KR20070093914A - 증착 장치 및 이를 이용한 막 증착 방법 - Google Patents
증착 장치 및 이를 이용한 막 증착 방법 Download PDFInfo
- Publication number
- KR20070093914A KR20070093914A KR1020070025452A KR20070025452A KR20070093914A KR 20070093914 A KR20070093914 A KR 20070093914A KR 1020070025452 A KR1020070025452 A KR 1020070025452A KR 20070025452 A KR20070025452 A KR 20070025452A KR 20070093914 A KR20070093914 A KR 20070093914A
- Authority
- KR
- South Korea
- Prior art keywords
- reaction
- gas
- substrate
- space
- reaction space
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
- C23C16/45548—Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
- C23C16/45551—Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명의 한 실시예에 따른 복수의 챔버를 포함하는 증착 장치를 이용하여 복수의 웨이퍼 위에 비도전성 또는 도전성 박막을 증착하는 방법은 제1 웨이퍼의 표면을 제1 챔버에 제공하고, 제2 웨이퍼의 표면을 제2 챔버에 제공하는 단계, 제1 시간 주기 동안 상기 제1 챔버에 제1 반응 기체의 펄스를 가하고, 제2 시간 주기 동안 상기 제2 챔버에 제2 반응 기체의 펄스를 가하는 단계, 상기 제1 시간 주기가 지난 후 상기 제1 챔버로부터 상기 제1 반응 기체를 제거하고, 상기 제2 시간 주기가 지난 후 상기 제2 챔버로부터 상기 제2 반응 기체를 제거하는 단계, 상기 제1 웨이퍼를 상기 제1 챔버로부터 이동시키고, 상기 제2 웨이퍼를 상기 제2 챔버로부터 이동시키는 단계, 상기 제1 웨이퍼를 상기 제2 챔버로 이동시켜서, 상기 제1 웨이퍼의 표면을 상기 제2 챔버에 제공하는 단계, 제3 시간 주기 동안 상기 제2 챔버에 상기 제2 반응 기체의 펄스를 가하는 단계를 포함하는데, 상기 제3 시간 주기는 상기 제2 시간 주기와 같거나 다를 수 있다.
박막 증착, 원자층 증착, 퍼지 기체, 반응 기체, 복수의 웨이퍼
Description
도 1a 및 도 1b는 각기 종래 기술에 따른 원자층 증착 장치에서 공간 분할과 시간 분할 펄싱 방법을 설명하기 위한 그래프이다.
도 2는 본 발명의 실시예에 따른 다중 웨이퍼 원자층 증착 장치의 개략도이다.
도 3은 도 2에 도시한 본 발명의 실시예에 따른 다중 웨이퍼 원자층 증착 장치의 배치도이다.
도 4a 및 도 4b는 본 발명의 실시예에 따른 원자층 증착 장치의 두 개의 반응실을 도시한 개념도이다.
도 5a 내지 도 5f는 본 발명의 실시예에 따른 다중 웨이퍼 원자층 증착 장치의 배치도이다.
도 6은 도 4a 및 도 4b에 도시한 본 발명의 실시예에 따른 원자층 증착 장치의 단면도이다.
도 7a 내지 도 7c는 본 발명의 실시예에 따른 웨이퍼 처리 단계를 도시한 개념도이다.
도 8a 내지 도 8f는 본 발명의 실시예에 따른 증착 장치 및 그 증착 방법에 서, 한 반응실에 대한 기체 흐름 및 웨이퍼 이동을 순차적으로 도시한 개념도이다.
도 9a 내지 도 9b는 본 발명의 실시예에 따른 공간 및 시간 동시 분할 펄싱 방법을 나타내는 개념도이다.
본 발명은 반도체 공정에 관한 것으로서, 특히 원자층 증착(Atomic Layer Deposition, ALD) 장치 및 이를 이용한 막 증착 방법에 관한 것이다.
반도체 집적 기술이 발전함에 따라, 전도성 또는 비전도성 박막을 균일하고 정확하게 증착하는 공정 기술에 대한 중요성이 높아지고 있다. 박막 증착 방법은 크게 화학적 기상 증착법(chemical vapor deposition, CVD), 물리적 기상 증착법(physical vapor deposition, PVD), 그리고 원자층 증착(ALD)으로 나눌 수 있다.
화학적 기상 증착법의 경우, 약 100℃ 내지 약 1000℃ 정도로 가열된 기판 표면 위에서 기체상(vapor phase) 물질들이 반응하고, 이 반응으로 발생하는 고체상 물질들이 기판 표면 위에 증착되어 박막이 형성된다. 물리적 기상 증착법의 경우, 이온빔 보조를 통해 타겟 물질을 스퍼터링하거나, 진공 증착으로 박막을 형성한다.
반도체 집적 기술이 발전에 따라 소자의 크기가 점차 감소하여, 얇고 균일한 소자를 형성할 수 있는 방법이 요구되고 있다. 그러나, 기존의 화학적 기상 증착법과 물리적 기상 증착법에 의하면, 비아(via)와 트렌치(trench)와 같이 외관비가 큰 표면 위에 단차에 따른 편차 없이 박막을 형성하기 어렵다. 그러나, 원자층 증착법은 외관비가 큰 표면 위에도 두께가 매우 얇고 균일한 박막을 형성할 수 있을 뿐만 아니라 박막의 성분도 우수하다고 알려져 있다.
원자층 증착법은 자기 제어 방식(self-limiting process)으로서, 반응 전구체(reaction precursor)들의 펄스들을 순차적으로 또는 교대로 기판 위에 가하여 기판 표면을 포화시킴으로써, 일반적으로 한 펄스당 약 1 이하의 단일층(monolayer)만 기판 위에 남게 한다. 이때, 증착 조건 및 전구체들은 자기 포화(self-saturating) 또는 자기 제어(self-limiting) 방식이 가능하도록 선택되어, 한 펄스 동안 흡착된 반응물 층은 같은 반응물의 펄스 시 반응하지 않도록 표면 처리되어, 기판 표면에 흡착된 상태에서 후속 물질(또는 반응물)의 펄스를 통해, 이 후속 물질(또는 반응물)과 반응하여 박막을 증착한다. 따라서, 교대로 수행되는 반응물질의 펄스 사이클을 통해 원하는 물질은 단지 약 하나의 단일층으로 기판 위에 증착되게 된다. 원자층 증착법의 원리는 티. 선톨라(T. Suntola : the Handbook of Crystal Growth 3, Thin Films and Epitaxy, Part B: Growth Mechanisms and Dynamics, Chapter 14, Atomic Layer Epitaxy, pp. 601-663, Elsevier Science B.V. 1994)에 의하여 개시되어 있고, 본 발명의 참고 문헌으로 인용되었다. 이러한 원자층 증착법에 의하면, 세 가지 이상의 반응물의 펄스를 개별적으로 가할 수 있는데, 이 중 일부는 막을 성장하는데 필요한 성분으로 사용되고, 나머지 일부는 하나 이상의 리간드(ligand)등을 제거하는 것과 같이, 후속 반응을 위해 기판 표면을 처리하는데 사용될 수 있다.
일반적으로, 원자층 증착법에서 예를 들어 두 가지 이상의 기체상 반응물을 포함하는 원료 물질은 반응실에 교대로 연속하여 주입된다. 예를 들어 설명하면 다음과 같다. 먼저, 기체상 반응물은 각각 흡착되는 물질의 소스는 "S"라고 하고, 흡착된 물질과 반응하는 반응물은 "R"이라고 한다. 제1 반응물(S)과 제2 반응물(R)은 서로 반응할 수 있는 물질이고, 반응실에는 동시에 존재하지 않는 것이 바람직하다. 먼저, 제1 반응물(S)이 기판 표면에 접촉하여 단지 단일층의 박막으로 흡착된다. 일반적으로 반응물(S)은 흡착을 자기 제어하는 리간드(ligand)를 포함한다. 표면에 흡착되지 않고 남아 있는 기체상 반응물(S)은 제2 반응물(R)이 반응실에 유입되기 전에 제거된다. 이러한 기체 반응물의 제거는 퍼지 기체(P)를 반응실로 유입하거나, 진공 펌프를 이용하여 수행될 수 있다. 이어서, 표면에 흡착되어 있는 단일층의 반응물(S)은 반응물(R)과 접촉하여 단지 하나의 단일층을 이루는 박막을 형성한다. 본 명세서에서 설명하는 두 성분의(binary) 반응은 단지 한 예에 불과하고, 원자층 증착법의 많은 다른 예가 존재할 수 있다. 예를 들어, 반응물질의 공급 사이클은 흡착(adsorption)종으로 시작할 필요는 없고, 반응물(R)이 막을 성장시키는데 물질을 제공할 수 있고, 물질(R)은 단지 흡착된 물질로부터 리간드들을 제거할 수도 있다. 또한, 각 공급 사이클마다 다양한 다른 종류의 흡착 반응물이 개별적인 펄스로 제공될 수 있고, 증착 공정 동안 특정 사이클만 반복될 수 있고, 또는 일부 사이클은 변형될 수도 있다.
원자층 증착법은 갓길(Gadgil)이 2004년 11월 2일에 출원한 미국 특허 US 6,812, 157에 개시된 반응기와 같이, 한번에 한 장의 기판을 처리하는 반응기에 의 하여 수행될 수 있다. 그러나 한번에 한 장의 기판을 처리하는 반응기를 이용할 경우, 자기 제어 방식인 원자층 증착법은 한 사이클 당 복수의 층을 형성할 수 없고, 단지 하나의 단일층을 형성하기 때문에, 두께가 두꺼운 층을 형성하기 위하여 반응물질의 공급 사이클을 계속 반복하여야 함으로 인해 증착 시간이 길어질 수 있다. 또한, 이러한 반응기를 이용할 경우, 원자층 증착 장치의 반응 구역은 동일한 반응물들에 노출될 수 있기 때문에, 입자 발생으로 인한 오염, 폐색(blockage) 등의 문제가 발생할 수 있고, 이는 막 증착 공정을 중단시킬 수 있다.
따라서, 여러 장의 기판을 동시에 처리할 수 있는 다중 웨이퍼 시스템에 대한 요구가 높아지고 있다. 다중 웨이퍼 시스템은 반응성 기체들을 격리하는데 크게 두 가지의 기술을 이용하는데, 이는 "공간 분할 방법"과 "시간 분할 방법"이다. 이러한 두 방법에 대하여 도 1a 및 도 1b를 참고로 설명한다.
도 1a를 참고하면, 공간 분할 방식에서 기판은 물리적으로 반응물(S)가 공급되어 있는 한 반응실(또는 반응 영역)로부터, 반응물(R)이 공급되어 있으며 화학적으로 분리되어 있는 다른 반응실로 이동하게 된다. 일반적인 공간 분할 방식에서, 웨이퍼들은 회전가능한 플랫폼 위에서 각기 하나의 반응 기체 또는 하나의 퍼지 기체를 공급하는 반응실 사이를 이동한다. 따라서, 한 사이클에서 각 펄스는 동일하게 나누어지고, 펄스의 지속 시간 역시 각 반응실에서 동일하다. 회전 가능한 공간 분할 방식을 이용하는 원자층 증착/화학적 기상 증착기는 1994년 11월 22일 출원된 슈미트("Schmitt")의 미국 특허 US 5,366,555와 2005년 3월 22일 출원된 미국 특허 US 6,869,641에 개시되어 있고, 이는 본 명세서에 참고 문헌으로 인용되었다. 슈미트의 특허를 참고하면, 각 챔버내에서 펄싱 시간은 동일할 필요는 없지만 고정되어 있고, 각 챔버 내에서의 펄싱 시간은 복수의 기판들이 장착되어 있는 회전대의 각속도로 결정될 수 있다.
도 1b를 참고하면, 시간 분할 방식에서, 기판은 하나의 챔버에서 연속적이고 독립적으로 반응물(S)과 반응물(R)에 노출된다. 이때, 챔버에는 하나 또는 복수의 기판들이 장착되어 있다. 각 반응성 기체들(S와 R)에 노출되는 사이 사이에, 기판은 아르곤과 같은 비반응성 기체(P)에 의하여 퍼지될 수 있다. 시간 분할 방식을 사용하는 원자층 증착 시스템은 2003년 4월 1일에 출원된 미국 특허 US 6,539,891에 개시되었으며, 본 명세서에 참고 문헌으로 인용되었다.
앞에서 설명한 바와 같이, 이러한 다중 웨이퍼 원자층 증착 시스템에서, 공간 분할 방식을 이용하는 경우, 반응 공간들 간에 펄싱 주기를 변화할 수 없다. 또한, 증착기에서 웨이퍼를 지지하여 이동하는 부분도 웨이퍼와 마찬가지로 반응성 기체와 접촉하게 되어 불필요한 곳에서 반응기체 사이의 반응이 일어날 수 있다. 이러한 불필요한 반응에 의하여 입자 발생에 관련한 문제가 발생할 수 있다. 특히 반응실 내에 위치하는 RF 전극을 이용하여 플라즈마를 발생하는 시스템에서는 반응기 벽에 금속막이 증착될 수 있고, 이는 반응기와 RF 전극 사이의 전기적 쇼트를 일으킬 수도 있으며, 이에 의하여 플라즈마 발생이 불가능해질 수도 있다.
본 발명은 이러한 문제점을 해결하기 위한 것으로서, 본 발명의 한 기술적 과제는 불필요한 반응에 의한 입자 발생을 실질적으로 감소하거나 막을 수 있는 원 자층 증착 장치를 제공하는 것이다. 본 발명의 다른 한 기술적 과제는 펄싱 주기를 변화시킬 수 있는 공간 및 시간 동시 분할 펄싱 방법을 제공하여, 원자층 증착 장치 또는 화학적 기상 증착 장치 모두에 사용 가능한 반응기를 제공하는 것이다.
본 발명의 한 실시예에 따른 원자층 증착 장치를 이용하여 기판 위에 비도전성 또는 도전성 박막을 증착하는 방법은 제1 반응실에 기판을 제공하는 단계, 상기 제1 반응실에서 상기 기판의 표면에 제1 반응물의 기체상 펄스를 가하는 단계, 상기 제1 반응물을 상기 제1 반응실에서 제거하는 단계, 상기 기판을 상기 제1 반응실로부터 제2 반응실로 이동하는 단계, 상기 기판의 표면을 제2 반응물에 노출하는 단계, 상기 제2 반응실에서 상기 기판의 표면에 제2 반응물의 기체상 펄스를 가하는 단계를 포함한다.
상기 기판을 제공하는 단계는 기판 표면의 일부와 제1 반응실을 정의하는 하부벽 사이를 밀폐하는 단계를 포함할 수 있다.
상기 기판을 제공하는 단계는 기판 지지 플랫폼과 제1 반응실을 정의하는 하부벽 사이를 밀폐하여, 기판 지지 플랫폼의 적어도 일부를 상기 제1 반응실에 노출하는 단계를 포함할 수 있다.
본 발명의 다른 한 실시예에 따른 복수의 챔버를 포함하는 배치식(batch) 증착 장치를 이용하여 복수의 웨이퍼 위에 비도전성 또는 도전성 박막을 증착하는 방법은 제1 웨이퍼의 표면을 제1 챔버에 제공하고, 제2 웨이퍼의 표면을 제2 챔버에 제공하는 단계, 제1 시간 주기 동안 상기 제1 챔버에 제1 반응 기체의 펄스를 가하 고, 제2 시간 주기 동안 상기 제2 챔버에 제2 반응 기체의 펄스를 가하는 단계, 상기 제1 시간 주기가 지난 후 상기 제1 챔버로부터 상기 제1 반응 기체를 제거하고, 상기 제2 시간 주기가 지난 후 상기 제2 챔버로부터 상기 제2 반응 기체를 제거하는 단계, 상기 제1 웨이퍼를 상기 제1 챔버로부터 이동시키고, 상기 제2 웨이퍼를 상기 제2 챔버로부터 이동시키는 단계, 상기 제1 웨이퍼를 상기 제2 챔버로 이동시켜서, 상기 제1 웨이퍼의 표면을 상기 제2 챔버에 제공하는 단계, 제3 시간 주기 동안 상기 제2 챔버에 상기 제2 반응 기체의 펄스를 가하는 단계를 포함한다.
상기 제3 시간 주기는 상기 제2 시간 주기와 같을 수 있다.
상기 제3 시간 주기는 상기 제2 시간 주기와 같지 않을 수 있다.
본 발명의 다른 한 실시예에 따른 복수의 웨이퍼 처리 방법은 제1 반응 영역과 제2 반응 영역을 포함하는 복수의 공간 분할 반응 영역들을 제공하는 단계, 웨이퍼를 상기 제1 반응 영역과 상기 제2 반응 영역으로 반복하여 이동하는 단계, 상기 제1 반응 영역에 제1 반응 기체의 펄스를 가하고, 상기 제1 반응 영역으로부터 제1 반응 기체를 제거하는 것을 반복하여 교대로 수행하는 단계, 그리고 상기 제2 반응 영역에 제2 반응 기체의 펄스를 가하고, 상기 제1 반응 영역으로부터 제2 반응 기체를 제거하는 것을 반복하여 교대로 수행하는 단계를 포함한다.
본 발명의 다른 한 실시예에 따른 증착 장치는 제1 반응 영역과 제2 반응 영역을 포함하는 복수의 공간 분할 반응 영역을 포함하고, 상기 반응 영역 각각은 기체 소스와 통해 있고, 상기 반응 영역 각각은 상기 반응 영역 각각의 노출 부분에 수직인 축을 포함하고, 상기 반응 영역의 노출 부분은 기판의 표면을 장착하도록 설정되어 있다.
상기 증착 장치는 증착하는 동안 상기 반응 영역들로 복수의 기판을 이동할 수 있도록 설정되어 있는 기판 지지 플랫폼, 그리고 상기 기판 지지 플랫폼의 이동을 제어하고, 각 반응 영역에 적어도 하나의 반응 기체의 펄스를 가하면서, 상기 제1 반응 영역에 제1 반응 기체의 펄스를 가하고 상기 제2 반응 영역에 제2 반응 기체의 펄스를 가하도록 구성된 제어 시스템을 더 포함할 수 있다.
본 발명의 다른 한 실시예에 따른 증착 장치는 적어도 제1 반응 공간과 제2 반응 공간을 정의하는 복수의 측벽들을 포함하는데, 상기 제1 반응 공간과 상기 제2 반응 공간은 적어도 하나의 분리벽에 의하여 구분되고, 여기서 적어도 하나의 분리벽은 퍼지 기체의 소스와 통해 있는 기체 흐름 통로를 포함한다.
상기 증착 장치는 적어도 두 개의 기판들을 지지하도록 구성된 플랫폼을 더 포함할 수 있고, 상기 플랫폼은 상기 제1 반응 공간과 상기 제2 반응 공간 사이에서 기판들을 수직 방향 및 수평 방향으로 이동할 수 있다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부 분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
정의(definition)
본 명세서에서 사용되는 여러 용어에 대한 정의는 다음과 같다.
원자층 증착 공정(ALD process): 원자층 증착 공정은 일반적으로 자기 포화(self-saturating)에 의하여 단일층-단일층 형태의 박막을 기판 위에 형성하는 공정을 말한다. 원자층 증착 공정에서, 반응 기체들, 즉 전구체들 또는 소스 물질들은 기판과 교대로 차례로 접촉함으로써, 표면 반응을 일으킨다. 결과적으로, 각 펄싱 사이클 동안 하나의 원하는 물질의 단일층(즉 원자층 또는 분자층) 만이 증착된다. 일반적으로, 이러한 반응성 분자는 흡착 반응의 자기 제어를 돕는 리간드들을 포함하여 모든 반응 위치에서 사이클 당 하나 이하의 단일 분자층만이 형성되도록 한다. 전구체들의 펄스는 서로 분리되어 발생하므로, 전구체들 사이의 기체상 반응과 부산물의 원하지 않은 반응은 방지될 수 있다. 일반적인 원자층 증착 반응기에서, 기판은 시간적으로 분리되어 적어도 두 반응물의 펄스에 교대로 노출되는 단일 반응 챔버에 장착되고, 반응 챔버는 질소, 아르곤 또는 수소와 같은 비활성 기체로 퍼지되고, 또는 전구체 펄스 사이에 펌핑 시스템에 의하여 남아 있는 기체상 반응물을 제거하고, 챔버 내에서 부수적인 반응이 발생하지 않도록 한다. 이에 의하여, 반응실에서 반응물질의 농도 분포는 시간에 따라 중복되지 않는다.
화학적 기상 증착 공정(CVD process): 화학적 기상 증착 공정은 기판을 기체 상 소스 물질들 또는 화합물들에 접촉하도록 함으로써, 기판 표면에서 소스 물질들이 서로 반응하여 기판 위에 증착되는 공정을 말한다. 화학적 기상 증착 공정에서, 박막 성장에 요구되는 소스 물질들은 총 증착 시간 중 적어도 일부 동안 반응기 내에 함께 존재한다. 따라서, 반응기에서의 소스 물질들의 농도 분포는 시간에 따라서 중복될 수 있다.
디지털 화학 기상 증착 공정(digital CVD) 또는 펄스 화학적 기상 증착(pulsed CVD): 앞서 언급된 원자층 증착 공정(ALD process)과 전형적인 화학적 기상 증착 공정(CVD process) 사이의 공정으로서, 기체상 소스 물질들의 공급이 조절될 수 있는 공정이다. 펄스 화학적 기상 증착 공정에서, 증착률을 높이기 위하여 기체상 반응물의 일부는 다른 반응물 공급과 중복되어 공급될 수 있고 사이클당 단일층 이상을 증착할 수 있다. 모든 펄스들에서 둘 이상의 반응물들이 완전히 중첩하는 공정은 화학적 기상 증착의 펄스 형태일 수 있고, 부분적으로 중복하는 것은 화학적 기상 증착과 같은 반응을 가지는 수정된 원자층 증착 방법이라고 볼 수 있다.
반응 공간(reaction space): 반응 공간은 반응기, 반응 챔버, 반응 영역 등 또는 원하는 반응이 효과적으로 발생할 수 있는 상태의 임의로 정의된 공간 모두를 지칭하는데 사용된다. 일반적으로, 반응 공간은 모든 반응 기체 펄스들에 노출되는 표면을 포함하여, 기체들 또는 입자들은 일반적인 동작 동안 증기에 의하여 또는 확산에 의하여 기판에 흐를 수 있다.
기판(substrate): 기판은 막이 증착될 공정물을 포함할 수 있다. 예를 들 어, 반도체 웨이퍼는 집적 회로(IC: integrated circuit) 제조에 사용된다. 일반적인 기판은 실리콘 웨이퍼(silicon wafer), 이산화규소(silica) 또는 석영(quartz), 그리고 평판 표시 장치에 사용되는 유리판을 포함한다. 기판은 원 기판(bare substrate)뿐만 아니라 그 위에 형성된 층들 및 패턴들을 포함하는 가공된 기판들도 일부 포함하는 의미이다.
퍼지 기체(purge gas): 퍼지 기체는 임의의 비활성 기체 또는 비활성 증기를 포함할 수 있다. 퍼지 기체는 제한 없이, 아르곤, 헬륨, 질소와 같은 비활성 또는 비반응성 기체를 포함할 수 있다. 수소 기체 또는 산소 기체 역시 기체상 반응에 포함되지 않는다면, 즉 예를 들어 플라즈마 활성화 없이 낮은 온도에서는 비반응성이므로, 퍼지 기체로 사용될 수 있다. 임의의 경우에서, 퍼지 기체는 반응 기체를 반응 공간에 유입하는데 사용되는 "캐리어 기체(carrier gas)"를 포함할 수 있다. 또한, 다른 퍼지 기체들이 장치의 다른 부분에서 사용될 수 있다. 예를 들어, 한 반응 공간은 아르곤으로 퍼지될 수 있고, 다른 반응 공간은 질소로 퍼지될 수 있다. 또한, 반응실은 하나 이상의 퍼지 기체를 사용할 수 있다. 예를 들어, 아르곤은 반응기체를 퍼지하는데 사용될 수 있고, 질소는 웨이퍼 이동 시 퍼지 기체로서 이용될 수 있다.
상하, 수평, 측면, 위, 아래, 상부, 그리고 상부는 절대적인 좌표를 의미하는 것이 아니라 상대적인 이동 방향을 나타내는 의미이다.
다중 웨이퍼 원자층 증착 장치
본 발명의 실시예에 따른 공간 및 시간 동시 분할 다중 기판 원자층 증착 장치(이하 "세미 배치 증착 장치(semi-batch deposition apparatus"라 한다)는 복수의 공간 분할된 (또는 중첩하지 않는) 반응 공간들을 포함하는데, 각 반응 공간은 복수의 웨이퍼들을 처리하기 위한 한 기체 또는 복수의 기체들이 유입될 수 있도록 구성된다. 기체들은 동일한 성분일 수 있거나, 또는 다른 성분을 가질 수 있다. 바람직한 ALD 장치에서, 각 반응 공간은 퍼지 기체와 단지 하나의 반응 기체(또는 기체 혼합물)에만 노출되고, 반응 공간들은 서로 실질적으로 분리되어 있다. 따라서, 각 반응 공간은 다른 반응 공간과 다른 화학적 환경을 가질 수 있다. 각 반응 공간이 단지 하나의 반응물에만 노출되기 때문에, 반응 공간을 정의하는 고정된 부분에는 어떤 막도 증착되지 않고, 이에 의하여 입자 발생에 관련된 문제 및 오명은 실질적으로 충분히 감소하거나 제거될 수 있다.
본 발명의 한 실시예에서, 다중 웨이퍼 원자층 증착 장치는 제1 시간 주기 동안 제1 반응 공간으로 제1 반응 기체의 펄스를 가하고, 이어서 반응물을 제거하는 단계를 수행함으로써 구현되도록 구성된다. 반응물 제거는 제1 반응 공간을 퍼지하거나 펌핑하는 것 모두를 제한 없이 포함할 수 있다. 반응 공간은 반응물 펄스와 반응물 펄스 사이에 퍼지되는 것이 바람직하다. 이어서, 다중 웨이퍼 원자층 증착 장치는 제1 반응 공간을 제2의 다른 반응 공간으로 상하 또는 좌우로 이동하고, 제2 시간 주기 동안 제2 반응 공간에 제2 반응 기체의 펄스를 가함으로써, 제2 반응 공간에서 웨이퍼를 처리한다. 웨이퍼의 측면(좌우) 이동은 기판 지지 플랫폼을 회전하는 것을 포함한다. 한 실시예에서, 기판 지지 플랫폼은 유도 에너지 또는 복사 에너지와 같은 외부에서 발생하는 에너지를 흡수하도록 구성된 기판 서셉터(susceptor)이다. 다른 실시예에서, 기판 지지 플랫폼은 내부 가열, 예를 들어 저항 가열(resistive heating)하도록 구성된 가열된 척(chuck)이다.
그러면, 본 발명의 한 실시예에 따른 다중 웨이퍼 원자층 증착기(100)에 대하여 도 2 및 도 3을 참고로 하여, 상세하게 설명한다.
도 2는 본 발명의 실시예에 따른 다중 웨이퍼 원자층 증착 장치의 개략도이고, 도 3은 도 2에 도시한 본 발명의 실시예에 따른 다중 웨이퍼 원자층 증착 장치의 배치도이다. 도 2 및 도 3에 도시한 증착기(100)는 큰 시스템 또는 반응기의 일부로서, 로딩 플랫폼, 로드 백 챔버, 로봇들과 같은 로딩 시스템들, 본 발명의 실시예에 따른 방법을 순차적으로 수행하도록 프로그램화된 메모리, 프로세서, 사용자 인터페이스 등과 같은 기체 분사 시스템 및 제어 시스템들을 포함하는 반응기의 일부이다. 또한, 앞서 설명한 바와 같이, 위치 또는 방위(orientation)는 장치(100)의 다른 부분에 대한 상대적인 것이지, 절대적인 것이 아니다.
도 2 및 도 3을 참고하면, 다중 웨이퍼 원자층 증착 장치(100)는 하부 부분(115)과 상부 부분(또는 덮개)(130)을 포함한다. 하부 부분(115)은 하부 바디(120)와 상부 바디(121)를 포함한다. 본 실시예에 따른 원자층 증착 장치 (100)는 네 개의 반응 공간들(170, 180, 190, 200)을 포함하는데, 각 반응 공간들은 하부에 홈(opening)을 가진다. 기판 지지 플랫폼(110)은 기판 또는 웨이퍼들(W1 내지 W4)을 반응 공간들 사이에서 이송하도록 구성된다. 본 실시예에서, 반응 공간(170, 180, 190, 200)은 수직판(163)에 의하여 정의되는 퍼지 벽에 의하여 분리 되는데, 퍼지벽 사이의 공간은 덮개(130)의 배관(160)으로부터 퍼지 기체를 받아서 구멍(162)을 통해 퍼지 기체를 반응 공간 아래의 영역(125)으로 보내도록 구성되는 채널부(161)를 가진다. 영역(125)은 기판 지지 플랫폼(110)과 덮개(130) 또는 상부 바디(121) 사이로 정의된다. 각 반응 공간들(170, 180, 190, 200)은 복수의 벽으로 정의되는데, 복수의 벽은 덮개(130), 수직판(163), 기판 및 기판 지지 플랫폼(110)을 포함한다. 도 4, 도 6 및 도 8을 참고로 하여, 아래에서 설명할 다른 실시예에서는 각 반응 공간들 각각의 하부 부분은 기판 표면을 장착할 수 있는 홈을 가지는 수평 벽에 의하여 정의될 수 있다. 본 실시예에서, 반응 공간(170)은 반응 공간(180)에 인접하고, 반응 공간(180)은 반응 공간(190)에 인접하고, 반응 공간(190)은 반응 공간(200)에 인접하고, 반응 공간(200)은 반응 공간(170)에 인접한다. 덮개(130)는 각 반응 공간들(170, 180, 190, 200)과 채널부(161)의 개구 영역의 상부를 덮어서 밀폐한다. 각 반응 공간은 덮개(130)의 유입구(172, 182, 192, 202)로부터 기체를 공급받고, 각 반응 공간 측면에 형성되어 있는 배출구(173, 183, 193)와 수직 배기 통로(175, 185, 195)를 통해 기체를 배출한다. 도 2에서는 네 개의 반응 공간 중 단지 세 개에 대한 배기구와 수직 배기 통로를 도시하고 있다. 반응 공간은 유입구(172, 182, 192, 202)로부터 유입된 기체를 기판 전면에 분산시키는 기체 분산 수단(도시하지 않음)을 포함하는데, 기체 분산 수단은 샤워헤드(showhead), 깔때기(trumpet) 등의 당업자에게 알려진 형태일 수 있다.
도 2를 참고하면, 원자층 증착 장치(100)의 하부 부분(115)은 하부 바디(120)와 상부 바디(121)를 포함한다. 상부 바디(121)는 덮개(130)를 삽입할 수 있도록 구성되고, 덮개(130)는 수직판(163) 위에 놓여진다.
도 2 및 도 3을 참고하면, 기체는 반응 공간의 측면에 형성되어 있는 배출구(173, 183, 193)를 통해 반응 공간들(170, 180, 190)로부터 배기될 수 있다. 기체는 이어서 상부 바디(121)에 배치되어 있는 하나 이상의 통로들로 유입되고, 그 후 기체는 하부 바디(120)에 배치되어 있는 통로들(175, 185, 195)로 배기된다. 반응 공간들의 배기구들은 각기 분리되는 것이 바람직하다. 이에 의하여, 불필요한 입자를 발생시킬 수 있는 반응물의 기체 상 혼합은 완전히 방지되거나, 반응 공간으로부터 충분히 멀리 떨어진 곳에서 발생하므로, 반응 공간의 오염을 발생하지 않는다. 각 배기구는 전용 펌핑 시스템과 연결되어 있을 수 있다. 비용을 절감하기 위하여 공용 펌핑 시스템이 사용될 경우, 반응 공간들의 입구에서 입자의 발생을 방지하기 위하여, 배기구들은 각 반응 영역들로부터 충분히 멀리 떨어진 부분에서 만나도록 구성되어야 한다. 도 2에서 화살표는 원자층 증착 장치(100)에서의 일반적인 기체 흐름 방향을 나타낸다.
웨이퍼들(W1 내지 W4)은 적어도 부분적으로 반응 공간(170, 180, 190, 200)에 노출되어 있는 상부 표면을 가진다. 도 3을 참고하면, 웨이퍼(W1)의 상부 표면은 반응 공간(170)에 노출되고, 웨이퍼(W2)의 상부 표면은 반응 공간(180)에 노출되고, 웨이퍼(W3)의 상부 표면은 반응 공간(190)에 노출되고, 웨이퍼(W4)의 상부 표면은 반응 공간(200)에 노출된다. 다른 실시예에서, 기판 지지 플랫폼(110)은 반응 공간들을 정의하는 벽들과 매우 가까이 접하여 반응 공간의 빈 공간을 효과적으로 밀폐시킬 수 있다. 반응 공간들이 실질적으로 밀폐되지 않고, 기판 지지 플 랫폼(120)과 상부 바디(121) 사이에 공간이 존재하는 경우, 퍼지 기체가 채널(161) 아래에서 반응 공간 아래의 영역(125)으로 흘러 반응 공간을 격리하는 것이 바람직하다.
본 실시예에서, 기판 지지 플랫폼(110)은 도 2의 굵은 화살표 방향으로 회전하도록 구성된 회전 샤프트(shaft)를 포함한다. 기판 지지 플랫폼(110)은 연속적으로 또는 순차적으로 회전할 수 있다. 다른 실시예에서, 기판 지지 플랫폼(110)은 전후방(back-and-forth) 회전 운동할 수 있다. 기판 지지 플랫폼(110)과 하부 바디(120) 사이의 공간은, 반응물들이 이 공간으로 유입되어 서로 만남으로써 원하지 않는 입자들을 발생하는 것을 방지하기 위하여, 퍼지 기체들에 의하여 퍼지된다. 퍼지 기체는 하부 바디(120)와 기판 지지 플랫폼(110) 사이의 공간(126)을 통해 반응 공간을 향해 위쪽으로 계속 흐른다. 퍼지 기체는 배기구(173, 183, 193)를 통해 배기된다.
도 4, 도 6 및 도 8을 참고로 하여, 아래에서 설명할 다른 실시예에서는, 기판 지지 플랫폼은 반응 공간들에 대하여 상하로(vertically) 이동하도록 구성된다. 이러한 상하 이동은 웨이퍼들을 반응 공간들로부터 이격하고, 각 반응 공간의 하부에 빈 공간 영역(홈)을 노출한다.
도 3을 참고하면, 기체 배관(171, 181, 191, 201)을 이용하여 증기가 직접 반응 공간들(170, 180, 190, 200)로 유입될 수 있다. 각 기체 배관(171, 181, 191, 201)은 원통 형태의 튜브이거나, 기체를 운반할 수 있도록 구성된 임의의 구조를 가질 수 있다. 예를 들어, 기체 배관은 스테인레스 스틸로 만들어진 기체 튜 브일 수 있다. 기체 배관(171, 181, 191, 201)은 반응 기체 배관(176, 186, 196, 206) 및 퍼지 기체 배관(177, 187, 197, 207)으로부터 기체 또는 증기를 받아들일 수 있도록 구성되어 있다. 따라서, 각 반응 공간에는 퍼지 기체 소스 및 단지 하나의 반응물 소스를 전달할 수 있다. 일부 반응 공간은 단지 퍼징(purging)을 위하여 사용될 수도 있다. 이러한 반응 공간은 반응 기체 배관은 생략되고 단지 퍼지 기체 배관만 가지도록 구성될 수 있다. 본 실시예에서, 반응 기체 배관(176, 186, 196, 206)은 교차부(intersecting point)에서 퍼지 기체 배관(177, 187, 197, 207) 만난다. 다른 실시예에서는, 이러한 교차부들은 스위치(178, 188, 198, 208)를 포함할 수 있고, 이러한 스위치(178, 188, 198, 208)를 통해, 반응 기체 배관 또는 퍼지 기체 배관 중 어느 하나를 각 기체 배관(171, 181, 191, 201)과 연결할 수 있다. 스위치들(178, 188, 198, 208)은 웨이퍼 처리를 제어할 수 있도록 구성된 컴퓨터 시스템에 의하여 제어될 수 있다. 각 기체 배관(171, 181, 191, 201)의 내부 변은 전달되는 반응물과 반응하지 않는 것이 바람직하다.
이제, 기체 배관에 대하여 반응 공간(170)과 관련하여 설명한다. 다른 반응 공간들(180, 190, 200)과 관련한 기체 배관 역시 유사한 기능을 할 수 있다.
한 실시예에서, 교차부(178)는 배관들(176, 177) 중 어느 기체가 기체 배관(171)으로 유입될 수 있는 지를 선택하도록 구성된 기체 스위치이거나, 삼방향(three-way) 밸브일 수 있다. 예를 들어, 스위치(178)가 "반응물 공급"을 선택하는 경우, 배관(176)을 통해 공급되는 반응 기체(비반응성 캐리어 기체를 포함할 수도 있다)가 배관(171)에 유입되고 이어서 반응 공간(170)으로 유입될 수 있다. 반응물 공급 모드에서, 퍼지 배관(177)으로부터의 기체는 배관(171)에 유입될 수 없다. 만일 스위치(178)가 "퍼지 기체"를 선택하는 경우, 배관(177)으로부터의 퍼지 기체가 배관(171)에 유입되어 이어서 반응 공간(170)에도 유입될 수 있다. 퍼지 기체 모드에서, 반응물 배관(176)으로부터의 기체는 배관(171)에 유입되지 않는다. 스위치(178)는 배관(176)과 배관(177)으로부터의 기체를 혼합하도록 구성될 수도 있다. 만일, 반응물 배관(176)이 기상 반응물을 포함하고, 퍼지 기체 배관(177)이 캐리어 기체를 포함한다면, 기상 반응물을 캐리어 기체와 혼합하여 반응 공간(170)에 유입되는 반응물 기체의 부분압을 조절할 수 있고, 또는 비활성 캐리어 기체가 스위치(178)의 반응물 흐름과 혼합될 수 있다. 다른 실시예에서는, 반응 기체가 펄스되는 동안 퍼지 기체가 계속하여 흐를 수도 있다.
본 발명의 실시예들에 따른 증착 장치는 제어 시스템 또는 제어기(도시하지 않음)를 포함할 수 있다. 제어 시스템(제어기)은 반응물 펄싱, 퍼지 기체 펄싱, 반응물 제거, 퍼지 기체 제거, 부산물 제거, 기판 지지 플랫폼의 이동, 웨이퍼 체류 시간, 각 반응 공간 내의 압력, 펌프, 기판 온도, 그리고 인시투(in situ) 및/또는 원격 플라즈마 발생 등과 같은 다양한 웨이퍼 공정 단계를 제어한다. 제어 시스템(제어기)은 서로 통신 가능한 하나 이상의 컴퓨터들과 본 발명의 실시예에 따른 증착 방법을 구현하도록 증착 장치를 처리하는 다양한 처리 유닛들을 포함할 수 있다. 제어 시스템(제어기)은 각 반응 공간들의 스위치들, 도 3에 도시한 스위치들(178, 188, 189, 208)을 제어할 수 있다.
이제 도 4a 및 도 4b를 참고로 하여 본 발명의 다른 한 실시예에 대하여 설 명한다. 도 4a 및 도 4b는 본 발명의 실시예에 따른 원자층 증착 장치의 두 개의 반응실을 도시한 개념도이다.
도 4a 및 도 4b를 참고하면, 다중 웨이퍼 원자층 증착 장치(300)는 하부 부분(320) 및 덮개(330)를 포함한다. 하부 부분(320)은 하부 바디(321) 및 상부 바디(322)를 포함한다. 본 실시예에 따른 다중 웨이퍼 원자층 증착 장치(300)는 복수의 반응 공간들(360, 370), 반응 기체 유입구(366, 376), 퍼지 기체(또는 캐리어 기체) 유입구(367, 377), 기체 배기구(363, 373) 및 회전 가능한 기판 지지 플랫폼(310)을 포함한다. 반응 공간들(360, 370)은 홈(369, 379)을 각기 가지고, 각 홈(369, 379)은 반응 공간들의 수평 하부 부분(369a, 379a)에 의하여 정의된다. 반응 공간들(360, 370)은 덮개(330)의 벽들로 의하여 부분적으로 정의되는데, 수평 하부판(horizontal lower portion)과 수평 하부판 측면으로부터 위로 돌출되어 있는 세로벽들을 포함하는 수평 하부 부분(369a, 379a), 반응 공간들(360, 370) 위에 배치되어 있는 수평 상부판, 그리고 홈(369, 379)을 포함한다. 회전 기판 지지 플랫폼(310)은 복수의 웨이퍼(W1, W2)를 지지한다. 기체는 기체 배기구(363, 373)를 통해 배기 통로(364, 374)로 전달되어, 이어서, 배기구(363, 373)와 분리되어 있는 외부 배기구(365, 375)를 통해 배기된다. 기체 유입구들(366, 367)은 교차부(368)에서 만나고, 기체 유입구들(376, 377)은 교차부(378)에서 만난다. 기체는 각기 통로(368a, 378a)를 통해 반응 공간(360, 370)으로 유입된다. 다른 실시예에서, 교차부들(368, 378)은 반응 공간들(360, 370)에 퍼지 기체와 반응 기체 중 어느 하나가 유입되도록 구성된 기체 스위치이다. 다른 실시예에서, 교차부들(368, 378) 은 반응 기체 유입구(366, 377)를 통해 유입되는 반응 기체와 퍼지 기체 유입구(367, 377)를 통해 유입되는 퍼지 기체의 혼합 기체가 반응 공간들(360, 370)에 유입되도록 구성된 기체 스위치일 수 있다. 다른 실시예에서, 교차부(368, 378)는 반응 기체 유입구(366, 367)로부터 반응 기체의 펄스가 가해지는 동안, 퍼지 기체 유입구(367, 377)로부터 계속하여 퍼지 기체가 흐르도록 구성될 수도 있다. 반응 공간들(360, 370)에는 각기 제1 반응 기체 및 제2 반응 기체가 유입될 수도 있다. 또한, 반응 공간들(360, 370) 각각은 예를 들어, 아르곤, 헬륨, 질소, 수소, 또는 이 기체들의 혼합 기체와 같은 비활성 기체 또는 캐리어 기체로 퍼지될 수 있다. 덮개(330)는 웨이퍼가 이동하는 동안, 반응 공간과 기판 지지 플랫폼 사이의 공간(325)을 통해 퍼지 기체가 흐를 수 있도록 구성될 수 있다.
도 4a 및 도 4b에서는 단지 두 개의 반응 공간들만 도시하였지만, 본 발명의 실시예에 따른 원자층 증착 장치(300)는 임의의 개수의 반응 공간들을 포함할 수 있다. 예를 들어, 다중 웨이퍼 원자층 증착 장치(300)는 두 개, 세 개, 네 개, 다섯 개, 또는 열 개의 반응 공간들을 포함할 수 있다. 이러한 원자층 증착 장치는 도 5a 내지 도 5f에 도시되어 있다. 도 5a 내지 도 5f는 본 발명의 실시예에 따른 다중 웨이퍼 원자층 증착 장치의 배치도이다. 도 5a 내지 도 5f는 각기 두 개, 세 개, 네 개, 다섯 개, 여섯 개, 그리고 여덟 개의 반응 공간들을 포함하는 도 4a 및 도 4b에 도시한 원자층 증착 장치를 도시한다.
그러면, 도 6을 참고하여 기판 지지 플랫폼(310)의 상하 이동에 대하여 설명한다. 도 6은 도 4a 및 도 4b에 도시한 본 발명의 실시예에 따른 원자층 증착 장 치의 단면도이다. 기판 지지 플랫폼(310)은 상하로 이동함으로써, 반응 공간(360) 내에 홈(369)을 드러내고, 다른 반응실들내에도 역시 홈을 각기 드러낸다. 앞서 설명한 바와 같이, 반응 공간(360)의 홈(369)은 반응 공간들의 수평 하부 부분(369a) 내에 위치한다. 유사하게, 반응 공간(370)의 공간(379), 그리고 다른 반응 공간들의 홈들도 각기 대응하는 수평 하부 부분 내에 위치한다. 반응 공간(360)의 홈(369)에는 웨이퍼(W1)가 장착된다. 다른 실시예에서, 홈(369)에는 기판 지지 플랫폼 중 웨이퍼에 인접한 일부분까지 장착될 수 있다. 이런 경우, 기판 지지 플랫폼(310)의 표면 중 반응 공간(360)에서 반응 기체에 노출되는 부분은 최소인 것이 바람직하다. 홈(369)은 밀폐 가능한 것이 바람직하고, 완전히 밀폐 가능한 것이 보다 바람직하다. 다른 실시예에서, 기판 지지 플랫폼(310)은 웨이퍼(W1)를 홈(369)에 가까이 배치되도록 하여 웨이퍼(W1) 상부 표면과 반응 공간(360)의 수평 하부판(369a) 사이에 틈(gap)을 형성할 수 있다.
다른 실시예에서, 도 6에 도시한 기판 지지 플랫폼(310) 또는 웨이퍼(W1)의 상부 표면의 바깥 가장자리와 수평 하부판(369a)은 서로 접촉하여 홈(369)을 밀폐함으로써, 기체(반응물 및/또는 퍼지 기체)가 홈(369)으로부터 반응 공간(360)과 기판 지지 플랫폼(310) 사이의 공간(325)으로, 또는 그 역방향으로 흐르는 것을 방지하거나 최소화할 수 있다. 기판 지지 플랫폼(310)이 하부로 이동하여 이러한 밀폐는 해제되고, 이에 의하여 홈(369)이 다시 드러난다.
도 2 및 도 4a에 도시한 본 발명의 실시예에 따른 원자층 증착 장치의 기판 지지 플랫폼(110, 310)은 후방 증착(backside deposition) 및 오토도 핑(autodoping)을 방지하기 위한 기체 흐름 통로를 포함할 수 있다. 후방 증착은 웨이퍼(또는 기판)와 기판 지지 플랫폼 사이의 틈을 통해 반응 기체들이 흘러서, 웨이퍼의 뒤쪽에 물질이 증착되는 것이다. 오토도핑은 도펀트가 웨이퍼 아래쪽으로 확산하는 현상에 의한 것으로, 이러한 도펀트가 다시 기판 후방으로부터 기판 가장자리와 기판 지지 플랫폼 상부 사이로 이동하여 기판 가장자리 근처에서 기판 위에 재증착되는 것이다. 이처럼 재증착된 도펀트들은 집적 회로의 성능에 나쁜 영향을 미칠 수 있고, 특히 기판 가장자리 주변으로부터 반도체가 망가질 수 있다. 오토도핑은 고농도로 도핑된 기판의 경우, 흔히 발생하고 문제가 되는 경향이 있다. 후방 증착 및 오토도핑은 입자 요염 문제를 일으킬 수 있어서, 기기 성능을 저하할 수 있다. 그러나 본 발명의 실시예에 따른 기판 지지 플랫폼은 웨이퍼의 아래, 즉 후방으로 흐르는 기체 흐름 통로(도시하지 않음)를 포함하여, 웨이퍼 공정 중 후방 증착 및 오토도핑을 없애거나, 만일 없애지 못한다고 하더라도 줄일 수 있다. 단일 웨이퍼에 대해 후방 증착이나 오토도핑을 방지할 수 있도록 구성된 기판 지지 플랫폼은 미국 출원 공개번호 2005/019352 및 미국 특허 US 6,113,702에 개시되어 있고, 그 내용은 본 명세서에 참고 문헌으로 인용되었다.
앞에서 설명한 본 발명의 실시예에 따른 원자층 증착 장치(100, 300)는 본 발명의 기본 개념 내에서 여러 변형 및 개량 형태를 가질 수 있다. 예를 들어, 도 2 및 도 3에서는 네 개의 반응 공간들(170, 180, 190, 200)을 도시하고, 도 4a 및 도 4b에서는 두 개의 반응 공간(360, 370)을 도시하지만, 본 발명의 실시예에 따른 원자층 증착 장치(100, 300)는 임의의 수의 반응 공간들을 포함할 수 있고, 반응 공간들의 수는 이용되는 반응 기체 및/또는 퍼지 기체 수와 원하는 공정을 위해 증착되는 횟수 등을 고려하여 결정될 수 있다. 예를 들어, 하나의 웨이퍼가 두 개의 다른 반응물에 노출되어야 한다면, 원자층 증착기(100, 300)는 두 개, 네 개, 여섯 개, 여덟 개, 또는 열 개의 반응 공간들을 포함할 수 있다. 또 다른 예로, 만일 하나의 웨이퍼가 세 단계의 증착 공정을 통해 세 개의 다른 반응물들에 노출되어야 하는 경우라면, 예를 들어 WNxCy 층을 증착하기 위하여 WF6, NH3, 및 B(C2H5)3의 원료 기체를 이용하는 경우, 증착 장치(100, 300)는 세 개, 여섯 개, 또는 아홉 개의 반응 공간들을 포함할 수 있다. 또한, 기판 지지 플랫폼(110, 310)은 임의의 수의 웨이퍼들, 바람직하게는 반응 공간의 수와 같거나 적은 웨이퍼들을 지지하도록 구성될 수 있다. 예를 들어, 기판 지지 플랫폼(110, 310)은 대응하는 반응 공간의 개수 보다 적은 두 개 내지 열 개의 웨이퍼들을 지지하도록 구성될 수 있다. 반응 공간의 수는 사용되는 반응 기체들의 수와 직접 관련되어 있지 않는다. 예를 들어, 두 개의 다른 반응물 펄스를 가하도록 구성된 증착 장치가 세 개의 반응 공간을 가질 수 있고, 이 중 하나는 단지 퍼지 기체만을 흘리도록 구성될 수 있다. 유사하게, 원자층 증착의 원료 기체들의 수보다 많은 수의 반응 공간을 가지는 임의의 증착 장치도 전용 퍼지 챔버를 구비할 수 있다. 또한, 적어도 하나 이상의 반응 영역이나 반응 공간에 원자층 증착의 원료 기체들 중 한 기체가 공급될 수도 있다. 또 다른 예에서는, 도 2 및 도 3에 도시한 서로 간에 회전 가능하도록 구성된 반응 공간은 필요하지 않을 수 있다. 예를 들어, 반응 공간들은 서로 간에 선 형적으로 배치되어 있을 수 있다. 이러한 경우, 기판 지지 플랫폼은 컨베이어 벨트와 같은 방식으로 한 반응 공간으로부터 옆에 배치되어 있는 반응 공간으로 웨이퍼들을 이동시키도록 구성될 수 있다. 또 다른 예로, 각 반응 공간은 하나의 기체 배선과 연결되어 있을 수 있고, 반응 공간에서, 임의의 수의 기체 배선들 및 개구 영역들이 사용될 수 있다. 각 기체 배선은 소정 수의 퍼지 기체 배선, 반응 기체 배선 및 교차부를 가질 수 있다. 다른 예로, 적어도 하나의 반응 공간에서는 플라즈마가 발생될 수 있다. 이러한 경우, 플라즈마가 발생되는 반응 공간은, 미국 특허 US 6,539,891에 개시되어 있는 전기 용량성 결합된 RF 전극과 같은, 인 시투 방식 또는 다이렉트 플라즈마 발생기를 포함할 수 있다. RF 전극은 샤워 헤드 형태를 가질 수도 있다. 다른 예에서, 하나 이상의 반응 공간들은 원격 플라즈마(또는 래디컬) 발생기로부터 여기된 종들, 예를 들어 이온들 및 래디컬들을 받을 수 있다. 다른 예에서는, 임의의 퍼지 통로 및/또는 배치 통로들이 사용될 수 있다.
앞에서 설명한 본 발명의 실시예에 따른 증착 장치는 제어 시스템 또는 제어기(도시하지 않음)를 포함할 수 있다. 제어 시스템(제어기)은 반응물 펄싱, 퍼지 기체 펄싱, 반응물 제거, 퍼지 기체 제거, 부산물 제거, 기판 지지 플랫폼의 이동, 웨이퍼 체류 시간, 각 반응 공간 내의 압력, 펌프, 기판 온도, 그리고 인시투 및/또는 원격 플라즈마 발생 등과 같은 다양한 웨이퍼 공정 단계를 제어한다. 제어 시스템(제어기)은 서로 통신 가능한 하나 이상의 컴퓨터들과 본 발명의 실시예에 따른 증착 방법을 구현하도록 증착 장치를 처리하는 다양한 처리 유닛들을 포함할 수 있다.
다중 웨이퍼 원자층 증착 장치의 동작
이제, 도 2 내지 도 4b와 함께 도 7a 내지 도 9b를 참고하여 본 발명의 실시예에 따른 증착 장치를 이용한 증착 방법에 대하여 상세하게 설명한다. 그러나 본 발명의 실시예에 따른 증착 방법은 순차적으로 이동하는 기판 지지 플랫폼을 포함하는 증착 장치에 한정되지 않고 다른 증착 장치에도 적용될 수 있다. 기판 지지 플랫폼은 웨이퍼들을 다른 반응 공간들 사이에서 연속적으로 이동할 수 있다. 한 웨이퍼가 서로 다른 반응 공간들 모두를 통과한 경우, 하나의 원자층 증착 사이클이 종료되는데, 이러한 공정 동안, 기판 지지 플랫폼은 완전히 회전했을 수 있고, 또는 부분적으로 회전했을 수도 있다. 한 실시예에서, 원하는 수의 반응 공간에 대해 한 사이클을 완료한 후에, 이러한 웨이퍼들을 이송하기 위한 기판 지지 플랫폼의 회전은 반대로 이루어질 수도 있다. 예를 들어, 시계 방향에서 반시계 방향으로 회전 방향이 바뀔 수 있고, 또는 바로 제1 반응 공간으로 직접 이동하거나, 반대 순서로 중간의 반응 공간들을 다시 이용할 수 있다.
도 7a 내지 도 7c를 참고하면, 도 2 및 도 3에 도시한 다중 웨이퍼 원자층 증착 장치는 복수의 웨이퍼들을 처리하는데 사용될 수 있다. 도 7a에 도시한 바와 같이, 제1 웨이퍼(W1)는 제1 반응 공간(245)에 노출되어 있고, 제2 웨이퍼(W2)는 제2 반응 공간(246)에 노출되어 있고, 제3 웨이퍼(W3)는 제1 반응 공간(247)에 노출되어 있고, 그리고 제4 웨이퍼(W4)는 제1 반응 공간(248)에 노출되어 있으며, 제1 시간 주기 동안 제1 반응물(A) 펄스를 제1 및 제3 반응 공간(245, 247)에 가하 고, 제2 시간 주기 동안 제2 반응물(B) 펄스를 제2 및 제4 반응 공간(246, 248)에 가한다. 제1 시간 주기와 제2 시간 주기는 서로 같을 수 있다. 그러나 회전 가능한 기판 지지 플랫폼을 포함하는 증착 장치에서 각 웨이퍼는 복수의 반응 공간에서 동시에 동일한 체류 시간(residence time)을 가짐에도 불구하고, 본 발명의 실시예에 따른 증착 방법은 다른 반응 공간 내의 다른 반응물에 대하여 서로 다른 펄스 시간을 적용할 수 있다. 즉, 각 챔버 내에 반응물과 퍼지 기체들을 교대로 주입함으로써, 증착 장치에 대한 웨이퍼의 체류 시간에 비하여 펄스 시간을 줄일 수 있다. 펄스를 가하는 동안, 제1 및 제1 반응물들(A, B) 및 임의의 부가적인 반응 부산물들은 반응 공간들(245 내지 248)로부터 배기(E)된다. 반응 공간들(245 내지 248)로부터 초과 반응물 및 반응 부산물들을 배기하는 배기구들은, 앞에서 설명한 바와 같이, 서로 분리되어 있다. 제1 및 제2 반응물들(A, B)은 각각 제1 및 제2 웨이퍼들의 표면과 반응하여, 그 표면 위에 단일층의 물질을 증착한다. 네 개의 반응 공간을 포함하는 실시예에서, 반응물들(A, B)은 또한 각기 제3 웨이퍼와 제4 웨이퍼에 노출된다. 또한, 제1 및 제2 반응물들(A, B)은 표면 위에 존재하는 막을 화학적으로 변화시킬 수도 있다. 제1 및/또는 제2 반응물들은 플라즈마로 여기된 증기상 물질, 예를 들어 플라즈마로 여기된 수소(H2)와 같은 물질을 포함할 수 있다.
제1 및 제2 시간 주기 각각이 지난 후에, 제1 및 제2 반응물(A, B)(과 임의의 부산물)은, 퍼지 기체(P) 주입 및/또는 펌핑 시스템에 의한 진공 발생을 통해, 제1 및 제2 반응 공간으로부터 제거된다. 한 실시예에 따른 증착 방법에서는, 펄싱이 끝나고 퍼지 기체가 주입되는 시간 사이에는 시간 간격이 있을 수 있다. 다른 실시예에 따른 증착 방법에서는, 펄싱이 끝난 후 바로 퍼징이 시작되어, 펄싱과 퍼지 기체 주입 사이에는 시간 간격이 존재하지 않을 수 있다. 바람직하게는, 제1, 제2, 제3 및 제4 웨이퍼들은 각 반응 공간들(245 내지 248)에서 같은 시간 동안 머무를 수 있는데, 즉 각 반응 공간에서 웨이퍼들은 동일한 체류 시간을 가질 수 있다. 또한, 바람직하게는 제1 및 제2 시간 주기 중 적어도 하나 또는 두 시간 주기 모두는 체류 시간보다 짧을 수 있다.
다음으로, 도 7b를 참고하면, 제1 웨이퍼(W1)는 옆으로 이동하여 제2 반응 공간(246)에 장착되고, 제2 웨이퍼(W2)는 옆으로 이동하여 제3 반응 공간(247)에 장착되고, 제3 웨이퍼(W3)는 옆으로 이동하여 제4 반응 공간(248)에 장착되고, 그리고 제4 웨이퍼(W4)는 옆으로 이동하여 제1 반응 공간(245)에 장착된다. 이러한 측면 이동은 상하 이동과 함께 이루어질 수 있는데, 이에 대하여는 도 4a, 도 4b 및 도 8a 내지 도 8f를 참고하여 뒤에서 설명한다. 이러한 웨이퍼들의 이동 동안, 반응 공간들(245 내지 248)은 퍼지되고 및/또는 펌핑될 수 있다. 본 실시예에서, 제2 반응 공간(246)은 제1 및 제3 반응 공간들(245 및 247)에 순환적으로 인접하고, 제4 반응 공간(248)은 제1 및 제3 반응 공간들(245 및 247)에 순환적으로 인접하여 있다. 이러한 웨이퍼들의 측면 이동은 제1 및 제2 웨이퍼들을 지지하도록 구성된 기판 지지 플랫폼의 회전 이동에 의하여 수행될 수 있다.
다음으로, 도 7c를 참고하면, 제1 웨이퍼(W1)의 상부 표면은 제2 반응 공 간(246)에 노출되고, 제2 웨이퍼(W2)의 상부 표면은 제3 반응 공간(247)에 노출되고, 제3 웨이퍼(W3)의 상부 표면은 제4 반응 공간(248)에 노출되고, 그리고 제4 웨이퍼(W4)의 상부 표면은 제1 반응 공간(245)에 노출되고, 제2 시간 주기 동안 제2 및 제4 반응 공간(246 및 248)에 제2 반응물(B)의 펄스가 가해지고, 제1 시간 주기 동안 제1 및 제3 반응 공간(245 및 247)에 제1 반응물의 펄스가 가해진다. 제1 및 제2 반응물들(A 및 B)은 제1 내지 제4 웨이퍼들(W1 내지 W4)의 상부 표면과 반응하여 그 표면 위에 물질을 변화시키는데, 이러한 변화에는 표면 위에 물질 층을 증착하거나, 존재하는 막들을 화학적으로 변화시키는 것, 즉 환원하거나, 질화, 탄소화, 또는 산화시키는 것들을 포함한다.
제1 및 제2 시간 주기 각각이 지난 후에, 제1 및 제2 반응물들(A 및 B)(및 임의의 부산물들)은, 퍼지 기체(P) 주입 및/또는 펌핑 시스템에 의한 진공 발생을 통해, 제1 내지 제4 반응 공간들(245 내지 248)로부터 제거된다.
다음으로, 각 웨이퍼들(W1 내지 W4)은 인접한 반응 공간으로 수평 이동한다. 이러한 이동 동안, 반응 공간들(245 내지 248)은 퍼지 및/또는 펌핑될 수 있다. 제1 웨이퍼(W1)는 옆으로 이동하여 제3 반응 공간(247)에 장착되고, 제2 웨이퍼(W2)는 옆으로 이동하여 제4 반응 공간(248)에 장착되고, 제3 웨이퍼(W3)는 옆으로 이동하여 제1 반응 공간(245)에 장착되고, 그리고 제4 웨이퍼(W4)는 옆으로 이동하여 제2 반응 공간(246)에 장착된다. 이러한 측면 이동에 이어서, 제1 웨이퍼(W1)의 상부 표면은 제3 반응 공간(247)에 노출되고, 제2 웨이퍼(W2)의 상부 표면은 제4 반응 공간(248)에 노출되고, 제3 웨이퍼(W3)의 상부 표면은 제1 반응 공간(245)에 노출되고, 그리고 제4 웨이퍼(W4)의 상부 표면은 제2 반응 공간(246)에 노출된다. 다음으로, 제1 및 제3 웨이퍼들(W1 및 W3)은 제1 반응물(A)에 노출되거나 또는 접촉하고, 제2 및 제4 웨이퍼들(W2 및 W4)은 제2 반응물(B)에 노출되거나 접촉한다. 이때, 다른 실시예에 따른 증착 방법에서는 전방 회전 이동 대신에 후방 회전 이동하여, 제1 내지 제4 웨이퍼들(W1 내지 W4)은 다시 각각 제1 내지 제4 반응 공간(245 내지 248)으로 측면 이동할 수도 있다. 후방 이동 후, 제1 및 제3 웨이퍼들(W1 및 W3)은 제1 반응물(A)에 노출되고, 제2 및 제4 웨이퍼들(W2 및 W4)은 제2 반응물(B)에 노출된다. 이러한, 후방 회전 이동은 연속 이동에 요구되는 값비싼 이음쇠(universal joint) 없이 기체 및/또는 전기적 연결을 용이하게 할 수 있다. 다른 실시예에 따른 증착 방법에서, 웨이퍼들은 반응기들 사이를 회전하여 연달아 공정을 진행할 수 있다. 다른 실시예에 따른 증착 방법에서, 앞서 설명한 공정 단계들은 적어도 10회 반복될 수 있다.
앞서 설명한 실시예들은 한 웨이퍼가 두 가지의 반응 기체들에 연속하여 교대로 노출되는 "두 단계" 증착 공정에 적용될 수 있다. 본 실시예에서, 두 단계 동안 기판 지지 플랫폼은 반만 회전하고, 원자층 증착 사이클은 완료되는데, 이때, 기판 지지 플랫폼은 한 단계마다 전체 한 회전의 1/4씩 회전한다. 본 실시예에서, 제1 반응물(A)의 펄스는 제1 및 제3 반응 공간(245 및 247)에 가해지고, 제2 반응물(B)의 펄스는 제2 및 제4 반응 공간(246 및 248)에 가해지는데, 다른 실시예에 따른 증착 방법에서는 각 반응 공간을 서로 다른 반응물에 노출될 수 있다. 이러한 실시예는 하나의 웨이퍼가 네 개의 반응물들에 각각 순서대로 노출되는 "네 단 계" 증착 공정에 적용될 수 있다. 만일 "세 단계" 증착 공정이 요구되는 경우에는, 네 개의 반응 공간들(245 내지 248) 중 하나는 단지 퍼지 기체만 공급되도록 구성되고, 나머지 세 개의 반응 공간은 각각 서로 다른 반응물에 노출된다. 또한, 다른 한 실시예에 따른 증착 방법에서는, 네 개의 반응 공간들 중 단지 두 개의 반응 공간들만 반응물에 노출되고, 나머지 두 개의 반응 공간들은 퍼지 기체만 유입되도록 구성되어, 웨이퍼가 나머지 두 개의 반응 공간들에 장착되는 경우, 반응 기체와 접촉하지 않을 수 있다. 이러한 실시예는 달라붙어 있는 반응물 또는 부산물들을 용이하게 퍼지시킬 수 있는데, 이 경우 반응 공간을 정의하는 챔버 벽 또는 복수의 챔버 벽을 완전하게 퍼지할 필요가 없다. 이러한 웨이퍼에 달라붙어 있는 반응물을 가지는 웨이퍼는 퍼지 기체만 흐르는 반응 공간으로 이동하여 달라붙어 있는 반응물을 제거하고, 같은 시간 동안 다른 웨이퍼들은 반응 단계를 거칠 수 있다. 네 개의 반응 공간들을 포함하는 증착 장치를 이용한 다른 한 실시예에 따른 증착 방법에서, 하나의 웨이퍼는 제1 반응물, 제1 퍼지 기체, 제2 반응물, 그리고 제2 퍼지 기체에 연속하여 노출될 수 있고, 이때 기판 지지 플랫폼은 한 단계마다 전체 한 회전의 1/4씩 회전함으로써, 전체 한 회전을 완료하여, 원자층 증착 사이클은 완료된다. 다른 실시예에 따른 증착 방법에서, 제1 및 제3 반응 공간(245 및 247)에는 제1 반응물(A)이 유입되고, 제2 및 제 4 반응 공간(246 및 248)에는 제2 반응물(B)이 유입되는데, 이때, 제1 반응 공간(245)에 제1 반응물(A)의 펄스를 가하는 시간은 제3 반응 공간(247)에 제1 반응물(A)의 펄스를 가하는 시간과 서로 다를 수 있다. 유사하게, 제2 반응 공간(246)에 제2 반응물(B)의 펄스를 가하는 시 간은 제4 반응 공간(248)에 제2 반응물(B)의 펄스를 가하는 시간과 서로 다를 수 있다. 그러나 각 반응 공간 내에서 각 웨이퍼의 체류 시간은 임의의 사이클 동안 서로 같을 수 있다. 이때, 웨이퍼들이 측면으로 이동하기 전에 퍼징이 시작되므로, 펄싱 시간은 체류 시간보다 짧을 수 있다. 예를 들어, 만일 제1 반응물(A)의 펄스가 제1 및 제3 반응 공간들(245 및 247)에 각각 0.5초와 1초 동안 가해진다면, 각 반응 공간에서의 웨이퍼의 체류 시간은 1.5초일 수 있고, 펄싱 후에, 제1 반응 공간(245)은 1초 동안 퍼지되고, 제3 반응 공간(247)은 0.5초 동안 퍼지된다.
도 4a 및 도 4b에 도시한 증착 장치를 이용하는 본 발명의 한 실시예에 따른 증착 방법은 측면, 즉 수평 이동 외에, 수직, 즉 상하 이동을 포함한다. 도 4a를 참고하면, 덮개(330)의 하부 부분은 회전식 기판 지지 플랫폼(310)에 접촉하여 각 반응기 홈(369 및 379)을 밀폐시킬 수 있다. 하부 부분은 웨이퍼들(W1 및 W2)의 상부 가장자리와 접촉하여 공간을 밀폐한다. 이러한 밀폐는 반응기들(360 및 370) 내의 기체들이 서로 만나거나, 또는 두 개 이상의 반응 공간을 가지는 증착 장치의 경우 다른 반응기들 내의 기체들과 만나는 것을 방지하여, 반응 기체들은 단지 각 반응 공간들(360 및 370) 및 대응하는 유입구 및 배출구에만 존재할 수 있게 한다. 웨이퍼들(W1 및 W2)의 상부 표면은 각각 반응 공간들(360 및 370)에 노출되고, 제1 반응물의 펄스는 제1 시간 주기 동안 반응 공간(360)에 가해지고, 제2 반응물의 펄스는 제2 시간 주기 동안 반응 공간(370)에 가해진다. 이때, 제1 및 제2 시간 주기는 동일할 필요는 없다. 펄스를 가하는 동안에, 반응 공간들을 제외한 다른 영역은 제1 및 제2 반응물에 노출되지 않는다. 다른 실시예에 따른 증착 방법에서, 펄스를 가하는 동안, 제1 및 제2 반응 기체들은 배기구들(363 및 373)을 통해 반응 공간들(360 및 370)로부터 계속하여 흘러나올 수도 있다.
제1 시간 주기 후에, 제1 반응 기체의 펄스는 종료된다. 그 후, 제1 반응 기체는 퍼지 기체를 흘리는 것에 의하여 반응 공간(360)으로부터 제거된다. 퍼지 기체는 제1 반응 기체의 유입이 멈춤과 동시에 흐르기 시작할 수 있다. 퍼지 기체는 기체 유입구(367)를 통해 유입되고, 반응 남아 있는 초과 제1 반응물, 반응 부산물, 그리고 퍼지 기체는 배기구(362)를 통해 반응 공간(360)으로부터 배출될 수 있다. 유사하게, 제2 시간 주기 후에, 제2 반응 기체의 펄스가 종료된다. 그 후, 제2 반응 기체는 퍼지 기체를 흘리는 것에 의하여 반응 공간(370)으로부터 제거된다. 퍼지 기체는 기체 유입구(377)를 통해 유입되고, 배출구(373)를 통해 반응기(370)로부터 배출된다. 제1 및 제2 반응 기체들의 펄스를 가한 후, 반응기들(360 및 370)을 퍼지함으로써, 웨이퍼들(W1 및 W2)의 반응성 표면뿐만 아니라, 기판 지지 플랫폼(310)의 수직 이동 및 회전 이동 동안 기판 지지 플랫폼(310)의 일부에도 제1 및 제2 반응 기체들이 흡착되는 것을 막을 수 있다.
다른 한 실시예에 따른 증착 방법에서는, 만일 제1 반응 기체 및/또는 제2 반응 기체가 수소와 같은 캐리어 기체를 사용하여 반응 공간(360 및 370)으로 유입되는 경우, 반응기체의 흐름을 중지하고 계속하여 캐리어 기체를 흘림으로써, 제1 및/또는 제2 반응 기체들은 제거될 수 있는데, 이때 캐리어 기체는 퍼지 기체의 역할을 한다. 이러한 경우에, 캐리어 기체는 반응 공간에 연결되어 있는 기체 배관(반응 공간(360)의 경우, 기체 배선(367))을 통해 공급되고, 반응 기체는 또 다른 기체 배선(예를 들어, 366)을 통해 공급될 수 있다. 다른 경우, 미국 특허 US 6,783,590에 개시되어 있는 비활성 기체의 밸브를 가지는 증착 장치를 이용하여, 퍼지 기체의 흐름은 반응 기체 공급을 중단할 수 있다.
도 4b를 참고하면, 제1 웨이퍼(W1)를 제1 반응 기체에 노출하고, 제2 웨이퍼(W2)를 제2 반응 기체에 노출한 후에, 기판 지지 플랫폼(310)은 수직으로 이동하여, 웨이퍼들(W1 및 W2)은 각기 반응 공간들(360 및 370)로부터 이격된다. 이처럼, 웨이퍼들(W1 및 W2)이 각기 반응 공간들(360 및 370)로부터 이격되어 홈들(369 및 379)이 드러난 후에, 기판 지지 플랫폼(310)은 수평으로 이동하거나, 제1 웨이퍼(W1)를 제2 반응기(370) 아래로, 제2 웨이퍼(W2)를 제1 반응기(360) 아래로 각각 이동한다. 기판 지지 플랫폼(310)의 이동 동안, 반응 공간들(360 및 370)은 계속하여 퍼지될 수 있다. 퍼지 기체는 통로(350)와, 덮개(330)와 기판 지지 플랫폼(310) 사이의 공간(325)을 통해, 그리고 기판 지지 플랫폼(310)과 장치의 하부 부분(32) 사이의 공간(326)을 통해 흐른다. 반응 공간들로 유입된 모든 퍼지 기체들은 배출구(363 및 373)를 통해 배출된다. 웨이퍼들을 수평으로 이동한 후에, 기판 지지 플랫폼(310)은 위쪽으로 이동하여 다시 홈들(369 및 379)을 다시 밀폐한다. 이때, 웨이퍼들(W1 및 W2)의 위치는 서로 바뀌어 있다.
웨이퍼들(W1 및 W2)의 상부 표면들은 각기 반응 공간들(360 및 370)에 노출되어 있고, 제1 반응 기체는 제1 시간 주기 동안 반응 공간(360)에 주입되고, 제2 반응 기체는 제2 시간 주기 동안 반응 공간(370)에 주입된다. 다음, 반응 공간들(360 및 370)은 퍼지 되고 기판 지지 플랫폼(310)은 웨이퍼들(W1 및 W2)의 위치 를 쉬프트한다. 이러한 반응물들을 주입하고 웨이퍼들을 쉬프트하는 단계는 웨이퍼들 위에 원하는 두께의 박막이 증착될 때까지 반복된다.
도 4a 및 도 4b에서는 기판 지지 플랫폼(310)의 이동 시, 웨이퍼들(W1 및 W2)의 위치가 서로 변하지만, 다중 웨이퍼 원자층 증착 장치(300)가 둘 이상의 반응 공간들을 포함할 경우 다른 웨이퍼와 반응 공간 구성이 적용될 수도 있다. 예를 들어, 제1 웨이퍼가 반응 공간(370)으로 이동할 때, 제3 웨이퍼가 반응 공간(360)에 장착될 수도 있다. 또는 제3 웨이퍼 및 제4 웨이퍼가 반응실들(360 및 370)에 각기 장착될 수도 있다. 제1 웨이퍼 및/또는 제2 웨이퍼는 또한 중간 반응실들로 이동할 수도 있다.
도 4a 및 도 4b에 도시한 증착 장치를 이용하는 증착 방법에서, 반응 공간들(360 및 370) 모두에 노출된 표면 위에만 증착이 일어난다. 즉, 원자 증착은 표면이 모든 반응물에 순차적으로 노출된 후에만 발생한다. 따라서, 웨이퍼들의 상부 표면 가장자리와 반응 공간의 수평 하부면 사이가 인접하거나 접촉하여 반응 공간이 밀폐되어야 웨이퍼들 위에 증착이 일어난다. 다른 실시예에 따른 증착 방법에서, 반응 공간들(360 및 370)의 하부 부분과, 기판 지지 플랫폼 중 웨이퍼에 인접한 일부분 사이가 서로 인접하거나 접촉하여 반응 공간이 밀폐되었을 때 반응 공간들(360 및 370)에 노출된 웨이퍼들 및 웨이퍼에 인접한 기판 지지 플랫폼 부분에 증착이 일어난다. 증착 장치에서, 웨이퍼가 아닌 다른 부분에 증착이 발생하지 않아야 막 박리로 인한 입자 발생을 줄일 수 있다. 또한, 반응 공간에서 반응 기체들을 배출하는 배기구들 내에서 반응 기체들이 서로 분리되어 있어야 입자 발생 을 줄일 수 있다.
앞서 설명한 바와 같이, 기판 지지 플랫폼(310)은 측면 또는 회전 운동 후 수직으로, 즉 상하로 이동하여 반응 공간들(360 및 370)로부터 분리되는데, 다른 실시예에 따른 증착 장치를 사용하는 증착 방법에서는 기판 지지 플랫폼(310)은 반응 공간들로부터 수직으로 이동함과 동시에 측면으로 이동하여 반응 공간들로부터 비스듬히 하강할 수도 있다. 이때 수직 이동을 먼저 시작함으로써, 반응 공간들의 하부 부분에 의한 측면 이동의 어려움을 없애서, 비스듬히 하강할 수 있다. 기판 지지 플랫폼(310)이 반응 공간들로부터 분리되는 것과 유사하게, 기판 지지 플랫폼(310)이 반응 공간들과 접촉할 때도, 수직으로 이동함과 동시에 측면으로 이동하여 비스듬히 상승하여 반응 공간들과 접촉할 수 있다.
앞에서 설명한 본 발명의 실시예들에 따른 증착 방법들은 증착 장치에 포함되어 있는 제어 시스템 또는 제어기에 의하여 제어되는데, 예를 들어, 은 반응물 펄싱, 퍼지 기체 펄싱, 반응물 제거, 퍼지 기체 제거, 부산물 제거, 기판 지지 플랫폼의 이동, 웨이퍼 체류 시간, 각 반응 공간 내의 압력, 펌프, 기판 온도, 그리고 인시투 및/또는 원격 플라즈마 발생 등과 같은 다양한 웨이퍼 공정 단계들은 제어 시스템에 의하여 제어 가능하다.
이제, 도 4a 내지 도 4b에 도시한 본 발명의 한 실시예에 따른 다중 웨이퍼 원자층 증착 장치를 이용한 증착 방법에서, 기체 흐름 및 웨이퍼 이동에 대하여 도 4a 내지 도 4b 및 도 8a 내지 도 8f를 참고로 설명한다. 도 8a 내지 도 8f는 본 발명의 실시예에 따른 원자층 증착 장치에서, 한 반응실에 대한 기체 흐름 및 웨이퍼 이동을 순차적으로 도시한 개념도이다. 설명을 간단히 하기 위하여, 도 8a 내지 도 8f에서는 다중 웨이퍼 원자층 증착 장치 중 하나의 반응 공간을 설명에 필요한 부분만 간략하게 나타내었다. 그러나 본 발명의 실시예에 따른 증착 방법은 적어도 하나 이상의 반응 공간들을 포함하는 증착 장치에서 구현될 수 있고, 예를 들어, 네 개의 증착 공간들을 포함할 수도 있다.
도 8a 내지 도 8f를 참고하면, 증착 장치는 복수의 기체 흐름 통로들을 가지는 덮개(330) 및 복수의 웨이퍼들을 지지하는 기판 지지 플랫폼(310)을 포함하는데, 기체 흐름 통로는 반응 공간(360)으로 퍼지 기체와 반응 기체들을 번갈아 주입하기 위한 기체 흐름 통로(368a)와 반응 공간(360)으로부터 기체를 배출하기 위한 배출 통로(363)를 포함한다. 반응 공간(360)은 홈(369)을 포함하는데, 기판 지지 플랫폼(310)(또는 도시한 웨이퍼(W1)의 상부 표면)과 반응 공간(360)을 정의하는 수평 하부판(369a) 사이의 접촉에 의하여 밀폐될 수 있다.
도 8a를 참고하면, 제1 웨이퍼(W1)의 상부 표면은 반응 공간(360)에 노출되어 있고, 제1 반응물(A)이 소정 시간 주기 동안 반응 공간(360)으로 주입된다. 제1 반응물(A)은 노출되어 있는 웨이퍼(W1)의 상부 표면에 접촉한다. 제1 반응물(A)을 주입하는 제1 시간 주기는 웨이퍼(W1)의 노출된 상부 표면을 포화시키기에 충분할 수 있다. 예를 들어, 제1 반응물(A)이 웨이퍼(W1) 위에 충분히 원래 상태로 흡착되어 웨이퍼(W1) 상부 표면 위에 단일층의 물질을 형성하기에 충분하도록 제1 시간 주기가 정해질 수 있다.
도 8b를 참고하면, 소정의 시간 주기가 지난 후에, 반응물 제거 단계를 수행 하는데, 반응 기체(A)의 공급이 중단되고, 퍼지 기체를 흘리거나 펌핑 시스템에 의하여 진공 상태를 형성함으로써, 초과한 기체(A)와 임의의 부산물들이 반응 공간(360)으로부터 제거된다. 기체(A)가 예를 들어 수소와 같은 캐리어 기체를 이용하여 반응 공간(360)으로 유입되는 경우, 반응 기체(A)의 제거 단계는 기체(A)의 공급을 중단하는 단계와 캐리어 기체의 흐름을 계속하는 단계를 포함할 수 있다. 이 경우, 캐리어 기체는 퍼지 기체의 역할을 한다. 여기서, 반응 기체(A)의 주입 단계는, 웨이퍼가 반응 공간(360)으로부터 이동하기에 앞서, 퍼지 기체 공급으로 대체될 수도 있다.
다음으로, 도 8c를 참고하면, 기판 지지 플랫폼(310)은 도면에서 화살표로 표시한 바와 같이, 반응 공간(360)으로부터 수직으로 이동하여 분리될 수 있다. 이러한 수직 이동 동안, 반응 공간(360) 및 반응 공간(360) 아래의 공간(325)은 퍼지되어, 반응 공간(360)으로부터 기판 지지 플랫폼(310) 위로 이동한 초과 반응물, 부산물, 오염물 등을 방지할 수 있다. 공간(325)을 퍼지하는 동안, 퍼지 기체는 도 2에 도시한 바와 같이, 기판 지지 플랫폼(310)의 측면 주변의 배기구들(도시하지 않음)로 이동할 수 있다. 기판 지지 플랫폼(310)이 반응 공간(360)으로부터 수직으로 이동하여 분리됨으로써, 기판 지지 플랫폼(310)(또는 웨이퍼(W1)의 상부 표면 부분들)과 반응 공간(360)을 정의하는 수평 하부판(369a) 사이의 밀폐는 해제되고, 홈(369)이 드러난다. 퍼지 기체는 통로(368a)뿐만 아니라 홈(369)을 통해 반응 공간으로 흐르고, 배기 통로(363)를 통해 배출된다. 반응 공간(360)에 남아 있는 반응 기체들은 모두 퍼지 기체 흐름을 따라서 배기 통로(363)를 통해 반응 공 간(360)으로부터 퍼지된다. 기판 지지 플랫폼(310)이 수평 이동할 수 있도록 기판 반응 공간(360)으로부터 충분히 아래 방향으로 이동하면, 기판 지지 플랫폼(310)의 수직 이동은 종료한다.
도 8d를 참고하면, 기판 지지 플랫폼(310)은 반응 공간(360) 아래로 수직 이동된 제1 웨이퍼(W1)를 홈(369) 아래의 영역으로부터 수평 이동한다. 동시에, 제1 웨이퍼(W2)가 홈(369) 아래의 영역으로 이동된다. 제1 웨이퍼(W1)는 다른 반응 공간(도시하지 않음)의 공간 아래로 이동되거나 다중 웨이퍼 원자층 증착 장치 외부로 이송될 수 있다. 이러한 수평 이동은 중앙축(도시하지 않음)에 대한 기판 지지 플랫폼(310)의 회전으로 구현될 수 있다. 수평 이동 동안, 반응 공간(325) 및 반응 공간(360) 아래의 공간(325)은 퍼지되어 반응 공간(360)으로부터 초과 반응물들, 반응 부산물들, 오염물들이 기판 지지 플랫폼(310) 위에 이동하는 것을 방지할 수 있다. 수평 이동(또는 회전)은 제2 웨이퍼(W2)가 홈(369) 아래에 위치하게 되면 종료된다.
다음으로, 도 8e를 참고하면, 기판 지지 플랫폼(310)은 제2 웨이퍼(W2)를 반응 공간(360) 쪽으로 수직 이동한다. 이러한 수직 이동은 기판 지지 플랫폼(310)(또는 제2 웨이퍼(W2)의 상부 표면 부분)이 반응 공간(360)을 정의하는 하부 수평판(369a)과 접촉하여 기판 플랫폼(310)(또는 제2 웨이퍼(W2)의 상부 표면 부분)과 하부 수평판(369a)이 밀폐되면 종료된다. 그러나 다른 실시예에서는 기판 플랫폼(310)(또는 제2 웨이퍼(W2)의 상부 표면 부분)과 하부 수평판(369a) 사이에 소정 크기의 틈이 형성되거나, 소정 간격으로 이격된 경우에 이러한 수직 이동이 종료될 수 있다. 수직 이동 동안, 반응 공간(360)과 반응 공간(360) 아래의 공간(325)은 퍼지되어, 반응 공간(360)으로부터 초과 반응물들, 반응 부산물들, 오염물들이 기판 지지 플랫폼(310) 위에 이동하는 것을 방지할 수 있다.
도 8f를 참고하면, 제2 웨이퍼(W2)의 상부 표면은 반응 공간(360)에 노출되고, 반응 기체(A)는 다시 소정 시간 주기 동안 반응 공간(360)에 유입되는데, 이때 소정 시간 주기는 제1 웨이퍼(W1)에 반응 기체(A)를 노출하는 시간 주기와 동일할 수 있다. 반응 기체(A)는 제2 웨이퍼(W2)의 상부 표면과 반응하여, 기존에 존재하던 막을 화학적으로 변화시키거나 하나의 층 이하로 흡착될 수도 있다.
도 8a 및 도 8f에 도시한 단계와 같이 반응 공간들은 밀폐되는 실시예들에서, 반응 공간들 각각의 압력은 반응 기체 펄스 주입 동안 독립적으로 제어될 수 있다. 이에 의하면, 웨이퍼를 높은 부분압을 가지는 반응물에 노출함으로써 짧은 시간에 웨이퍼 표면을 쉽게 포화시킬 수 있다. 도 8b에 도시한 바와 같이, 수직 이동 전 퍼지하는 단계 동안 챔버들 내의 압력은 일정해 지지만, 증착 장치의 동작에는 영향을 미치지 않고, 입자 오염에 관련된 문제점을 해결할 수 있다.
이제, 도 9a 내지 도 9b를 참고로 하여, 본 발명의 실시예에 따른 공간 및 시간 동시 분할 펄싱 방법에 대하여 설명한다. 도 9a 내지 도 9b는 본 발명의 실시예에 따른 공간 및 시간 동시 분할 펄싱 방법을 나타내는 개념도이다.
도 9a를 참고하면, 본 발명의 실시예에 따른 박막 증착 방법에서는, 복수의 웨이퍼들이 소정의 사이클 동안 각 반응 공간들에서 동일한 체류 시간을 가지는 경우라도, 금속 소스 기체(S), 반응 기체(R), 그리고 퍼지 기체(P)의 공급 주기는 변 화가능하다. 도 9a에서는 반응 공간에서의 웨이퍼들의 공통 체류 시간을 "1"이라고 하였을 때, 각 펄스 지속 시간을 도시하였다. 이때, 한 웨이퍼는 다중 웨이퍼 원자층 증착 장치의 네 개의 반응 공간들 또는 챔버들에서 연속하여 처리된다. 도 9a에 도시한 바와 같이, 제1 반응 공간에서는, 퍼지 기체의 펄스가 체류 시간의 1/3 동안 가해지고, 이어서 소스 기체의 펄스가 체류 시간의 1/3 동안 가해지고, 그리고 퍼지 기체의 펄스가 다시 체류 시간의 1/3 동안 가해진다. 다음으로, 웨이퍼는 제2 반응 공간으로 이동하고, 제2 반응 공간에는 체류 시간 동안 퍼지 기체의 펄스가 가해진다. 이어서, 웨이퍼는 제3 반응 공간으로 이동한다. 제3 반응 공간에서, 퍼지 기체 펄스가 체류 시간의 1/3 동안 가해지고, 이어서 체류 시간의 2/3 동안 반응 기체 펄스가 가해진다. 다음으로, 웨이퍼가 제4 반응 공간으로 이동하고, 제4 반응 공간에서는 퍼지 기체 펄스가 체류 시간 동안 가해진다. 이렇게 해서, 웨이퍼는 하나의 원자층 증착 사이클을 완료하였다. 이러한 사이클은 웨이퍼 위에 원하는 두께의 박막이 증착될 때까지 반복될 수 있다.
도 9b에서는 도 9a의 원자층 증착 사이클을 웨이퍼의 관점으로 나타낸다. 네 개의 반응 공간을 포함하는 다중 웨이퍼 원자층 증착 장치에서, 소스 기체와 반응 기체 펄스 시간(도 9a에서는 각각 체류 시간의 1/3과 2/3)이 체류 시간 보다 짧고, 퍼지 기체 펄스 시간(도 9a에서는 체류 시간의 5/3 및 4/3)은 체류 시간 보다 길도록 구성된 임의의 원자층 증착 사이클이 구현가능하다. 또한, 도 4a 및 도 4b, 그리고 도 7a 내지 도 7c에서 설명한 전용 퍼지 챔버를 포함하지 않는 경우, 원자층 증착 사이클이 소스 기체와 반응 기체의 기체상 혼합을 방지하도록 구현되 어야 한다는 점 외에는 다른 제한은 없다.
본 발명의 실시예에 따른 증착 방법은 퍼지 기체 공급 주기 동안 웨이퍼를 전송함으로써 퍼지 하는데 소비되는 시간을 최소화할 수 있다. 웨이퍼 전송 시간은 적어도 부분적으로 퍼지 시간과 일치한다. 또한, 본 발명의 실시예에 따른 증착 방법은 복수의 웨이퍼들을 동시에 처리할 수 있어서, 웨이퍼 처리량이 매우 증가한다. 또한, 본 발명의 실시예에 따른 반응 공간들은 서로 간에 실질적으로 독립되어, 입자 발생 또는 입자 오염과 관련한 문제는 제거 또는 충분히 감소한다. 웨이퍼가 한 반응 공간으로부터 다른 반응 공간으로 이송되는 동안 반응 공간들과 증착 챔버의 잔존물 퍼지함으로써, 웨이퍼 표면뿐만 아니라 기판 지지대 및 반응 공간 외부의 다른 반응기 부분에 원하지 않는 증착이 방지될 수 있다. 각 반응 공간은 단지 하나의 반응 물질에 노출되므로, 각 반응 공간들의 측벽에 막이 증착되는 것을 방지할 수 있다.
본 발명의 실시예에 따른 원자층 증착 방법이 인시투 플라즈마 발생 반응기들을 포함하는 증착 장치에 이용되는 경우, 플라즈마 강화 원자층 증착(PECVD)에 사용될 수 있다. 적어도 하나의 반응 공간들은 인시투로 플라즈마를 계속하여 발생하도록 구성된 인시투 플라즈마 발생기, 예를 들어 샤워 헤드 형태의 플라즈마 발생기를 포함할 수 있다. 웨이퍼 처리 동안, RF 전력이 플라즈마 발생기에 계속하여 공급되고, 예를 들어 수소 기체와 같은 플라즈마로 여기된 증기상 종들이 반응 공간내에서 계속하여 발생한다. 플라즈마 강화 원자층 증착법은 플라즈마 여기된 종들을 포함하는 반응 공간뿐만 아니라 플라즈마 여기 종들을 포함하지 않는 다 른 반응 공간들을 통해 웨이퍼들을 이동함으로써 수행된다. 이때, RF 파워 스위치는 매 분당 복수 번 또는 수십 번씩 커지거나 꺼질 필요가 없다. 따라서, RF 파워 소스의 장시간 안정성과 관련한 문제점을 해결될 수 있다. 또한, 본 발명의 실시예에 따른 박막 증착 방법을 이용하여 플라즈마 강화 원자층 증착으로 금속 박막을 증착하는 것은 절연체의 증착 방법과 다르지 않다.
앞서 설명한 바와 같이, 본 발명의 실시예들은 원자층 증착법에 관하여 설명되었지만, 화학적 기상 증착법에도 적용될 수 있다. 예를 들어, 하나의 반응 공간에 하나의 반응물 또는 소스 기체 펄스를 가하는 대신에, 복수의 반응물들의 펄스를 동시에 가하여, 복수의 단일층 두께의 박막들을 성장시킬 수도 있다. 개별적인 웨이퍼 또는 기판 표면에 형성되는 박막이 자기 제어 방식이 아닌 경우, 본 발명의 실시예에 따른 증착 방법은 화학적 기상 증착법에 더 적합할 수 있다. 본 발명의 실시예에 따른 증착 장치 및 증착 방법은 한 가지 물질의 층뿐만이 아니라 두 가지 이상의 물질이 겹쳐진 다층 막, 예를 들어 광학 필터(optical filter) 또는 브랙 반사층(Bragg reflector)으로 이용되는 라미네이션 막(laminated films)을 형성하는 데에도 이용할 수 있다.
앞서 설명하였듯이, 본 발명의 실시예에 따른 다중 웨이퍼 원자층 증착 장치 및 그 증착 방법은 자기 제어 표면 반응을 통해 하나씩 처리하는 것에 비하여 증착율을 높일 수 있다. 또한, 퍼지 시간을 조절하여 입자 발생을 허용 가능한 범위 내에서 유지함으로써, 예를 들어 웨이퍼 이동 전에 반응 공간 안에 반응물들의 3%가 남는 것은 허용된다는 식으로, 생산량을 높일 수 있다.
본 발명의 다른 한 실시예에 따른 증착 장치 및 증착 방법은 제어 시스템 또는 제어기(도시하지 않음)를 포함할 수 있다. 제어 시스템(제어기)은 반응물 펄싱, 퍼지 기체 펄싱, 반응물 제거, 퍼지 기체 제거, 부산물 제거, 기판 지지 플랫폼의 이동, 웨이퍼 체류 시간, 각 반응 공간 내의 압력, 펌프, 기판 온도, 그리고 인시투 및/또는 원격 플라즈마 발생 등과 같은 다양한 웨이퍼 공정 단계를 제어한다. 또한, 제어 시스템(제어기)은 RF(radio frequency) 전력 온 시간, RF 전력 크기, RF 전력 주파수, 반응물 농도, 반응물 유입 속도, 반응 공간 압력, 총 기체 유입 속도, 반응물 펄스 지속 시간 및 간격, 그리고 RF 전극 간격 등을 포함하는 모든 플라즈마 발생 변수들을 제어할 수 있다. 제어 시스템(제어기)은 서로 통신 가능한 하나 이상의 컴퓨터들과 본 발명의 실시예에 따른 증착 방법을 구현하도록 증착 장치를 처리하는 다양한 처리 유닛들을 포함할 수 있다. 제어 시스템(제어기)은 기판들 또는 웨이퍼들을 증착 장치로 로딩하고 증착 장치로부터 언로딩하는 것과 같은 로봇의 이동을 제어할 수 있다. 제어 시스템(제어기)은 각 반응 공간들의 스위치들, 도 3에 도시한 스위치들(178, 188, 189, 208)을 제어할 수 있다.
앞에서 설명한 실시예들 중 일부에서, 임의의 구성 요소는 구현가능한 것으로 대체될 수도 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명의 실시예에 따른 증착 장치 및 증착 방법에 의하면, 다중 웨이퍼 동시 처리가 가능할 뿐만 아니라, 동일한 웨이퍼의 체류 시간을 가지는 반응 공간들 사이에서 반응 기체 및 퍼지 기체의 공급 주기를 조절할 수 있어서, 불필요한 곳에서 반응기체 사이의 반응을 줄여서 반응실 내부에의 불필요한 증착에 따른 불순물 입자의 발생을 막는 동시에 웨이퍼의 처리량도 증가할 수 있다.
Claims (22)
- 기판이 장착되어 처리되는 체류 시간이 동일한 복수의 반응 공간들,상기 복수의 반응 공간들에 대응하는 영역에 복수의 기판을 지지하는 기판 지지 플랫폼, 그리고상기 기판 지지 플랫폼의 이동을 제어하고, 각 반응 공간에서 상기 기판에 상기 체류 시간 중 일부 동안 반응 기체를 공급하고 상기 체류 시간 중 일부 동안 퍼지 기체를 공급하도록 구성된 제어 시스템을 포함하고,상기 복수의 반응 공간은 적어도 하나 이상의 기체 소스와 연결되어 있는 기체 유입구를 각기 포함하는 증착 장치.
- 제1항에서,상기 각 반응 공간의 기체 유입구는 하나 이상의 기체 소스의 유입량을 조절하는 스위치와 연결되어 있고,상기 하나 이상의 기체 소스는 반응 기체 및 퍼지 기체를 포함하고,상기 제어 시스템은 상기 스위치를 제어하는 증착 장치.
- 제1항에서,상기 제어 시스템은상기 기판을 상기 복수의 반응 공간들에 순차적으로 통과시켜, 한 번의 증착 사이클을 완료하고,상기 기판에 공급되는 원료 기체와 퍼지 기체의 공급 시간은 각 반응 공간에서 서로 다르고, 그리고상기 한 증착 사이클 동안, 상기 기판에 반응 기체 공급 시간은 상기 체류 시간 보다 짧고, 퍼지 기체 공급 시간은 상기 체류 시간 보다 길도록 제어하는 증착 장치.
- 제1항에서,상기 제어 시스템은상기 복수의 반응 영역 중 어느 하나에는 퍼지 기체만 유입되도록 제어하는 증착 장치.
- 제1항에서,상기 제어 시스템은 상기 반응 공간들 모두에 퍼지 기체를 흘리는 동시에 상기 기판 지지 플랫폼을 이동하도록 구성된 증착 장치.
- 제1항에서,상기 복수의 반응 공간들 중 서로 인접한 반응 영역들은 서로 다른 반응 기체 소스와 연결되어 있는 증착 장치.
- 제1항에서,상기 기판 지지 플랫폼은 상기 반응 공간들의 중앙 수직 축과 평행한 축을 따라서 상기 기판들을 상하로 이동하는 증착 장치.
- 제7항에서,상기 지지 플랫폼은 상기 반응 공간들의 중앙 수직 축과 평행한 축을 중심으로 회전하여 상기 기판을 반응 공간 사이에서 이동시키도록 구성된 증착 장치.
- 제1항에서,상기 반응 공간들 각각은 상기 플랫폼에 의하여 지지되는 기판을 장착하도록 구성된 영역을 포함하는 증착 장치.
- 제1항에서,상기 반응 공간들은 덮개 및 복수의 측벽들로 각각 정의되고,상기 제어 시스템은 상기 플랫폼과 상기 복수의 측벽들이 상하로 분리된 경우, 상기 플랫폼과 상기 복수의 측벽들 사이의 공간에 상기 퍼지 기체가 흐르도록 구성된 증착 장치.
- 제10항에서,상기 제어 시스템은 상기 덮개 아래의 공간과 상기 플랫폼과 상기 플랫폼의 측면에 배치되어 있는 측벽 사이의 공간을 통해서 퍼지 기체가 흐르도록 구성된 증착 장치.
- 기판이 장착되어 처리되는 체류 시간이 동일하고, 제1 반응 공간과 제2 반응 공간을 포함하는 복수의 반응 공간들 중 상기 제1 반응 공간에 기판을 장착하는 단계,상기 제1 반응 공간에 상기 체류 시간 중 적어도 일부 동안 제1 반응 기체를 공급하고 상기 체류 시간 중 적어도 일부 동안 퍼지 기체를 공급하는 단계,상기 장착된 기판을 상기 제1 반응 공간으로부터 상기 제2 반응 공간으로 이동하는 단계,상기 제2 반응 공간에 상기 체류 시간 중 적어도 일부 동안 제2 반응 기체를 공급하고 상기 체류 시간 중 적어도 일부 동안 퍼지 기체를 공급하는 단계를 포함하는 박막 증착 방법.
- 제12항에서,상기 기판을 상기 제2 반응실로 이동하는 동안 상기 제1 반응실을 퍼지하는 단계를 더 포함하는 박막 증착 방법.
- 제12항에서,상기 제1 반응 공간과 상기 제2 반응 공간에서 상기 제1 반응 기체와 상기 제2 반응 기체를 공급하는 시간은 서로 다른 박막 증착 방법.
- 제12항에서,상기 장착된 기판을 상기 제2 반응 공간으로부터 제3 반응 공간으로 이동하는 단계를 더 포함하는 박막 증착 방법.
- 제12항에서,상기 기판을 이동하는 단계는 상기 기판을 지지하는 플랫폼을 이동하는 박막 증착 방법.
- 제16항에서,상기 기판을 이동하는 단계는 상기 플랫폼을 회전하는 단계를 포함하는 박막 증착 방법.
- 제16항 또는 제17항에서,상기 기판을 이동하는 단계는 상기 제1 반응실을 정의하는 플랫폼을 상하로 분리하는 단계를 더 포함하는 박막 증착 방법.
- 제12항에서,상기 제1 반응 기체를 공급하는 단계는 상기 제1 반응 기체의 흡착 종을 상 기 기판 표면에 하나의 층 이하로 흡착시키고,상기 제2 기체를 공급하는 단계는 상기 제2 반응물을 상기 제1 반응 기체의 흡착 종과 반응시키는 단계를 포함하는 박막 증착 방법.
- 제12항에서,상기 제1 기체를 공급하는 단계 그리고 상기 기판을 이동하는 단계를 적어도 10회 반복하는 단계를 더 포함하는 박막 증착 방법.
- 제12항에서,상기 제1 반응 공간에서 상기 퍼지 기체를 공급하는 단계와 상기 제2 반응 공간에서 상기 퍼지 기체를 공급하는 단계 중 적어도 하나의 퍼지 기체 공급 시간은 각 반응 공간에 기판이 장착되어 있는 체류 시간 시간보다 짧은 박막 증착 방법.
- 제12항에서,상기 기판에 상기 제1 및 제2 반응 기체를 공급하는 시간과 상기 퍼지 기체를 공급하는 시간은 각 반응 공간에서 서로 다르고, 그리고상기 기판이 상기 복수의 반응 공간들을 통과하는 박막 증착 한 사이클 동안, 상기 기판에 제1 및 제2 반응 기체 공급 시간은 상기 체류 시간 보다 짧고, 퍼지 기체 공급 시간은 상기 체류 시간 보다 긴 박막 증착 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/376,817 US20070215036A1 (en) | 2006-03-15 | 2006-03-15 | Method and apparatus of time and space co-divided atomic layer deposition |
US11/376,817 | 2006-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20070093914A true KR20070093914A (ko) | 2007-09-19 |
Family
ID=38516423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070025452A KR20070093914A (ko) | 2006-03-15 | 2007-03-15 | 증착 장치 및 이를 이용한 막 증착 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20070215036A1 (ko) |
KR (1) | KR20070093914A (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101348513B1 (ko) * | 2011-12-07 | 2014-01-07 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | 화학 기상 증착 필름 프로파일 균일성 제어 |
WO2017100630A1 (en) * | 2015-12-10 | 2017-06-15 | Applied Materials, Inc. | In-situ film annealing with spatial atomic layer deposition |
KR20210072383A (ko) * | 2019-12-09 | 2021-06-17 | 주식회사 원익아이피에스 | 기판 처리 장치 및 기판 처리 방법 |
US11823946B2 (en) | 2017-09-25 | 2023-11-21 | Kokusai Electric Corporation | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium |
Families Citing this family (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070218702A1 (en) * | 2006-03-15 | 2007-09-20 | Asm Japan K.K. | Semiconductor-processing apparatus with rotating susceptor |
KR20080027009A (ko) * | 2006-09-22 | 2008-03-26 | 에이에스엠지니텍코리아 주식회사 | 원자층 증착 장치 및 그를 이용한 다층막 증착 방법 |
US20080241384A1 (en) * | 2007-04-02 | 2008-10-02 | Asm Genitech Korea Ltd. | Lateral flow deposition apparatus and method of depositing film by using the apparatus |
US20090041952A1 (en) | 2007-08-10 | 2009-02-12 | Asm Genitech Korea Ltd. | Method of depositing silicon oxide films |
KR101376336B1 (ko) * | 2007-11-27 | 2014-03-18 | 한국에이에스엠지니텍 주식회사 | 원자층 증착 장치 |
US20090324826A1 (en) * | 2008-06-27 | 2009-12-31 | Hitoshi Kato | Film Deposition Apparatus, Film Deposition Method, and Computer Readable Storage Medium |
US8465592B2 (en) * | 2008-08-25 | 2013-06-18 | Tokyo Electron Limited | Film deposition apparatus |
US8465591B2 (en) * | 2008-06-27 | 2013-06-18 | Tokyo Electron Limited | Film deposition apparatus |
JP5310283B2 (ja) * | 2008-06-27 | 2013-10-09 | 東京エレクトロン株式会社 | 成膜方法、成膜装置、基板処理装置及び記憶媒体 |
US9416448B2 (en) * | 2008-08-29 | 2016-08-16 | Tokyo Electron Limited | Film deposition apparatus, substrate processing apparatus, film deposition method, and computer-readable storage medium for film deposition method |
JP5107185B2 (ja) * | 2008-09-04 | 2012-12-26 | 東京エレクトロン株式会社 | 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体 |
US9297072B2 (en) | 2008-12-01 | 2016-03-29 | Tokyo Electron Limited | Film deposition apparatus |
JP5056735B2 (ja) * | 2008-12-02 | 2012-10-24 | 東京エレクトロン株式会社 | 成膜装置 |
KR101046119B1 (ko) * | 2009-01-12 | 2011-07-01 | 삼성엘이디 주식회사 | 화학 기상 증착 장치 |
CA2653581A1 (en) | 2009-02-11 | 2010-08-11 | Kenneth Scott Alexander Butcher | Migration and plasma enhanced chemical vapour deposition |
JP5107285B2 (ja) * | 2009-03-04 | 2012-12-26 | 東京エレクトロン株式会社 | 成膜装置、成膜方法、プログラム、およびコンピュータ可読記憶媒体 |
FI20095307A0 (fi) * | 2009-03-25 | 2009-03-25 | Beneq Oy | Päällystysmenetelmä ja -laitteisto |
JP5131240B2 (ja) * | 2009-04-09 | 2013-01-30 | 東京エレクトロン株式会社 | 成膜装置、成膜方法及び記憶媒体 |
JP5444961B2 (ja) * | 2009-09-01 | 2014-03-19 | 東京エレクトロン株式会社 | 成膜装置及び成膜方法 |
KR20110054840A (ko) * | 2009-11-18 | 2011-05-25 | 주식회사 아토 | 샤워헤드 어셈블리 및 이를 구비한 박막증착장치 |
JP5497423B2 (ja) * | 2009-12-25 | 2014-05-21 | 東京エレクトロン株式会社 | 成膜装置 |
JP5392069B2 (ja) * | 2009-12-25 | 2014-01-22 | 東京エレクトロン株式会社 | 成膜装置 |
KR100984565B1 (ko) | 2010-02-08 | 2010-09-30 | 주식회사 가소닉스 | 분말형 원자층 증착을 위한 고정장치 및 이를 이용한 초소수성 분말의 제조방법 |
US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US20110256734A1 (en) | 2010-04-15 | 2011-10-20 | Hausmann Dennis M | Silicon nitride films and methods |
US9390909B2 (en) | 2013-11-07 | 2016-07-12 | Novellus Systems, Inc. | Soft landing nanolaminates for advanced patterning |
US8956983B2 (en) | 2010-04-15 | 2015-02-17 | Novellus Systems, Inc. | Conformal doping via plasma activated atomic layer deposition and conformal film deposition |
US9373500B2 (en) | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US9076646B2 (en) | 2010-04-15 | 2015-07-07 | Lam Research Corporation | Plasma enhanced atomic layer deposition with pulsed plasma exposure |
US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
FI124113B (fi) * | 2010-08-30 | 2014-03-31 | Beneq Oy | Laitteisto ja menetelmä substraatin pinnan muokkaamiseksi |
US9685320B2 (en) | 2010-09-23 | 2017-06-20 | Lam Research Corporation | Methods for depositing silicon oxide |
US8906160B2 (en) * | 2010-12-23 | 2014-12-09 | Intermolecular, Inc. | Vapor based processing system with purge mode |
KR101829669B1 (ko) * | 2011-01-04 | 2018-02-19 | 주식회사 원익아이피에스 | 박막 증착 방법 및 박막 증착 장치 |
US8143147B1 (en) * | 2011-02-10 | 2012-03-27 | Intermolecular, Inc. | Methods and systems for forming thin films |
US20120315396A1 (en) * | 2011-06-13 | 2012-12-13 | Intermolecular, Inc. | Apparatus and method for combinatorial plasma distribution through a multi-zoned showerhead |
US9175392B2 (en) * | 2011-06-17 | 2015-11-03 | Intermolecular, Inc. | System for multi-region processing |
US8778811B2 (en) * | 2011-08-18 | 2014-07-15 | Intermolecular, Inc. | Low temperature migration enhanced Si-Ge epitaxy with plasma assisted surface activation |
US9212422B2 (en) * | 2011-08-31 | 2015-12-15 | Alta Devices, Inc. | CVD reactor with gas flow virtual walls |
US10066297B2 (en) | 2011-08-31 | 2018-09-04 | Alta Devices, Inc. | Tiled showerhead for a semiconductor chemical vapor deposition reactor |
JP6000665B2 (ja) * | 2011-09-26 | 2016-10-05 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置及びプログラム |
US8524581B2 (en) * | 2011-12-29 | 2013-09-03 | Intermolecular, Inc. | GaN epitaxy with migration enhancement and surface energy modification |
US8592328B2 (en) | 2012-01-20 | 2013-11-26 | Novellus Systems, Inc. | Method for depositing a chlorine-free conformal sin film |
TWI586828B (zh) * | 2012-02-10 | 2017-06-11 | 財團法人國家同步輻射研究中心 | 原子層沈積之摻雜方法 |
JP5857896B2 (ja) * | 2012-07-06 | 2016-02-10 | 東京エレクトロン株式会社 | 成膜装置の運転方法及び成膜装置 |
KR102207992B1 (ko) | 2012-10-23 | 2021-01-26 | 램 리써치 코포레이션 | 서브-포화된 원자층 증착 및 등각막 증착 |
SG2013083654A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Methods for depositing films on sensitive substrates |
SG2013083241A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Conformal film deposition for gapfill |
US9512519B2 (en) * | 2012-12-03 | 2016-12-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Atomic layer deposition apparatus and method |
TWI683382B (zh) * | 2013-03-15 | 2020-01-21 | 應用材料股份有限公司 | 具有光學測量的旋轉氣體分配組件 |
TWI627305B (zh) * | 2013-03-15 | 2018-06-21 | 應用材料股份有限公司 | 用於轉盤處理室之具有剛性板的大氣蓋 |
JP6262115B2 (ja) | 2014-02-10 | 2018-01-17 | 東京エレクトロン株式会社 | 基板処理方法及び基板処理装置 |
US9214334B2 (en) | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
JP6363408B2 (ja) * | 2014-06-23 | 2018-07-25 | 東京エレクトロン株式会社 | 成膜装置および成膜方法 |
SG11201610307PA (en) * | 2014-07-03 | 2017-01-27 | Applied Materials Inc | Carousel batch epitaxy system |
US9478438B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor |
US9478411B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS |
TWI670394B (zh) | 2014-09-10 | 2019-09-01 | 美商應用材料股份有限公司 | 空間原子層沈積中的氣體分離控制 |
US9875888B2 (en) * | 2014-10-03 | 2018-01-23 | Applied Materials, Inc. | High temperature silicon oxide atomic layer deposition technology |
US10273578B2 (en) * | 2014-10-03 | 2019-04-30 | Applied Materials, Inc. | Top lamp module for carousel deposition chamber |
US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
JP6457307B2 (ja) * | 2015-03-16 | 2019-01-23 | 東芝メモリ株式会社 | 半導体装置の製造方法、及び半導体製造装置 |
US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US9502238B2 (en) | 2015-04-03 | 2016-11-22 | Lam Research Corporation | Deposition of conformal films by atomic layer deposition and atomic layer etch |
JP6412466B2 (ja) * | 2015-06-02 | 2018-10-24 | 東京エレクトロン株式会社 | 基板処理装置及び基板処理方法 |
US20160376705A1 (en) * | 2015-06-25 | 2016-12-29 | The Regents Of The University Of California | Method for optical coating of large scale substrates |
US10526701B2 (en) | 2015-07-09 | 2020-01-07 | Lam Research Corporation | Multi-cycle ALD process for film uniformity and thickness profile modulation |
KR102420015B1 (ko) | 2015-08-28 | 2022-07-12 | 삼성전자주식회사 | Cs-ald 장치의 샤워헤드 |
JP6548586B2 (ja) | 2016-02-03 | 2019-07-24 | 東京エレクトロン株式会社 | 成膜方法 |
US9773643B1 (en) | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
KR102514043B1 (ko) | 2016-07-18 | 2023-03-24 | 삼성전자주식회사 | 반도체 소자의 제조 방법 |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
JP6733516B2 (ja) | 2016-11-21 | 2020-08-05 | 東京エレクトロン株式会社 | 半導体装置の製造方法 |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
US20200090978A1 (en) * | 2017-10-27 | 2020-03-19 | Applied Materials, Inc. | Methods Of Operating A Spatial Deposition Tool |
TWI802439B (zh) | 2017-10-27 | 2023-05-11 | 美商應用材料股份有限公司 | 具有空間分離的單個晶圓處理環境 |
US20200066572A1 (en) * | 2017-10-27 | 2020-02-27 | Applied Materials, Inc. | Methods Of Operating A Spatial Deposition Tool |
TWI821281B (zh) | 2018-04-28 | 2023-11-11 | 美商應用材料股份有限公司 | 基於氣體脈衝的共享前驅物分佈系統及其使用方法 |
CN113491001B (zh) * | 2019-01-02 | 2022-10-18 | 长江存储科技有限责任公司 | 半导体处理设备及其控制方法 |
JP7494209B2 (ja) | 2019-05-01 | 2024-06-03 | ラム リサーチ コーポレーション | 調整された原子層堆積 |
US10998209B2 (en) | 2019-05-31 | 2021-05-04 | Applied Materials, Inc. | Substrate processing platforms including multiple processing chambers |
KR20210098242A (ko) * | 2020-01-31 | 2021-08-10 | 주성엔지니어링(주) | 기판처리장치 및 기판처리방법 |
KR20210098798A (ko) * | 2020-02-03 | 2021-08-11 | 주성엔지니어링(주) | 기판처리장치 및 기판처리방법 |
JP7098677B2 (ja) | 2020-03-25 | 2022-07-11 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法及びプログラム |
FI129369B (en) * | 2020-06-26 | 2021-12-31 | Picosun Oy | Substrate processing equipment and process |
US12080571B2 (en) | 2020-07-08 | 2024-09-03 | Applied Materials, Inc. | Substrate processing module and method of moving a workpiece |
US11749542B2 (en) | 2020-07-27 | 2023-09-05 | Applied Materials, Inc. | Apparatus, system, and method for non-contact temperature monitoring of substrate supports |
US11817331B2 (en) | 2020-07-27 | 2023-11-14 | Applied Materials, Inc. | Substrate holder replacement with protective disk during pasting process |
US11600507B2 (en) | 2020-09-09 | 2023-03-07 | Applied Materials, Inc. | Pedestal assembly for a substrate processing chamber |
US11610799B2 (en) | 2020-09-18 | 2023-03-21 | Applied Materials, Inc. | Electrostatic chuck having a heating and chucking capabilities |
CN112176321A (zh) * | 2020-10-21 | 2021-01-05 | 江苏集萃有机光电技术研究所有限公司 | 一种原子层沉积装置及原子层沉积方法 |
US11674227B2 (en) | 2021-02-03 | 2023-06-13 | Applied Materials, Inc. | Symmetric pump down mini-volume with laminar flow cavity gas injection for high and low pressure |
US12002668B2 (en) | 2021-06-25 | 2024-06-04 | Applied Materials, Inc. | Thermal management hardware for uniform temperature control for enhanced bake-out for cluster tool |
CN115821229A (zh) * | 2022-11-25 | 2023-03-21 | 江苏微导纳米科技股份有限公司 | 一种用于沉积薄膜的方法和设备以及薄膜 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397297A (en) * | 1966-02-24 | 1968-08-13 | Ca Atomic Energy Ltd | Induction heating apparatus |
SE393967B (sv) * | 1974-11-29 | 1977-05-31 | Sateko Oy | Forfarande och for utforande av stroleggning mellan lagren i ett virkespaket |
US5071670A (en) * | 1990-06-11 | 1991-12-10 | Kelly Michael A | Method for chemical vapor deposition under a single reactor vessel divided into separate reaction chambers each with its own depositing and exhausting means |
JP3181171B2 (ja) * | 1994-05-20 | 2001-07-03 | シャープ株式会社 | 気相成長装置および気相成長方法 |
US6342277B1 (en) * | 1996-08-16 | 2002-01-29 | Licensee For Microelectronics: Asm America, Inc. | Sequential chemical vapor deposition |
US5916365A (en) * | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
DE60035948T2 (de) * | 1999-06-19 | 2008-05-15 | Asm Genitech Korea Ltd. | Chemischer abscheidungsreaktor und dessen verwendung für die abscheidung eines dünnen films |
US6812157B1 (en) * | 1999-06-24 | 2004-11-02 | Prasad Narhar Gadgil | Apparatus for atomic layer chemical vapor deposition |
US6511539B1 (en) * | 1999-09-08 | 2003-01-28 | Asm America, Inc. | Apparatus and method for growth of a thin film |
EP1421606A4 (en) * | 2001-08-06 | 2008-03-05 | Genitech Co Ltd | PLASMA ACTIVE ATOMIC LAYER (PEALD) DEPOSITION APPARATUS AND METHOD OF FORMING THIN FILM USING SAID APPARATUS |
US6820570B2 (en) * | 2001-08-15 | 2004-11-23 | Nobel Biocare Services Ag | Atomic layer deposition reactor |
KR100782529B1 (ko) * | 2001-11-08 | 2007-12-06 | 에이에스엠지니텍코리아 주식회사 | 증착 장치 |
US6902620B1 (en) * | 2001-12-19 | 2005-06-07 | Novellus Systems, Inc. | Atomic layer deposition systems and methods |
KR100805843B1 (ko) * | 2001-12-28 | 2008-02-21 | 에이에스엠지니텍코리아 주식회사 | 구리 배선 형성방법, 그에 따라 제조된 반도체 소자 및구리 배선 형성 시스템 |
US6932871B2 (en) * | 2002-04-16 | 2005-08-23 | Applied Materials, Inc. | Multi-station deposition apparatus and method |
US6869641B2 (en) * | 2002-07-03 | 2005-03-22 | Unaxis Balzers Ltd. | Method and apparatus for ALD on a rotary susceptor |
-
2006
- 2006-03-15 US US11/376,817 patent/US20070215036A1/en not_active Abandoned
-
2007
- 2007-03-15 KR KR1020070025452A patent/KR20070093914A/ko not_active Application Discontinuation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101348513B1 (ko) * | 2011-12-07 | 2014-01-07 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | 화학 기상 증착 필름 프로파일 균일성 제어 |
WO2017100630A1 (en) * | 2015-12-10 | 2017-06-15 | Applied Materials, Inc. | In-situ film annealing with spatial atomic layer deposition |
CN108369896A (zh) * | 2015-12-10 | 2018-08-03 | 应用材料公司 | 利用空间原子层沉积的原位膜退火 |
US11515144B2 (en) | 2015-12-10 | 2022-11-29 | Applied Materials, Inc. | In-situ film annealing with spatial atomic layer deposition |
US11823946B2 (en) | 2017-09-25 | 2023-11-21 | Kokusai Electric Corporation | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium |
KR20210072383A (ko) * | 2019-12-09 | 2021-06-17 | 주식회사 원익아이피에스 | 기판 처리 장치 및 기판 처리 방법 |
Also Published As
Publication number | Publication date |
---|---|
US20070215036A1 (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20070093914A (ko) | 증착 장치 및 이를 이용한 막 증착 방법 | |
US11479856B2 (en) | Multi-cycle ALD process for film uniformity and thickness profile modulation | |
US11742189B2 (en) | Multi-zone reactor, system including the reactor, and method of using the same | |
US7547465B2 (en) | Multi-station deposition apparatus and method | |
US6875271B2 (en) | Simultaneous cyclical deposition in different processing regions | |
KR102608585B1 (ko) | Ale (atomic layer etch) 리셋을 사용한 선택적인 증착 | |
TWI438300B (zh) | 原子層沈積系統及方法 | |
KR101324367B1 (ko) | 성막 장치, 성막 방법 및 컴퓨터 판독 가능 기억 매체 | |
JP4726369B2 (ja) | 化学蒸着反応炉及びこれを利用した薄膜形成方法 | |
KR101584817B1 (ko) | 성막 장치 | |
US20060249077A1 (en) | Multiple inlet atomic layer deposition reactor | |
KR20160061885A (ko) | 실리콘-함유 막들의 원자층 증착에서의 선택적인 억제 | |
US11131023B2 (en) | Film deposition apparatus and film deposition method | |
US10472719B2 (en) | Nozzle and substrate processing apparatus using same | |
KR102701195B1 (ko) | 에칭 잔여물-기반 억제제들을 사용하는 선택적인 프로세싱 | |
KR100422398B1 (ko) | 박막 증착 장비 | |
KR101839409B1 (ko) | 가스 공급 장치, 가스 공급 방법 및 이를 구비하는 기판 처리 장치 | |
KR101171677B1 (ko) | 다성분 박막의 증착을 위한 원자층 증착장치 | |
KR101829669B1 (ko) | 박막 증착 방법 및 박막 증착 장치 | |
KR100600051B1 (ko) | 원자층 증착 장비 및 그를 이용한 3원계 박막 형성 방법 | |
KR20120062293A (ko) | 금속 질화막 증착 방법 | |
KR101804127B1 (ko) | 박막 증착 방법 | |
JP2022077993A (ja) | 反応器および関連する方法 | |
KR101668867B1 (ko) | 원자층 증착장치 | |
KR100972111B1 (ko) | 배치 방식 반도체 제조 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |