하지만 양극(211a) 및 음극(211b)이 길이 방향으로 서로 어긋나도록 변형한다. 그때, 거리 La가 지나치게 짧으면 외장체(251)가 양극(211a) 및 음극(211b)과 강하게 마찰되어, 외장체(251)가 파손되는 경우가 있다. 특히, 외장체(251)의 금속 필름이 노출되면 상기 금속 필름이 전해액에 의하여 부식될 우려가 있다. 따라서, 거리 La를 가능한 한 길게 설정하는 것이 바람직하다. 한편으로, 거리 La를 지나치게 크게 하면 전지(250)의 체적이 증대된다.
또한, 적층된 양극(211a)과 음극(211b)을 합친 두께가 두꺼울수록 음극(211b)의 단부와 실부(262) 사이의 거리 La를 크게 하는 것이 바람직하다.
더 구체적으로는 적층된 양극(211a), 음극(211b), 및 도시하지 않았지만 세퍼레이터(214)를 합친 두께를 두께 t로 하였을 때, 거리 La는 두께 t의 0.8배 이상 3.0배 이하, 바람직하게는 0.9배 이상 2.5배 이하, 더 바람직하게는 1.0배 이상 2.0배 이하인 것이 바람직하다. 거리 La를 이 범위로 함으로써 소형이며, 휨에 대한 신뢰성이 높은 전지를 구현할 수 있다.
또한, 한 쌍의 실부(262)간의 거리를 거리 Lb로 하였을 때, 거리 Lb를 음극(211b)의 폭 Wb보다 충분히 크게 하는 것이 바람직하다. 이에 의하여, 전지(250)에 반복적으로 휨 등의 변형을 가하였을 때 양극(211a) 및 음극(211b)이 외장체(251)와 접촉하여도 양극(211a) 및 음극(211b)의 일부가 폭 방향으로 어긋날 수 있기 때문에 양극(211a) 및 음극(211b)이 외장체(251)와 마찰되는 것을 효과적으로 방지할 수 있다.
예를 들어, 한 쌍의 실부(262)간의 거리 Lb와 음극(211b)의 폭 Wb와의 차이가 양극(211a) 및 음극(211b)의 두께 t의 1.6배 이상 6.0배 이하, 바람직하게는 1.8배 이상 5.0배 이하, 더 바람직하게는 2.0배 이상 4.0배 이하를 만족시키는 것이 바람직하다.
바꿔 말하면, 거리 Lb, 폭 Wb, 및 두께 t가 하기 수학식 1의 관계를 만족시키는 것이 바람직하다.
[수학식 1]
Figure pat00001
여기서, a는 0.8 이상 3.0 이하, 바람직하게는 0.9 이상 2.5 이하, 더 바람직하게는 1.0 이상 2.0 이하를 만족시킨다.
또한, 도 16의 (C)는 리드(212a)를 포함하는 단면이고, 전지(250), 양극(211a) 및 음극(211b)의 길이 방향의 단면에 대응한다. 도 16의 (C)에 도시된 바와 같이 접음부(261)에서 양극(211a) 및 음극(211b)의 길이 방향의 단부와 외장체(251) 사이에 공간(273)을 갖는 것이 바람직하다.
도 16의 (D)에 전지(250)를 휘었을 때의 단면 개략도를 도시하였다. 도 16의 (D)는 도 16의 (A) 중의 절단선 B1-B2에서의 단면에 상당한다.
전지(250)를 휘면 휨의 외측에 위치하는 외장체(251)의 일부는 늘어나고, 내측에 위치하는 다른 일부는 수축되도록 변형된다. 더 구체적으로 외장체(251)의 외측에 위치하는 부분은 물결의 진폭이 작으며, 물결의 주기가 크게 되도록 변형한다. 한편, 외장체(251)의 내측에 위치하는 부분은 물결의 진폭이 크며, 물결의 주기가 작게 되도록 변형한다. 이와 같이, 외장체(251)가 변형됨으로써 휨에 따라 외장체(251)에 가해지는 응력이 완화되기 때문에 외장체(251)를 구성하는 재료 자체가 신축할 필요가 없다. 그 결과, 외장체(251)는 파손되지 않고, 작은 힘으로 전지(250)를 휠 수 있다.
또한, 도 16의 (D)에 도시된 바와 같이, 전지(250)를 휘면 양극(211a) 및 음극(211b)이 각각 상대적으로 어긋난다. 이때, 복수의 적층된 양극(211a) 및 음극(211b)은 실부(263) 측의 한쪽 단부가 고정 부재(217)로 고정되어 있기 때문에 접음부(261)에 가까울수록 어긋남의 정도가 크게 되도록 각각이 어긋난다. 이에 의하여, 양극(211a) 및 음극(211b)에 가해지는 응력이 완화되어, 양극(211a) 및 음극(211b) 자체가 신축할 필요가 없다. 그 결과, 양극(211a) 및 음극(211b)이 파손되지 않고 전지(250)를 휠 수 있다.
또한, 양극(211a) 및 음극(211b)의 단부와 외장체(251) 사이에 공간(273)을 가짐으로써 휘었을 때 내측에 위치하는 양극(211a) 및 음극(211b)의 단부가 외장체(251)에 접촉되지 않고 상대적으로 어긋나게 될 수 있다.
도 16 및 도 17에서 예시한 전지(250)는 반복적으로 휘었다 폈다 하여도 외장체의 파손, 양극(211a) 및 음극(211b)의 파손 등이 생기기 어렵고, 전지 특성도 열화되기 어려운 전지이다. 전지(250)가 갖는 양극(211a)에 상술한 실시형태에서 설명한 양극 활물질을 사용함으로써 더 고용량이며 사이클 특성이 우수한 전지로 할 수 있다.
(실시형태 4)
본 실시형태에서는, 본 발명의 일 형태인 이차 전지를 전자 기기에 실장하는 예에 대하여 설명한다.
먼저, 실시형태 3의 일부에서 설명한, 휠 수 있는 이차 전지를 전자 기기에 실장하는 예를 도 18의 (A) 내지 (G)에 나타내었다. 휠 수 있는 이차 전지를 적용한 전자 기기로서는 예를 들어 텔레비전 장치(텔레비전 또는 텔레비전 수신기라고도 함), 컴퓨터용 등의 모니터, 디지털 카메라, 디지털 비디오 카메라 등의 카메라, 디지털 포토 프레임, 휴대 전화기(휴대 전화, 휴대 전화 장치라고도 함), 휴대용 게임기, 휴대 정보 단말, 음향 재생 장치, 파친코기 등의 대형 게임기 등을 들 수 있다.
또한, 플렉시블 이차 전지를, 가옥이나 빌딩의 내벽 또는 외벽이나, 자동차의 내장 또는 외장의 곡면을 따라 제공할 수도 있다.
도 18의 (A)는 휴대 전화기의 일례를 도시한 것이다. 휴대 전화기(7400)는 하우징(7401)에 제공된 표시부(7402) 외에, 조작 버튼(7403), 외부 접속 포트(7404), 스피커(7405), 마이크로폰(7406) 등을 구비한다. 또한, 휴대 전화기(7400)는 이차 전지(7407)를 갖는다. 상기 이차 전지(7407)에 본 발명의 일 형태의 이차 전지를 사용하면 경량이고 장수명의 휴대 전화기를 제공할 수 있다.
도 18의 (B)는 휴대 전화기(7400)를 만곡시킨 상태를 도시한 것이다. 휴대 전화기(7400)를 외부의 힘으로 변형시켜 전체를 만곡시키면, 그 내부에 제공된 이차 전지(7407)도 만곡된다. 이때 만곡된 이차 전지(7407)의 상태를 도 18의 (C)에 도시하였다. 이차 전지(7407)는 박형 축전지이다. 이차 전지(7407)는 만곡된 상태로 고정되어 있다. 또한, 이차 전지(7407)는 집전체(7409)에 전기적으로 접속된 리드 전극을 갖는다.
도 18의 (D)는 팔찌형 표시 장치의 일례를 도시한 것이다. 휴대 표시 장치(7100)는 하우징(7101), 표시부(7102), 조작 버튼(7103), 및 이차 전지(7104)를 갖는다. 또한, 휘어진 이차 전지(7104)의 상태를 도 18의 (E)에 도시하였다. 이차 전지(7104)는 휘어진 상태로 사용자의 팔에 장착될 때에 하우징이 변형되어 이차 전지(7104)의 일부 또는 전체의 곡률이 변화된다. 또한, 임의의 점에서의 곡선의 만곡의 정도를 상당하는 원의 반경의 값으로 나타낸 것을 곡률 반경이라고 말하고, 곡률 반경의 역수는 곡률이라고 말한다. 구체적으로는, 하우징 또는 이차 전지(7104)의 주표면의 일부 또는 전체가 곡률 반경 40mm 이상 150mm 이하의 범위 내에서 변화된다. 이차 전지(7104)의 주표면에서의 곡률 반경이 40mm 이상 150mm 이하의 범위이면, 높은 신뢰성을 유지할 수 있다. 상기 이차 전지(7104)에 본 발명의 일 형태의 이차 전지를 사용함으로써 경량이고 장수명의 휴대 표시 장치를 제공할 수 있다.
도 18의 (F)는, 손목시계형의 휴대 정보 단말의 일례를 도시한 것이다. 휴대 정보 단말(7200)은 하우징(7201), 표시부(7202), 밴드(7203), 버클(7204), 조작 버튼(7205), 입출력 단자(7206) 등을 구비한다.
휴대 정보 단말(7200)은 이동 전화, 전자 메일, 문장 열람 및 작성, 음악 재생, 인터넷 통신, 컴퓨터 게임 등의 다양한 애플리케이션을 실행할 수 있다.
표시부(7202)는 그 표시면이 만곡되어 제공되고, 만곡된 표시면을 따라 표시를 수행할 수 있다. 또한, 표시부(7202)는 터치 센서를 구비하고, 손가락이나 스타일러스 등으로 화면을 터치함으로써 조작할 수 있다. 예를 들어, 표시부(7202)에 표시된 아이콘(7207)에 접촉함으로써 애플리케이션을 기동할 수 있다.
조작 버튼(7205)은 시각 설정 외에, 전원의 온/오프 동작, 무선 통신의 온/오프 동작, 매너 모드의 실행 및 해제, 전력 절약 모드의 실행 및 해제 등, 다양한 기능을 갖게 할 수 있다. 예를 들어, 휴대 정보 단말(7200)에 제공된 운영 체계(operating system)에 의하여 조작 버튼(7205)의 기능을 자유롭게 설정할 수도 있다.
또한, 휴대 정보 단말(7200)은 통신 규격화된 근거리 무선 통신을 실행하는 것이 가능하다. 예를 들어, 무선 통신할 수 있는 헤드셋과 상호 통신함으로써, 핸즈프리로 통화할 수도 있다.
또한, 휴대 정보 단말(7200)은 입출력 단자(7206)를 구비하고, 다른 정보 단말과 커넥터를 통하여 직접 데이터를 주고받을 수 있다. 또한 입출력 단자(7206)를 통하여 충전을 수행할 수도 있다. 또한, 충전 동작은 입출력 단자(7206)를 통하지 않고 무선 급전에 의하여 수행하여도 좋다.
휴대 정보 단말(7200)의 표시부(7202)에는, 본 발명의 일 형태의 이차 전지를 갖는다. 본 발명의 일 형태의 이차 전지를 사용함으로써 경량이고 장수명의 휴대 정보 단말을 제공할 수 있다. 예를 들어, 도 18의 (E)에 도시된 이차 전지(7104)를 휘어진 상태로 하우징(7201) 내부에 제공하거나 또는 휘어질 수 있는 상태로 밴드(7203) 내부에 제공할 수 있다.
휴대 정보 단말(7200)은 센서를 갖는 것이 바람직하다. 센서로서, 예를 들어, 지문 센서, 맥박 센서, 및 체온 센서 등의 인체 센서나, 터치 센서, 가압 센서, 및 가속도 센서 등이 탑재되어 있는 것이 바람직하다.
도 18의 (G)는 완장형 표시 장치의 일례를 도시한 것이다. 표시 장치(7300)는 표시부(7304)를 포함하고 본 발명의 일 형태의 이차 전지를 갖는다. 또한, 표시 장치(7300)는 표시부(7304)에 터치 센서를 가질 수도 있고, 또한 휴대 정보 단말로서 기능시킬 수도 있다.
표시부(7304)는 그 표시면이 만곡되어 있고, 만곡된 표시면을 따라 표시를 수행할 수 있다. 또한, 표시 장치(7300)는 통신 규격화된 근거리 무선 통신 등에 의하여 표시 상황을 변경할 수 있다.
또한, 표시 장치(7300)는 입출력 단자를 구비하고, 다른 정보 단말과 커넥터를 통하여 직접 데이터를 주고받을 수 있다. 또한, 입출력 단자를 통하여 충전을 수행할 수도 있다. 또한, 충전 동작은 입출력 단자를 통하지 않고 무선 급전에 의하여 수행하여도 좋다.
표시 장치(7300)가 갖는 이차 전지로서 본 발명의 일 형태에 따른 이차 전지를 사용함으로써 경량이고 장수명의 표시 장치를 제공할 수 있다.
또한, 상술한 실시형태에서 나타낸 사이클 특성이 좋은 이차 전지를 전자 기기에 실장하는 예를 도 18의 (H), 도 19, 및 도 20을 참조하여 설명한다.
일상용 전자 기기에 이차 전지로서 본 발명의 일 형태에 따른 이차 전지를 사용함으로써 경량이고 장수명의 제품을 제공할 수 있다. 예를 들어, 일상용 전자 기기로서는 전동 칫솔, 전기 면도기, 전동 미용 기기 등을 들 수 있고, 이들 제품의 이차 전지로서는 사용자가 잡기 쉽도록 형상이 스틱 형상이며, 소형, 경량, 또한 대용량의 이차 전지가 요구되고 있다.
도 18의 (H)는 담배 수용 흡연 장치(전자 담배)라고도 불리는 장치의 사시도이다. 도 18의 (H)에서 전자 담배(7500)는 가열 소자를 포함하는 애토마이저(7501)와, 애토마이저에 전력을 공급하는 이차 전지(7504)와, 액체 공급 보틀이나 센서 등을 포함하는 카트리지(7502)로 구성되어 있다. 안전성을 높이기 위하여 이차 전지(7504)의 과충전이나 과방전을 방지하는 보호 회로를 이차 전지(7504)에 전기적으로 접속하여도 좋다. 도 18의 (H)에 도시된 이차 전지(7504)는 충전 기기와 접속할 수 있도록 외부 단자를 갖는다. 이차 전지(7504)는 잡았을 때 선단 부분이 되므로 전체의 길이가 짧고 또한 중량이 가벼운 것이 바람직하다. 본 발명의 일 형태에 따른 이차 전지는 고용량, 양호한 사이클 특성을 가지므로, 장기간에 걸쳐 장시간의 사용이 가능한 소형 또한 경량의 전자 담배(7500)를 제공할 수 있다.
다음으로, 도 19의 (A) 및 (B)에 둘로 접을 수 있는 태블릿형 단말의 일례를 나타내었다. 도 19의 (A) 및 (B)에 도시된 태블릿형 단말(9600)은 하우징(9630a), 하우징(9630b), 하우징(9630a)과 하우징(9630b)을 연결하는 가동(可動)부(9640), 표시부(9631), 표시 모드 전환 스위치(9626), 전원 스위치(9627), 절전 모드 전환 스위치(9625), 잠금부(9629), 및 조작 스위치(9628)를 갖는다. 표시부(9631)에는 가요성을 갖는 패널을 사용함으로써 더 넓은 표시부를 갖는 태블릿형 단말로 할 수 있다. 도 19의 (A)는 태블릿형 단말(9600)을 열린 상태를 도시한 것이고, 도 19의 (B)는 태블릿형 단말(9600)을 닫힌 상태를 도시한 것이다.
또한, 태블릿형 단말(9600)은 하우징(9630a) 및 하우징(9630b) 내부에 축전체(9635)를 갖는다. 축전체(9635)는 가동부(9640)를 거쳐, 하우징(9630a)과 하우징(9630b)에 걸쳐 제공되어 있다.
표시부(9631)는 일부를 터치 패널의 영역으로 할 수 있으며, 표시된 조작 키를 터치함으로써 데이터를 입력할 수 있다. 또한, 터치 패널의 키보드 표시 전환 버튼이 표시되어 있는 위치를 손가락이나 스타일러스 등으로 터치함으로써 표시부(9631)에 키보드 버튼을 표시할 수 있다.
또한, 표시 모드 전환 스위치(9626)는 세로 표시 또는 가로 표시 등 표시 방향을 전환하며, 흑백 표시나 컬러 표시의 전환 등을 선택할 수 있다. 전력 절약 모드 전환 스위치(9625)는 태블릿형 단말(9600)에 내장되는 광 센서로 검출되는 사용 시의 외광 광량에 따라 표시의 휘도를 최적인 것으로 할 수 있다. 태블릿형 단말에는 광 센서뿐만 아니라 자이로스코프, 가속도 센서 등 기울기를 검출하는 센서 등 다른 검출 장치가 내장되어도 좋다.
도 19의 (B)에 도시된 태블릿 단말은 닫은 상태이며, 하우징(9630), 태양 전지(9633), DCDC 컨버터(9636)를 포함하는 충방전 제어 회로(9634)를 갖는다. 또한, 축전체(9635)로서 본 발명의 일 형태에 따른 이차 전지를 사용한다.
또한, 태블릿형 단말(9600)은 둘로 접을 수 있기 때문에, 사용하지 않을 때는 하우징(9630a) 및 하우징(9630b)이 서로 중첩되도록 접을 수 있다. 접음으로써, 표시부(9631)를 보호할 수 있어, 태블릿형 단말(9600)의 내구성을 높일 수 있다. 또한, 본 발명의 일 형태에 따른 이차 전지를 사용한 축전체(9635)는 고용량, 양호한 사이클 특성을 가지므로, 장기간에 걸쳐 장시간의 사용이 가능한 태블릿형 단말(9600)을 제공할 수 있다.
또한, 도 19의 (A) 및 (B)에 도시된 태블릿 단말은, 상술한 것 외에도, 다양한 정보(정지 화상, 동영상, 텍스트 화상 등)를 표시하는 기능, 달력, 날짜, 또는 시각 등을 표시부에 표시하는 기능, 표시부에 표시된 정보를 터치 입력에 의하여 조작하거나 편집하는 터치 입력 기능, 다양한 소프트웨어(프로그램)에 의하여 처리를 제어하는 기능 등을 가질 수 있다.
태블릿형 단말의 표면에 장착된 태양 전지(9633)에 의하여, 전력을 터치 패널, 표시부, 또는 영상 신호 처리부 등에 공급할 수 있다. 또한, 태양 전지(9633)는, 하우징(9630)의 한쪽 면 또는 양면에 제공할 수 있고, 축전체(9635)의 충전을 효율적으로 수행하는 구성으로 할 수 있다.
또한, 도 19의 (B)에 도시된 충방전 제어 회로(9634)의 구성 및 동작에 대하여, 도 19의 (C)의 블록도를 참조하여 설명한다. 도 19의 (C)에는, 태양 전지(9633), 축전체(9635), DCDC 컨버터(9636), 컨버터(9637), 스위치(SW1) 내지 스위치(SW3), 표시부(9631)에 대하여 도시하고, 축전체(9635), DCDC 컨버터(9636), 컨버터(9637), 스위치(SW1) 내지 (SW3)가 도 19의 (B)에 도시된 충방전 제어 회로(9634)에 대응하는 부분이 된다.
먼저, 외광에 의하여 태양 전지(9633)로 발전하는 경우의 동작의 예에 대하여 설명한다. 태양 전지로 발전된 전력은 축전체(9635)를 충전하기 위한 전압이 되도록 DCDC 컨버터(9636)로 승압 또는 강압된다. 또한, 표시부(9631)의 동작에 태양 전지(9633)로부터의 전력이 사용될 때는, 스위치(SW1)를 온으로 하고, 컨버터(9637)에서 표시부(9631)에 필요한 전압으로 승압 또는 강압한다. 또한, 표시부(9631)에서의 표시를 수행하지 않을 때에는, 스위치(SW1)를 오프로 하고 (SW2)를 온으로 하여 축전체(9635)를 충전하는 구성으로 하면 좋다.
또한, 발전 수단의 일례로서, 태양 전지(9633)에 대하여 설명하였지만, 특별히 한정되지 않고, 압전 소자(피에조 소자)나 열전 변환 소자(펠티어 소자) 등 다른 발전 수단에 의하여 축전체(9635)를 충전하는 구성이어도 좋다. 예를 들어 무선(비접촉)으로 전력을 송수신하여 충전하는 무접점 전력 전송 모듈이나 다른 충전 수단을 조합하여 충전하는 구성으로 하여도 좋다.
도 20은 다른 전자 기기의 예를 도시한 것이다. 도 20에서 표시 장치(8000)는 본 발명의 일 형태에 따른 이차 전지(8004)를 사용한 전자 기기의 일례이다. 구체적으로 표시 장치(8000)는 TV 방송 수신용 표시 장치에 상당하며, 하우징(8001), 표시부(8002), 스피커부(8003), 이차 전지(8004) 등을 갖는다. 본 발명의 일 형태에 따른 이차 전지(8004)는 하우징(8001) 내부에 제공되어 있다. 표시 장치(8000)는 상용 전원으로부터 전력을 공급받을 수도 있고, 이차 전지(8004)에 축적된 전력을 이용할 수도 있다. 따라서, 정전 등으로 인하여 상용 전원으로부터 전력을 공급받을 수 없을 때에도 본 발명의 일 형태에 따른 이차 전지(8004)를 무정전 전원으로서 사용하면 표시 장치(8000)를 이용할 수 있게 된다.
표시부(8002)에는 액정 표시 장치, 유기 EL 소자 등의 발광 소자를 각 화소에 구비한 발광 장치, 전기 영동 표시 장치, DMD(Digital Micromirror Device), PDP(Plasma Display Panel), FED(Field Emission Display) 등의, 반도체 표시 장치를 사용할 수 있다.
또한, 표시 장치에는 TV 방송 수신용 외에, 퍼스널 컴퓨터용, 광고 표시용 등, 모든 정보 표시용 표시 장치가 포함된다.
도 20에 도시된 설치형 조명 장치(8100)는 본 발명의 일 형태에 따른 이차 전지(8103)를 사용한 전자 기기의 일례이다. 구체적으로는, 조명 장치(8100)는 하우징(8101), 광원(8102), 이차 전지(8103) 등을 갖는다. 도 20은 하우징(8101) 및 광원(8102)이 설치된 천장(8104) 내부에, 이차 전지(8103)가 제공되어 있는 경우를 예시한 것이지만, 이차 전지(8103)는 하우징(8101) 내부에 제공되어 있어도 좋다. 조명 장치(8100)는 상용 전원으로부터 전력을 공급받을 수도 있고, 이차 전지(8103)에 축적된 전력을 이용할 수도 있다. 따라서, 정전 등으로 인하여 상용 전원으로부터 전력을 공급받을 수 없을 때에도 본 발명의 일 형태에 따른 이차 전지(8103)를 무정전 전원으로서 사용하면 조명 장치(8100)를 이용할 수 있게 된다.
또한, 도 20에는 천장(8104)에 설치된 설치형 조명 장치(8100)를 예시하였지만, 본 발명의 일 형태에 따른 이차 전지는 천장(8104) 외에 예를 들어 측벽(8105), 바닥(8106), 창문(8107) 등에 설치되는 설치형 조명 장치에 사용될 수도 있고, 탁상형 조명 장치 등에 사용될 수도 있다.
또한, 광원(8102)에는 전력을 이용하여 인공적으로 광을 얻는 인공 광원을 사용할 수 있다. 구체적으로는, 백열 전구, 형광등 등의 방전 램프, LED나 유기 EL 소자 등의 발광 소자를, 상기 인공 광원의 일례로서 들 수 있다.
도 20에 도시된 실내기(8200) 및 실외기(8204)를 갖는 에어컨디셔너는 본 발명의 일 형태에 따른 이차 전지(8203)를 사용한 전자 기기의 일례이다. 구체적으로는 실내기(8200)는 하우징(8201), 송풍구(8202), 이차 전지(8203) 등을 갖는다. 도 20에는 이차 전지(8203)가 실내기(8200)에 제공되는 경우를 예시하였지만, 이차 전지(8203)는 실외기(8204)에 제공되어도 좋다. 또는 실내기(8200)와 실외기(8204) 양쪽 모두에 이차 전지(8203)가 제공되어 있어도 좋다. 에어컨디셔너는 상용 전원으로부터 전력을 공급받을 수도 있고, 이차 전지(8203)에 축적된 전력을 이용할 수도 있다. 특히, 실내기(8200)와 실외기(8204)의 양쪽 모두에 이차 전지(8203)가 제공되어 있는 경우, 정전 등으로 인하여 상용 전원으로부터 전력을 공급받을 수 없을 때에도 본 발명의 일 형태에 따른 이차 전지(8203)를 무정전 전원으로서 사용하면 에어컨디셔너를 이용할 수 있게 된다.
또한, 도 20에는 실내기와 실외기로 구성되는 세퍼레이트형 에어컨디셔너를 예시하였지만, 실내기의 기능과 실외기의 기능을 하나의 하우징에 갖는 일체형 에어컨디셔너에 본 발명의 일 형태에 따른 이차 전지를 사용할 수도 있다.
도 20에 도시된 전기 냉동 냉장고(8300)는 본 발명의 일 형태에 따른 이차 전지(8304)를 사용한 전자 기기의 일례이다. 구체적으로는 전기 냉동 냉장고(8300)는 하우징(8301), 냉장실용 문(8302), 냉동실용 문(8303), 이차 전지(8304) 등을 갖는다. 도 20에서는 이차 전지(8304)가 하우징(8301)의 내부에 제공되어 있다. 전기 냉동 냉장고(8300)는 상용 전원으로부터 전력을 공급받을 수도 있고, 이차 전지(8304)에 축적된 전력을 이용할 수도 있다. 따라서, 정전 등으로 인하여 상용 전원으로부터 전력을 공급받을 수 없을 때에도 본 발명의 일 형태에 따른 이차 전지(8304)를 무정전 전원으로서 사용하면 전기 냉동 냉장고(8300)를 이용할 수 있게 된다.
또한, 전자 기기가 사용되지 않는 시간대, 특히 상용 전원의 공급원이 공급할 수 있는 총전력량 중 실제로 사용되는 전력량의 비율(전력 사용률이라고 부름)이 낮은 시간대에 2차 전지에 전력을 축적해 둠으로써, 상기 시간대 외의 시간대에서 전력 사용률이 높아지는 것을 억제할 수 있다. 예를 들어, 전기 냉동 냉장고(8300)의 경우, 기온이 낮고 냉장실용 문(8302), 냉동실용 문(8303)이 개폐되지 않는 야간에 이차 전지(8304)에 전력을 축적한다. 그리고, 기온이 높아지고, 냉장실용 문(8302), 냉동실용 문(8303)의 개폐가 수행되는 낮에 있어서, 이차 전지(8304)를 보조 전원으로서 사용함으로써 낮의 전력 사용률을 낮게 억제할 수 있다.
상술한 전자 기기 외에, 본 발명의 일 형태에 따른 이차 전지는 온갖 전자 기기에 탑재할 수 있다. 본 발명의 일 형태에 의하여, 이차 전지의 사이클 특성이 양호하게 된다. 또한, 본 발명의 일 형태에 의하여 고용량의 이차 전지의로 할 수 있고, 이로써 이차 전지 자체의 소형화와 경량화가 가능하다. 그러므로, 본 발명의 일 형태인 이차 전지를 본 실시형태에서 설명한 전자 기기에 탑재함으로써 더 장수명이고 더 경량의 전자 기기로 할 수 있다. 본 실시형태는 다른 실시형태와 적절히 조합하여 실시할 수 있다.
(실시형태 5)
본 실시형태에서는 차량에 본 발명의 일 형태인 이차 전지를 탑재하는 예를 나타낸다.
이차 전지를 차량에 탑재하면 하이브리드 자동차(HEV), 전기 자동차(EV), 또는 플러그인 하이브리드 자동차(PHEV) 등, 차세대 클린 에너지 자동차를 구현할 수 있다.
도 21에서, 본 발명의 일 형태인 이차 전지를 사용한 차량을 예시하였다. 도 21의 (A)에 도시된 자동차(8400)는 주행을 위한 동력원으로서 전기 모터를 사용하는 전기 자동차이다. 또는, 주행을 위한 동력원으로서 전기 모터와 엔진을 적절히 선택하여 사용하는 것이 가능한 하이브리드 자동차이다. 본 발명의 일 형태를 사용함으로써 항속 거리가 긴 차량을 구현할 수 있다. 또한, 자동차(8400)는 이차 전지를 갖는다. 이차 전지는 차량 내의 바닥 부분에 대하여 도 5에 도시된 소형의 원통형의 이차 전지를 많이 배열하여 사용하면 된다. 또한, 도 14에 도시된 이차 전지를 복수로 조합한 전지 팩을 차량 내의 바닥 부분에 설치하여도 좋다. 이차 전지는 전기 모터(8406)를 구동시킬 뿐만 아니라 헤드라이트(8401)나 실내등(도시하지 않았음) 등의 발광 장치에 전력을 공급할 수 있다.
또한, 이차 전지에 의하여 자동차(8400)가 갖는 스피드 미터, 태코미터 등의 표시 장치에 전력을 공급할 수 있다. 또한, 이차 전지에 의하여 자동차(8400)가 갖는 내비게이션 시스템 등의 반도체 장치에 전력을 공급할 수 있다.
도 21의 (B)에 도시된 자동차(8500)는 자동차(8500)가 갖는 이차 전지에 플러그인 방식이나 비접촉 급전 방식 등으로 외부의 충전 설비로부터 전력을 공급받아 충전할 수 있다. 도 21의 (B)에 지상 설치형의 충전 장치(8021)로부터 자동차(8500)에 탑재된 이차 전지(8024)에 케이블(8022)을 통하여 충전하는 상태를 도시하였다. 충전에 대하여, 충전 방법이나 커넥터의 규격 등은 CHAdeMO(등록 상표)나 콤보 등의 소정의 방식으로 적절히 행하면 된다. 충전 장치(8021)는 상용 시설에 제공된 충전 스테이션이어도 좋고, 또한 일반 주택의 전원이어도 좋다. 예를 들어, 플러그인 기술을 이용하여 외부로부터의 전력 공급에 의하여 자동차(8500)에 탑재된 이차 전지(8024)를 충전할 수 있다. 충전은 ACDC 컨버터 등의 변환 장치를 통하여 교류 전력을 직류 전력으로 변환하여 행할 수 있다.
또한 도시하지 않았지만, 수전 장치를 차량에 탑재하여 지상의 송전 장치로부터 전력을 비접촉으로 공급하여 충전할 수도 있다. 이 비접촉 급전 방식의 경우에는 도로나 외벽에 송전 장치를 조합함으로써 정차 시뿐만 아니라 주행 시에도 충전할 수 있다. 또한 이 비접촉 급전 방식을 이용하여 차량끼리 전력의 송수신을 하여도 좋다. 또한, 차량의 외장부에 태양 전지를 제공하여, 정차 시나 주행 시에 이차 전지를 충전하여도 좋다. 이러한 비접촉의 전력의 공급에는 전자기 유도 방식이나 자계 공명 방식을 이용할 수 있다.
또한, 도 21의 (C)는 본 발명의 일 형태에 따른 이차 전지를 사용한 이륜차의 일례이다. 도 21의 (C)에 도시된 스쿠터(8600)는 이차 전지(8602), 사이드 미러(8601), 방향 지시등(8603)을 구비한다. 이차 전지(8602)는 방향 지시등(8603)에 전기를 공급할 수 있다.
또한, 도 21의 (C)에 도시된 스쿠터(8600)는 좌석 아래 수납(8604)에 이차 전지(8602)를 수납할 수 있다. 이차 전지(8602)는 좌석 아래 수납(8604)이 소형이라도 좌석 아래 수납(8604)에 수납할 수 있다. 이차 전지(8602)는 탈착 가능하고, 충전 시에는 이차 전지(8602)를 옥내에 가져가 충전하고, 주행 전에 수납하면 된다.
본 발명의 일 형태에 의하여 이차 전지의 사이클 특성이 양호하게 되어, 이차 전지의 용량을 크게 할 수 있다. 따라서, 이차 전지 자체의 소형화와 경량화가 가능하다. 이차 전지 자체의 소형화 및 경량화는 차량의 경량화에 기여하기 때문에 항속 거리를 길게 할 수 있다. 또한, 차량에 탑재된 이차 전지를 차량 이외의 것의 전력 공급원으로서도 사용할 수도 있다. 이 경우, 예를 들어 전력 수요의 피크 시에 상용 전원을 사용하는 것을 회피할 수 있다. 전력 수요의 피크 시에 상용 전원을 사용하는 것을 회피할 수 있으면 에너지 절약, 및 이산화탄소의 배출의 삭감에 기여할 수 있다. 또한, 사이클 특성이 양호하면 이차 전지를 장기에 걸쳐 사용할 수 있으므로, 코발트를 비롯한 희소 금속의 사용량을 줄일 수 있다.
본 실시형태는 다른 실시형태와 적절히 조합하여 실시할 수 있다.
(실시예 1)
본 실시예에서는 상이한 피복층을 갖는 양극 활물질을 사용한 이차 전지를 제작하고 특성을 비교한 결과를 나타낸다.
<양극 활물질의 제작>
샘플 1에서 샘플 5까지의 양극 활물질을 준비하였다. 각 샘플의 제작 방법은 이하와 같이 하였다.
≪샘플 1≫
샘플 1은 내부에 코발트산 리튬을 갖고, 표층부에 알루미늄과 마그네슘을 포함하는 피복층을 갖는 양극 활물질로 하기 위하여 마그네슘과 플루오린을 갖는 코발트산 리튬 입자에 졸겔법으로 알루미늄을 포함하는 피복층을 형성한 후, 가열을 행하여 제작하였다.
마그네슘과 플루오린을 갖는 코발트산 리튬 입자로서, 일본 화학 공업 주식 회사가 제작한 것(제품명; C-20F)을 사용하였다.
20ml의 2-프로판올에 트라이-i-프로폭시알루미늄을 0.0348g 첨가하여 용해시켰다. 이 트라이-i-프로폭시알루미늄의 2-프로판올 용액에 마그네슘과 플루오린을 갖는 코발트산 리튬 입자를 5g 첨가하였다.
이 혼합액을 자기 교반기로 4시간, 25℃, 습도 90% RH의 조건하에서 교반하였다. 이 처리에 의하여 분위기 중에 H2O와 트라이-i-프로폭시알루미늄으로 가수 분해 및 중축합 반응을 일으켜, 마그네슘과 플루오린을 갖는 코발트산 리튬 입자의 표면에 알루미늄을 포함하는 층을 형성하였다.
상술한 처리를 끝낸 혼합액을 여과하여 잔류물을 회수하였다. 여과의 필터에는 키리야마 여과지(No.4)를 사용하였다.
회수한 잔류물을 70℃에서 1시간, 진공 건조시켰다.
건조시킨 분말을 가열하였다. 가열은 800℃(승온 200℃/시간), 유지 시간 2시간, 건조 공기 분위기하에서 행하였다.
가열한 분말을 냉각하고 해쇄 처리를 행하였다. 해쇄 처리는 체질에 의하여 행하고, 체는 구멍 하나의 폭이 53μm인 것을 사용하였다.
해쇄 처리를 끝낸 입자를 샘플 1의 양극 활물질로 하였다.
≪샘플 2≫
샘플 2는 비교예로서 내부에 코발트산 리튬을 갖고, 표층부에 마그네슘을 포함하는 피복층을 갖는 양극 활물질로 하기 위하여 마그네슘과 플루오린을 갖는 코발트산 리튬 입자를 가열하여 제작하였다.
마그네슘과 플루오린을 갖는 코발트산 리튬 입자는 일본 화학 공업 주식 회사가 제작한 것(제품명; C-20F)을 사용하였다.
이 마그네슘과 플루오린을 갖는 코발트산 리튬 입자를 가열하였다. 가열은 800℃(승온 200℃/시간), 유지 시간 2시간, 산소 분위기하에서 행하였다.
가열한 분말을 냉각하고, 하나의 구멍의 폭이 53μm인 체로 체질을 한 것을 샘플 2의 양극 활물질로 하였다.
≪샘플 3≫
샘플 3은 비교예로서 마그네슘과 플루오린을 포함하는 코발트산 리튬이지만, 표층부에 마그네슘이 충분히 편석되지 않은 양극 활물질로 하기 위하여 마그네슘과 플루오린을 갖는 코발트산 리튬 입자를 가열하지 않고 그대로 사용하였다.
마그네슘과 플루오린을 갖는 코발트산 리튬 입자는 일본 화학 공업 제조(제품명; C-20F)인 것을 사용하였다.
≪샘플 4≫
샘플 4는 비교예로서 내부에 코발트산 리튬을 갖고, 표층부에 알루미늄을 포함하는 피복층을 갖는 양극 활물질로 하기 위하여 마그네슘을 갖지 않는 코발트산 리튬 입자에 졸겔법으로 알루미늄을 포함하는 피복층을 형성한 후, 가열을 행하여 제작하였다.
마그네슘을 갖지 않는 코발트산 리튬 입자로서 일본 화학 공업 주식 회사가 제조한 것(제품명; C-10N)을 사용하였다. 이것은 XPS에서 마그네슘이 검출되지 않고, 플루오린이 1atomic% 정도 검출되는 코발트산 리튬 입자이다.
이 코발트산 리튬 입자에 대하여 샘플 1과 마찬가지로 졸겔법에 의하여 알루미늄을 포함하는 피복층을 형성하고, 가열하고, 건조시키고, 체질을 하였다. 이를 샘플 4의 양극 활물질로 하였다.
≪샘플 5≫
샘플 5는 비교예로서 피복층을 갖지 않는 양극 활물질로 하기 위하여 마그네슘을 갖지 않는 코발트산 리튬 입자를 가열하지 않고 그대로 사용하였다.
마그네슘을 갖지 않는 코발트산 리튬 입자로서 일본 화학 공업 주식 회사가 제조한 것(제품명; C-10N)을 사용하였다.
샘플 1에서 샘플 5까지의 조건을 표 1에 나타내었다.
[표 1]
Figure pat00002
<사이클 특성>
상기에서 제작한 샘플 1에서 샘플 5의 양극 활물질을 사용하여 CR2032 타입(직경 20mm, 높이 3.2mm)의 코인형 이차 전지를 제작하고, 사이클 특성을 평가하였다.
양극에는 샘플 1 내지 샘플 5의 양극 활물질(LiCoO2)과, 아세틸렌 블랙(AB)과, 폴리플루오린과 바이닐리덴(PVDF)을 LiCoO2:AB:PVDF=95:2.5:2.5(중량비)로 혼합한 슬러리를 알루미늄박의 집전체에 도포한 것을 사용하였다.
대극에는 리튬 금속을 사용하였다.
전해액이 갖는 전해질에는 1mol/L의 육플루오린화 인산 리튬(LiPF6)을 사용하고, 전해액에는 에틸렌카보네이트(EC)와 다이에틸카보네이트(DEC)가 EC:DEC=3:7(체적비)로 혼합된 것에 바이닐렌카보네이트(VC)를 2중량% 첨가한 것을 사용하였다.
양극 캔 및 음극 캔에는, 스테인리스(SUS)로 형성된 것을 사용하였다.
사이클 특성 시험의 측정 온도는 25℃로 하였다. 충전은 활물질 중량당 전류 밀도 68.5mA/g의 정전류, 상한 전압 4.6V로 행하고, 그 후 전류 밀도 1.4mA/g가 될 때까지 정전압 충전을 행하였다. 방전은 활물질 중량당 전류 밀도 68.5mA/g의 정전류, 하한 전압 2.5V로 행하였다.
도 22의 (A) 및 (B)에 샘플 1 내지 샘플 5의 양극 활물질을 사용한 이차 전지의 사이클 특성의 그래프를 나타내었다. 도 22의 (A)는 4.6V 충전 시의 에너지 밀도, 도 22의 (B)는 4.6V 충전 시의 에너지 밀도 유지율(維持率)의 그래프이다. 또한, 에너지 밀도는 방전 용량과 방전 평균 전압의 곱이다. 또한, 에너지 밀도 유지율은 에너지 밀도의 피크톱을 100%로 하여 계산하였다.
도 22의 (A) 및 (B)로도 명확히 알 수 있듯이 피복층을 갖지 않는 코발트산 리튬인 샘플 5와 비교하여 알루미늄을 포함하는 피복층을 형성한 양극 활물질인 샘플 4는 비교적 양호한 사이클 특성을 나타내었다.
또한, 마그네슘과 플루오린을 갖는 코발트산 리튬 입자인 샘플 2와 샘플 3의 비교에서는 샘플 2(가열을 행하였음)가, 샘플 3(가열을 행하지 않았음)보다 사이클 특성이 크게 향상되었다. 이것은 가열에 의하여 마그네슘이 코발트산 리튬 입자의 표층부에 편석한 결과라고 생각된다.
또한, 마그네슘과 플루오린을 갖는 코발트산 리튬 입자에 알루미늄을 포함하는 피복층을 형성한 양극 활물질인 샘플 1은 매우 양호한 사이클 특성을 나타내었다. 이것은 마그네슘이 표층부에 편석한 샘플 2, 및 알루미늄을 포함하는 피복층을 형성한 샘플 4를 웃도는 특성이었다. 그러므로, 알루미늄 및 마그네슘을 갖는 피복층을 제공함으로써, 알루미늄을 갖는 피복층만, 또는 마그네슘을 갖는 피복층만을 갖는 경우보다 양호한 사이클 특성을 얻을 수 있는 것이 밝혀졌다.
(실시예 2)
본 실시예에서는 알루미늄과 마그네슘을 포함하는 피복층을 갖는 코발트산 리튬 입자에 대하여 각종 분석에 의하여 특징을 밝혔다.
<XPS>
실시예 1의 샘플 1, 샘플 2, 샘플 3에 대하여 표면으로부터 XPS 분석을 행하였다. 또한, 실시예 1의 샘플 1의, 졸겔 처리와 건조를 행한 후, 가열 전의 입자를 샘플 6으로 하고, 마찬가지로 XPS 분석을 행하였다. 이 결과를 표 2에 나타내었다. 또한, 분석 결과는 소수점 둘째 자리에서 반올림하여 나타낸 것이므로, 합계가 100%가 되지 않는 경우가 있다.
[표 2]
Figure pat00003
또한, 표 2의 결과를 사용하여 리튬, 알루미늄, 코발트, 마그네슘, 산소, 및 플루오린의 총량을 100atomic%로 하여 계산하였을 경우의 원자수비를 표 3에 나타내었다.
[표 3]
Figure pat00004
XPS 분석은 양극 활물질의 표면에서 5nm 정도를 정량적으로 분석할 수 있다. 표 2에 나타낸 바와 같이, 가열을 행한 양극 활물질인 샘플 1 및 샘플 2에서는 가열을 행하지 않은 샘플 6과 샘플 3보다 마그네슘의 원자수비가 크게 증가되어 있다. 즉, 가열을 행함으로써, 표면에서 5nm 정도의 영역에 마그네슘이 편석된 것이 밝혀졌다.
또한, 졸겔법에 의하여 알루미늄을 갖는 피복층을 형성한 샘플 1과 샘플 6에서는 가열을 행한 샘플 1이, 가열을 행하지 않은 샘플 6보다 더 알루미늄의 원자수비가 작았다. 그러므로, 가열을 행함으로써, 표면에서 5nm 정도의 영역에서 알루미늄이 확산된 것이 추찰된다.
그러므로, 알루미늄과 마그네슘을 포함하는 피복층을 갖는 샘플 1의 경우, 최표면에는 마그네슘이 많이 존재하고, 알루미늄은 마그네슘보다 깊은 영역에 존재하는 것이 추찰된다.
<STEM-FFT>
다음으로, 샘플 1에 대하여 STEM 관찰 및 FFT 분석을 행한 결과에 대하여 도 23 및 도 24에 나타내었다.
도 23의 (A) 내지 (C)는 샘플 1의 양극 활물질의 표면 근방 단면의 명시야 STEM 이미지이다. 도 23의 (C)에서는 양극 활물질 입자의 표층부에 마그네슘으로 추측되는, 다른 것보다 밝게 관찰되는 원소가 존재하는 모습을 알 수 있다. 또한, 도 23의 (C)에서 관찰되는 범위에서는 내부에서 표면까지 결정의 배향이 실질적으로 일치되는 모습도 관찰되었다.
도 24의 (A-1)은 샘플 1의 양극 활물질의 표면 근방 단면의 HAADF-STEM 이미지이다. 도 24의 (A-1)의 FFT1에서 나타낸 영역의 FFT(고속 푸리에 변환) 이미지가 도 24의 (A-2)이다. 도 24의 (A-2)의 FFT 이미지의 휘점의 일부를 도 24의 (A-3)에 나타낸 바와 같이 A, B, C, O라고 부르기로 한다.
FFT1로 나타낸 영역의 FFT 이미지의 휘점에 대하여, 실측값은 각각, OA는 d=0.25nm, OB는 d=0.16nm, OC는 d=0.26nm이다. 또한, ∠AOB=37°, ∠BOC=36°, ∠AOC=73°이다.
이것은, ICDD(International Centre for Diffraction Data) 데이터 베이스에서의 산화 마그네슘(MgO)의 데이터(ICDD45-0945), 및 산화 코발트(CoO)의 데이터(ICDD48-1719)로부터 산출되는 거리 및 각도와 가깝다.
산화 마그네슘의 경우, OA(1-11)는 d=0.24nm, OB(0-22)는 d=0.15nm, OC(-1-11)는 d=0.24nm, ∠AOB=35°, ∠BOC=35°, ∠AOC=71°이다.
또한, 산화 코발트의 경우, OA(1-11)는 d=0.25nm, OB(0-22)는 d=0.15nm, OC(-1-11)는 d=0.25nm, ∠AOB=35°, ∠BOC=35°, ∠AOC=71°이다.
그러므로, FFT1로 나타낸 양극 활물질 입자의 표면에서 2nm 정도의 영역은 암염형 결정 구조를 갖는 영역이고, [011] 입사의 이미지인 것이 밝혀졌다. 또한, FFT1로 나타낸 영역은 산화 마그네슘 또는 산화 코발트를 갖거나, 산화 마그네슘과 산화 코발트의 양쪽을 갖는 것이 추찰되었다.
도 24의 (B-1)은 도 24의 (A-1)과 같은 양극 활물질의 표면 근방 단면의 HAADF-STEM 이미지이고, 도 24의 (B-1) 중에 FFT2로 나타낸 영역의 FFT 이미지가 도 24의 (B-2)이다. 도 24의 (B-2)의 FFT 이미지의 휘점의 일부를 도 24의 (B-3)에 나타낸 바와 같이 A, B, C, O라고 부르기로 한다.
FFT2로 나타낸 영역의 FFT 이미지의 휘점에서, 실측값은 각각, OA는 d=0.51nm, OB는 d=0.21nm, OC는 d=0.25nm이다. 또한, ∠AOB=55°, ∠BOC=24°, ∠AOC=79°이다.
이것은 ICDD 데이터 베이스에서의 코발트산 리튬(LiCoO2)의 데이터(ICDD50-0653), 및 LiAl0 . 2Co0 . 8O2의 데이터(ICDD89-0912)로부터 산출되는 거리 및 각도와 가깝다.
코발트산 리튬(LiCoO2)의 경우, OA(003)는 d=0.47nm, OB(104)는 d=0.20nm, OC(101)는 d=0.24nm, ∠AOB=55°, ∠BOC=25°, ∠AOC=80°이다.
LiAl0 . 2Co0 . 8O2의 경우, OA(003)는 d=0.47nm, OB(104)는 d=0.20nm, OC(101)는 d=0.24nm, ∠AOB=55°, ∠BOC=25°, ∠AOC=80°이다.
그러므로, FFT2로 나타낸 양극 활물질의 표면에서 3nm보다 깊고 6nm 정도까지의 영역은 코발트산 리튬 및 LiAl0 . 2Co0 . 8O2와 같은 층상 암염형의 결정 구조를 갖는 영역이고, [0-10] 입사의 이미지인 것이 밝혀졌다.
<STEM-EDX(원소 매핑, 선 분석)>
다음에, 샘플 1에 대하여 EDX 분석을 행한 결과에 대하여, 도 25 및 도 26에 도시하였다.
도 25는 샘플 1의 양극 활물질의 표면 근방의 단면의 STEM-EDX 분석 결과이다. 도 25의 (A-1)은 HAADF-STEM 이미지, 도 25의 (A-2)는 코발트의 원소 매핑, 도 25의 (B-1)은 알루미늄의 원소 매핑, 도 25의 (B-2)는 마그네슘의 원소 매핑, 도 25의 (C)는 플루오린의 원소 매핑이다.
도 25의 (B-1)에 도시된 바와 같이, 알루미늄이 양극 활물질의 표면에서 10nm 정도의 영역에 분포되는 모습이 관찰되었다. 또한, 도 25의 (B-2)에 도시된 바와 같이, 마그네슘이 양극 활물질의 표면에서 3nm 정도의 영역에 편석되는 모습이 관찰되었다. 또한, 도 25의 (C)에 도시된 바와 같이 표면 근방에 풀루오린은 거의 검출되지 않았지만, 이것은 EDX에서 경원소인 풀루오린이 검출되기 어렵기 때문이라고 생각된다.
도 26은 샘플 1의 양극 활물질의 표면 근방의 단면의 STEM-EDX선 분석의 결과이다. 도 26의 (A)는 HAADF-STEM 이미지이다. 도 26의 (A)의 백선으로 둘러싼 영역에 대하여, 하얀 화살표의 방향으로 EDX선 분석을 행한 결과를 나타낸 그래프가, 도 26의 (B)이다. 도 26의 (B)의 일부를 확대한 그래프가 도 26의 (C)이다. 또한 도 26에 있어서도 플루오린은 거의 검출되지 않았다.
도 26의 (C)에 도시된 바와 같이, 샘플 1의 양극 활물질의 표면 근방에는 마그네슘과 알루미늄이 존재하고, 마그네슘의 분포가, 알루미늄의 분포보다 표면에 더 가까운 것이 밝혀졌다. 또한, 마그네슘의 피크가, 알루미늄의 피크보다 표면에 더 가까운 것이 밝혀졌다. 또한, 코발트와 산소는 양극 활물질 입자의 최표면으로부터 존재하는 것이 추측되었다.
상기의 XPS 및 EDX 분석의 결과로부터, 샘플 1은 본 발명의 일 형태인, 제 1 영역으로서 코발트산 리튬을 갖고, 제 2 영역으로서 리튬과, 알루미늄과, 코발트와, 산소를 갖고, 제 3 영역으로서 마그네슘과, 산소를 갖는 양극 활물질인 것이 확인되었다. 또한, 샘플 1에서는 제 2 영역의 일부와 제 3 영역의 일부가 중첩되어 있는 것이 밝혀졌다.
또한, 도 26의 (B)의 그래프에서는 산소의 검출량은 거리 11nm 이상으로 안정되어 있다. 거기서, 이 안정된 영역의 산소의 검출량의 평균값 Oave를 산출하고, 평균값 Oave의 50%의 값, 0.5Oave에 가장 가까운 측정값을 나타낸 측정점의 거리 x를, 양극 활물질의 입자의 최표면인 것으로 추정하는 것으로 하였다.
본 실시예에 있어서, 거리 11nm 이상 40nm 이하의 범위의 산소의 검출량의 평균 Oave은 777였다. 777의 50%인 388.5에 가장 가까운 측정값을 나타낸 측정점의 x축은 거리 9.5nm였다. 거기서, 본 실시예에서는 도 26의 (B)의 그래프에서의 거리 9.5nm가, 양극 활물질의 입자의 최표면으로 추정하는 것으로 하였다.
양극 활물질 입자의 최표면이 거리 9.5nm로 하면, 마그네슘의 피크는 최표면과 일치하고, 알루미늄의 피크는 최표면에서 2.3nm였다.
이상의 실시예 1 및 실시예 2의 결과로부터, 본 발명의 일 형태인, 제 1 영역(101)으로서 코발트산 리튬을 갖고, 제 2 영역(102)으로서 리튬과, 알루미늄과, 코발트와, 산소를 갖고, 제 3 영역(103)으로서 마그네슘과, 산소를 갖는 양극 활물질은 이차 전지에 사용할 때에 매우 양호한 사이클 특성을 얻을 수 있는 것이 밝혀졌다.
100: 양극 활물질
101: 제 1 영역
102: 제 2 영역
103: 제 3 영역
104: 제 4 영역
200: 활물질층
201: 그래핀 화합물
211a: 양극
211b: 음극
212a: 리드
212b: 리드
214: 세퍼레이터
215a: 접합부
215b: 접합부
217: 고정 부재
250: 전지
251: 외장체
261: 접음부
262: 실부
263: 실부
271: 능선
272: 곡선
273: 공간
300: 이차 전지
301: 양극 캔
302: 음극 캔
303: 개스킷
304: 양극
305: 양극 집전체
306: 양극 활물질층
307: 음극
308: 음극 집전체
309: 음극 활물질층
310: 세퍼레이터
500: 이차 전지
501: 양극 집전체
502: 양극 활물질층
503: 양극
504: 음극 집전체
505: 음극 활물질층
506: 음극
507: 세퍼레이터
508: 전해액
509: 외장체
510: 양극 리드 전극
511: 음극 리드 전극
600: 이차 전지
601: 양극 캡
602: 전지캔
603: 양극 단자
604: 양극
605: 세퍼레이터
606: 음극
607: 음극 단자
608: 절연판
609: 절연판
611: PTC 소자
612: 안전 밸브 기구
900: 회로 기판
910: 라벨
911: 단자
912: 회로
913: 이차 전지
914: 안테나
915: 안테나
916: 층
917: 층
918: 안테나
919: 단자
920: 표시 장치
921: 센서
922: 단자
930: 하우징
930a: 하우징
930b: 하우징
931: 음극
932: 양극
933: 세퍼레이터
950: 권회체
951: 단자
952: 단자
980: 이차 전지
981: 필름
982: 필름
993: 권회체
994: 음극
995: 양극
996: 세퍼레이터
997: 리드 전극
998: 리드 전극
7100: 휴대 표시 장치
7101: 하우징
7102: 표시부
7103: 조작 버튼
7104: 이차 전지
7200: 휴대 정보 단말
7201: 하우징
7202: 표시부
7203: 밴드
7204: 버클
7205: 조작 버튼
7206: 입출력 단자
7207: 아이콘
7300: 표시 장치
7304: 표시부
7400: 휴대 전화기
7401: 하우징
7402: 표시부
7403: 조작 버튼
7404: 외부 접속 포트
7405: 스피커
7406: 마이크로폰
7407: 이차 전지
7408: 리드 전극
7409: 집전체
7500: 전자 담배
7501: 애토마이저
7502: 카트리지
7504: 이차 전지
8000: 표시 장치
8001: 하우징
8002: 표시부
8003: 스피커부
8004: 이차 전지
8021: 충전 장치
8022: 케이블
8024: 이차 전지
8100: 조명 장치
8101: 하우징
8102: 광원
8103: 이차 전지
8104: 천장
8105: 측벽
8106: 바닥
8107: 창문
8200: 실내기
8201: 하우징
8202: 송풍구
8203: 이차 전지
8204: 실외기
8300: 전기 냉동 냉장고
8301: 하우징
8302: 냉장실용 문
8303: 냉동실용 문
8304: 이차 전지
8400: 자동차
8401: 헤드라이트
8406: 전기 모터
8500: 자동차
8600: 스쿠터
8601: 사이드 미러
8602: 이차 전지
8603: 방향 지지등
8604: 좌석 아래 수납
9600: 태블릿형 단말
9625: 스위치
9626: 스위치
9627: 전원 스위치
9628: 조작 스위치
9629: 잠금부
9630: 하우징
9630a: 하우징
9630b: 하우징
9631: 표시부
9633: 태양 전지
9634: 충방전 제어 회로
9635: 축전체
9636: DCDC 컨버터
9637: 컨버터
9640: 가동부

Claims (43)

  1. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 전이 금속을 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  2. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 2 영역은 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  3. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 2 영역은 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  4. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 전이 금속을 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄과 전이 금속을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  5. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄과 전이 금속을 포함하고,
    상기 제 2 영역은 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  6. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄과 전이 금속을 포함하고,
    상기 제 2 영역은 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  7. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 코발트를 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  8. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 2 영역은 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  9. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 2 영역은 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  10. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 코발트를 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄과 코발트를 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  11. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄과 코발트를 포함하고,
    상기 제 2 영역은 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  12. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄과 코발트를 포함하고,
    상기 제 2 영역은 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  13. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자와, 도전조제 또는 바인더를 포함하는 제 3 영역을 포함하는 양극 활물질층이고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 2 영역은 상기 제 1 영역과 상기 제 3 영역 사이에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  14. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자와, 도전조제 또는 바인더를 포함하는 제 3 영역을 포함하는 양극 활물질층이고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄과 전이 금속을 포함하고,
    상기 제 2 영역은 상기 제 1 영역과 상기 제 3 영역 사이에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  15. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자와, 도전조제 또는 바인더를 포함하는 제 3 영역을 포함하는 양극 활물질층이고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 2 영역은 상기 제 1 영역과 상기 제 3 영역 사이에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  16. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자와, 도전조제 또는 바인더를 포함하는 제 3 영역을 포함하는 양극 활물질층이고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄과 코발트를 포함하고,
    상기 제 2 영역은 상기 제 1 영역과 상기 제 3 영역 사이에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  17. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 전이 금속을 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄을 포함하는 영역 및 플루오린을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  18. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 3 영역은 플루오린을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  19. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 3 영역은 플루오린을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  20. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 전이 금속을 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄과 전이 금속을 포함하는 영역, 및 플루오린을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  21. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄과 전이 금속을 포함하고,
    상기 제 3 영역은 플루오린을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  22. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄과 전이 금속을 포함하고,
    상기 제 3 영역은 플루오린을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  23. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 코발트를 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄과 코발트를 포함하는 영역, 및 플루오린을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  24. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄과 코발트를 포함하고,
    상기 제 3 영역은 플루오린을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  25. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄과 코발트를 포함하고,
    상기 제 3 영역은 플루오린을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  26. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 전이 금속을 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄을 포함하는 영역, 및 플루오린과 마그네슘을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  27. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 3 영역은 플루오린과 마그네슘을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  28. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 3 영역은 플루오린과 마그네슘을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  29. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 전이 금속을 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄과 전이 금속을 포함하는 영역, 및 플루오린과 마그네슘을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  30. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄과 전이 금속을 포함하고,
    상기 제 3 영역은 플루오린과 마그네슘을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  31. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속을 포함하고,
    상기 제 2 영역은 알루미늄과 전이 금속을 포함하고,
    상기 제 3 영역은 플루오린과 마그네슘을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  32. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 코발트를 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄을 포함하는 영역, 및 플루오린과 마그네슘을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  33. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 3 영역은 플루오린과 마그네슘을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  34. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄을 포함하고,
    상기 제 3 영역은 플루오린과 마그네슘을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  35. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 코발트를 포함하는 양극 활물질 입자를 포함하고,
    상기 양극 활물질 입자의 표면 근방에, 알루미늄과 코발트를 포함하는 영역, 및 플루오린과 마그네슘을 포함하는 영역을 포함하고,
    상기 알루미늄을 포함하는 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  36. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄과 코발트를 포함하고,
    상기 제 3 영역은 플루오린과 마그네슘을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 양극 활물질 입자의 표면 근방에 위치하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  37. 리튬 이온 2차 전지를 실장하는 전자 기기에 있어서,
    양극, 음극, 및 전해액을 포함하고,
    상기 양극은 제 1 영역 내지 제 3 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트를 포함하고,
    상기 제 2 영역은 알루미늄과 코발트를 포함하고,
    상기 제 3 영역은 플루오린과 마그네슘을 포함하고,
    상기 제 2 영역 및 상기 제 3 영역은 각각, 상기 제 1 영역 중 적어도 일부를 피복하고,
    상기 제 2 영역에서, 상기 알루미늄은 농도 구배를 갖는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  38. 제 26 항 내지 제 31 항 중 어느 한 항에 있어서,
    X선 광전자 분광으로 측정되는 알루미늄 농도, 마그네슘 농도, 및 플루오린 농도가 각각, 0.1atomic% 이상 10atomic% 이하, 5atomic% 이상 20atomic% 이하, 3.5atomic% 이상 14atomic% 이하인(단, 상기 X선 광전자 분광은 상기 양극 활물질 입자의 표면으로부터 행하고, 또한, 리튬, 알루미늄, 전이 금속, 마그네슘, 산소, 및 플루오린의 총량은 100atomic%로 함), 리튬 이온 2차 전지를 실장하는 전자 기기.
  39. 제 32 항 내지 제 37 항 중 어느 한 항에 있어서,
    X선 광전자 분광으로 측정되는 알루미늄 농도, 마그네슘 농도, 및 플루오린 농도가 각각, 0.1atomic% 이상 10atomic% 이하, 5atomic% 이상 20atomic% 이하, 3.5atomic% 이상 14atomic% 이하인(단, 상기 X선 광전자 분광은 상기 양극 활물질 입자의 표면으로부터 행하고, 또한, 리튬, 알루미늄, 코발트, 마그네슘, 산소, 및 플루오린의 총량은 100atomic%로 함), 리튬 이온 2차 전지를 실장하는 전자 기기.
  40. 제 26 항 내지 제 37 항 중 어느 한 항에 있어서,
    상기 플루오린의 분포는 상기 마그네슘의 분포와 중첩되는 영역을 포함하는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  41. 제 26 항 내지 제 37 항 중 어느 한 항에 있어서,
    상기 마그네슘의 농도의 피크는 상기 양극 활물질 입자의 표면으로부터 중심을 향한 깊이 3nm까지 존재하는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  42. 제 1 항 내지 제 3 항, 제 5 항, 제 6 항, 제 8 항, 제 9 항, 제 11 항 내지 제 16 항, 제 18 항, 제 19 항, 제 21 항, 제 22 항, 제 24 항, 제 25 항, 제 27 항, 제 28 항, 제 30 항, 제 31 항, 제 33 항, 제 34 항, 제 36 항, 및 제 37 항 중 어느 한 항에 있어서,
    상기 제 2 영역은 상기 양극 활물질 입자의 표면으로부터 깊이 방향으로 30nm까지 존재하는, 리튬 이온 2차 전지를 실장하는 전자 기기.
  43. 제 1 항 내지 제 3 항, 제 5 항, 제 6 항, 제 8 항, 제 9 항, 제 11 항 내지 제 16 항, 제 18 항, 제 19 항, 제 21 항, 제 22 항, 제 24 항, 제 25 항, 제 27 항, 제 28 항, 제 30 항, 제 31 항, 제 33 항, 제 34 항, 제 36 항, 및 제 37 항 중 어느 한 항에 있어서,
    상기 제 3 영역은 상기 양극 활물질 입자의 표면으로부터 깊이 방향으로 0.5nm 이상 50nm 이하에 존재하는, 리튬 이온 2차 전지를 실장하는 전자 기기.
KR1020190168722A 2016-11-18 2019-12-17 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지 KR102277636B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2016-225046 2016-11-18
JP2016225046 2016-11-18
KR1020170146297A KR102540530B1 (ko) 2016-11-18 2017-11-03 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170146297A Division KR102540530B1 (ko) 2016-11-18 2017-11-03 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지

Publications (2)

Publication Number Publication Date
KR20190141639A true KR20190141639A (ko) 2019-12-24
KR102277636B1 KR102277636B1 (ko) 2021-07-14

Family

ID=62147269

Family Applications (12)

Application Number Title Priority Date Filing Date
KR1020170146297A KR102540530B1 (ko) 2016-11-18 2017-11-03 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020190168721A KR102319780B1 (ko) 2016-11-18 2019-12-17 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020190168723A KR102319774B1 (ko) 2016-11-18 2019-12-17 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020190168724A KR102331689B1 (ko) 2016-11-18 2019-12-17 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020190168722A KR102277636B1 (ko) 2016-11-18 2019-12-17 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020200060983A KR102320462B1 (ko) 2016-11-18 2020-05-21 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020200074946A KR102637323B1 (ko) 2016-11-18 2020-06-19 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020200098383A KR102321752B1 (ko) 2016-11-18 2020-08-06 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020220029441A KR102557406B1 (ko) 2016-11-18 2022-03-08 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020220029455A KR102537139B1 (ko) 2016-11-18 2022-03-08 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020230070274A KR20230082602A (ko) 2016-11-18 2023-05-31 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020230070294A KR102696098B1 (ko) 2016-11-18 2023-05-31 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지

Family Applications Before (4)

Application Number Title Priority Date Filing Date
KR1020170146297A KR102540530B1 (ko) 2016-11-18 2017-11-03 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020190168721A KR102319780B1 (ko) 2016-11-18 2019-12-17 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020190168723A KR102319774B1 (ko) 2016-11-18 2019-12-17 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020190168724A KR102331689B1 (ko) 2016-11-18 2019-12-17 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지

Family Applications After (7)

Application Number Title Priority Date Filing Date
KR1020200060983A KR102320462B1 (ko) 2016-11-18 2020-05-21 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020200074946A KR102637323B1 (ko) 2016-11-18 2020-06-19 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020200098383A KR102321752B1 (ko) 2016-11-18 2020-08-06 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020220029441A KR102557406B1 (ko) 2016-11-18 2022-03-08 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020220029455A KR102537139B1 (ko) 2016-11-18 2022-03-08 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020230070274A KR20230082602A (ko) 2016-11-18 2023-05-31 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR1020230070294A KR102696098B1 (ko) 2016-11-18 2023-05-31 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지

Country Status (4)

Country Link
US (12) US20180145317A1 (ko)
JP (26) JP6993177B2 (ko)
KR (12) KR102540530B1 (ko)
CN (14) CN111697220A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121079A1 (ko) * 2021-12-21 2023-06-29 포스코홀딩스 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565296A (zh) 2016-07-05 2023-08-08 株式会社半导体能源研究所 锂离子二次电池
DE202017007622U1 (de) 2016-10-12 2023-09-13 Semiconductor Energy Laboratory Co., Ltd. Positivelektrodenaktivmaterialteilchen
US20180145317A1 (en) * 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
CN115966676A (zh) * 2016-11-24 2023-04-14 株式会社半导体能源研究所 正极活性物质粒子及正极活性物质粒子的制造方法
KR20240049630A (ko) 2017-05-12 2024-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자
CN111900358B (zh) 2017-05-19 2024-09-17 株式会社半导体能源研究所 正极活性物质以及二次电池
WO2019003025A1 (en) 2017-06-26 2019-01-03 Semiconductor Energy Laboratory Co., Ltd. METHOD FOR MANUFACTURING POSITIVE ELECTRODE ACTIVE MATERIAL, AND SECONDARY BATTERY
WO2019243952A1 (ja) * 2018-06-22 2019-12-26 株式会社半導体エネルギー研究所 正極活物質、正極、および二次電池、ならびに正極の作製方法
US20210313571A1 (en) * 2018-08-03 2021-10-07 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material and manufacturing method of positive electrode active material
JP6879282B2 (ja) * 2018-11-06 2021-06-02 トヨタ自動車株式会社 シート状電極の積層体製造装置
CN113165910A (zh) * 2018-12-13 2021-07-23 株式会社半导体能源研究所 正极活性物质的制造方法
CN110661002B (zh) 2018-12-29 2021-06-29 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110943222B (zh) * 2019-04-15 2021-01-12 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
JPWO2020245701A1 (ko) * 2019-06-07 2020-12-10
US11936036B2 (en) 2019-11-28 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, secondary battery, and electronic device
JP7331958B2 (ja) * 2020-01-31 2023-08-23 株式会社村田製作所 二次電池用正極活物質、二次電池用正極および二次電池
US20220131146A1 (en) 2020-10-26 2022-04-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US20230387394A1 (en) 2020-10-26 2023-11-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming positive electrode active material, positive electrode, secondary battery, electronic device, power storage system, and vehicle
CN112331841B (zh) 2020-11-10 2022-06-24 宁德新能源科技有限公司 正极活性材料及电化学装置
KR20230118554A (ko) 2020-12-11 2023-08-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극, 양극의 제작 방법, 이차 전지, 전자 기기, 축전 시스템, 및 차량
CN116848667A (zh) 2021-02-05 2023-10-03 株式会社半导体能源研究所 正极活性物质的制造方法、二次电池及车辆
WO2022189889A1 (ja) 2021-03-09 2022-09-15 株式会社半導体エネルギー研究所 複合酸化物の作製方法、正極、リチウムイオン二次電池、電子機器、蓄電システム、及び移動体
US20240283023A1 (en) * 2021-04-29 2024-08-22 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
CN117461166A (zh) 2021-05-21 2024-01-26 株式会社半导体能源研究所 正极活性物质的制造方法、正极、锂离子二次电池、移动体、蓄电系统及电子设备
CN113420185B (zh) * 2021-06-08 2022-04-29 东风汽车集团股份有限公司 电极帽修磨周期能耗计算系统及方法
CN115832175A (zh) * 2021-10-19 2023-03-21 宁德时代新能源科技股份有限公司 二次电池、电池模组、电池包以及用电装置
CN114275823B (zh) * 2021-12-15 2024-02-13 欣旺达惠州动力新能源有限公司 一种中空纳米球复合材料、其制备方法和锂电池
WO2023209474A1 (ja) * 2022-04-25 2023-11-02 株式会社半導体エネルギー研究所 正極活物質、リチウムイオン電池、電子機器、および車両
WO2023237967A1 (ja) * 2022-06-08 2023-12-14 株式会社半導体エネルギー研究所 二次電池
WO2023242670A1 (ja) * 2022-06-17 2023-12-21 株式会社半導体エネルギー研究所 リチウムイオン二次電池
WO2024003663A1 (ja) * 2022-06-29 2024-01-04 株式会社半導体エネルギー研究所 二次電池
CN115196683B (zh) * 2022-07-19 2023-10-20 欣旺达动力科技股份有限公司 一种正极材料、二次电池及用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236114A (ja) 1995-02-27 1996-09-13 Sanyo Electric Co Ltd リチウム二次電池
JP2002124262A (ja) 2000-10-09 2002-04-26 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
JP2002358953A (ja) 2001-04-02 2002-12-13 Samsung Sdi Co Ltd リチウム二次電池用正極及びその製造方法
KR20160092946A (ko) * 2015-01-28 2016-08-05 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20160128978A (ko) * 2014-01-29 2016-11-08 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737195B2 (en) * 2000-03-13 2004-05-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
KR100696619B1 (ko) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP4280436B2 (ja) * 2000-09-25 2009-06-17 三星エスディアイ株式会社 リチウム二次電池用正極活物質及びその製造方法
CN1263182C (zh) * 2000-09-25 2006-07-05 三星Sdi株式会社 用于可充电锂电池的正电极活性材料及其制备方法
KR100441524B1 (ko) * 2002-01-24 2004-07-23 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 슬러리 조성물
CN100517818C (zh) * 2002-09-25 2009-07-22 清美化学股份有限公司 锂二次电池用正极材料及其制造方法
TWI286849B (en) * 2003-03-25 2007-09-11 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR100758863B1 (ko) * 2004-05-14 2007-09-14 에이지씨 세이미 케미칼 가부시키가이샤 리튬 2 차 전지 정극용 리튬 함유 복합 산화물의 제조 방법
JP5080808B2 (ja) * 2004-07-20 2012-11-21 Agcセイミケミカル株式会社 リチウム二次電池用正極活物質及びその製造方法
CN100486002C (zh) * 2004-11-08 2009-05-06 深圳市比克电池有限公司 锂离子电池正极材料及其制备方法
JP4721729B2 (ja) * 2004-11-12 2011-07-13 三洋電機株式会社 非水電解質二次電池
KR100822013B1 (ko) * 2005-04-15 2008-04-14 주식회사 에너세라믹 불소화합물코팅 리튬이차전지 양극 활물질 및 그 제조방법
JP5085856B2 (ja) * 2005-07-07 2012-11-28 パナソニック株式会社 リチウムイオン二次電池
JP4586991B2 (ja) * 2006-03-24 2010-11-24 ソニー株式会社 正極活物質およびその製造方法、並びに二次電池
JP4211865B2 (ja) * 2006-12-06 2009-01-21 戸田工業株式会社 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP4359649B2 (ja) * 2007-03-29 2009-11-04 株式会社フジクラ 多結晶薄膜とその製造方法及び酸化物超電導導体
JP5172231B2 (ja) * 2007-07-20 2013-03-27 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP4715830B2 (ja) * 2007-10-19 2011-07-06 ソニー株式会社 正極活物質、正極および非水電解質二次電池
KR20090111130A (ko) * 2008-04-21 2009-10-26 엘에스엠트론 주식회사 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를이용한 리튬 이차전지
KR20110076955A (ko) * 2008-09-30 2011-07-06 엔비아 시스템즈 인코포레이티드 비용량이 높은 불소 도핑된 리튬 풍부 금속 산화물 양극 배터리 재료 및 상당하는 배터리
CN102210045B (zh) * 2008-11-10 2014-11-05 株式会社Lg化学 具有改进高电压特性的正极活性材料
CN102272985A (zh) * 2009-01-06 2011-12-07 株式会社Lg化学 正极活性材料和含所述正极活性材料的锂二次电池
JP5526636B2 (ja) * 2009-07-24 2014-06-18 ソニー株式会社 非水電解質二次電池の正極活物質、非水電解質二次電池の正極および非水電解質二次電池
JP5149927B2 (ja) * 2010-03-05 2013-02-20 株式会社日立製作所 リチウム二次電池用正極材料、リチウム二次電池及びそれを用いた二次電池モジュール
US8741484B2 (en) * 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
CN102244231A (zh) * 2010-05-14 2011-11-16 中国科学院物理研究所 对正极活性材料和/或正极进行表面包覆的方法以及正极和电池的制备方法
CN101950803A (zh) * 2010-05-17 2011-01-19 东莞新能源科技有限公司 表面包覆金属氧化物的锂离子电池正极材料的制备方法
WO2011152183A1 (en) * 2010-06-02 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device
CN102339998B (zh) * 2010-07-21 2016-06-22 北京当升材料科技股份有限公司 一种锂离子电池正极材料及其制备方法
JP5205424B2 (ja) * 2010-08-06 2013-06-05 株式会社日立製作所 リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール
US20120088151A1 (en) * 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Positive-electrode active material and power storage device
JP2012142155A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
KR101373094B1 (ko) * 2011-04-08 2014-03-12 로베르트 보쉬 게엠베하 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP5711608B2 (ja) * 2011-05-12 2015-05-07 日本碍子株式会社 リチウム二次電池及びその正極活物質粒子
KR101584880B1 (ko) * 2011-05-31 2016-01-13 도요타지도샤가부시키가이샤 리튬 이차 전지
CN105753071B (zh) * 2011-06-17 2017-10-24 尤米科尔公司 用核心材料的元素和一种或多种金属氧化物的混合物涂覆的锂金属氧化物粒子
US10044035B2 (en) * 2011-06-17 2018-08-07 Umicore Lithium cobalt oxide based compounds with a cubic secondary phase
JP6070551B2 (ja) * 2011-06-24 2017-02-01 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池の製造方法
JPWO2013018692A1 (ja) * 2011-07-29 2015-03-05 三洋電機株式会社 非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池
CN102779976B (zh) * 2011-10-10 2015-05-20 北大先行泰安科技产业有限公司 一种钴酸锂基锂离子电池正极材料的制备方法
KR101669111B1 (ko) * 2011-10-11 2016-10-26 삼성에스디아이 주식회사 리튬 이차 전지용 전극 활물질, 그 제조방법, 이를 포함한 리튬 이차 전지용 전극 및 이를 이용한 리튬 이차 전지
CN102447107A (zh) * 2011-10-17 2012-05-09 江苏科捷锂电池有限公司 高密度锂离子电池正极材料钴酸锂及其制备方法
JP2013087040A (ja) * 2011-10-21 2013-05-13 Toyota Motor Corp リチウム複合酸化物とその製造方法、及びリチウムイオン二次電池
CN102569775B (zh) * 2011-12-23 2017-01-25 东莞新能源科技有限公司 锂离子二次电池及其正极活性材料
CN102637866B (zh) * 2012-04-25 2014-04-30 中南大学 一种具有浓度梯度的锂离子电池正极材料的制备方法
KR101540673B1 (ko) * 2012-08-03 2015-07-30 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN103633312A (zh) * 2012-08-24 2014-03-12 中国科学院上海微系统与信息技术研究所 经表面改性的锂离子电池正极材料及方法
JP6207923B2 (ja) * 2012-08-27 2017-10-04 株式会社半導体エネルギー研究所 二次電池用正極の製造方法
KR101400593B1 (ko) * 2012-12-06 2014-05-27 삼성정밀화학 주식회사 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN104919631B (zh) * 2012-12-14 2019-08-02 尤米科尔公司 涂覆有内芯材料元素与一种或多种金属氧化物的混合物的锂金属氧化物颗粒
CN103022502A (zh) * 2012-12-19 2013-04-03 天津巴莫科技股份有限公司 锂离子电池正极材料的复合包覆方法
US9812745B2 (en) * 2012-12-28 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP6103034B2 (ja) * 2013-02-28 2017-03-29 三洋電機株式会社 非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池
JP6288941B2 (ja) * 2013-05-13 2018-03-07 日産自動車株式会社 固溶体活物質を含む正極活物質、該正極活物質を含む正極、および該正極を用いた非水電解質二次電池
EP2897201B1 (en) * 2013-06-18 2019-05-15 LG Chem, Ltd. Manufacturing method of a cathode active material for a lithium secondary battery
JP5643996B1 (ja) * 2013-08-22 2014-12-24 株式会社豊田自動織機 正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池
WO2015025844A1 (ja) * 2013-08-23 2015-02-26 日本電気株式会社 リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池
CN103456946B (zh) * 2013-09-12 2017-07-11 湖南立方新能源科技有限责任公司 锂离子电池正极材料
CN103441255B (zh) * 2013-09-16 2017-02-01 宁德新能源科技有限公司 锂离子电池正极材料及其制备方法
EP2879210B1 (en) 2013-09-30 2020-01-15 LG Chem, Ltd. Cathode active material coating solution for secondary battery and method for preparing same
JP6207329B2 (ja) * 2013-10-01 2017-10-04 日立マクセル株式会社 非水二次電池用正極材料及びその製造方法、並びに該非水二次電池用正極材料を用いた非水二次電池用正極合剤層、非水二次電池用正極及び非水二次電池
CN103490060A (zh) * 2013-10-11 2014-01-01 宁德新能源科技有限公司 锂镍钴锰正极材料及其制备方法
US20160285086A1 (en) * 2013-11-08 2016-09-29 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method of manufacturing an electrode material, electrode material and vehicle comprising a battery including such an electrode material
CN103606674B (zh) * 2013-11-21 2015-12-02 北大先行科技产业有限公司 一种表面改性处理的钴酸锂材料及其制备方法
WO2015079372A1 (en) * 2013-11-29 2015-06-04 Semiconductor Energy Laboratory Co., Ltd. Lithium-manganese composite oxide and secondary battery
WO2015083901A1 (ko) * 2013-12-02 2015-06-11 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN105917500B (zh) * 2014-01-27 2021-06-01 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极和锂二次电池
CN103794776B (zh) * 2014-02-13 2016-03-16 湖南美特新材料科技有限公司 一种高电压、高压实锂离子电池复合正极材料及制备方法
CN106104869B (zh) * 2014-03-11 2019-01-22 三洋电机株式会社 非水电解质二次电池用正极活性物质以及非水电解质二次电池用正极
CN104134779A (zh) * 2014-03-27 2014-11-05 合肥国轩高科动力能源股份公司 一种高电压锂离子电池正极极片及其制备方法
EP3375754B1 (en) * 2014-04-14 2024-10-09 Imertech Sas Amorphous carbon coating of carbonaceous particles from dispersions including amphiphilic organic compounds
JP6172529B2 (ja) * 2014-07-22 2017-08-02 トヨタ自動車株式会社 リチウムイオン二次電池用正極活物質およびその利用
JP2016033902A (ja) * 2014-07-31 2016-03-10 ソニー株式会社 正極活物質、正極および電池
KR20160020627A (ko) * 2014-08-13 2016-02-24 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질
JP6428109B2 (ja) * 2014-09-30 2018-11-28 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造に用いられる分散液及びそれらの製造方法
CN104332627A (zh) * 2014-10-11 2015-02-04 柳州豪祥特科技有限公司 一种包覆改性锰酸锂的制备方法
US10937999B2 (en) * 2014-11-28 2021-03-02 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and manufacturing method of the same
JP6909553B2 (ja) * 2015-01-30 2021-07-28 住友金属鉱山株式会社 被膜形成剤とその製造方法及び非水系電解質二次電池用正極活物質とその製造方法
CN104701534A (zh) * 2015-03-31 2015-06-10 南通瑞翔新材料有限公司 高能量密度的镍钴基锂离子正极材料及其制备方法
KR101670664B1 (ko) * 2015-05-04 2016-10-31 한국과학기술연구원 불소가 도핑된 스피넬 구조의 리튬금속망간산화물이 코팅된 양극 활물질, 이를 포함하는 리튬 이차전지 및 이의 제조방법
JP6707568B2 (ja) * 2015-07-02 2020-06-10 ユミコア コバルト系リチウム金属酸化物カソード材料
JP6604080B2 (ja) * 2015-08-04 2019-11-13 日立化成株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料及びリチウムイオン二次電池
CN106450270B (zh) * 2015-08-13 2020-08-11 中国科学院物理研究所 锂离子二次电池的正极活性材料及其制备方法和应用
CN105070907B (zh) * 2015-08-31 2018-06-05 宁波容百新能源科技股份有限公司 一种高镍正极材料及其制备方法和锂离子电池
US20170077496A1 (en) * 2015-09-11 2017-03-16 Fu Jen Catholic University Metal gradient-doped cathode material for lithium batteries and its production method
KR102154909B1 (ko) * 2015-09-16 2020-09-11 유미코아 고전압 애플리캐이션을 위한 캐소드 물질 및 전해질 첨가제를 함유하는 리튬 배터리
CN105304936B (zh) * 2015-12-10 2018-05-15 微宏动力系统(湖州)有限公司 一种锂离子二次电池
KR102565007B1 (ko) * 2016-03-11 2023-08-08 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
TWI633692B (zh) * 2016-03-31 2018-08-21 烏明克公司 供汽車應用的鋰離子電池組
US11158853B2 (en) * 2016-04-27 2021-10-26 Camx Power Llc Nanocrystals of polycrystalline layered lithium nickel metal oxides
CN116565296A (zh) * 2016-07-05 2023-08-08 株式会社半导体能源研究所 锂离子二次电池
CN106099098B (zh) * 2016-07-07 2020-06-16 电子科技大学 一种锂离子电池高电压正极材料LiδCo1-xMgxO2@AlF3及其制备方法
DE202017007622U1 (de) * 2016-10-12 2023-09-13 Semiconductor Energy Laboratory Co., Ltd. Positivelektrodenaktivmaterialteilchen
US20180145317A1 (en) * 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
CN115966676A (zh) * 2016-11-24 2023-04-14 株式会社半导体能源研究所 正极活性物质粒子及正极活性物质粒子的制造方法
US20180183046A1 (en) * 2016-12-28 2018-06-28 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
JP7092752B2 (ja) * 2017-05-03 2022-06-28 株式会社半導体エネルギー研究所 正極活物質粒子の作製方法
KR20240049630A (ko) * 2017-05-12 2024-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자
JP6847342B2 (ja) * 2017-08-09 2021-03-24 株式会社サンセイアールアンドディ 遊技機
EP3776695B1 (en) * 2018-03-28 2023-08-02 Umicore Lithium transition metal composite oxide as a positive electrode active material for rechargeable lithium secondary batteries
WO2019211366A1 (en) * 2018-05-04 2019-11-07 Umicore A lithium cobalt oxide secondary battery comprising a fluorinated electrolyte and a positive electrode material for high voltage applications
CN113381000B (zh) * 2018-05-18 2023-03-24 宁德新能源科技有限公司 一种正极材料及锂离子电池
KR20200046749A (ko) * 2018-10-25 2020-05-07 삼성전자주식회사 복합양극활물질, 이를 포함한 양극, 리튬전지 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236114A (ja) 1995-02-27 1996-09-13 Sanyo Electric Co Ltd リチウム二次電池
JP2002124262A (ja) 2000-10-09 2002-04-26 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
JP2002358953A (ja) 2001-04-02 2002-12-13 Samsung Sdi Co Ltd リチウム二次電池用正極及びその製造方法
KR20160128978A (ko) * 2014-01-29 2016-11-08 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20160092946A (ko) * 2015-01-28 2016-08-05 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121079A1 (ko) * 2021-12-21 2023-06-29 포스코홀딩스 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전

Also Published As

Publication number Publication date
CN110993920B (zh) 2022-07-26
KR20180056367A (ko) 2018-05-28
CN110943209A (zh) 2020-03-31
KR20230080388A (ko) 2023-06-07
JP7291261B2 (ja) 2023-06-14
JP7291308B2 (ja) 2023-06-14
JP2020126850A (ja) 2020-08-20
KR20200058373A (ko) 2020-05-27
JP7393116B2 (ja) 2023-12-06
JP2020129565A (ja) 2020-08-27
KR20190141640A (ko) 2019-12-24
CN117038935A (zh) 2023-11-10
CN114583249A (zh) 2022-06-03
JP7369223B2 (ja) 2023-10-25
KR20200096475A (ko) 2020-08-12
KR102319774B1 (ko) 2021-10-29
JP2023078255A (ja) 2023-06-06
JP7345698B2 (ja) 2023-09-15
JP7254434B2 (ja) 2023-04-10
KR20220035359A (ko) 2022-03-22
JP2020126849A (ja) 2020-08-20
US20200373569A1 (en) 2020-11-26
JP6736242B2 (ja) 2020-08-05
JP2022078209A (ja) 2022-05-24
JP2020064862A (ja) 2020-04-23
JP2020031072A (ja) 2020-02-27
JP6916262B2 (ja) 2021-08-11
JP7230087B2 (ja) 2023-02-28
US20220199989A1 (en) 2022-06-23
JP2021097051A (ja) 2021-06-24
JP2023078257A (ja) 2023-06-06
CN110970610A (zh) 2020-04-07
KR102696098B1 (ko) 2024-08-16
US20200373568A1 (en) 2020-11-26
KR20190141641A (ko) 2019-12-24
JP2020047596A (ja) 2020-03-26
US20230307622A1 (en) 2023-09-28
CN110943209B (zh) 2021-11-19
JP2023052768A (ja) 2023-04-12
US20200328413A1 (en) 2020-10-15
US20200373567A1 (en) 2020-11-26
CN117810413A (zh) 2024-04-02
KR102277636B1 (ko) 2021-07-14
US20200313177A1 (en) 2020-10-01
JP2020095974A (ja) 2020-06-18
JP7487371B2 (ja) 2024-05-20
JP2020202184A (ja) 2020-12-17
CN111933909A (zh) 2020-11-13
US20180145317A1 (en) 2018-05-24
JP2020115460A (ja) 2020-07-30
KR102540530B1 (ko) 2023-06-05
CN111697220A (zh) 2020-09-22
JP6675817B2 (ja) 2020-04-08
US20200313178A1 (en) 2020-10-01
JP2020115461A (ja) 2020-07-30
CN111916714A (zh) 2020-11-10
JP6736240B2 (ja) 2020-08-05
JP2023078256A (ja) 2023-06-06
KR102637323B1 (ko) 2024-02-15
CN111933909B (zh) 2022-04-15
KR102321752B1 (ko) 2021-11-03
US20220199984A1 (en) 2022-06-23
KR20230082602A (ko) 2023-06-08
CN108075114A (zh) 2018-05-25
JP6736241B2 (ja) 2020-08-05
CN110993920A (zh) 2020-04-10
JP7246461B2 (ja) 2023-03-27
CN114628656A (zh) 2022-06-14
KR102319780B1 (ko) 2021-10-29
JP2018088400A (ja) 2018-06-07
KR20220036926A (ko) 2022-03-23
JP2023096106A (ja) 2023-07-06
JP6675816B1 (ja) 2020-04-08
CN110970610B (zh) 2023-04-07
JP2023052771A (ja) 2023-04-12
JP2022046514A (ja) 2022-03-23
KR20190141638A (ko) 2019-12-24
JP6993177B2 (ja) 2022-01-13
JP7487370B2 (ja) 2024-05-20
JP7251910B1 (ja) 2023-04-04
JP6857272B2 (ja) 2021-04-14
JP2023041810A (ja) 2023-03-24
CN110993921B (zh) 2021-11-19
KR102557406B1 (ko) 2023-07-18
JP7566976B2 (ja) 2024-10-15
KR102537139B1 (ko) 2023-05-26
JP2023078258A (ja) 2023-06-06
CN110993921A (zh) 2020-04-10
JP2020047597A (ja) 2020-03-26
US20200358091A1 (en) 2020-11-12
JP6736243B2 (ja) 2020-08-05
KR102320462B1 (ko) 2021-11-01
JP7265689B2 (ja) 2023-04-26
JP2023101599A (ja) 2023-07-21
JP2020095975A (ja) 2020-06-18
KR20200074939A (ko) 2020-06-25
CN111799453A (zh) 2020-10-20
KR102331689B1 (ko) 2021-11-25
CN116230904A (zh) 2023-06-06
US20230327095A1 (en) 2023-10-12
JP2022071154A (ja) 2022-05-13

Similar Documents

Publication Publication Date Title
KR102557406B1 (ko) 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
KR20190142299A (ko) 양극 활물질 입자 및 양극 활물질 입자의 제작 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant