[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100305210B1 - Method for forming nitride film of semiconductor device - Google Patents

Method for forming nitride film of semiconductor device Download PDF

Info

Publication number
KR100305210B1
KR100305210B1 KR1019940016103A KR19940016103A KR100305210B1 KR 100305210 B1 KR100305210 B1 KR 100305210B1 KR 1019940016103 A KR1019940016103 A KR 1019940016103A KR 19940016103 A KR19940016103 A KR 19940016103A KR 100305210 B1 KR100305210 B1 KR 100305210B1
Authority
KR
South Korea
Prior art keywords
temperature
nitride film
reactor
gas atmosphere
semiconductor device
Prior art date
Application number
KR1019940016103A
Other languages
Korean (ko)
Other versions
KR960005863A (en
Inventor
최근민
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019940016103A priority Critical patent/KR100305210B1/en
Publication of KR960005863A publication Critical patent/KR960005863A/en
Application granted granted Critical
Publication of KR100305210B1 publication Critical patent/KR100305210B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A nitride film formation method of semiconductor devices is provided to enhance an adhesive force and to prevent particles by differently changing the deposition temperature of a reacting chamber. CONSTITUTION: After loading a wafer into a reacting chamber, the temperature of the reacting chamber is to be rising to about 650°C at atmosphere of N2 gas. Then, a first nitride film is deposited on the wafer at atmosphere of NH3 and SiH2Cl2 gas. After rising the temperature of the reacting chamber to 750-850°C, a second nitride film is deposited. By falling the temperature of the reacting chamber, the wafer is unloaded.

Description

반도체 소자의 질화막 형성 방법Method of forming nitride film of semiconductor device

본 발명은 반도체 소자의 질화막(nitride film) 형성 방법에 관한 것으로, 특히 반응로의 증착 온도를 초기에는 낮게, 후기에는 TEOS 증착 온도보다 높게 상승시켜 형성함으로써 하부층과의 접학력을 증가시키며, 상부에 TEOS막이 형성되는 경우 파티클(particle)의 발생을 방지하여 소자의 제조 수율을 향상시킬 수 있는 반도체 소자의 질화막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a nitride film of a semiconductor device. In particular, the deposition temperature of a reactor is increased by lowering the initial temperature of the reactor and higher than the TEOS deposition temperature in the latter period, thereby increasing the adhesion to the lower layer. When the TEOS film is formed, the present invention relates to a method for forming a nitride film of a semiconductor device capable of preventing the generation of particles and improving the yield of manufacturing the device.

일반적으로 반도체 소자의 제조 공정에서 절연막으로는 유전 특성이 우수한 TEOS를 사용한다. 그런데, 이 TEOS의 소오스(source)는 Si(OC2H5)4의 유기 화합물로서 증착시 반응 조건 및 하부층에 따라 막의 특성이 크게 변한다. 특히 하부층이 질화막인 경우 질화막의 특성에 대하여 영향을 크게 받기 때문에 TEOS 증착시 영향을 최소화할 수 있는 질화막의 형성이 필요하다. 그러면 종래의 반도체 소자의 질화막 형성 방법을 하기의 [표 1]을 참조하여 설명하면 다음과 같다.In general, TEOS is used as an insulating film in the manufacturing process of a semiconductor device. However, the source of the TEOS is an organic compound of Si (OC 2 H 5 ) 4 , which greatly changes the properties of the film depending on the reaction conditions and the underlying layer during deposition. Particularly, when the lower layer is a nitride film, since it is greatly influenced by the properties of the nitride film, it is necessary to form a nitride film that can minimize the effects of TEOS deposition. Next, a method of forming a nitride film of a conventional semiconductor device will be described with reference to Table 1 below.

종래 반도체 소자의 질화막 형성 방법을 설명하면 다음과 같다. 소정의 구조가 형성된 기판을 600℃ 정도의 온도를 유지하는 반응로내로 로드(load)시킨 후 가스 흐름비(gas flow rate)가 0.2.ℓ/min인 N2가스 분위기 상태에 10분간의 온도 상승 공정에 의해 반응로의 온도를 650℃로 상승시킨다. 그리고, 가스 흐름비가 0.105 및 0.03ℓ/min인 NH3및 SiH2Cl2가스 분위기하에서 60분간의 증착 공정을 실시한 다음 N2가스 분위기 상태 및 20분간의 온도 하강 공정에 의해 반응로의 온도를 600℃로 하강시킨 후 질화막이 형성된 실리콘 기판을 언로드(Unload)시킨다.A nitride film forming method of a conventional semiconductor device is described below. After loading a substrate having a predetermined structure into a reactor maintaining a temperature of about 600 ° C., the temperature is increased for 10 minutes in an N 2 gas atmosphere having a gas flow rate of 0.2.l / min. The temperature of the reactor is raised to 650 ° C by the process. Then, the deposition process was performed for 60 minutes under NH 3 and SiH 2 Cl 2 gas atmospheres with gas flow ratios of 0.105 and 0.03 L / min, and then the temperature of the reactor was reduced to 600 by the N 2 gas atmosphere and the temperature lowering process for 20 minutes. After the temperature was lowered to 占 폚, the silicon substrate on which the nitride film was formed was unloaded.

상기와 같은 공정으로 형성된 질화막 상부에 TEOS막이 형성되는 경우 질화막내에 존재하는 수소(H2) 또는 염소(Cl2)와 같은 잔류 불순물이 TEOS막이 형성되는 공정 온도인 710℃의 온도에서 외부 확산(out diffusion)되어 TEOS 가스와 반응하여 TEOS 가스의 완전 반응을 방해한다. 그러므로 질화막 상부에 형성되는 TEOS막에는 파티클(particle) 및 스폿(spot)이 형성되어 절연 특성을 저하시킨다. 또한 질화막내에 존재하는 수소의 외부 확산을 감소시키기 위하여 질화막 증착시 온도를 상승시키면 하부층과의 접착력이 감소하여 막(film)간의 바운더리 스트레스(boundary stress) 증가로 인한 크랙(crack)등이 발생된다.When the TEOS film is formed on the nitride film formed by the above process, residual impurities such as hydrogen (H 2 ) or chlorine (Cl 2 ) in the nitride film are externally diffused out at a temperature of 710 ° C. which is a process temperature at which the TEOS film is formed. diffusion) and reacts with the TEOS gas to interfere with the complete reaction of the TEOS gas. Therefore, particles and spots are formed in the TEOS film formed on the nitride film, thereby lowering the insulating properties. In addition, in order to reduce the external diffusion of hydrogen present in the nitride film, when the temperature is increased during deposition of the nitride film, adhesion to the lower layer decreases, causing cracks due to an increase in boundary stress between the films.

따라서, 본 발명은 반응로의 증착 온도를 초기에는 낮게, 후기에는 TEOS 증착 온도보다 높게 상승시킴으로써 상기한 단점을 해소할 수 있는 반도체 소자의 질화막 형성 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for forming a nitride film of a semiconductor device which can solve the above-mentioned disadvantages by raising the deposition temperature of the reactor to an initial low and later than the TEOS deposition temperature.

상기한 목적을 달성하기 위한 본 발명의 제 1 실시 예는 소정의 구조가 형성된 기판을 일정 온도의 반응로내로 로드시킨 후, N2가스 분위기 상태에서 상기 반응로의 온도를 650℃로 상승시키는 단계와, 상기 650℃의 온도와 NH3및 SiH2Cl2가스 분위기하에서 1차 질화막을 증착하는 단계와, 상기 반응로의 온도를 750 내지 850℃로 상승시킨 후 상기 1차 질화막 증착 공정과 동일한 가스 분위기에서 2차 질화막을 증착하는 단계와, 상기 반응로의 온도를 하강시킨 후 상기 질화막이 증착된 기판을 언로드시키는 단계로 이루어지는 것을 특징으로 하는 반도체 소자의 질화막 형성방법.According to a first embodiment of the present invention for achieving the above object, a substrate having a predetermined structure is loaded into a reactor at a predetermined temperature, and then the temperature of the reactor is raised to 650 ° C. in an N 2 gas atmosphere. And depositing a primary nitride film at a temperature of 650 ° C. and NH 3 and SiH 2 Cl 2 gas atmosphere, and raising the temperature of the reactor to 750 to 850 ° C., followed by the same gas as the first nitride film deposition process. And depositing a secondary nitride film in an atmosphere, and unloading the substrate on which the nitride film is deposited after the temperature of the reactor is lowered.

상술한 목적을 달성하기 위한 본 발명의 제 2 실시 예는 소정의 구조가 형성된 기판을 반응로내로 로드시킨 후, N2가스 분위기 상태에서 상기 반응로의 온도를 650℃로 상승시키는 단계와, 상기 650℃의 온도와 NH3및 SiH2Cl2가스 분위기에서 질화막을 증착하는 단계와, 상기 반응로의 온도를 750 내지 850℃의 온도로 상승시켜 열처리 공정을 실시하는 단계로 이루어지는 것을 특징으로 한다.According to a second embodiment of the present invention for achieving the above object, after loading a substrate having a predetermined structure into a reactor, the temperature of the reactor is increased to 650 ° C. in an N 2 gas atmosphere. Depositing a nitride film at a temperature of 650 ° C. and an NH 3 and SiH 2 Cl 2 gas atmosphere, and increasing the temperature of the reactor to a temperature of 750 to 850 ° C. to perform a heat treatment process.

이하, 하기의 [표 2]를 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to Table 2 below.

본 발명에 따른 반도체 소자의 질화막 형성 방법의 제 1 실시 예를 설명하면 다음과 같다. 소정의 구조가 형성된 기판을 600℃ 온도의 반응로내로 로드시킨 후, 가스 흐름비가 0.2ℓ/min인 N2가스 분위기 상태에서 10분간의 제 1 온도 상승 공정에 의해 상기 반응로의 온도를 650℃ 정도로 상승시킨다. 그리고, 가스 흐름비가 0.105 및 0.03ℓ/min인 NH3및 SiH2Cl2가스 분위기하에서 10분간의 초기 증착 공정을 실시한다. 그런 다음 가스 흐름비가 0.2ℓ/min인 N2가스 분위기하에서 다시 제2 온도 상승 공정을 30분동안 진행하여 반응로의 온도를 750∼850℃로 상승시키고 초기 증착시와 동일한 가스 분위기하에서 5분간의 후기 증착 공정을 실시한다. 그리고난 후 가스 흐름비가 0.2ℓ/min인 N2가스 분위기하에서 40분동안 반응로의 온도를 하강시키고 질화막이 형성된 기판을 언로드시킨다.A first embodiment of the method for forming a nitride film of a semiconductor device according to the present invention will be described below. After loading a substrate having a predetermined structure into a reactor at 600 ° C, the temperature of the reactor was increased to 650 ° C by a first temperature raising step for 10 minutes in an N 2 gas atmosphere with a gas flow ratio of 0.2 L / min. Raise to degree. Then, an initial deposition process for 10 minutes is carried out in NH 3 and SiH 2 Cl 2 gas atmospheres with gas flow ratios of 0.105 and 0.03 L / min. Then, in a N 2 gas atmosphere having a gas flow ratio of 0.2 L / min, the second temperature raising process was further performed for 30 minutes to raise the temperature of the reactor to 750 to 850 ° C. for 5 minutes under the same gas atmosphere as in the initial deposition. A late deposition process is performed. Then, the temperature of the reactor is lowered for 40 minutes in an N 2 gas atmosphere having a gas flow rate of 0.2 L / min, and the substrate on which the nitride film is formed is unloaded.

상기와 같이 650℃의 온도에서 질화막을 1차 증착하면, 하부층과의 접착력은 향상시킬 수 있지만 1차 증착된 질화막내에 잔류 불순물이 존재하게 됩니다. 이 상태에서 온도를 750∼850℃의 온도로 상승시키면, 온도를 상승시키는 과정에서 1차 질화막내에 존재하는 잔류 불순물이 외부로 방출됩니다. 1차 질화막에서 잔류 불순물이 외부로 방출된 상태에서 높은 온도로 2차 질화막을 증착하면 질화막내의 잔류 불순물이 증착되는 동안에 외부로 방출되게 됩니다. 외부로 방출된 잔류 불순물을 펌핑하여 제거하면 내부에 잔류 불순물이 존재하지 않는 질화막을 형성할 수 있습니다. 또한, TEOS막을 형성하기 위한 710℃ 정도의 온도보다 높은 온도에서 질화막을 형성하여 잔류 불순물을 방출시키기 때문에 질화막 내부에 잔류 불순물이 어느 정도 존재한다고 하더라고 TEOS막을 형성하기 위한 온도보다 높은 온도에서 형성함으로써 잔류 불순물이 외부 확산되지는 않습니다.As described above, when the nitride film is first deposited at a temperature of 650 ° C., adhesion to the underlying layer can be improved, but residual impurities are present in the nitride film deposited first. In this state, if the temperature is raised to a temperature of 750 to 850 ° C, residual impurities present in the primary nitride film are released to the outside in the process of raising the temperature. If the secondary nitride film is deposited at a high temperature while residual impurities are released to the outside of the primary nitride film, the remaining impurities in the nitride film are released to the outside during deposition. If the residual impurities released to the outside are pumped out, a nitride film can be formed in which no residual impurities exist. In addition, since the nitride film is formed at a temperature higher than the temperature of about 710 ° C. for forming the TEOS film and the residual impurities are released, the residual impurities are formed at a temperature higher than the temperature for forming the TEOS film even though some residual impurities are present in the nitride film. Impurities do not diffuse outside.

한편, 본 발명의 제 2 실시 예로서 제 1 온도, 즉 저온에서 질화막을 증착한 후 열처리 공정을 실시한다. 이를 좀더 자세히 설명하면, 저온에서 소정의 구조가 형성된 기판을 일정 온도, 예를들어 600℃의 온도를 유지하는 반응로내로 로드시킨후, N2가스 분위기 상태에서 제 1 온도 상승 공정을 진행하고 650℃ 정도로 온도를 상승시킨다. 반응로가 650℃의 온도를 유지하는 상태에서 NH3및 SiH2Cl2가스 분위기를 조성한 후 증착 공정을 실시한다. 그리고, 제 2 온도, 즉 750∼850℃의 온도에서 열처리 공정을 실시한 후 반응로의 온도를 하강시켜 질화막이 형성된 기판을 언로드시킨다. 열처리 공정은 익스시투(exsitu)로 하여도 질화막내의 잔류 불순물이 제거되어 이후 TEOS막이 형성될 경우 질화막내의 잔류 분순물의 외부 확산에 의한 파티클 및 스폿의 발생이 억제된다.Meanwhile, as a second embodiment of the present invention, a nitride film is deposited at a first temperature, that is, a low temperature, and then a heat treatment process is performed. In more detail, after loading a substrate having a predetermined structure at a low temperature into a reactor maintaining a constant temperature, for example, 600 ° C., the first temperature rising process is performed in a state of N 2 gas and 650. Raise the temperature to about 占 폚. NH 3 and SiH 2 Cl 2 gas atmospheres are formed in a state where the reactor maintains a temperature of 650 ° C., and then a deposition process is performed. Then, after performing a heat treatment step at a second temperature, that is, a temperature of 750 to 850 ° C, the temperature of the reaction furnace is lowered to unload the substrate on which the nitride film is formed. In the heat treatment process, even when exsitu is used, residual impurities in the nitride film are removed, and when TEOS film is formed thereafter, generation of particles and spots due to external diffusion of residual impurities in the nitride film is suppressed.

상술한 바와 같이 본 발명에 의하면 반응로의 증착 온도를 초기에는 낮게, 후기에는 TEOS증착 온도보다 높게 상승시킴으로써 하부층과의 접착력을 증가시키며 상부에 TEOS막이 형성되는 경우 파티클 및 스폿의 발생을 방지하여 소자의 제조수율을 향상시킬 수 있다.As described above, according to the present invention, the deposition temperature of the reactor is initially lowered, and later, higher than the TEOS deposition temperature, thereby increasing adhesion to the lower layer, and preventing the generation of particles and spots when the TEOS film is formed on the upper part. It is possible to improve the production yield.

Claims (3)

반도체 소자의 질화막 형성 방법에 있어서, 소정의 구조가 형성된 기판을 일정 온도의 반응로내로 로드시킨 후, N2가스분위기 상태에서 상기 반응로의 온도를 650℃로 상승시키는 단계와, 상기 650℃의 온도와 NH3및 SiH2Cl2가스 분위기하에서 1차 질화막을 증착하는 단계와, 상기 반응로의 온도를 750 내지 850℃로 상승시킨 후 상기 1차 질화막 증착 공정과 동일한 가스 분위기에서 2차 질화막을 증착하는 단계와, 상기 반응로의 온도를 하강시킨 후 상기 질화막이 증착된 기판을 언로드시키는 단계로 이루어지는 것을 특징으로 하는 반도체 소자의 질화막 형성 방법.A method of forming a nitride film of a semiconductor device, comprising: loading a substrate having a predetermined structure into a reactor at a predetermined temperature, and then raising the temperature of the reactor to 650 ° C. in an N 2 gas atmosphere; Depositing a primary nitride film under a temperature and NH 3 and SiH 2 Cl 2 gas atmosphere, and raising the temperature of the reactor to 750 to 850 ° C., and then depositing the secondary nitride film under the same gas atmosphere as the primary nitride film deposition process. And depositing and unloading the substrate on which the nitride film is deposited after the temperature of the reactor is lowered. 반도체 소자의 질화막 형성방법에 있어서, 소정의 구조가 형성된 기판을 반응로내로 로드시킨 후, N2가스 분위기 상태에서 상기 반응로의 온도를 650℃로 상승시키는 단계와, 상기 650℃의 온도와 NH3및 SiH2Cl2가스 분위기에서 질화막을 증착하는 단계와, 상기 반응로의 온도를 750 내지 850℃의 온도로 상승시켜 열처리 공정을 실시하는 단계로 이루어지는 것을 특징으로 하는 반도체 소자의 질화막 형성 방법.In the method for forming a nitride film of a semiconductor device, after loading a substrate having a predetermined structure into the reactor, the temperature of the reactor to raise to 650 ℃ in N 2 gas atmosphere, the temperature of 650 ℃ and NH 3 and depositing a nitride film in a SiH 2 Cl 2 gas atmosphere, and the step of raising the temperature of the reaction furnace to a temperature of 750 to 850 ℃ to perform a heat treatment process. 제2항에 있어서, 상기 열처리 공정은 익스시투로 실시하는 것을 특징으로 하는 반도체 소자의 질화막 형성방법.The method of claim 2, wherein the heat treatment step is carried out by excitus.
KR1019940016103A 1994-07-06 1994-07-06 Method for forming nitride film of semiconductor device KR100305210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940016103A KR100305210B1 (en) 1994-07-06 1994-07-06 Method for forming nitride film of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940016103A KR100305210B1 (en) 1994-07-06 1994-07-06 Method for forming nitride film of semiconductor device

Publications (2)

Publication Number Publication Date
KR960005863A KR960005863A (en) 1996-02-23
KR100305210B1 true KR100305210B1 (en) 2001-11-30

Family

ID=37530035

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940016103A KR100305210B1 (en) 1994-07-06 1994-07-06 Method for forming nitride film of semiconductor device

Country Status (1)

Country Link
KR (1) KR100305210B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419025B1 (en) * 1996-11-06 2004-04-29 주식회사 하이닉스반도체 Nitride film formation method of semiconductor device
KR100525117B1 (en) * 1999-04-15 2005-11-01 주식회사 하이닉스반도체 Method for fabricating nitride layer
KR100356833B1 (en) * 1999-05-06 2002-10-18 주식회사 현대 디스플레이 테크놀로지 Method for forming passivation layer of ffs mode liquid crystal display device

Also Published As

Publication number Publication date
KR960005863A (en) 1996-02-23

Similar Documents

Publication Publication Date Title
JP3328645B2 (en) Method of forming silicon nitride film
EP0637063B1 (en) Method for depositing silicon nitride on silicium surfaces
JPH0794506A (en) Manufacture of semiconductor device
TW509963B (en) Method for manufacturing a semiconductor device and device for manufacturing a semiconductor
KR100274601B1 (en) Method for manufacturing etch mask of semiconductor device
JP4473378B2 (en) High dielectric film forming method
KR20010051723A (en) Precoat film forming method, idling method of film forming device, loading table structure, film forming device and film forming method
KR100305210B1 (en) Method for forming nitride film of semiconductor device
US6649537B1 (en) Intermittent pulsed oxidation process
EP0310839B1 (en) A method of manufacturing monolithic integrated circuits
KR20040093584A (en) Method for fabricating dielectric layer
US20010036751A1 (en) Method for forming a thin oxide layer using wet oxidation
JP3422345B2 (en) Method of forming tungsten film
US11732352B2 (en) Hydrogen free silicon dioxide
US5753303A (en) Process for the elimination of tungsten oxidation with inert gas stabilization in chemical vapor deposition processes
KR970006217B1 (en) Nitride film forming method of semiconductor device
KR0137550B1 (en) Formation method of gate oxide
US6232234B1 (en) Method of reducing in film particle number in semiconductor manufacture
KR100274351B1 (en) Method of gate oxide film in a semiconductor device
KR0119965B1 (en) Oxidation method of semiconductor device
KR100353328B1 (en) Method of forming TiN thin film
KR940002301B1 (en) Manufacturing method of gate oxide film
KR0134853B1 (en) Forming method of teos film for semiconductor device
KR0118458B1 (en) Unloading method of semiconductor wafer
KR0132381B1 (en) Formation method of oxide film by chemical vapor deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090624

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee