[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2010098357A1 - Metal filler, low-temperature connection lead-free solder, and connection structure - Google Patents

Metal filler, low-temperature connection lead-free solder, and connection structure Download PDF

Info

Publication number
JPWO2010098357A1
JPWO2010098357A1 JP2011501623A JP2011501623A JPWO2010098357A1 JP WO2010098357 A1 JPWO2010098357 A1 JP WO2010098357A1 JP 2011501623 A JP2011501623 A JP 2011501623A JP 2011501623 A JP2011501623 A JP 2011501623A JP WO2010098357 A1 JPWO2010098357 A1 JP WO2010098357A1
Authority
JP
Japan
Prior art keywords
metal
metal particles
mass
particles
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011501623A
Other languages
Japanese (ja)
Other versions
JP5643972B2 (en
Inventor
朋紀 木山
朋紀 木山
軌人 田中
軌人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2011501623A priority Critical patent/JP5643972B2/en
Publication of JPWO2010098357A1 publication Critical patent/JPWO2010098357A1/en
Application granted granted Critical
Publication of JP5643972B2 publication Critical patent/JP5643972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/264Bi as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0272Mixed conductive particles, i.e. using different conductive particles, e.g. differing in shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、第1金属粒子と第2金属粒子との混合体からなる金属フィラーであって、該第1金属粒子が、最も高い質量割合で存在する元素である主成分としてCuを含有し、かつIn及びSnをさらに含有する、Cu合金粒子であり、該第2金属粒子が、Bi40〜70質量%、並びに、Ag、Cu、In及びSnから選ばれる1種以上の金属30〜60質量%からなる、Bi合金粒子であり、かつ、該第1金属粒子100質量部に対する該第2金属粒子の量が40〜300質量部の範囲である金属フィラーを提供する。本発明は、該金属フィラーを含む鉛フリーはんだ、該鉛フリーはんだを用いて形成される接続構造体、及び該接続構造体を有する部品搭載基板をも提供する。The present invention is a metal filler comprising a mixture of first metal particles and second metal particles, the first metal particles containing Cu as a main component which is an element present in the highest mass ratio, And Cu alloy particles further containing In and Sn, wherein the second metal particles are Bi40 to 70% by mass, and one or more metals selected from Ag, Cu, In and Sn 30 to 60% by mass And a metal filler in which the amount of the second metal particles is in the range of 40 to 300 parts by mass with respect to 100 parts by mass of the first metal particles. The present invention also provides a lead-free solder containing the metal filler, a connection structure formed using the lead-free solder, and a component mounting board having the connection structure.

Description

本発明は、各種電子部品の接続及びビア充填等に使用できる金属フィラー、並びに、該金属フィラーを含む鉛フリーはんだ、特に低温接続用の鉛フリーはんだに関する。本発明はまた、該鉛フリーはんだを用いて得られる接続構造体、及び該接続構造体と基板とを有する部品搭載基板に関する。   The present invention relates to a metal filler that can be used for connecting various electronic components, filling vias, and the like, and a lead-free solder containing the metal filler, particularly a lead-free solder for low-temperature connection. The present invention also relates to a connection structure obtained by using the lead-free solder, and a component mounting board having the connection structure and the substrate.

従来、リフロー熱処理において使用するはんだ材料としては、一般的に融点183℃のSn−37Pb共晶はんだが用いられてきた。また、高耐熱性が要求される電子部品の内部等で使用される高温はんだとしては、固相線270℃及び液相線305℃であるSn−90Pb高温はんだが広く用いられてきた。   Conventionally, Sn-37Pb eutectic solder having a melting point of 183 ° C. has generally been used as a solder material used in reflow heat treatment. In addition, as a high-temperature solder used in an electronic component or the like that requires high heat resistance, Sn-90Pb high-temperature solder having a solidus wire of 270 ° C. and a liquidus wire of 305 ° C. has been widely used.

しかしながら、近年、EUの環境規制(WEEE、RoHS指令)が示すように、Pbの有害性が問題となっている。よって、環境汚染を防止する観点から、はんだの鉛フリー化が急速に進んでいる。このような状況の中で、現在、Sn―37Pb共晶はんだの代替としては、融点220℃程度のSn―3.0Ag−0.5Cuからなる鉛フリーはんだが代表的である。該鉛フリーはんだのリフロー熱処理条件としては、ピーク温度が240℃から260℃程度である温度範囲が一般的となりつつある。   However, in recent years, the harmfulness of Pb has become a problem, as indicated by EU environmental regulations (WEEE, RoHS directive). Therefore, from the viewpoint of preventing environmental pollution, the lead-free solder is rapidly progressing. Under such circumstances, as a substitute for Sn-37Pb eutectic solder, lead-free solder composed of Sn-3.0Ag-0.5Cu having a melting point of about 220 ° C. is typical. As a reflow heat treatment condition for the lead-free solder, a temperature range in which a peak temperature is about 240 ° C. to 260 ° C. is becoming common.

上述した融点220℃程度のSn―3.0Ag−0.5Cuからなる鉛フリーはんだは、Sn―37Pb共晶はんだに比べ、合金の融点が高いことから、リフロー熱処理条件もより高温になる。昨今、化石燃料の枯渇、地球温暖化等の問題が危惧されている中、リフロー熱処理温度を低温化することによって、省エネルギープロセス、及び低二酸化炭素排出プロセスを確立することが切望されている。また、このリフロー熱処理温度の低温化は、電気・電子機器及び基板材料の熱損傷を抑制することを可能にし、使用できる基板材料の選択の幅が広がることからも期待されている。現在、低温で溶融接合できるPbフリーはんだ材料の代表的な例としては、Sn―58Bi共晶はんだ(融点138℃)、In(融点157℃)、Sn―52In合金はんだ(融点118℃)等が挙げられる(特許文献1及び2参照)。しかし、これらのはんだ材料はいずれも融点が低く、はんだ接合後に、再度融点以上の温度になれば再溶融してしまうという課題を抱えている。   The above-described lead-free solder composed of Sn-3.0Ag-0.5Cu having a melting point of about 220 ° C. has a higher melting point of the alloy than Sn-37Pb eutectic solder, and therefore the reflow heat treatment conditions also become higher. In recent years, there are concerns about depletion of fossil fuels, global warming, and the like, and it is eager to establish an energy saving process and a low carbon dioxide emission process by lowering the reflow heat treatment temperature. Further, the lowering of the reflow heat treatment temperature is expected from the fact that it is possible to suppress the thermal damage of the electric / electronic equipment and the substrate material, and the range of selection of the usable substrate material is expanded. Currently, typical examples of Pb-free solder materials that can be melt-bonded at low temperatures include Sn-58Bi eutectic solder (melting point 138 ° C.), In (melting point 157 ° C.), Sn-52In alloy solder (melting point 118 ° C.), and the like. (See Patent Documents 1 and 2). However, all of these solder materials have a low melting point, and have a problem that they are remelted when the temperature again becomes higher than the melting point after soldering.

ところで、携帯電話に代表される電子機器の小型化、軽量化、及び高機能化の流れは目覚しく、これに追従して、高密度実装技術も急速な進歩を続けている。部品を基板中に内蔵したり、複数のLSIを1パッケージ化したりする等、限られた容積を有効利用するための多様な実装技術が開発されている。しかし一方で、高密度化が進むほど、基板内部又はパッケージ内部に組み込まれた部品のはんだ接続部が、後工程で熱処理を受ける回数が多くなる。これにより、後工程ではんだが再溶融して、部品と封止樹脂との隙間からはんだが流れ出し、部品電極間等でショートが発生するという問題が顕在化してきている。   By the way, the trend of downsizing, weight reduction and higher functionality of electronic devices typified by mobile phones is remarkable, and following this, high-density mounting technology continues to make rapid progress. Various mounting techniques have been developed to effectively use a limited volume, such as incorporating components in a substrate or packaging a plurality of LSIs into one package. However, on the other hand, as the density increases, the number of times that the solder connection portion of the component incorporated in the substrate or the package is subjected to heat treatment in a subsequent process increases. As a result, the problem that the solder is remelted in a later process, the solder flows out from the gap between the component and the sealing resin, and a short circuit occurs between the component electrodes and the like has become apparent.

そのため、基板内部又はパッケージ内部に組み込まれた部品の接続において、後工程で複数回の熱処理を受けても再溶融しない鉛フリーはんだ材料の開発が望まれている。   Therefore, there is a demand for the development of a lead-free solder material that does not remelt even when subjected to a plurality of heat treatments in the subsequent process for connecting components incorporated in the substrate or package.

本発明者等は、鉛フリーはんだのリフロー熱処理条件、例えばピーク温度246℃、で溶融接合でき、かつ接合後は同じ熱処理条件では溶融しない、高耐熱性のはんだ材料を提案した(特許文献3)。該はんだ材料に含まれる金属粒子は、第1金属粒子と、該第1金属粒子よりも低融点を示す第2金属粒子との混合体である。特許文献3の技術においては、第2金属粒子としてSnを使用しており、該はんだ材料を、Snの融点(232℃)以上の例えば246℃でリフロー熱処理をすると、溶融した第2金属粒子と、第1金属粒子との間で金属の拡散が進み、耐熱性に優れた接合部が形成される。しかし、省エネルギー及び低二酸化炭素排出のニーズ、並びに耐熱性の低い基板材料及び電子機器への適用を考えた場合、より低温で接合でき、かつ接合後は鉛フリーはんだのリフロー熱処理条件で再溶融しない材料が望まれている。   The present inventors have proposed a highly heat-resistant solder material that can be melt-bonded under reflow heat treatment conditions of lead-free solder, for example, a peak temperature of 246 ° C., and does not melt under the same heat-treatment conditions after joining (Patent Document 3). . The metal particles contained in the solder material are a mixture of first metal particles and second metal particles having a lower melting point than the first metal particles. In the technique of Patent Document 3, Sn is used as the second metal particles. When the solder material is subjected to a reflow heat treatment at, for example, 246 ° C. which is equal to or higher than the melting point of Sn (232 ° C.), The metal diffuses between the first metal particles, and a joint having excellent heat resistance is formed. However, considering the need for energy saving and low carbon dioxide emission, and application to substrate materials and electronic equipment with low heat resistance, bonding can be performed at a lower temperature, and after bonding, re-melting is not performed under reflow heat treatment conditions of lead-free solder. Material is desired.

そこで、本発明者等は、ピーク温度149℃以上で低温溶融接合ができ、かつ接合後は260℃の熱処理条件で耐熱性を有するはんだ材料を提案した(特許文献4)。該はんだ材料に含まれる導電性フィラーは、第1金属粒子と、該第1金属粒子よりも融点の高い第2金属粒子との混合体である。   In view of this, the present inventors have proposed a solder material capable of low-temperature melt bonding at a peak temperature of 149 ° C. or higher and having heat resistance under a heat treatment condition of 260 ° C. after the bonding (Patent Document 4). The conductive filler contained in the solder material is a mixture of first metal particles and second metal particles having a melting point higher than that of the first metal particles.

またこれとは別に、複数種の金属粒子を含み、かつ低温で接合することが可能であるはんだペーストとして、Cu粉末とSn−Bi系粉末合金との混合体を用いたはんだペーストが提案されている(特許文献5参照)。   Apart from this, a solder paste using a mixture of Cu powder and Sn-Bi based powder alloy has been proposed as a solder paste that includes a plurality of types of metal particles and can be bonded at a low temperature. (See Patent Document 5).

特開2001−334386号公報JP 2001-334386 A 特開平11−239866号公報JP-A-11-239866 国際公開第2006/109573号パンフレットInternational Publication No. 2006/109573 Pamphlet 特開2008−183582号公報JP 2008-183582 A 特開2008−200718号公報JP 2008-200788 A

しかしながら、特許文献4に記載される技術においては、接合後の特に室温での接合強度において改善の余地がある。また、特許文献4に記載される技術において、第1金属粒子にはIn、Ag等の高価な金属が使用されるため、原料コストが高く、また合金組成が複雑であるため製造コストが高いという課題があった。一方、特許文献5に記載される技術において、Cu粉末は酸化凝集しやすく、吸湿するとより強固に凝集するので、保存安定性において問題があった。また、特許文献4及び5に記載される技術においては、接合後の特に室温での接合強度においても改善の余地があった。   However, in the technique described in Patent Document 4, there is room for improvement in the bonding strength after bonding, particularly at room temperature. Further, in the technique described in Patent Document 4, since expensive metals such as In and Ag are used for the first metal particles, the raw material cost is high, and the manufacturing cost is high because the alloy composition is complicated. There was a problem. On the other hand, in the technique described in Patent Document 5, Cu powder easily oxidizes and aggregates, and when it absorbs moisture, it aggregates more firmly, which causes a problem in storage stability. Moreover, in the techniques described in Patent Documents 4 and 5, there is room for improvement in the bonding strength after bonding, particularly at room temperature.

本発明は、上記問題を鑑みて成されたものであり、Sn―37Pb共晶はんだのリフロー熱処理条件よりも低温条件(例えばピーク温度160℃)で溶融接合でき、接合後に室温での良好な接合強度を与えることができる金属フィラーを提供することを目的とする。また、本発明は、該金属フィラーを含む鉛フリーはんだ、該鉛フリーはんだを用いて得られる接続構造体、及び該接続構造体と基板とを有する部品搭載基板を提供することも目的とする。   The present invention has been made in view of the above problems, and can be melt-bonded at a temperature lower than the reflow heat treatment conditions of Sn-37Pb eutectic solder (for example, a peak temperature of 160 ° C.), and good bonding at room temperature after bonding. It aims at providing the metal filler which can give intensity | strength. Another object of the present invention is to provide a lead-free solder containing the metal filler, a connection structure obtained by using the lead-free solder, and a component mounting board having the connection structure and the substrate.

[1] 第1金属粒子と第2金属粒子との混合体からなる金属フィラーであって、
該第1金属粒子が、最も高い質量割合で存在する元素である主成分としてCuを含有し、かつIn及びSnをさらに含有する、Cu合金粒子であり、
該第2金属粒子が、Bi40〜70質量%、並びに、Ag、Cu、In及びSnからなる群より選ばれる1種以上の金属30〜60質量%からなる、Bi合金粒子であり、かつ、
該第1金属粒子100質量部に対する該第2金属粒子の量が40〜300質量部である、金属フィラー。
[2] 上記第2金属粒子が、Snを含有する、上記[1]に記載の金属フィラー。
[3] 上記第1金属粒子及び上記第2金属粒子の平均粒径が、いずれも5〜25μmの範囲である、上記[1]又は[2]に記載の金属フィラー。
[4] 上記第1金属粒子が、Ag及びBiから選ばれる1種以上の金属をさらに含有する、上記[1]〜[3]のいずれかに記載の金属フィラー。
[5] 上記第1金属粒子が、Ag5〜15質量%、Bi2〜8質量%、Cu49〜81質量%、In2〜8質量%、及びSn10〜20質量%からなり、
該第1金属粒子が、示差走査熱量測定(DSC)において、230〜300℃の範囲内に観測される少なくとも1つの発熱ピークと、480〜530℃の範囲内に観測される少なくとも1つの吸熱ピークとを有する、上記[1]〜[4]のいずれかに記載の金属フィラー。
[6] 上記[1]〜[5]のいずれかに記載の金属フィラーを含む、鉛フリーはんだ。
[7] 第1の電子部品、第2の電子部品、及び該第1の電子部品と該第2の電子部品とを接合するはんだ接合部とを有し、該はんだ接合部が上記[6]に記載の鉛フリーはんだをリフロー熱処理することによって形成されている、接続構造体。
[8] 基板と、該基板の上に搭載された上記[7]に記載の接続構造体とを有する、部品搭載基板。
[1] A metal filler comprising a mixture of first metal particles and second metal particles,
The first metal particles are Cu alloy particles containing Cu as a main component which is an element present in the highest mass ratio, and further containing In and Sn,
The second metal particles are Bi alloy particles composed of Bi40 to 70% by mass and one or more metals selected from the group consisting of Ag, Cu, In and Sn, and 30 to 60% by mass, and
The metal filler whose quantity of this 2nd metal particle with respect to 100 mass parts of this 1st metal particle is 40-300 mass parts.
[2] The metal filler according to [1], wherein the second metal particle contains Sn.
[3] The metal filler according to [1] or [2], wherein the average particle diameters of the first metal particles and the second metal particles are both in the range of 5 to 25 μm.
[4] The metal filler according to any one of [1] to [3], wherein the first metal particles further contain one or more metals selected from Ag and Bi.
[5] The first metal particles are composed of Ag 5 to 15% by mass, Bi 2 to 8% by mass, Cu 49 to 81% by mass, In 2 to 8% by mass, and Sn 10 to 20% by mass,
In the differential scanning calorimetry (DSC), the first metal particles have at least one exothermic peak observed in the range of 230 to 300 ° C. and at least one endothermic peak observed in the range of 480 to 530 ° C. The metal filler according to any one of the above [1] to [4].
[6] A lead-free solder containing the metal filler according to any one of [1] to [5].
[7] A first electronic component, a second electronic component, and a solder joint that joins the first electronic component and the second electronic component, wherein the solder joint is the above [6] A connection structure formed by reflow heat-treating the lead-free solder described in 1.
[8] A component mounting board having a substrate and the connection structure according to [7] mounted on the substrate.

本発明の金属フィラー及び該金属フィラーを含む鉛フリーはんだは、例えばSn―37Pb共晶はんだのリフロー熱処理条件よりも低温の条件(例えばピーク温度160℃以上)で溶融接合でき、接合後は後工程で複数回の熱処理を受けてもはんだ接続部が再溶融しない。よって、本発明によれば、部品電極間等で起こるはんだ再溶融によるショートを防止する効果が得られる。また、本発明の金属フィラー及び該金属フィラーを含む鉛フリーはんだは、接合後に室温での良好な接合強度を与えることができる。   The metal filler of the present invention and the lead-free solder containing the metal filler can be melt-bonded under conditions lower than the reflow heat treatment conditions of, for example, Sn-37Pb eutectic solder (for example, a peak temperature of 160 ° C. or higher). The solder joint does not remelt even after multiple heat treatments. Therefore, according to the present invention, an effect of preventing a short circuit due to remelting of solder that occurs between component electrodes and the like can be obtained. Moreover, the metal filler of this invention and the lead-free solder containing this metal filler can give the favorable joint strength at room temperature after joining.

<金属フィラー>
本発明の金属フィラーは、第1金属粒子と第2金属粒子との混合体からなる金属フィラーであって、第1金属粒子は、最も高い質量割合で存在する元素である主成分としてCu(銅)を含有し、かつIn(インジウム)及びSn(スズ)をさらに含有する、Cu合金粒子であり、第2金属粒子は、Bi(ビスマス)40〜70質量%、並びに、Ag(銀)、Cu(銅)、In(インジウム)及びSn(スズ)からなる群より選ばれる1種以上の金属30〜60質量%からなる、Bi合金粒子であり、かつ、第1金属粒子100質量部に対する第2金属粒子の量は40〜300質量部である。
<Metal filler>
The metal filler of the present invention is a metal filler composed of a mixture of first metal particles and second metal particles, and the first metal particles are Cu (copper) as a main component which is an element present in the highest mass ratio. ) And further containing In (indium) and Sn (tin), the second metal particles are Bi (bismuth) 40 to 70% by mass, and Ag (silver), Cu (Bi) alloy particles composed of 30 to 60% by mass of one or more metals selected from the group consisting of (copper), In (indium), and Sn (tin), and second relative to 100 parts by mass of the first metal particles. The amount of metal particles is 40 to 300 parts by mass.

本発明においては、上記組成の第1金属粒子及び第2金属粒子の組み合わせにより、第1金属粒子の融点は、第2金属粒子の融点よりも高く設定される。これにより、リフロー熱処理で、第1金属粒子よりも融点の低い第2金属粒子が溶融し、第1金属粒子と、溶融した第2金属粒子との間で、熱拡散による合金化反応が生じ、第2金属粒子の融点よりも高融点の安定合金相が形成される。典型的な実施態様では、本発明に係る鉛フリーはんだを用いる際のリフロー熱処理温度において第1金属粒子は溶融しない。これにより、本発明の金属フィラーを含む鉛フリーはんだは、低温条件(典型的にはSn―37Pb共晶はんだのリフロー熱処理条件よりも低温の条件)での溶融接合が可能であるとともに、溶融接合後には、熱処理で再溶融しないという効果を有する。低温溶融接合が可能であることは、省エネルギープロセス及び低二酸化炭素排出プロセスでの使用が可能になるとともに、適用される電気・電子機器及び基板材料等の熱損傷を抑制できる点で有利である。   In the present invention, the melting point of the first metal particles is set higher than the melting point of the second metal particles by the combination of the first metal particles and the second metal particles having the above composition. Thereby, in the reflow heat treatment, the second metal particles having a melting point lower than that of the first metal particles are melted, and an alloying reaction due to thermal diffusion occurs between the first metal particles and the melted second metal particles, A stable alloy phase having a melting point higher than that of the second metal particles is formed. In a typical embodiment, the first metal particles do not melt at the reflow heat treatment temperature when using the lead-free solder according to the present invention. As a result, the lead-free solder containing the metal filler of the present invention can be melt-bonded at a low temperature condition (typically, a temperature lower than the reflow heat treatment condition of Sn-37Pb eutectic solder) and melt-bonded. Later, it has the effect of not being remelted by heat treatment. The possibility of low-temperature melt bonding is advantageous in that it can be used in an energy saving process and a low carbon dioxide emission process, and heat damage of applied electric / electronic devices and substrate materials can be suppressed.

本発明においては、上記組成の第1金属粒子及び第2金属粒子の組み合わせにより、例えばCu粉末を用いる場合に生じる吸湿による凝集の問題を回避できる。また、本発明においては、第1金属粒子がCuを主成分とし、かつ第2金属粒子がBiを多く含有する組成を有する。これにより、低温での溶融接合が可能であるとともに接合後は室温での良好な接合強度を有し、しかもIn、Ag等の高価な金属の使用量が低減された金属フィラーを提供できる。   In the present invention, the combination of the first metal particles and the second metal particles having the above composition can avoid the problem of agglomeration due to moisture absorption that occurs when, for example, Cu powder is used. In the present invention, the first metal particles have a composition containing Cu as a main component and the second metal particles contain a large amount of Bi. As a result, it is possible to provide a metal filler that can be melt-bonded at a low temperature, has a good bonding strength at room temperature after bonding, and reduces the amount of expensive metals such as In and Ag.

[第1金属粒子]
第1金属粒子は、Cuを主成分とする。すなわち、第1金属粒子を構成する元素のうちCuの質量割合が最も多い。第1金属粒子は、Cuに加えて、In及びSnをさらに含有する。これにより、第1金属粒子が準安定合金相を形成できる。該準安定合金相の形成は、第1金属粒子と第2金属粒子との合金化の促進に寄与し、従って、低温での溶融接合時の良好な接合強度の付与に寄与する。
[First metal particles]
The first metal particles have Cu as a main component. That is, the mass ratio of Cu is the largest among the elements constituting the first metal particles. The first metal particles further contain In and Sn in addition to Cu. Thereby, the first metal particles can form a metastable alloy phase. The formation of the metastable alloy phase contributes to the promotion of alloying between the first metal particles and the second metal particles, and therefore contributes to the provision of a good bonding strength at the time of fusion bonding at a low temperature.

第1金属粒子は、第2金属粒子との熱拡散による合金化を良好に実現する観点から、Cu、In及びSnに加えて、Ag及びBiから選ばれる1種以上の金属をさらに含有することが好ましい。   The first metal particles further contain one or more metals selected from Ag and Bi, in addition to Cu, In and Sn, from the viewpoint of favorably realizing alloying by thermal diffusion with the second metal particles. Is preferred.

好ましい態様において、第1金属粒子は、Ag5〜15質量%、Bi2〜8質量%、Cu49〜81質量%、In2〜8質量%、及びSn10〜20質量%からなる。なおこの場合、不可避的不純物が含まれてもよい。   In a preferred embodiment, the first metal particles are composed of Ag 5 to 15% by mass, Bi 2 to 8% by mass, Cu 49 to 81% by mass, In 2 to 8% by mass, and Sn 10 to 20% by mass. In this case, inevitable impurities may be included.

好ましい態様において、第1金属粒子は、示差走査熱量測定(DSC)において、230〜300℃の範囲内に観測される少なくとも1つの発熱ピークと、480〜530℃の範囲内に観測される少なくとも1つの吸熱ピークとを有する。230〜300℃の範囲内に観測される発熱ピークは、第1金属粒子が準安定合金相を形成していることを示し、480〜530℃の範囲内に観察される吸熱ピークは、第1金属粒子の融点を示す。なお本明細書に記載する融点とは、示差走査熱量測定(DSC)で解析される固相線温度を示す。なお上記示差走査熱量測定は、典型的には、窒素雰囲気下、昇温速度10℃/分の条件で、40〜580℃の測定範囲で実施される。   In a preferred embodiment, the first metal particles have at least one exothermic peak observed in the range of 230 to 300 ° C. and at least one observed in the range of 480 to 530 ° C. in differential scanning calorimetry (DSC). With two endothermic peaks. The exothermic peak observed within the range of 230 to 300 ° C. indicates that the first metal particles form a metastable alloy phase, and the endothermic peak observed within the range of 480 to 530 ° C. is the first The melting point of the metal particles is shown. In addition, melting | fusing point described in this specification shows the solidus temperature analyzed by differential scanning calorimetry (DSC). The differential scanning calorimetry is typically performed in a measurement range of 40 to 580 ° C. under a nitrogen atmosphere under a temperature increase rate of 10 ° C./min.

より好ましい態様において、第1金属粒子は、Ag5〜15質量%、Bi2〜8質量%、Cu49〜81質量%、In2〜8質量%、及びSn10〜20質量%からなり、かつ、該第1金属粒子が、示差走査熱量測定(DSC)において、230〜300℃の範囲内に観測される少なくとも1つの発熱ピークと、480〜530℃の範囲内に観測される少なくとも1つの吸熱ピークとを有する。   In a more preferred embodiment, the first metal particles are composed of Ag 5 to 15% by mass, Bi 2 to 8% by mass, Cu 49 to 81% by mass, In 2 to 8% by mass, and Sn 10 to 20% by mass, and the first metal The particles have at least one exothermic peak observed in the range of 230-300 ° C. and at least one endothermic peak observed in the range of 480-530 ° C. in differential scanning calorimetry (DSC).

第1金属粒子の平均粒径は、2〜30μmの範囲であることが好ましい。第1金属粒子の平均粒径が2μm以上である場合、粒子の比表面積が小さくなる。そのため、本発明の金属フィラーから、例えば後述するフラックスを用いてはんだペーストを形成する際に、第1金属粒子とフラックスとの接触面積が少なくなり、はんだペーストの寿命が長くなるという利点が得られる。さらに、第1金属粒子の平均粒径が2μm以上である場合には、リフロー熱処理において、フラックスによる金属フィラーの還元反応(すなわち金属フィラー粒子の酸化膜除去)で発生するアウトガスを少なくすることができ、はんだ接続内部に発生するボイドを低減させることができる。また、第1金属粒子の平均粒径は、はんだペーストの粘着力の観点から30μm以下が好ましい。粒子サイズが大きくなりすぎると、粒子間の隙間が大きくなるので、はんだペーストの粘着力が損なわれ易くなり、はんだ接合される部品の搭載からリフロー熱処理が終わるまでの間で該部品が外れ易くなる。第1金属粒子の平均粒径は、5〜25μmの範囲であることがより好ましい。   The average particle size of the first metal particles is preferably in the range of 2 to 30 μm. When the average particle diameter of the first metal particles is 2 μm or more, the specific surface area of the particles becomes small. Therefore, when forming a solder paste from the metal filler of the present invention using, for example, a flux described later, there is an advantage that the contact area between the first metal particles and the flux is reduced and the life of the solder paste is increased. . Furthermore, when the average particle diameter of the first metal particles is 2 μm or more, outgas generated by the reduction reaction of the metal filler by the flux (that is, removal of the oxide film of the metal filler particles) can be reduced in the reflow heat treatment. Voids generated inside the solder connection can be reduced. The average particle diameter of the first metal particles is preferably 30 μm or less from the viewpoint of the adhesive strength of the solder paste. If the particle size becomes too large, the gaps between the particles become large, so the adhesive strength of the solder paste is likely to be impaired, and the component is likely to come off from the mounting of the component to be soldered to the end of the reflow heat treatment. . The average particle diameter of the first metal particles is more preferably in the range of 5 to 25 μm.

なお本明細書における平均粒径とは、レーザー回折式粒子径分布測定装置で測定される値である。   In addition, the average particle diameter in this specification is a value measured with a laser diffraction type particle size distribution measuring apparatus.

[第2金属粒子]
第2金属粒子は、Bi40〜70質量%、並びに、Ag、Cu、In及びSnから選ばれる1種以上の金属30〜60質量%からなる。なおこの場合、不可避的不純物が含有されてもよい。第2金属粒子は、上記組成により、リフロー熱処理において溶融でき、第1金属粒子と溶融した第2金属粒子との間で熱拡散による合金化が良好に実現する。
[Second metal particles]
A 2nd metal particle consists of 30-60 mass% of 1 or more types of metals chosen from Bi40-70 mass% and Ag, Cu, In, and Sn. In this case, inevitable impurities may be contained. With the above composition, the second metal particles can be melted in the reflow heat treatment, and the alloying by thermal diffusion is favorably realized between the first metal particles and the melted second metal particles.

第2金属粒子中のBiの含有量は、低温での溶融接合を可能にするとともに接合後に室温での良好な接合強度を得る観点から40質量%以上70質量%以下である。上記含有量は、好ましくは50〜60質量%である。   The content of Bi in the second metal particles is 40% by mass or more and 70% by mass or less from the viewpoint of enabling fusion bonding at low temperature and obtaining good bonding strength at room temperature after bonding. The content is preferably 50 to 60% by mass.

第2金属粒子中の、Ag、Cu、In及びSnから選ばれる1種以上の金属の含有量は、第1金属粒子と第2金属粒子との合金化を良好に実現する観点から30質量%以上であり、Biを第2金属粒子中に十分量含有させて低温での溶融接合を可能にする観点から60質量%以下である。上記含有量は、好ましくは40〜50質量%である。   The content of one or more metals selected from Ag, Cu, In and Sn in the second metal particles is 30% by mass from the viewpoint of favorably realizing alloying of the first metal particles and the second metal particles. From the viewpoint of allowing a sufficient amount of Bi to be contained in the second metal particles and enabling fusion bonding at a low temperature, it is 60% by mass or less. The content is preferably 40 to 50% by mass.

特に、第2金属粒子がSnを含有することが好ましい。この場合、金属フィラーの低温溶融性及び接合性が良好で、低温での溶融接合によっても良好な接合強度を与える金属フィラーを提供できる。第2金属粒子中のSnの含有量は、40〜50質量%であることが好ましい。   In particular, the second metal particles preferably contain Sn. In this case, it is possible to provide a metal filler that has good low-temperature meltability and bondability of the metal filler and that provides good bonding strength even by low-temperature melt bonding. The Sn content in the second metal particles is preferably 40 to 50% by mass.

第2金属粒子がAg、Cu及びInから選ばれる1種以上の金属を含有する場合には、延性の改善、低融点化、機械的強度等の改良が可能である。   When the second metal particles contain one or more metals selected from Ag, Cu and In, it is possible to improve ductility, lower melting point, mechanical strength and the like.

また、低温溶融性及び接合性の観点から、第2金属粒子は、より好ましくはSn―Bi系合金粒子であり、さらに好ましくは、凝固欠陥及び偏析が生じにくい共晶組成(典型的にはSn―58Bi)を有するSn―Bi系合金粒子である。Sn―Bi系合金粒子は、典型的には、Sn及びBiのみを構成元素とする(但し、不可避的不純物を含有してもよい)が、延性の改善、低融点化、機械的強度等の改良の目的で、Ag、Cu及びInから選ばれる1種以上の金属を微量添加してもよい。   Further, from the viewpoint of low-temperature meltability and bondability, the second metal particles are more preferably Sn—Bi alloy particles, and more preferably a eutectic composition (typically Sn that hardly causes solidification defects and segregation). Sn-Bi alloy particles having -58Bi). Typically, Sn—Bi alloy particles contain only Sn and Bi as constituent elements (however, they may contain inevitable impurities), but they have improved ductility, lower melting point, mechanical strength, etc. For the purpose of improvement, a trace amount of one or more metals selected from Ag, Cu and In may be added.

第2金属粒子の平均粒径は、第1金属粒子の平均粒径と同様の理由、すなわちフラックスとの反応性及びペーストの粘着力の観点から、5〜40μmの範囲であることが好ましい。第1金属粒子の平均粒径は、5〜25μmの範囲であることがより好ましい。   The average particle diameter of the second metal particles is preferably in the range of 5 to 40 μm from the same reason as the average particle diameter of the first metal particles, that is, from the viewpoint of the reactivity with the flux and the adhesive strength of the paste. The average particle diameter of the first metal particles is more preferably in the range of 5 to 25 μm.

[第1金属粒子と第2金属粒子との混合体]
本発明の金属フィラーは、第1金属粒子と第2金属粒子との混合体からなる。該混合体である金属フィラーにおいて、第1金属粒子100質量部に対する第2金属粒子の量(以下、「第2金属粒子の混合比」ともいう)は40〜300質量部の範囲である。第2金属粒子の混合比が、40質量部以上である場合、金属フィラー中の、リフロー熱処理時に溶融する成分の存在割合が多いため、低温での溶融接合を良好に実施できるとともに、例えばはんだとして接合された後に良好な物理的強度が付与される。第2金属粒子の混合比が100質量部以上である場合、さらに良好な物理的強度が得られる。一方、第2金属粒子の混合比が300質量部を超える場合、溶融した第2金属粒子が第1金属粒子と反応することで形成される、高融点の安定合金相の存在割合が少ないため、耐熱性が得られない。はんだ接合部の物理的強度及び耐熱性の観点から、第2金属粒子の混合比は、100〜300質量部の範囲であることが好ましい。
[Mixture of first metal particles and second metal particles]
The metal filler of the present invention comprises a mixture of first metal particles and second metal particles. In the metal filler which is the mixture, the amount of the second metal particles with respect to 100 parts by mass of the first metal particles (hereinafter also referred to as “mixing ratio of the second metal particles”) is in the range of 40 to 300 parts by mass. When the mixing ratio of the second metal particles is 40 parts by mass or more, the presence of the component that melts during the reflow heat treatment in the metal filler is large, so that fusion bonding at a low temperature can be carried out satisfactorily. Good physical strength is imparted after being joined. When the mixing ratio of the second metal particles is 100 parts by mass or more, better physical strength can be obtained. On the other hand, when the mixing ratio of the second metal particles exceeds 300 parts by mass, the existence ratio of the high melting point stable alloy phase formed by the reaction of the molten second metal particles with the first metal particles is small. Heat resistance cannot be obtained. From the viewpoint of physical strength and heat resistance of the solder joint, the mixing ratio of the second metal particles is preferably in the range of 100 to 300 parts by mass.

第1金属粒子及び第2金属粒子の粒度分布は、はんだペースト用途に応じて定めることができる。例えば、スクリーン印刷用途では、版抜け性を重視して、粒度分布はブロードにするのが好ましく、ディスペンス用途、及びビア充填用途では、吐出流動性及び穴埋め性を重視して、粒度分布はシャープにするのが好ましい。   The particle size distribution of the first metal particles and the second metal particles can be determined according to the solder paste application. For example, in screen printing applications, emphasis is placed on plate spillability, and it is preferable to make the particle size distribution broad. In dispensing applications and via filling applications, emphasis is placed on discharge fluidity and hole filling properties, and the particle size distribution is sharp. It is preferable to do this.

上述した通り、第1金属粒子及び第2金属粒子の平均粒径は、フラックスとの反応性及びペースト特性の観点から、それぞれ2〜30μm、及び5〜40μmの範囲であることが好ましいが、より好ましくは、第1金属粒子及び第2金属粒子の平均粒径が、いずれも5〜25μmの範囲である。本発明の金属フィラーは、後述するように、例えばフラックスと組合わされることによって、ペースト状の鉛フリーはんだを形成できる。このはんだペーストを用いて部品実装を行なう場合、リフロー熱処理によって形成される、はんだ接合部の特にフィレット部分の表面に、薄いフラックス層が形成される場合がある。金属フィラーの平均粒径が小さいと、該フラックス層中に金属フィラーの微粒子が浮遊した状態(すなわち金属粒子が互いに離れている状態)で同伴されやすく、はんだ接合された部品を後続のフラックス洗浄工程に供する際に、洗浄液中に金属フィラーの粒子が流れ出して部品に付着するという不都合が生じる場合がある。第1金属粒子及び第2金属粒子の平均粒径が5μm以上である場合、部品実装時にフラックス層中に金属フィラーの微粒子が同伴されにくく、フラックス層中の浮遊粒子の発生を抑制できるため、洗浄液中に流れ出す粒子の数を低減できる。一方、第1金属粒子及び第2金属粒子の平均粒径がいずれも25μm以下である場合、はんだペーストの粘着力が損なわれにくく好ましい。   As described above, the average particle diameters of the first metal particles and the second metal particles are preferably in the range of 2 to 30 μm and 5 to 40 μm, respectively, from the viewpoint of the reactivity with the flux and the paste characteristics. Preferably, the average particle diameters of the first metal particles and the second metal particles are both in the range of 5 to 25 μm. As described later, the metal filler of the present invention can form a paste-like lead-free solder, for example, by being combined with a flux. When component mounting is performed using this solder paste, a thin flux layer may be formed on the surface of the solder joint, particularly the fillet portion, formed by reflow heat treatment. If the average particle size of the metal filler is small, the metal particles are likely to be entrained in a state where the fine particles of the metal filler are suspended in the flux layer (that is, the metal particles are separated from each other), and the solder-joined parts are subsequently subjected to a flux cleaning process. In the case of being used, there may be a disadvantage that the metal filler particles flow out into the cleaning liquid and adhere to the parts. When the average particle diameter of the first metal particles and the second metal particles is 5 μm or more, the fine particles of the metal filler are less likely to be entrained in the flux layer during component mounting, and the generation of floating particles in the flux layer can be suppressed. The number of particles flowing out can be reduced. On the other hand, when the average particle diameters of the first metal particles and the second metal particles are both 25 μm or less, the adhesive strength of the solder paste is hardly damaged.

第2金属粒子の融点は、好ましくは80〜160℃の範囲であり、より好ましくは100〜150℃の範囲である。典型的な実施態様では、本発明に係る鉛フリーはんだを用いる際のリフロー熱処理温度において第2金属粒子は溶融する。   Melting | fusing point of a 2nd metal particle becomes like this. Preferably it is the range of 80-160 degreeC, More preferably, it is the range of 100-150 degreeC. In an exemplary embodiment, the second metal particles melt at the reflow heat treatment temperature when using the lead-free solder according to the present invention.

なお本明細書で規定する第1金属粒子及び第2金属粒子の元素組成は、例えば、誘導結合プラズマ(ICP)発光分析等で確認することができる。また、粒子断面の元素組成に関しては、SEM−EDX(特性X線分析装置)を用いることによって解析することができる。   The elemental composition of the first metal particles and the second metal particles defined in this specification can be confirmed by, for example, inductively coupled plasma (ICP) emission analysis. Further, the elemental composition of the particle cross section can be analyzed by using SEM-EDX (characteristic X-ray analyzer).

第1金属粒子及び第2金属粒子をそれぞれ製造する方法としては、微粉末の製造方法として公知の方法を採用できるが、急冷凝固法が好ましい。急冷凝固法による微粉末の製造方法としては、水噴霧法、ガス噴霧法、遠心噴霧法等が挙げられる。中でも、粒子の酸素含有量を抑えることができる点から、ガス噴霧法及び遠心噴霧法がより好ましい。   As a method for producing each of the first metal particles and the second metal particles, a known method can be adopted as a method for producing fine powder, but a rapid solidification method is preferred. Examples of the method for producing fine powder by the rapid solidification method include a water spray method, a gas spray method, and a centrifugal spray method. Among these, the gas spraying method and the centrifugal spraying method are more preferable because the oxygen content of the particles can be suppressed.

ガス噴霧法では、通常、窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガスを使用することができる。中でも、ガス噴霧時の線速を高くし、冷却速度を速くできる点で、比重の軽いヘリウムガスを用いることが好ましい。冷却速度は、500〜5000℃/秒の範囲であることが好ましい。遠心噴霧法では、回転ディスク上面に均一な溶融膜を形成する観点から、材質は、サイアロンであることが好ましく、ディスク回転速度は、6万〜12万rpmの範囲であることが好ましい。   In the gas spraying method, an inert gas such as nitrogen gas, argon gas, or helium gas can be usually used. Among these, it is preferable to use helium gas having a low specific gravity in that the linear velocity during gas spraying can be increased and the cooling rate can be increased. The cooling rate is preferably in the range of 500 to 5000 ° C./second. In the centrifugal spray method, from the viewpoint of forming a uniform molten film on the upper surface of the rotating disk, the material is preferably sialon, and the disk rotation speed is preferably in the range of 60,000 to 120,000 rpm.

<鉛フリーはんだ>
本発明は、上述した本発明の金属フィラーを含む鉛フリーはんだをも提供する。本明細書において、「鉛フリー」とは、EUの環境規制に準じ、鉛の含有量が0.1質量%以下であることを意味する。本発明の鉛フリーはんだは、金属フィラー成分と、フラックス成分とを含むはんだペーストであることが好ましい。本発明の鉛フリーはんだは、より典型的には、金属フィラー成分とフラックス成分とからなる。金属フィラー成分は、上述した本発明の金属フィラーからなるものでもよいし、本発明の効果を損なわない範囲で、他の金属フィラーを少量含んでもよい。上記はんだペースト中の金属フィラー成分の含有率としては、ペースト特性の観点から、はんだペースト100質量%のうち84〜94質量%の範囲が好ましい。上記含有率のさらに好ましい範囲は、ペースト用途に応じて定めることができる。例えば、スクリーン印刷用途では、版抜け性を重視して、上記含有率としては87〜91質量%の範囲が好ましく、さらに好ましくは、88〜90質量%の範囲である。ディスペンス用途では、吐出流動性を重視して、上記含有率としては85〜89質量%の範囲が好ましく、さらに好ましくは、86〜88質量%の範囲である。
<Lead-free solder>
The present invention also provides a lead-free solder containing the metal filler of the present invention described above. In this specification, “lead-free” means that the lead content is 0.1% by mass or less in accordance with EU environmental regulations. The lead-free solder of the present invention is preferably a solder paste containing a metal filler component and a flux component. The lead-free solder of the present invention more typically comprises a metal filler component and a flux component. The metal filler component may be composed of the metal filler of the present invention described above, or may contain a small amount of other metal fillers as long as the effects of the present invention are not impaired. As a content rate of the metal filler component in the said solder paste, the range of 84-94 mass% is preferable among 100 mass% of solder paste from a viewpoint of paste characteristics. A more preferable range of the content can be determined according to the paste application. For example, in screen printing applications, emphasis is placed on plate slippage, and the content is preferably in the range of 87 to 91% by mass, and more preferably in the range of 88 to 90% by mass. In dispensing applications, the content is preferably in the range of 85 to 89% by mass, more preferably in the range of 86 to 88% by mass, with emphasis on discharge fluidity.

フラックス成分は、ロジン、溶剤、活性剤、及びチクソ剤を含むことが好ましい。上記のようなフラックス成分は金属フィラーの表面処理に好適である。すなわち、リフロー熱処理時にはんだペースト中の金属フィラー成分の酸化膜を除去し、再酸化を抑制することで、金属の溶融及び熱拡散による合金化を促進する。フラックス成分としては、公知の材料を使用することができる。   The flux component preferably includes rosin, solvent, activator, and thixotropic agent. The above flux components are suitable for the surface treatment of the metal filler. That is, by removing the oxide film of the metal filler component in the solder paste during reflow heat treatment and suppressing reoxidation, alloying by melting and thermal diffusion of the metal is promoted. A known material can be used as the flux component.

<接続構造体>
本発明は、第1の電子部品、第2の電子部品、及び該第1の電子部品と該第2の電子部品とを接合するはんだ接合部とを有し、該はんだ接合部が前述した本発明の鉛フリーはんだをリフロー熱処理することによって形成されている、接続構造体をも提供する。第1の電子部品及び第2の電子部品の組合せとしては、基板電極と搭載部品電極との組み合わせ等が挙げられる。本発明の接続構造体を形成するための第1の電子部品と第2の電子部品との接合方法としては、基板電極にはんだペーストを塗布した後に搭載部品電極を載せてリフロー熱処理で接合する方法、搭載部品電極又は基板電極にはんだペーストを塗布し、リフロー熱処理によるバンプ形成後、搭載部品電極と基板電極とを重ね合せて再度リフロー熱処理で接合する方法等が挙げられる。上記の場合、電極間のはんだ接合により該電極間を接続できる。
<Connection structure>
The present invention includes a first electronic component, a second electronic component, and a solder joint that joins the first electronic component and the second electronic component, the solder joint being the book described above. There is also provided a connection structure formed by subjecting the inventive lead-free solder to reflow heat treatment. Examples of the combination of the first electronic component and the second electronic component include a combination of a substrate electrode and a mounted component electrode. As a method for joining the first electronic component and the second electronic component for forming the connection structure of the present invention, a method of joining a mounting component electrode after applying a solder paste to a substrate electrode and joining them by reflow heat treatment For example, a solder paste is applied to the mounting component electrode or the substrate electrode, bumps are formed by reflow heat treatment, and then the mounting component electrode and the substrate electrode are overlapped and joined again by reflow heat treatment. In the above case, the electrodes can be connected by solder bonding between the electrodes.

リフロー熱処理温度は、好ましくは、100〜200℃の範囲であり、より好ましくは120〜190℃の範囲である。リフロー熱処理温度は、典型的には、第1金属粒子の融点未満かつ第2金属粒子の融点以上に設定される。本発明に係る鉛フリーはんだを用いて、電子デバイス等の搭載部品電極と基板電極とを接続する場合、第2金属粒子の融点以上の熱履歴が与えられると第2金属粒子は溶融し、第1金属粒子及び搭載部品電極と基板電極とが接合する。このとき、第1金属粒子と第2金属粒子との金属間で熱拡散反応が加速的に進み、該第2金属粒子の融点よりも高融点の新たな安定合金相が形成され、第1金属粒子及び搭載部品電極と基板電極とを接続する接続構造体を形成する。この新たな安定合金相の融点は、Sn―3.0Ag−0.5Cuからなる鉛フリーはんだのリフロー熱処理温度(例えば260℃程度)より高く、後工程で複数回の熱処理を受けてもはんだが溶融しない。よって本発明によれば、はんだの再溶融によって部品電極間で発生するショートを防止できる。   The reflow heat treatment temperature is preferably in the range of 100 to 200 ° C, more preferably in the range of 120 to 190 ° C. The reflow heat treatment temperature is typically set below the melting point of the first metal particles and above the melting point of the second metal particles. In the case where a mounting component electrode such as an electronic device and a substrate electrode are connected using the lead-free solder according to the present invention, the second metal particles are melted when a thermal history equal to or higher than the melting point of the second metal particles is given. 1 Metal particle and mounting component electrode and substrate electrode are joined. At this time, the thermal diffusion reaction proceeds at an accelerated rate between the first metal particles and the second metal particles, and a new stable alloy phase having a melting point higher than the melting point of the second metal particles is formed. A connection structure for connecting the particles and the mounted component electrodes and the substrate electrode is formed. The melting point of this new stable alloy phase is higher than the reflow heat treatment temperature (for example, about 260 ° C.) of the lead-free solder made of Sn-3.0Ag-0.5Cu. Does not melt. Therefore, according to the present invention, it is possible to prevent a short circuit that occurs between the component electrodes due to remelting of the solder.

<部品搭載基板>
本発明は、基板と、該基板の上に搭載された、上述した本発明の接続構造体とを有する部品搭載基板をも提供する。
<Component mounting board>
The present invention also provides a component mounting board having a board and the above-described connection structure of the present invention mounted on the board.

以下、本発明を実施例によって具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to this.

[実施例1]
(1)第1金属粒子の製造
Cu6.5kg(純度99質量%以上)、Sn1.5kg(純度99質量%以上)、Ag1.0kg(純度99質量%以上)、Bi0.5kg(純度99質量%以上)、及びIn0.5kg(純度99質量%以上)(すなわち目標元素組成が、Cu:65質量%、Sn:15質量%、Ag:10質量%、Bi:5質量%、及びIn:5質量%)を黒鉛坩堝に入れ、99体積%以上のヘリウム雰囲気で、高周波誘導加熱装置により1400℃まで加熱、融解した。次に、この溶融金属を、坩堝の先端より、ヘリウムガス雰囲気の噴霧槽内に導入した後、坩堝先端付近に設けられたガスノズルから、ヘリウムガス(純度99体積%以上、酸素濃度0.1体積%未満、圧力2.5MPa)を噴出してアトマイズを行い、第1金属粒子を作製した。この時の冷却速度は、2600℃/秒であった。
[Example 1]
(1) Production of first metal particles Cu 6.5 kg (purity 99 mass% or more), Sn 1.5 kg (purity 99 mass% or more), Ag 1.0 kg (purity 99 mass% or more), Bi 0.5 kg (purity 99 mass%) Above, and In 0.5 kg (purity 99 mass% or more) (that is, the target element composition is Cu: 65 mass%, Sn: 15 mass%, Ag: 10 mass%, Bi: 5 mass%, and In: 5 mass) %) Was placed in a graphite crucible and heated and melted to 1400 ° C. with a high-frequency induction heating device in a helium atmosphere of 99% by volume or more. Next, this molten metal is introduced into the spray tank in the helium gas atmosphere from the tip of the crucible, and then helium gas (purity 99 volume% or more, oxygen concentration 0.1 volume) from a gas nozzle provided in the vicinity of the crucible tip. The first metal particles were produced by atomizing by spraying (less than%, pressure 2.5 MPa). The cooling rate at this time was 2600 ° C./second.

この第1金属粒子を気流式分級機(日清エンジニアリング:TC−15N)を用いて、20μm設定で分級し、大粒子側を回収後、もう一度30μm設定で分級し、小粒子側を回収した。回収した合金粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、15.1μmであった。この第1金属粒子を示差走査熱量計(島津製作所:DSC−50)で、窒素雰囲気下、昇温速度10℃/分の条件で、40〜580℃の範囲において測定したところ、502℃、及び521℃に吸熱ピークが検出され、これらによって示される複数の融点から、複数の合金相の存在を確認することができた。また、258℃、及び282℃には発熱ピークが検出され、準安定合金相の存在を確認することができた。ここで得られた第1金属粒子を、以後、第1金属粒子Aと表記する。   The first metal particles were classified using an airflow classifier (Nisshin Engineering: TC-15N) at a setting of 20 μm, and after collecting the large particles, they were classified again at a setting of 30 μm, and the small particles were collected. When the collected alloy particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 15.1 μm. The first metal particles were measured with a differential scanning calorimeter (Shimadzu Corporation: DSC-50) in the range of 40 to 580 ° C. under a nitrogen atmosphere under a temperature rising rate of 10 ° C./min. An endothermic peak was detected at 521 ° C., and the presence of a plurality of alloy phases could be confirmed from the plurality of melting points indicated by these. Further, exothermic peaks were detected at 258 ° C. and 282 ° C., and the presence of a metastable alloy phase could be confirmed. The first metal particles obtained here are hereinafter referred to as first metal particles A.

同様に、アトマイズによって得られた第1金属粒子を、10μm設定で分級し、大粒子側を回収後、もう一度20μm設定で分級し、小粒子側を回収した。回収した合金粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ平均粒径は、8.1μmであった。得られた第1金属粒子を、以後、第1金属粒子Bと表記する。   Similarly, the first metal particles obtained by atomization were classified at a setting of 10 μm, the large particles were collected, and then classified again at a setting of 20 μm, and the small particles were collected. The collected alloy particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), and the average particle size was 8.1 μm. The obtained first metal particles are hereinafter referred to as first metal particles B.

同様に、アトマイズによって得られた第1金属粒子を、1.6μm設定で分級し、大粒子側を回収後、もう一度10μm設定で分級し、小粒子側を回収した。回収した合金粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、2.7μmであった。得られた第1金属粒子を、以後、第1金属粒子Cと表記する。   Similarly, the first metal particles obtained by atomization were classified at a setting of 1.6 μm, the large particle side was collected, and then classified again at a setting of 10 μm, and the small particle side was collected. When the collected alloy particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 2.7 μm. The obtained first metal particles are hereinafter referred to as first metal particles C.

同様に、アトマイズによって得られた第1金属粒子を、30μm設定で分級し、大粒子側を回収した。回収した合金粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ平均粒径は、30.2μmであった。得られた第1金属粒子を、以後、第1金属粒子Dと表記する。   Similarly, the 1st metal particle obtained by atomization was classified by 30 micrometers setting, and the large particle side was collect | recovered. The collected alloy particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), and the average particle size was 30.2 μm. The obtained first metal particles are hereinafter referred to as first metal particles D.

(2)第2金属粒子の製造
第2金属粒子には、山石金属(株)社製の粒度25μm〜45μmのはんだ粉末Bi−42Sn(元素組成は、Bi:58質量%、Sn:42質量%)(以後第2金属粒子Aと表記)、若しくは、山石金属(株)社製の粒度10μm〜25μmのはんだ粉末Bi−42Sn(元素組成は、Bi:58質量%、Sn:42質量%)(以後第2金属粒子Bと表記)を用いた。示差走査熱量計(島津製作所:DSC−50)によって前述と同じ測定条件にて測定される融点は、第2金属粒子A及び第2金属粒子B共に、138℃であった。なお、第2金属粒子A及び第2金属粒子Bをレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ平均粒径は、それぞれ35μm、及び、20.4μmであった。
(2) Production of second metal particles The second metal particles include a solder powder Bi-42Sn having a particle size of 25 μm to 45 μm manufactured by Yamaishi Metal Co., Ltd. (element composition is Bi: 58 mass%, Sn: 42 mass%). (Hereinafter referred to as second metal particles A) or Yamaishi Metal Co., Ltd. solder powder Bi-42Sn having a particle size of 10 μm to 25 μm (element composition is Bi: 58 mass%, Sn: 42 mass%) ( Hereinafter, the second metal particles B are used). The melting point measured by a differential scanning calorimeter (Shimadzu Corporation: DSC-50) under the same measurement conditions as described above was 138 ° C. for both the second metal particles A and the second metal particles B. In addition, when the 2nd metal particle A and the 2nd metal particle B were measured with the laser diffraction type particle diameter distribution measuring apparatus (HELOS & RODOS), the average particle diameter was 35 micrometers and 20.4 micrometers, respectively.

(3)鉛フリーはんだペーストの作製
上記の第1金属粒子Aと第2金属粒子Aとを質量比100:300で混合し、金属フィラー成分とした。次に金属フィラー成分89.5質量%と、フラックス(A)10.5質量%とを混合し、ソルダーソフナー(マルコム:SPS−1)、及び脱泡混練機(松尾産業:SNB−350)に順次かけてはんだペーストを作製した。
(3) Preparation of lead-free solder paste Said 1st metal particle A and 2nd metal particle A were mixed by mass ratio 100: 300, and it was set as the metal filler component. Next, 89.5 mass% of the metal filler component and 10.5 mass% of the flux (A) are mixed, and the solder softener (Malcom: SPS-1) and the defoaming kneader (Matsuo Sangyo: SNB-350) are mixed. Solder paste was produced in sequence.

(4)接合強度(剪断強度)の測定
上記はんだペーストをサイズ25mm×25mm、厚み0.25mmのCu基板上に印刷塗布し、サイズ2mm×2mm、厚み0.5mmのCuチップを搭載後、窒素雰囲気にて、ピーク温度160℃でリフロー熱処理してサンプルを作製した。熱処理装置は、リフローシミュレータ(マルコム:SRS−1C)を使用した。温度プロファイルは、熱処理開始(常温)から120℃までを1.5℃/秒で昇温し、120℃から135℃までを110秒かけて徐々に昇温後、2.0℃/秒で昇温し、ピーク温度160℃で15秒間保持する条件を採用した。印刷パターン形成には、スクリーン印刷機(マイクロテック:MT−320TV)を用いた。印刷マスクはメタル製であり、そしてスキージはウレタン製である。マスクは、開口サイズ2mm×3.5mm、厚み0.1mmである。印刷条件は、速度50mm/秒、印圧0.1MPa、スキージ圧0.2MPa、背圧0.1MPa、アタック角度20°、クリアランス0mm、印刷回数1回とした。
(4) Measurement of bonding strength (shear strength) The solder paste is printed on a Cu substrate having a size of 25 mm × 25 mm and a thickness of 0.25 mm, and a Cu chip having a size of 2 mm × 2 mm and a thickness of 0.5 mm is mounted, and then nitrogen is added. A sample was prepared by reflow heat treatment at a peak temperature of 160 ° C. in an atmosphere. A reflow simulator (Malcom: SRS-1C) was used as the heat treatment apparatus. The temperature profile increased from 1.5 ° C / second to 120 ° C from the start of heat treatment (normal temperature), gradually increased from 120 ° C to 135 ° C over 110 seconds, and then increased at 2.0 ° C / second. The conditions of heating and holding at a peak temperature of 160 ° C. for 15 seconds were employed. A screen printer (Microtech: MT-320TV) was used for forming the print pattern. The printing mask is made of metal and the squeegee is made of urethane. The mask has an opening size of 2 mm × 3.5 mm and a thickness of 0.1 mm. The printing conditions were a speed of 50 mm / second, a printing pressure of 0.1 MPa, a squeegee pressure of 0.2 MPa, a back pressure of 0.1 MPa, an attack angle of 20 °, a clearance of 0 mm, and a printing frequency of once.

次に、常温(25℃)で、上記で作製したサンプルの剪断方向のチップ接合強度を、プッシュ・プルゲージにより、押し速度10mm/分で測定し、単位面積当たりの値に換算したところ15.4MPaであった。さらに、上記で作製したサンプルをホットプレート上で260℃に加熱し、3分間保持した後、上記と同じ方法で剪断方向のチップ接合強度を測定し、単位面積当たりの値に換算したところ、0.35MPaであった。よって、該サンプルが260℃加熱時でも接合強度を保持できる耐熱性を有することを確認することができた。尚、接合強度を保持できるとは、0.20MPa以上の接合強度を示すことを意味する。   Next, at normal temperature (25 ° C.), the chip bonding strength in the shear direction of the sample prepared above was measured at a pushing speed of 10 mm / min with a push-pull gauge and converted to a value per unit area of 15.4 MPa. Met. Further, after heating the sample prepared above to 260 ° C. on a hot plate and holding it for 3 minutes, the chip bonding strength in the shear direction was measured by the same method as described above, and converted to a value per unit area. .35 MPa. Therefore, it was confirmed that the sample had heat resistance capable of maintaining the bonding strength even when heated at 260 ° C. In addition, being able to hold | maintain joining strength means showing the joining strength of 0.20 Mpa or more.

[実施例2〜10、比較例1及び2]
第1金属粒子Aと第2金属粒子Aとの混合比を変えた金属フィラー成分を用いて、実施例1と同様の方法ではんだペーストを作製し、実施例1と同様にチップ接合強度を測定した。結果を表1の実施例2〜5、並びに比較例1に示す。また、実施例1〜5と同じ混合比の金属フィラー成分をそれぞれ用いて、Cuチップの接合時の温度プロファイルを、熱処理開始(常温)から120℃までを1.5℃/秒で昇温し、120℃から135℃までを110秒かけて徐々に昇温後、2.0℃/秒で昇温し、ピーク温度180℃で15秒間保持する条件を採用した結果も表1の実施例6〜10及び比較例2に示す。表1の比較例1及び2の結果から明らかなように、第1金属粒子を含まない場合には、260℃に加熱するとはんだ接合部(接続部)が溶融するため、剪断強度が0MPaである。一方、第1金属粒子を含有する実施例1〜10では、260℃に加熱した場合においても接合強度が0.2MPa以上であり、はんだが再溶融していないことがわかる。尚、本明細書において、はんだが再溶融していないとは、接合強度が0.20MPa以上であることを意味する。
[Examples 2 to 10, Comparative Examples 1 and 2]
Using a metal filler component in which the mixing ratio of the first metal particle A and the second metal particle A is changed, a solder paste is prepared in the same manner as in Example 1, and the chip bonding strength is measured in the same manner as in Example 1. did. The results are shown in Examples 2 to 5 in Table 1 and Comparative Example 1. Moreover, using each of the metal filler components having the same mixing ratio as in Examples 1 to 5, the temperature profile at the time of joining the Cu chips was increased from the start of heat treatment (normal temperature) to 120 ° C. at 1.5 ° C./second. Table 6 shows the results obtained by gradually increasing the temperature from 120 ° C. to 135 ° C. over 110 seconds, then increasing the temperature at 2.0 ° C./second, and maintaining the peak temperature at 180 ° C. for 15 seconds. -10 and Comparative Example 2. As is apparent from the results of Comparative Examples 1 and 2 in Table 1, when the first metal particles are not included, the solder joint portion (connection portion) melts when heated to 260 ° C., and thus the shear strength is 0 MPa. . On the other hand, in Examples 1-10 containing 1st metal particle, even when it heats to 260 degreeC, it turns out that joining strength is 0.2 Mpa or more and the solder is not remelted. In the present specification, that the solder is not remelted means that the bonding strength is 0.20 MPa or more.

[比較例3]
従来の代表的な鉛フリーはんだ(Sn−3.0Ag−0.5Cu)ペーストを用いて、実施例1(4)と同様の手法でCuチップの接合強度の測定を行なった。結果を表1に示す。ただし、該はんだ材を用いてCuチップを接合する際のリフロー温度プロファイルは、熱処理開始(常温)から140℃までを1.5℃/秒で昇温し、140℃から170℃までを110秒かけて徐々に昇温後、170℃から250℃までを2.0℃/秒で昇温し、ピーク温度250℃で15秒間保持する条件を採用した。比較例3の結果から、代表的な鉛フリーはんだSn−3.0Ag−0.5Cuを用いた場合には、260℃に加熱するとはんだ接合部が溶融し接合強度が0MPaになることが判る。
[Comparative Example 3]
Using a conventional representative lead-free solder (Sn-3.0Ag-0.5Cu) paste, the bonding strength of the Cu chip was measured in the same manner as in Example 1 (4). The results are shown in Table 1. However, the reflow temperature profile when the Cu chip is joined using the solder material is as follows: from the start of heat treatment (room temperature) to 140 ° C. at a rate of 1.5 ° C./second and from 140 ° C. to 170 ° C. for 110 seconds. The temperature was gradually increased over a period of 170 ° C. to 250 ° C. at a rate of 2.0 ° C./second, and a condition was maintained at a peak temperature of 250 ° C. for 15 seconds. From the result of Comparative Example 3, it can be seen that when a typical lead-free solder Sn-3.0Ag-0.5Cu is used, the solder joint is melted and heated to 0 MPa when heated to 260 ° C.

[実施例11〜20]
第1金属粒子Bと第2金属粒子Bとの混合比を変えた金属フィラー成分を用いて、実施例1と同様の方法ではんだペーストを作製し、さらに160℃、又は180℃のピーク温度でリフロー熱処理(実施例1〜10と同様)を行って、同様に接合強度を測定した。結果を表2の実施例11〜20に示す。表2より、第1金属粒子Bを含有する実施例11〜20では、260℃に加熱した場合においても0.20MPa以上の接合強度を示し、接合状態を保持する耐熱性を示すことが判る。
[Examples 11 to 20]
Using a metal filler component in which the mixing ratio of the first metal particle B and the second metal particle B is changed, a solder paste is produced in the same manner as in Example 1, and at a peak temperature of 160 ° C. or 180 ° C. A reflow heat treatment (similar to Examples 1 to 10) was performed, and the bonding strength was measured in the same manner. The results are shown in Examples 11 to 20 in Table 2. From Table 2, it can be seen that Examples 11 to 20 containing the first metal particles B exhibit a bonding strength of 0.20 MPa or more even when heated to 260 ° C., and exhibit heat resistance that maintains the bonded state.

[実施例21]
高耐熱エポキシ樹脂ガラス布からなるプリント基板のCu電極上に、実施例2で作製した鉛フリーはんだを印刷塗布し、0603サイズ積層セラミックチップコンデンサー(以後、0603Cと省略し、又は単に搭載部品ともいう)を搭載後、実施例1記載の条件にてリフロー熱処理し、サンプルを作製した。
[Example 21]
A lead-free solder produced in Example 2 was printed on a Cu electrode of a printed circuit board made of a high heat-resistant epoxy resin glass cloth, and 0603 size multilayer ceramic chip capacitor (hereinafter abbreviated as 0603C, or simply referred to as a mounted component). ) Was then subjected to reflow heat treatment under the conditions described in Example 1 to prepare a sample.

次に上記で作製したサンプルをホットプレート上で105℃に加熱し、搭載部品上部にアンダーフィルが覆われないようにアンダーフィルを塗布し、オーブンで165℃にて2時間硬化させた。次に透明モールド樹脂を搭載部品の上部及び周囲に塗布してオーブンで150℃にて4時間硬化させた。   Next, the sample produced above was heated to 105 ° C. on a hot plate, the underfill was applied so as not to cover the upper part of the mounted component, and cured in an oven at 165 ° C. for 2 hours. Next, a transparent mold resin was applied to the upper part and the periphery of the mounted component and cured in an oven at 150 ° C. for 4 hours.

次に60℃、60%RHで40時間吸湿させた後、窒素雰囲気にて、ピーク温度260℃のリフロー熱処理を行った。熱処理装置は、リフローシミュレータ(マルコム:SRS−1C)を使用した。温度プロファイルは、熱処理開始(常温)から150℃までを1.5℃/秒で昇温し、150℃から210℃までを100秒かけて徐々に昇温後、210℃から260℃までを2.0℃/秒で昇温し、ピーク温度260℃で15秒間保持する条件を採用した。次に、リフロー熱処理によりはんだが溶融して部品電極間でショートしているかを目視で観察した。結果を表3に示す。実施例21では、部品電極間でのショートは観察されず、260℃でもはんだ材が流動しない耐熱性を示すことを確認することができた。   Next, after moisture absorption at 60 ° C. and 60% RH for 40 hours, reflow heat treatment at a peak temperature of 260 ° C. was performed in a nitrogen atmosphere. A reflow simulator (Malcom: SRS-1C) was used as the heat treatment apparatus. The temperature profile was as follows: from heat treatment start (room temperature) to 150 ° C. at a rate of 1.5 ° C./second, gradually increasing from 150 ° C. to 210 ° C. over 100 seconds, then from 210 ° C. to 260 ° C. The temperature was raised at a rate of 0.0 ° C./second, and the conditions were maintained at a peak temperature of 260 ° C. for 15 seconds. Next, it was visually observed whether the solder was melted by reflow heat treatment and shorted between the component electrodes. The results are shown in Table 3. In Example 21, no short-circuit between the component electrodes was observed, and it was confirmed that the solder material exhibited heat resistance that did not flow even at 260 ° C.

[比較例4]
実施例21と同様の方法で、従来の代表的な鉛フリーはんだSn−3.0Ag−0.5Cuの評価を行った。ただし、0603Cを搭載する際の温度プロファイルのみ異なり、熱処理開始(常温)から140℃までを1.5℃/秒で昇温し、140℃から170℃までを100秒かけて徐々に昇温後、170℃から250℃までを2.0℃/秒で昇温し、ピーク温度250℃で15秒間保持する条件を採用した。結果を表3に示す。
[Comparative Example 4]
A conventional representative lead-free solder Sn-3.0Ag-0.5Cu was evaluated in the same manner as in Example 21. However, only the temperature profile when mounting 0603C is different, the temperature is increased from the start of heat treatment (room temperature) to 140 ° C at 1.5 ° C / second, and gradually from 140 ° C to 170 ° C over 100 seconds. The temperature was raised from 170 ° C. to 250 ° C. at a rate of 2.0 ° C./second and maintained at a peak temperature of 250 ° C. for 15 seconds. The results are shown in Table 3.

表3の結果から明らかなように、比較例4では、非常に高い確率で、はんだが溶融して部品電極間でショートを起こすことがわかった。一方、実施例21では、第2金属粒子の融点は138℃であるにもかかわらず部品電極間でのショートが発生していない。以上の結果より、本発明の金属フィラーを使用した鉛フリーはんだは、低温での部品接合ができ、その後のリフローでもはんだが溶融して流れ出すことが無く、耐熱性に優れた材料であることがわかる。   As is clear from the results in Table 3, it was found that in Comparative Example 4, the solder melted and a short circuit occurred between the component electrodes with a very high probability. On the other hand, in Example 21, although the melting point of the second metal particles is 138 ° C., no short circuit occurs between the component electrodes. From the above results, the lead-free solder using the metal filler of the present invention is capable of joining parts at low temperatures, and does not melt and flow out even in subsequent reflow, and is a material with excellent heat resistance. Recognize.

[実施例22]
第1金属粒子Aと第2金属粒子Aとを質量比100:186で混合し、金属フィラー成分とした。次に金属フィラー成分90質量%と、フラックス(B)10質量%とを混合し、実施例1と同様の手順ではんだペーストを作製した。高耐熱エポキシ樹脂ガラス布からなるプリント基板のCu電極上に該はんだペーストを印刷塗布し、1005サイズ抵抗チップ(以後、1005Rとし、又は単に搭載部品ともいう)を搭載後、窒素雰囲気下でピーク温度160℃の条件でリフロー熱処理し、サンプルを作製した。得られたサンプルをエポキシ樹脂で包埋し、さらに断面研磨することによって搭載部品接合断面を観察し、搭載部品接合部のはんだ上層に存在するフラックス層中に浮遊状態(すなわち金属粒子が互いに離れている状態)で存在している金属粒子(浮遊粒子)の数を数えた。結果を表4に示す。なお、表4に示す浮遊粒子の数は、1005Rの6箇所の接合部の浮遊粒子を数えた値を平均値したものである。
[Example 22]
The 1st metal particle A and the 2nd metal particle A were mixed by mass ratio 100: 186, and it was set as the metal filler component. Next, 90% by mass of the metal filler component and 10% by mass of the flux (B) were mixed, and a solder paste was produced in the same procedure as in Example 1. The solder paste is printed and applied onto a Cu electrode of a printed circuit board made of high heat-resistant epoxy resin glass cloth, and after mounting a 1005 size resistor chip (hereinafter referred to as 1005R, or simply referred to as a mounted component), the peak temperature in a nitrogen atmosphere Reflow heat treatment was performed at 160 ° C. to prepare a sample. The obtained sample is embedded in epoxy resin, and the cross-section of the mounted component is observed by polishing the cross-section, and the suspended state (that is, the metal particles are separated from each other) in the flux layer existing on the solder upper layer of the mounted component joint. Counts the number of metal particles (floating particles) present. The results are shown in Table 4. In addition, the number of suspended particles shown in Table 4 is an average of values obtained by counting suspended particles at six joint portions of 1005R.

[実施例23〜24]
実施例22における第1金属粒子Aの代わりに第1金属粒子B又は第1金属粒子Cを用いて同様の評価を行なった。結果を表4に示す。表4の結果より判るように、平均粒径が2.7μmである第1金属粒子Cを用いた場合には、接合部のはんだ上層のフラックス層中に多くの浮遊粒子が観察される。一方、平均粒径が8.1μmである第1金属粒子B、又は平均粒径が15.1μmである第1金属粒子Aを用いた場合には、フラックス層中に発生する浮遊粒子が少ないことが判る。このように、使用する金属粒子の平均粒径が小さい(例えば2.7μm)場合と比べ、該平均粒径が例えば8.1μm及び15.1μmの場合には、フラックス層中に浮遊粒子が発生しにくいという利点が得られることが判る。
[Examples 23 to 24]
The same evaluation was performed using the first metal particle B or the first metal particle C instead of the first metal particle A in Example 22. The results are shown in Table 4. As can be seen from the results in Table 4, when the first metal particles C having an average particle diameter of 2.7 μm are used, many suspended particles are observed in the flux layer of the solder upper layer of the joint. On the other hand, when the first metal particles B having an average particle diameter of 8.1 μm or the first metal particles A having an average particle diameter of 15.1 μm are used, there are few floating particles generated in the flux layer. I understand. Thus, compared with the case where the average particle diameter of the metal particles used is small (for example, 2.7 μm), when the average particle diameter is, for example, 8.1 μm and 15.1 μm, floating particles are generated in the flux layer. It turns out that the advantage that it is hard to do is acquired.

[実施例25〜27]
第1金属粒子Aと第2金属粒子Bとを質量比100:186で混合し、金属フィラー成分とした。次に金属フィラー成分89.5質量%と、フラックス(B)10.5質量%とを混合し、実施例1と同様の手順ではんだペーストを作製した。得られたはんだペーストを、アルミナ基板上に印刷塗布し、タッキネステスター(マルコム社製)TK−1を用いて粘着力を測定した。結果を表5の実施例25に示す。粘着力は5点測定し、その平均値を表5に示した。また、第1金属粒子Aの代わりに第1金属粒子B又は第1金属粒子Dを用いて、実施例1と同様の手順ではんだペーストを作製し、同様に粘着力を測定した。結果をそれぞれ表5の実施例26及び27に示す。これより、使用する金属粒子の平均粒径が金属粒子D(平均粒径:30.2μm)のように大きい場合と比べ、該平均粒径が例えば8.1μm及び15.1μmである場合には、粘着力が高い値を示しペーストとしての粘着力が強いという利点が得られることが判る。
[Examples 25 to 27]
The first metal particles A and the second metal particles B were mixed at a mass ratio of 100: 186 to obtain a metal filler component. Next, 89.5 mass% of the metal filler component and 10.5 mass% of the flux (B) were mixed, and a solder paste was produced in the same procedure as in Example 1. The obtained solder paste was printed and applied onto an alumina substrate, and the adhesive strength was measured using a tackiness tester (manufactured by Malcolm) TK-1. The results are shown in Example 25 in Table 5. The adhesive strength was measured at 5 points, and the average value is shown in Table 5. Moreover, using the 1st metal particle B or the 1st metal particle D instead of the 1st metal particle A, the solder paste was produced in the procedure similar to Example 1, and adhesive force was measured similarly. The results are shown in Examples 26 and 27 in Table 5, respectively. Accordingly, when the average particle size is 8.1 μm and 15.1 μm, for example, compared to the case where the average particle size of the metal particles used is as large as the metal particle D (average particle size: 30.2 μm). It can be seen that the advantage that the adhesive strength is high and the adhesive strength as a paste is strong can be obtained.

[実施例28及び29]
第1金属粒子Aと第2金属粒子Aとを質量比100:186で混合し、金属フィラー成分とした。次に金属フィラー成分90質量%と、フラックス(B)10質量%とを混合し、実施例1と同様の手順ではんだペーストを作製した。得られたペーストを用いて、実施例1(4)と同様に、窒素雰囲気にて、ピーク温度160℃でリフロー熱処理してCuチップ接合基板を作製し、常温及び260℃加熱時の接合強度を測定した。結果を表6の実施例28に示す。
[Examples 28 and 29]
The 1st metal particle A and the 2nd metal particle A were mixed by mass ratio 100: 186, and it was set as the metal filler component. Next, 90% by mass of the metal filler component and 10% by mass of the flux (B) were mixed, and a solder paste was produced in the same procedure as in Example 1. Using the obtained paste, similarly to Example 1 (4), a reflow heat treatment was performed at a peak temperature of 160 ° C. in a nitrogen atmosphere to prepare a Cu chip bonded substrate, and the bonding strength at room temperature and 260 ° C. heating was obtained. It was measured. The results are shown in Example 28 of Table 6.

また、第1金属粒子Aと第2金属粒子Bとを質量比100:186で混合し、金属フィラー成分とした。次に金属フィラー成分89.5質量%と、フラックス(B)10.5質量%とを混合し、実施例1と同様の手順ではんだペーストを作製した。実施例1(4)と同様に、窒素雰囲気にて、ピーク温度160℃でリフロー熱処理してCuチップ接合基板を作製し、常温及び260℃加熱時の接合強度を測定した。結果を表6の実施例29に示す。   Moreover, the 1st metal particle A and the 2nd metal particle B were mixed by mass ratio 100: 186, and it was set as the metal filler component. Next, 89.5 mass% of the metal filler component and 10.5 mass% of the flux (B) were mixed, and a solder paste was produced in the same procedure as in Example 1. Similarly to Example 1 (4), a reflow heat treatment was performed at a peak temperature of 160 ° C. in a nitrogen atmosphere to prepare a Cu chip bonded substrate, and the bonding strength when heated at normal temperature and 260 ° C. was measured. The results are shown in Example 29 of Table 6.

[比較例5及び6]
Cu粉(福田金属箔粉工業社製、Cu−HWQ 平均粒径15μm)と第2金属粒子Aとを質量比100:186で混合し、金属フィラー成分とした。次に金属フィラー成分90質量%と、フラックス(B)10質量%とを混合し、実施例1と同様の手順ではんだペーストを作製した。得られたペーストを用いて、実施例1(4)と同様に、窒素雰囲気にて、ピーク温度160℃でリフロー熱処理してCuチップ接合基板を作製し、常温及び260℃加熱時の接合強度を測定した。結果を表6の比較例5に示す。
[Comparative Examples 5 and 6]
Cu powder (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., Cu-HWQ average particle size 15 μm) and second metal particles A were mixed at a mass ratio of 100: 186 to obtain a metal filler component. Next, 90% by mass of the metal filler component and 10% by mass of the flux (B) were mixed, and a solder paste was produced in the same procedure as in Example 1. Using the obtained paste, similarly to Example 1 (4), a reflow heat treatment was performed at a peak temperature of 160 ° C. in a nitrogen atmosphere to prepare a Cu chip bonded substrate, and the bonding strength at room temperature and 260 ° C. heating was obtained. It was measured. The results are shown in Comparative Example 5 in Table 6.

また、Cu粉(福田金属箔粉工業社製、Cu−HWQ 15μm)と第2金属粒子Bとを質量比100:186で混合し、金属フィラー成分とした。次に金属フィラー成分89.5質量%と、フラックス(B)10.5質量%とを混合し、実施例1と同様の手順ではんだペーストを作製した。得られたペーストを用いて、実施例1(4)と同様に、窒素雰囲気にて、ピーク温度160℃でリフロー熱処理してCuチップ接合基板を作製し、常温及び260℃加熱時の接合強度を測定した。結果を表6の比較例6に示す。   Moreover, Cu powder (Fukuda metal foil powder industry company make, Cu-HWQ 15micrometer) and the 2nd metal particle B were mixed by mass ratio 100: 186, and it was set as the metal filler component. Next, 89.5 mass% of the metal filler component and 10.5 mass% of the flux (B) were mixed, and a solder paste was produced in the same procedure as in Example 1. Using the obtained paste, similarly to Example 1 (4), a reflow heat treatment was performed at a peak temperature of 160 ° C. in a nitrogen atmosphere to prepare a Cu chip bonded substrate, and the bonding strength at room temperature and 260 ° C. heating was obtained. It was measured. The results are shown in Comparative Example 6 in Table 6.

表6の実施例28と比較例5、又は実施例29と比較例6とを比較すると、第2金属粒子であるBi−42Snと、Cu粉との組み合わせと比べて、第2金属粒子であるBi−42Snと、第1金属粒子Aとの組み合わせを用いた方が、常温時での接合強度が顕著に良いことがわかる。   When Example 28 of Table 6 and Comparative Example 5 or Example 29 and Comparative Example 6 are compared, it is 2nd metal particle compared with the combination of Bi-42Sn which is 2nd metal particle, and Cu powder | flour. It can be seen that the bonding strength at room temperature is significantly better when the combination of Bi-42Sn and the first metal particles A is used.

[比較例7及び8]
本発明者等の先行技術(特開2008−183582号公報)と比較するため以下の評価を行なった。
[Comparative Examples 7 and 8]
The following evaluation was performed for comparison with the prior art of the present inventors (Japanese Patent Laid-Open No. 2008-183582).

第3金属粒子の製造
Ag粒子1.0kg(純度99質量%以上)、Bi粒子2.0kg(純度99質量%以上)、Cu粒子1.5kg(純度99質量%以上)、In粒子2.0kg(純度99質量%以上)、Sn粒子3.5kg(純度99質量%以上)(すなわち目標元素組成が、Ag:10質量%、Bi:20質量%、Cu:15質量%、In:20質量%、及びSn:35質量%)、を黒鉛坩堝に入れ、99体積%以上のヘリウム雰囲気下で、高周波誘導加熱装置により1400℃まで加熱し、融解した。次に、この溶融金属を、坩堝の先端より、ヘリウムガス雰囲気の噴霧槽内に導入した後、坩堝先端付近に設けられたガスノズルから、ヘリウムガス(純度99体積%以上、酸素濃度0.1体積%未満、圧力2.5MPa)を噴出してアトマイズを行い、第3金属粒子を作製した。この時の冷却速度は2600℃/秒とした。得られた第3金属粒子を走査型電子顕微鏡(日立製作所(株)製:S−2700)で観察したところ球状であった。この金属粒子を、気流式分級機(日清エンジニアリング(株)製:TC−15N)を用いて、5μmの設定で分級して大粒子側を回収後、もう一度15μm設定で分級し、小粒子側を回収した。回収した第3金属粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、5.5μmであった。このようにして得られた第3金属粒子を試料とし、示差走査熱量測定を行った。その結果、66℃、87℃、及び380℃の吸熱ピークが存在し、66℃及び87℃という低融点の領域に複数の融点を有することが確認された。
Production of third metal particles 1.0 kg of Ag particles (purity 99% by mass or more), 2.0 kg of Bi particles (purity 99% by mass or more), 1.5 kg of Cu particles (purity 99% by mass or more), 2.0 kg of In particles (Purity 99% by mass or more), Sn particles 3.5 kg (Purity 99% by mass or more) (namely, the target element composition is Ag: 10% by mass, Bi: 20% by mass, Cu: 15% by mass, In: 20% by mass) , And Sn: 35% by mass) were put into a graphite crucible and heated to 1400 ° C. with a high-frequency induction heating apparatus in a helium atmosphere of 99% by volume or more to melt. Next, this molten metal is introduced into the spray tank in the helium gas atmosphere from the tip of the crucible, and then helium gas (purity 99 volume% or more, oxygen concentration 0.1 volume) from a gas nozzle provided in the vicinity of the crucible tip. Atomization was performed by ejecting less than% and a pressure of 2.5 MPa to produce third metal particles. The cooling rate at this time was 2600 ° C./second. The obtained third metal particles were spherical when observed with a scanning electron microscope (manufactured by Hitachi, Ltd .: S-2700). The metal particles are classified using an airflow classifier (Nisshin Engineering Co., Ltd .: TC-15N) at a setting of 5 μm, and after collecting the large particles, the particles are classified again at a setting of 15 μm. Was recovered. When the recovered third metal particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 5.5 μm. Differential scanning calorimetry was performed using the third metal particles thus obtained as a sample. As a result, endothermic peaks at 66 ° C., 87 ° C., and 380 ° C. were present, and it was confirmed that the films had a plurality of melting points in the low melting points of 66 ° C. and 87 ° C.

次に、第1金属粒子Aと第3金属粒子とを質量比100:186で混合し、金属フィラー成分とした。次に金属フィラー成分88.4質量%と、フラックス(B)11.6質量%とを混合し、実施例1と同様の手順ではんだペーストを作製した。得られたペーストを用いて、実施例1(4)と同様に、窒素雰囲気にて、ピーク温度160℃でリフロー熱処理してCuチップ接合基板を作製し、常温及び260℃加熱時の接合強度を測定した。結果を表7の比較例7に示す。   Next, the 1st metal particle A and the 3rd metal particle were mixed by mass ratio 100: 186, and it was set as the metal filler component. Next, 88.4% by mass of the metal filler component and 11.6% by mass of the flux (B) were mixed, and a solder paste was produced in the same procedure as in Example 1. Using the obtained paste, similarly to Example 1 (4), a reflow heat treatment was performed at a peak temperature of 160 ° C. in a nitrogen atmosphere to prepare a Cu chip bonded substrate, and the bonding strength at room temperature and 260 ° C. heating was obtained. It was measured. The results are shown in Comparative Example 7 in Table 7.

また、Cu粉(福田金属箔粉工業社製、Cu−HWQ 15μm)と第3金属粒子とを質量比100:186で混合し、金属フィラー成分とした。次に金属フィラー成分88.7質量%と、フラックス(B)11.3質量%とを混合し、実施例1と同様の手順ではんだペーストを作製した。実施例1(4)と同様に、窒素雰囲気にて、ピーク温度160℃でリフロー熱処理してCuチップ接合基板を作製し、常温及び260℃加熱時の接合強度を測定した。結果を表7の比較例8に示す。   Moreover, Cu powder (the Fukuda metal foil powder industry company make, Cu-HWQ 15micrometer) and 3rd metal particle were mixed by mass ratio 100: 186, and it was set as the metal filler component. Next, 88.7 mass% of the metal filler component and 11.3 mass% of the flux (B) were mixed, and a solder paste was produced in the same procedure as in Example 1. Similarly to Example 1 (4), a reflow heat treatment was performed at a peak temperature of 160 ° C. in a nitrogen atmosphere to prepare a Cu chip bonded substrate, and the bonding strength when heated at normal temperature and 260 ° C. was measured. The results are shown in Comparative Example 8 in Table 7.

実施例28、29及び比較例7より、第1金属粒子に対して、第2金属粒子の代わりに第3金属粒子を混合した金属フィラーを用いた場合には、常温での接合強度が低い結果となることがわかる。また、比較例7及び比較例8を比較すると、接合強度はいずれも比較的低い値を示し、両者でほぼ同等の接合強度であることが判る。すなわち、第3金属粒子を用いた場合には、第1金属粒子Aとの組み合わせ及びCu粉との組み合わせのいずれにおいても低い接合強度を示すことが確認された。   From Examples 28 and 29 and Comparative Example 7, when a metal filler in which the third metal particles are mixed instead of the second metal particles is used for the first metal particles, the bonding strength at room temperature is low. It turns out that it becomes. Further, when Comparative Example 7 and Comparative Example 8 are compared, it can be seen that the bonding strength is a relatively low value, and both have substantially the same bonding strength. That is, when the third metal particles were used, it was confirmed that both the combination with the first metal particles A and the combination with the Cu powder showed low bonding strength.

Figure 2010098357
Figure 2010098357

Figure 2010098357
Figure 2010098357

Figure 2010098357
Figure 2010098357

Figure 2010098357
Figure 2010098357

Figure 2010098357
Figure 2010098357

Figure 2010098357
Figure 2010098357

Figure 2010098357
Figure 2010098357

本発明の金属フィラー及びこれを含む鉛フリーはんだは、後工程で複数回の熱処理を受ける用途(例えば部品内蔵基板及びパッケージ等の電子デバイスに使用されるはんだ材、さらには例えば導電性接着剤)に適用でき、かつ低温実装を実現できる。   The metal filler of the present invention and the lead-free solder containing the metal filler are used for a plurality of heat treatments in a subsequent process (for example, a solder material used for an electronic device such as a component-embedded substrate and a package, and further, for example, a conductive adhesive). And can be mounted at low temperature.

Claims (8)

第1金属粒子と第2金属粒子との混合体からなる金属フィラーであって、
前記第1金属粒子が、最も高い質量割合で存在する元素である主成分としてCuを含有し、かつIn及びSnをさらに含有する、Cu合金粒子であり、
前記第2金属粒子が、Bi40〜70質量%、並びに、Ag、Cu、In及びSnからなる群より選ばれる1種以上の金属30〜60質量%からなる、Bi合金粒子であり、かつ、
前記第1金属粒子100質量部に対する前記第2金属粒子の量が40〜300質量部の範囲である、金属フィラー。
A metal filler comprising a mixture of first metal particles and second metal particles,
The first metal particles are Cu alloy particles containing Cu as a main component which is an element present in the highest mass ratio, and further containing In and Sn,
The second metal particles are Bi alloy particles composed of Bi40 to 70% by mass, and 30 to 60% by mass of one or more metals selected from the group consisting of Ag, Cu, In and Sn, and
The metal filler whose quantity of the said 2nd metal particle with respect to 100 mass parts of said 1st metal particles is the range of 40-300 mass parts.
前記第2金属粒子が、Snを含有する、請求項1に記載の金属フィラー。   The metal filler according to claim 1, wherein the second metal particles contain Sn. 前記第1金属粒子及び前記第2金属粒子の平均粒径が、いずれも5〜25μmの範囲である、請求項1又は2に記載の金属フィラー。   The metal filler according to claim 1 or 2, wherein an average particle diameter of the first metal particles and the second metal particles is in the range of 5 to 25 µm. 前記第1金属粒子が、Ag及びBiから選ばれる1種以上の金属をさらに含有する、請求項1又は2に記載の金属フィラー。   The metal filler according to claim 1 or 2, wherein the first metal particles further contain one or more metals selected from Ag and Bi. 前記第1金属粒子が、Ag5〜15質量%、Bi2〜8質量%、Cu49〜81質量%、In2〜8質量%、及びSn10〜20質量%からなり、
前記第1金属粒子が、示差走査熱量測定(DSC)において、230〜300℃の範囲内に観測される少なくとも1つの発熱ピークと、480〜530℃の範囲内に観測される少なくとも1つの吸熱ピークとを有する、請求項1又は2に記載の金属フィラー。
The first metal particles are composed of Ag 5 to 15% by mass, Bi 2 to 8% by mass, Cu 49 to 81% by mass, In 2 to 8% by mass, and Sn 10 to 20% by mass,
In the differential scanning calorimetry (DSC), the first metal particles have at least one exothermic peak observed in the range of 230 to 300 ° C. and at least one endothermic peak observed in the range of 480 to 530 ° C. The metal filler according to claim 1 or 2, comprising:
請求項1又は2に記載の金属フィラーを含む、鉛フリーはんだ。   A lead-free solder containing the metal filler according to claim 1. 第1の電子部品、第2の電子部品、及び前記第1の電子部品と前記第2の電子部品とを接合するはんだ接合部とを有し、前記はんだ接合部が請求項6に記載の鉛フリーはんだをリフロー熱処理することによって形成されている、接続構造体。   The lead according to claim 6, further comprising: a first electronic component, a second electronic component, and a solder joint that joins the first electronic component and the second electronic component. A connection structure formed by reflow heat treatment of free solder. 基板と、前記基板の上に搭載された請求項7に記載の接続構造体とを有する、部品搭載基板。   A component mounting board comprising: a board; and the connection structure according to claim 7 mounted on the board.
JP2011501623A 2009-02-25 2010-02-24 Metal filler, low-temperature connection lead-free solder, and connection structure Active JP5643972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501623A JP5643972B2 (en) 2009-02-25 2010-02-24 Metal filler, low-temperature connection lead-free solder, and connection structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009043066 2009-02-25
JP2009043066 2009-02-25
PCT/JP2010/052880 WO2010098357A1 (en) 2009-02-25 2010-02-24 Metal filler, low-temperature-bonding lead-free solder and bonded structure
JP2011501623A JP5643972B2 (en) 2009-02-25 2010-02-24 Metal filler, low-temperature connection lead-free solder, and connection structure

Publications (2)

Publication Number Publication Date
JPWO2010098357A1 true JPWO2010098357A1 (en) 2012-09-06
JP5643972B2 JP5643972B2 (en) 2014-12-24

Family

ID=42665563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011501623A Active JP5643972B2 (en) 2009-02-25 2010-02-24 Metal filler, low-temperature connection lead-free solder, and connection structure

Country Status (5)

Country Link
JP (1) JP5643972B2 (en)
KR (1) KR101230195B1 (en)
CN (1) CN102317031B (en)
TW (1) TW201038349A (en)
WO (1) WO2010098357A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724088B2 (en) * 2010-12-15 2015-05-27 株式会社弘輝 Metal filler and lead-free solder containing the same
JP5975377B2 (en) * 2012-02-09 2016-08-23 株式会社弘輝 Metal filler, solder paste, and connection structure
JP6051437B2 (en) * 2012-06-12 2016-12-27 株式会社弘輝 Electronic device manufacturing method by laser heating method
CN104043911B (en) * 2014-06-27 2017-08-08 深圳市汉尔信电子科技有限公司 A kind of lead-free solder and its welding method for forming uniform formation's solder joint
CN106636829B (en) * 2015-11-04 2018-04-06 中国科学院理化技术研究所 Self-packaging liquid metal pen and manufacturing method thereof
JP6706351B2 (en) * 2017-01-20 2020-06-03 レノボ・シンガポール・プライベート・リミテッド Solder joining method and solder joint
JPWO2019117041A1 (en) * 2017-12-11 2020-12-17 株式会社弘輝 Solder paste, joint structure and method for manufacturing the joint structure
CN110961831B (en) * 2018-09-28 2022-08-19 株式会社田村制作所 Forming solder and manufacturing method of forming solder
US11515281B2 (en) * 2019-04-22 2022-11-29 Panasonic Holdings Corporation Bonded structure and bonding material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211289A (en) * 2002-01-21 2003-07-29 Fujitsu Ltd Electrically conductive joining material, method of joining by using the same and electronic device
JP3730209B2 (en) * 2002-11-14 2005-12-21 株式会社東郷製作所 Conductive adhesive
KR100509509B1 (en) * 2003-04-17 2005-08-22 희성금속 주식회사 Lead-free solder alloy
KR100995779B1 (en) * 2005-04-01 2010-11-22 아사히 가세이 일렉트로닉스 가부시끼가이샤 Conductive filler and solder material
JP4667103B2 (en) * 2005-04-01 2011-04-06 旭化成イーマテリアルズ株式会社 Conductive filler and low-temperature solder material
CN100537117C (en) * 2006-05-10 2009-09-09 北京有色金属研究总院 Melting-point-changeable lead-free composite soldering material, soldering paste, thire preparation and use
JP2010029868A (en) 2006-11-06 2010-02-12 Victor Co Of Japan Ltd Lead-free solder paste, electronic circuit board using the same, and method for manufacturing the same
JP4703581B2 (en) 2007-01-30 2011-06-15 旭化成イーマテリアルズ株式会社 Conductive filler and solder paste
JP2008200718A (en) * 2007-02-20 2008-09-04 Sony Corp Solder paste, electronic circuit apparatus and substrate connection method for electronic component

Also Published As

Publication number Publication date
JP5643972B2 (en) 2014-12-24
TWI378841B (en) 2012-12-11
KR101230195B1 (en) 2013-02-06
TW201038349A (en) 2010-11-01
WO2010098357A1 (en) 2010-09-02
KR20110098856A (en) 2011-09-01
CN102317031B (en) 2015-09-16
CN102317031A (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
JP5166261B2 (en) Conductive filler
TWI292355B (en)
JP5584909B2 (en) Connection structure
JP2012250240A (en) Metal filler, solder paste, and connected structure
JP6002947B2 (en) Metal filler, solder paste, and connection structure
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
JP5188999B2 (en) Metal filler and solder paste
JP4703581B2 (en) Conductive filler and solder paste
JP5975377B2 (en) Metal filler, solder paste, and connection structure
JP5724088B2 (en) Metal filler and lead-free solder containing the same
JP5147349B2 (en) Bump forming paste and bump structure
JP4667103B2 (en) Conductive filler and low-temperature solder material
JP2014072398A (en) Semiconductor device and manufacturing method of the same
JP5609774B2 (en) Ternary alloy particles
JP4662483B2 (en) Conductive filler and medium temperature solder material
JP5652689B2 (en) Manufacturing method of electronic component bonded structure and electronic component bonded structure obtained by the manufacturing method
JP2012250239A (en) Metal filler, solder paste, and connected structure
JP2009200285A (en) Bump and bump connection structure
JP2011062752A (en) Conductive filler, and low-temperature solder material
KR20170097283A (en) Lead-free solder composition and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141010

R150 Certificate of patent or registration of utility model

Ref document number: 5643972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250