JPWO2017030166A1 - ランガテイト系単結晶の製造方法及びランガテイト系単結晶 - Google Patents
ランガテイト系単結晶の製造方法及びランガテイト系単結晶 Download PDFInfo
- Publication number
- JPWO2017030166A1 JPWO2017030166A1 JP2017535560A JP2017535560A JPWO2017030166A1 JP WO2017030166 A1 JPWO2017030166 A1 JP WO2017030166A1 JP 2017535560 A JP2017535560 A JP 2017535560A JP 2017535560 A JP2017535560 A JP 2017535560A JP WO2017030166 A1 JPWO2017030166 A1 JP WO2017030166A1
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- langate
- producing
- growth
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 145
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000007789 gas Substances 0.000 claims abstract description 35
- 238000009413 insulation Methods 0.000 claims abstract description 34
- 230000001590 oxidative effect Effects 0.000 claims abstract description 23
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000011261 inert gas Substances 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 35
- 239000001301 oxygen Substances 0.000 description 35
- 229910052760 oxygen Inorganic materials 0.000 description 35
- 238000002485 combustion reaction Methods 0.000 description 30
- 230000007547 defect Effects 0.000 description 20
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 18
- 229910052733 gallium Inorganic materials 0.000 description 18
- 239000000463 material Substances 0.000 description 14
- 239000000155 melt Substances 0.000 description 14
- 208000010392 Bone Fractures Diseases 0.000 description 12
- 206010017076 Fracture Diseases 0.000 description 12
- 239000007858 starting material Substances 0.000 description 12
- 238000001704 evaporation Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000008020 evaporation Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 6
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 4
- -1 Ta 2 O 5 Inorganic materials 0.000 description 3
- 206010010214 Compression fracture Diseases 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/02—Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/10—Crucibles or containers for supporting the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/30—Niobates; Vanadates; Tantalates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/023—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L23/00—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
- G01L23/08—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
- G01L23/10—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by pressure-sensitive members of the piezoelectric type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/08—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/095—Forming inorganic materials by melting
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/302—Sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
出発原料La2O3、Ta2O5、Ga2O3、Al2O3のそれぞれを所望の組成となるように秤量し、ボールミル等で混合して出発原料混合物を調製することができる。次に、調製された出発原料混合物を加圧した後に仮焼し、固相反応により目的とする結晶の構造の焼結体を作製することができる。このようにして作製された焼結体は概して多くの多結晶を含む。
本発明により得られるランガテイト系単結晶の500℃で測定した絶縁抵抗率は、3.4×109〜6.5×109Ω・cmの範囲であった。燃焼圧センサとして求められる絶縁抵抗率は500℃で3.0×108Ω・cm以上であり、好ましくは3.0×109Ω・cm以上であり、より好ましくは3.4×109Ω・cm以上であり、さらに好ましくは6.3×109Ω・cm以上である。燃焼圧センサの圧電素子で用いる圧電材料には、内燃機関における高温で動作する必要から、500℃で3×108Ω・cm以上の絶縁抵抗率が求められるが、本発明のように酸素等の酸化性ガス濃度を5体積%より高くすることでランガテイト系単結晶はこの要求を満たすことができる。本発明によるランガテイト系単結晶は、6.5×109Ω・cmである絶縁抵抗率を有することも確認されており、これを本発明による絶縁抵抗率の上限としてもよい。絶縁抵抗率については、図2を用いて後述する。
また、本発明により得られるランガテイト系単結晶の200℃におけるX軸方向の圧縮破壊強度が1500MPa以上であり、好ましくは1700MPa以上であり、より好ましくは1750MPa以上である。燃焼圧センサの圧電素子で用いる圧電材料には、自動車の内燃機関に利用される必要から30MPa以上の圧力に対し破壊しないことが求められるが、本発明によるランガテイト系単結晶はこの要求を満たすことができる。本発明によるランガテイト系単結晶は、1875MPaである圧縮破壊強度を有することも確認されており、これを本発明による圧縮破壊強度の上限としてもよい。圧縮破壊強度に関しては、図3を用いて後述する。
以下、本発明のランガテイト系単結晶及びその製造方法について、ランガテイト系単結晶のLTGAを例にとり説明する。
実施例1で説明したLTGA単結晶の育成雰囲気の酸素濃度(酸化性ガス濃度)を0.3〜2体積%とし、冷却雰囲気を育成雰囲気より酸素濃度を徐々に低下させ不活性ガス雰囲気での冷却となる条件により、LTGA単結晶の製造を行った。冷却時に酸素濃度を育成雰囲気より低下させるのは、酸素欠陥の生成を抑えることで高い絶縁抵抗率と絶縁抵抗率の温度依存性を小さくするためであり、完成した単結晶の500℃で測定した絶縁抵抗率は、5.3×108〜1.37×109Ω・cmであった。単結晶のX軸方向の圧縮破壊荷重は4700〜5500N(圧縮破壊強度に換算すると1175MPa〜1375MPa)であった。
Claims (7)
- 原料溶液から結晶を引き上げるチョクラルスキー法によってランガテイト系単結晶を育成するランガテイト系単結晶の製造方法であって、
前記ランガテイト系単結晶を育成する雰囲気ガスが、不活性ガス中に酸化性ガスを5体積%より多く含む混合ガスであることを特徴とするランガテイト系単結晶の製造方法。 - 前記原料溶液を白金坩堝に収容しランガテイト系単結晶を育成することを特徴とする請求項1に記載のランガテイト系単結晶の製造方法。
- 前記酸化性ガスはO2であることを特徴とする請求項1または2に記載のランガテイト系単結晶の製造方法。
- 単結晶育成軸がZ軸であることを特徴とする請求項1〜3のいずれか一項に記載のランガテイト系単結晶の製造方法。
- ランガテイト系単結晶の200℃におけるX軸方向の圧縮破壊強度が1500MPa以上であることを特徴とするランガテイト系単結晶。
- 500℃で3.0×109Ω・cm以上の絶縁抵抗を有することを特徴とする請求項5に記載のランガテイト系単結晶。
- 前記ランガテイト系単結晶は、La3Ta0.5Ga5.5−xAlxO14(0<x<5.5)であることを特徴とする請求項5または6に記載のランガテイト系単結晶。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015161709 | 2015-08-19 | ||
JP2015161709 | 2015-08-19 | ||
PCT/JP2016/074113 WO2017030166A1 (ja) | 2015-08-19 | 2016-08-18 | ランガテイト系単結晶の製造方法及びランガテイト系単結晶 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017030166A1 true JPWO2017030166A1 (ja) | 2018-03-22 |
JP6498301B2 JP6498301B2 (ja) | 2019-04-10 |
Family
ID=58051857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017535560A Active JP6498301B2 (ja) | 2015-08-19 | 2016-08-18 | ランガテイト系単結晶の製造方法及びランガテイト系単結晶 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10793968B2 (ja) |
EP (1) | EP3339484B8 (ja) |
JP (1) | JP6498301B2 (ja) |
CN (1) | CN107923069B (ja) |
RU (1) | RU2686900C1 (ja) |
TW (1) | TWI637086B (ja) |
WO (1) | WO2017030166A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113106547B (zh) * | 2021-04-12 | 2022-09-13 | 南京工业大学 | 一种大尺寸高电阻率钽酸镓镧晶体的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07206577A (ja) * | 1994-01-14 | 1995-08-08 | Japan Energy Corp | レアア−ス・ガリウム・ペロブスカイト単結晶の育成方法 |
JP2007131470A (ja) * | 2005-11-09 | 2007-05-31 | Mitsubishi Materials Corp | ランガテイト単結晶の製造方法 |
JP2010143782A (ja) * | 2008-12-18 | 2010-07-01 | Shinshu Univ | 融液組成制御一方向凝固結晶成長装置および結晶成長方法 |
WO2011111859A1 (ja) * | 2010-03-10 | 2011-09-15 | シチズンファインテックミヨタ株式会社 | 高絶縁、高安定性圧電ltga単結晶及びその製造方法、並びにそのltga単結晶を使用する圧電素子及び燃焼圧センサー |
JP2013040093A (ja) * | 2005-03-30 | 2013-02-28 | Fukuda Crystal Laboratory | ガレート単結晶及び並びに高温用圧電素子及び高温用圧電センサー |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000313697A (ja) * | 1999-02-23 | 2000-11-14 | Victor Co Of Japan Ltd | 酸化物単結晶の作製方法 |
RU2172362C2 (ru) * | 2000-08-29 | 2001-08-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт синтеза минерального сырья" | Монокристалл для изготовления дисков в устройствах на поверхностно-акустических волнах и способ его получения |
US6514336B1 (en) * | 2000-10-12 | 2003-02-04 | Utar Scientific, Inc. | Method of growing piezoelectric lanthanide gallium crystals |
US8308988B2 (en) | 2007-12-17 | 2012-11-13 | E I Du Pont De Nemours And Company | Electroactive materials |
JP5341415B2 (ja) * | 2008-07-16 | 2013-11-13 | 株式会社福田結晶技術研究所 | 圧電単結晶、及び、その製造方法 |
CN103173861B (zh) * | 2011-12-23 | 2016-02-10 | 上海硅酸盐研究所中试基地 | 用于高温压电器件的掺杂型钽酸镓镧晶体及其制备方法 |
CN103952762A (zh) * | 2014-03-07 | 2014-07-30 | 安徽火天晶体科技有限公司 | 铁、铬、锰或钴与铝共掺杂的钽酸镓镧、铌酸镓镧晶体及其熔体法生长方法 |
-
2016
- 2016-08-18 JP JP2017535560A patent/JP6498301B2/ja active Active
- 2016-08-18 CN CN201680048382.2A patent/CN107923069B/zh active Active
- 2016-08-18 US US15/753,438 patent/US10793968B2/en active Active
- 2016-08-18 RU RU2018109362A patent/RU2686900C1/ru active
- 2016-08-18 EP EP16837155.7A patent/EP3339484B8/en active Active
- 2016-08-18 WO PCT/JP2016/074113 patent/WO2017030166A1/ja active Application Filing
- 2016-08-18 TW TW105126357A patent/TWI637086B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07206577A (ja) * | 1994-01-14 | 1995-08-08 | Japan Energy Corp | レアア−ス・ガリウム・ペロブスカイト単結晶の育成方法 |
JP2013040093A (ja) * | 2005-03-30 | 2013-02-28 | Fukuda Crystal Laboratory | ガレート単結晶及び並びに高温用圧電素子及び高温用圧電センサー |
JP2007131470A (ja) * | 2005-11-09 | 2007-05-31 | Mitsubishi Materials Corp | ランガテイト単結晶の製造方法 |
JP2010143782A (ja) * | 2008-12-18 | 2010-07-01 | Shinshu Univ | 融液組成制御一方向凝固結晶成長装置および結晶成長方法 |
WO2011111859A1 (ja) * | 2010-03-10 | 2011-09-15 | シチズンファインテックミヨタ株式会社 | 高絶縁、高安定性圧電ltga単結晶及びその製造方法、並びにそのltga単結晶を使用する圧電素子及び燃焼圧センサー |
Non-Patent Citations (2)
Title |
---|
RADOSLAW LISIECKI ET AL.: "Effect of temperature on excited state relaxation dynamics and up-conversion phenomena in La3Ga5.5Ta", JOURNAL OF ALLOYS AND COMPOUNDS, vol. Vol.610, JPN6016034932, 15 October 2014 (2014-10-15), pages Page. 451-455 * |
SHUJUN ZHANG ET AL.: "Characterization of high temperature piezoelectric crystals with an ordered langasite structure", JOURNAL OF APPLIED PHYSICS, vol. 105, JPN6016034930, 2009, pages 114107, XP012125565, DOI: doi:10.1063/1.3142429 * |
Also Published As
Publication number | Publication date |
---|---|
EP3339484B1 (en) | 2020-03-18 |
TWI637086B (zh) | 2018-10-01 |
US10793968B2 (en) | 2020-10-06 |
CN107923069A (zh) | 2018-04-17 |
EP3339484A1 (en) | 2018-06-27 |
EP3339484B8 (en) | 2020-10-07 |
RU2686900C1 (ru) | 2019-05-06 |
WO2017030166A1 (ja) | 2017-02-23 |
JP6498301B2 (ja) | 2019-04-10 |
TW201718957A (zh) | 2017-06-01 |
CN107923069B (zh) | 2020-06-26 |
EP3339484A4 (en) | 2019-03-06 |
US20180245237A1 (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5629296B2 (ja) | ガレート単結晶及び並びに高温用圧電素子及び高温用圧電センサー | |
CN104870698B (zh) | n型SiC单晶的制造方法 | |
KR101793394B1 (ko) | n 형 SiC 단결정 및 그 제조 방법 | |
KR20160078343A (ko) | SiC 단결정의 제조 방법 | |
JP6498301B2 (ja) | ランガテイト系単結晶の製造方法及びランガテイト系単結晶 | |
US20220359812A1 (en) | Piezoelectric material, piezoelectric member, piezoelectric element, and pressure sensor | |
JP5621131B2 (ja) | 高絶縁、高安定性圧電ltga単結晶及びその製造方法、並びにそのltga単結晶を使用する圧電素子及び燃焼圧センサー | |
EP3321397B1 (en) | Piezoelectric material, method for manufacturing same, piezoelectric element and combustion pressure sensor | |
JP5299908B2 (ja) | ランガテイト系単結晶の製造方法 | |
JP6102687B2 (ja) | 複合酸化物単結晶の製造方法 | |
CN105624784B (zh) | 适用于高温领域的四方相钛镁酸铋‑钛酸铅基压电单晶及其制备方法 | |
JP2010185852A (ja) | 圧力センサ | |
KR101413607B1 (ko) | 금속 원자가 치환된 금속 단결정 | |
CN104321472A (zh) | 用于制备蓝宝石单晶的氧化铝原料和用于制备蓝宝石单晶的方法 | |
JP6964306B2 (ja) | 圧電材料、その製造方法、圧電素子および燃焼圧センサ | |
US20090317682A1 (en) | Oxide single crystal and method for production thereof, and single crystal wafer | |
JP6102686B2 (ja) | 複合酸化物単結晶の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190312 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6498301 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |