JPS6340834B2 - - Google Patents
Info
- Publication number
- JPS6340834B2 JPS6340834B2 JP60120087A JP12008785A JPS6340834B2 JP S6340834 B2 JPS6340834 B2 JP S6340834B2 JP 60120087 A JP60120087 A JP 60120087A JP 12008785 A JP12008785 A JP 12008785A JP S6340834 B2 JPS6340834 B2 JP S6340834B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- substances
- heavy organic
- temperature
- coal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000126 substance Substances 0.000 claims description 44
- 239000003245 coal Substances 0.000 claims description 30
- 239000002904 solvent Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 15
- 238000004062 sedimentation Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 4
- 230000001737 promoting effect Effects 0.000 claims description 4
- 239000013049 sediment Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000010954 inorganic particle Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000007327 hydrogenolysis reaction Methods 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007701 flash-distillation Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
[産業上の利用分野]
本発明は石炭液化法における溶剤精製炭の処理
に関し、特に溶剤精製炭中に混在している無機物
質および/あるいは重質有機物質(これらはいず
れも触媒毒である)等を効率良く除去する方法に
関するものである。ここで言う重質有機物とは、
例えばベンゼン不溶/ピリジン可溶分(プリアス
フアルテン)の様な溶剤精製炭の水添分解触媒に
対して触媒毒となる物質であり、無機物質とは石
炭中の灰分、水添反応に用いた触媒、未反応炭を
含む。
[従来の技術]
石炭の水添によつて石炭構成々分中の水素/炭
素比率を高める方法、即ち常温下で固体状の高融
点縮合芳香族化合物を、水素化分解等により常温
下で液体状のものにする方法は公知である。この
方法は一般に石炭液化法と称されているが、中で
も特に工業性が高いものとして期待されているの
は溶剤精製法である。この方法は水素供与性の高
い炭化水素系溶剤によつて抽出された石炭を水添
反応に付すものであるが、実際問題としては原料
石炭を上記溶剤でスラリー化して反応を行なうも
のであるから、石炭由来の無機物質が混入してく
ることは回避しきれず、又副生する重質有機物が
残留することも回避できない。従つて水添反応終
了物からガス成分や軽質油乃至中質油留分の除か
れた残留液状物(通称溶剤精製炭)中には無機物
質や重質有機物が併存しており、水添反応塔へ循
環し原料スラリーと一緒にして再水添反応を行な
う場合や、或はより高級な触媒の充填された2次
水添反応系へ供給する場合において、これらの無
機物質や重質有機物が反応系に対し重大な悪影響
を与えることが心配される。
[発明が解決しようとする問題点]
例えば無機物質はそのまま2次水添反応に送ら
れた場合、例えば固定床式反応器を用いると反応
器の出入口や輸送管路に推積されて閉塞を引起こ
す恐れが生じ、石炭液化反応の円滑な操業を阻害
するという問題が生じる。また溶剤精製炭中には
所謂ベンゼン可溶分(アスフアルテン分)の如く
水添反応の原料として好適なものの他に、ベンゼ
ン不溶分/ピリジン可溶分(プリアスフアルテン
分)の如く水添用触媒の分解特性を劣化させる重
質有機物もあり、特に後者は、用いる2次水添用
触媒の種類によつては水添反応の原料として循環
させるのが不都合であることがある。
従つて水添反応生成物からガス分や軽質油分を
除いた残りの溶剤精製炭、或はこれから更に中質
油分も除いた残りの溶剤精製炭に注目し、これら
の溶剤精製炭中に含まれる無機物質および重質有
機物を効率良く除去できる方法を確立する必要が
ある。
しかるに溶剤精製炭中に混在している例えば無
機物質の粒径は非常に小さく、例えば最大のもの
でも20μm程度であると認織する必要がある。そ
の為通常の重力沈降法では実用的な沈降速度を得
ることができない。本発明はこの様な状況を憂慮
してなされたものであつて、溶剤精製炭中に含ま
れている無機物質および重質有機物を効果的に除
去できる方法を探求した結果、本発明を完成する
に至つた。
[問題点を解決する為の手段]
上記目的の達成に有効な本発明の方法とは、脱
瀝溶剤を150℃を超える高温下で溶剤精製炭に接
触混合させることによつて無機物質粒子と共存す
る重質有機物の高温下での付着性を利用してこれ
ら粒子の成長を促し、次いで150℃以下に冷却す
ることによつて成長粒子同士の付着性を少なくす
る点に要旨が存在するものであり、これによつて
成長粒子を重力沈降させ、沈降後の相互の付着を
防止して排出作業性を保持することに成功したも
のである。なお無機物質に同伴する重質有機物の
量は、溶剤種を適当に選ぶことによつて任意の割
合にすることが可能である。
[作 用]
無機物質の粒径が小さいことは前に述べた通り
であり、実用的な沈降速度を得る為には粒子の成
長を促すことが有効であると思われた。この様な
観点から種々検討を進めたところ、前記溶剤精製
炭中には溶剤不溶性の重質有機物が含まれてお
り、これに熱を与えて軟化してやれば無機粒子を
かこむ重質有機物が付着性を有するに至り混合条
件下で微細無機物粒子を相互に凝着せしめ粒子の
成長を促進するのではないかとの指針を得るに至
つた。
そこで溶剤精製炭の加熱溶解実験を行なつたと
ころ次の様な結果が得られた。
内容積が約8のオートクレーブ内に脱瀝溶剤
と溶剤精製炭粉末を4:1の重量比率で仕込んだ
後、窒素雰囲気にして撹拌しながら昇温していつ
た。尚脱瀝溶剤としてはシクロヘキサンを用い、
撹拌条件は720rpm、昇温速度は260℃/hrとし
た。昇温の途中、撹拌を止めないで内容液の一部
を抜出し溶液中の無機物質濃度を測定した。結果
は第2図に示す通りであり、温度が高くなるにつ
れて無機物質濃度が低くなつていつた。このこと
は無機物質が昇温と共に沈降していつたことを意
味し、その理由についてはプリアスフアルテン分
が昇温していくにつれて付着性を高め、共存する
無機物質粒子の成長を促進して沈降性を高めた為
であると思われる。
尚第2図の実験に用いたCLB(Coal Liquid
Bottom:石炭液化生成物の蒸留残渣)は、第1
表に示す様な組成(溶剤分別による)からなるも
のであり、原料CLBを250μm以下に粉粋して用
いた。
[Industrial Application Field] The present invention relates to the treatment of solvent-refined coal in a coal liquefaction process, and in particular to the treatment of inorganic substances and/or heavy organic substances (all of which are catalyst poisons) mixed in solvent-refined coal. The present invention relates to a method for efficiently removing such substances. The heavy organic matter referred to here is
For example, substances such as benzene-insoluble/pyridine-soluble substances (puriasphaltenes) act as catalyst poisons for the hydrogenolysis catalyst of solvent-refined coal. Contains catalyst and unreacted carbon. [Prior art] A method of increasing the hydrogen/carbon ratio in coal constituents by hydrogenating coal. In other words, a high melting point condensed aromatic compound that is solid at room temperature is turned into a liquid at room temperature by hydrogenolysis, etc. Methods for making it into shapes are known. This method is generally called a coal liquefaction method, but the solvent refining method is expected to have particularly high industrial efficiency. This method involves subjecting the extracted coal to a hydrogenation reaction using a highly hydrogen-donating hydrocarbon solvent, but in reality the reaction is carried out by slurrying raw coal with the above solvent. It is unavoidable that coal-derived inorganic substances are mixed in, and it is also unavoidable that heavy organic substances as by-products remain. Therefore, inorganic substances and heavy organic substances coexist in the residual liquid (commonly known as solvent-refined coal) after gas components and light oil to medium oil fractions are removed from the hydrogenation reaction product, and the hydrogenation reaction These inorganic substances and heavy organic substances are There is concern that it may have a serious adverse effect on the reaction system. [Problems to be Solved by the Invention] For example, if inorganic substances are directly sent to the secondary hydrogenation reaction, for example, if a fixed bed reactor is used, they may accumulate at the entrance and exit of the reactor or in the transport pipes, causing blockages. This poses a problem of hindering the smooth operation of the coal liquefaction reaction. In addition to the so-called benzene soluble fraction (asphaltene fraction), which is suitable as a raw material for the hydrogenation reaction, solvent refined coal contains hydrogenation catalysts such as benzene insoluble fraction/pyridine soluble fraction (puriasphaltene fraction). There are also heavy organic substances that deteriorate the decomposition characteristics of hydrogen, and depending on the type of secondary hydrogenation catalyst used, it may be inconvenient to circulate the latter as a raw material for the hydrogenation reaction. Therefore, we focused on the solvent-refined coal that remains after removing gas and light oil from the hydrogenation reaction product, or the solvent-refined coal that remains after removing the medium oil content, and investigate what is contained in these solvent-refined coals. It is necessary to establish a method that can efficiently remove inorganic substances and heavy organic substances. However, it is necessary to recognize that the particle size of, for example, inorganic substances mixed in solvent-refined coal is very small, for example, the maximum particle size is about 20 μm. Therefore, it is not possible to obtain a practical sedimentation velocity using the normal gravity sedimentation method. The present invention was made in consideration of this situation, and as a result of searching for a method that can effectively remove inorganic substances and heavy organic substances contained in solvent-refined coal, the present invention was completed. It came to this. [Means for Solving the Problems] The method of the present invention, which is effective in achieving the above object, is to contact and mix a deasphalting solvent with solvent-refined coal at a high temperature exceeding 150°C. The gist lies in promoting the growth of these particles by utilizing the adhesion properties of coexisting heavy organic matter under high temperatures, and then reducing the adhesion of the growing particles to each other by cooling to below 150°C. As a result, it was possible to cause the grown particles to settle by gravity, to prevent them from adhering to each other after settling, and to maintain discharge workability. Note that the amount of heavy organic matter accompanying the inorganic substance can be adjusted to any desired ratio by appropriately selecting the type of solvent. [Effect] As mentioned above, the particle size of inorganic substances is small, and it was thought that promoting particle growth would be effective in obtaining a practical sedimentation rate. After conducting various studies from this point of view, we found that the solvent-refined coal contains heavy organic substances that are insoluble in solvents, and if this is softened by applying heat, the heavy organic substances surrounding the inorganic particles become adhesive. We have come to the conclusion that this may cause fine inorganic particles to adhere to each other under mixing conditions and promote particle growth. Therefore, we carried out heating melting experiments on solvent-refined coal and obtained the following results. An autoclave having an internal volume of about 8 liters was charged with deasphalting solvent and solvent refined charcoal powder at a weight ratio of 4:1, and then heated under nitrogen atmosphere with stirring. In addition, cyclohexane was used as the deasphalting solvent,
The stirring conditions were 720 rpm and the temperature increase rate was 260°C/hr. During the temperature rise, a portion of the content was extracted without stopping stirring, and the concentration of inorganic substances in the solution was measured. The results are shown in Figure 2, and the concentration of inorganic substances decreased as the temperature increased. This means that the inorganic substances precipitated as the temperature rose, and the reason for this is that as the temperature rose, the preasphaltenes increased their adhesion, promoting the growth of the coexisting inorganic particles, and causing the precipitation. This seems to be due to increased sex. The CLB (Coal Liquid
Bottom: distillation residue of coal liquefaction product) is
It consists of the composition shown in the table (based on solvent fractionation), and the raw material CLB was pulverized to a size of 250 μm or less.
【表】【table】
【表】
上記基礎実験により約150℃より高い温度にす
れば無機物質濃度が急激に低下すること(換言す
れば無機物質の沈降性が急激に向上すること)を
見出したが、この考え方を現実の操業に適用して
いくという観点から次に示す様な実験を行なつ
た。
第3図は連続式脱灰脱瀝フローであり、粉末状
又は流動状となつた溶剤精製炭と脱瀝溶剤(例え
ばシクロヘキサン)を混合し、80〜120℃に予備
加熱した後、スパイラルチユーブ式予熱器内で加
熱溶解し所定温度になつたものを沈降槽(縦型、
内径:50mmφ、高さ:約1.5m)へ送り、上昇流
を利用した重力沈降分離を行なつた。このときの
溶解温度と脱灰・脱瀝性能の関係は第2表に示す
通りであり、溶解温度が約130℃のものでは脱
灰・脱瀝が不十分であつた。この点は第2図にお
いて示された傾向と一致しており、好ましくは
150℃を超える高温下で接触させることが良いと
の知見を得た。但しこの温度は溶剤精製炭中に含
まる重質有機物の軟化温度によつて変動するので
一律的に定めることはできない。[Table] Through the above basic experiment, we found that the concentration of inorganic substances sharply decreases when the temperature is higher than about 150°C (in other words, the sedimentation property of inorganic substances sharply increases). We conducted the following experiments from the perspective of applying this method to the operation of Figure 3 shows a continuous deashing flow, in which powdered or fluidized solvent-refined coal and a deasphalting solvent (e.g. cyclohexane) are mixed, preheated to 80 to 120°C, and then a spiral tube type After heating and melting in the preheater and reaching the specified temperature, the material is transferred to a sedimentation tank (vertical type,
(inner diameter: 50 mmφ, height: approximately 1.5 m), and gravity sedimentation separation using upward flow was performed. The relationship between the melting temperature and the deashing/deashing performance is shown in Table 2, and when the melting temperature was about 130°C, deashing/deashing was insufficient. This point is consistent with the trend shown in Figure 2, and is preferably
It has been found that it is better to contact at a high temperature of over 150°C. However, this temperature cannot be uniformly determined because it varies depending on the softening temperature of the heavy organic matter contained in the solvent-refined coal.
【表】
本実験では除去すべき重質有機物をプリアスフ
アルテン(ベンゼン可溶/ピリジン不溶分とし
た。
一方接触時の温度が高過ぎたり、接触時間が長
すぎると、重質有機物の付着力が強過ぎたり、或
は時間の経過につれて粒子の成長が進み過ぎたり
して色々な不都合を生じることが予測された。そ
こで種々検討したところ、接触温度については
250℃以下、より好ましくは220℃以下に抑制する
のが良く、接触時間については30分以下が良いと
いうことを知つた。尚接触時間が短過ぎると粒子
の成長が不十分となり良好な沈降性を示すに至ら
ないので5分程度以上が望まれる。但し接触時間
と接触温度は相互に関連しており、高温であれば
短時間が良く低温であれば長時間が良いので、こ
こでは限定を付さないこととした。
もつともいつたん加熱した液について積極的な
冷却手段を施さなければ、熱容量の大小にもよる
がかなり長時間に亘つて予熱を保ち沈降した無機
物質同士の付着が発生してしまう。この様な状態
になると排出配管内、特に絞り配管内でブリジチ
ングを招き閉塞事故を生じ易くなり、沈降物の排
出を不可能にしてしまう。その為本発明では例え
ば混合直後あるいは沈降下部へ冷却溶剤の混入等
の手段によつて沈降系の温度を積極的に低下させ
て150℃以下とし、沈降物粒子の過剰付着を防止
することとした。尚冷却手段は一般的な熱伝達型
熱交換でもよく、冷却手段は本発明の制限すると
ころではない。
尚本発明の対象となる溶剤精製炭は、最終的に
粉末状として取出されたものに限定されず、石炭
液化工程における液体状の蒸留残渣であつても良
い。一例として高温下で接触した後、熱伝達型熱
交換により冷却する方法で脱灰.脱瀝を行なつた
結果を第3表に示す。[Table] In this experiment, the heavy organic substances to be removed were puriasphaltenes (benzene soluble/pyridine insoluble). On the other hand, if the contact temperature is too high or the contact time is too long, the adhesion of the heavy organic substances It was predicted that the contact temperature would be too strong or the particles would grow too much over time, causing various problems.
It has been learned that it is best to keep the temperature below 250°C, more preferably below 220°C, and for the contact time to be 30 minutes or less. If the contact time is too short, the particles will not grow sufficiently and will not exhibit good settling properties, so a contact time of about 5 minutes or more is desired. However, since the contact time and the contact temperature are related to each other, a short time is better if the temperature is high, and a long time is better if the temperature is low, so there is no limitation here. Unless active cooling means are applied to the heated liquid, it will remain preheated for a considerable period of time, depending on its heat capacity, and the precipitated inorganic substances will adhere to each other. In such a state, bridging occurs in the discharge piping, particularly in the throttle piping, making it easy to cause a blockage accident, making it impossible to discharge the sediment. Therefore, in the present invention, the temperature of the sedimentation system is actively lowered to 150°C or less, for example, immediately after mixing or by mixing a cooling solvent into the sedimentation part, to prevent excessive adhesion of sediment particles. . Note that the cooling means may be a general heat transfer type heat exchanger, and the cooling means is not limited to the present invention. Note that the solvent-refined coal that is the subject of the present invention is not limited to one that is finally taken out as a powder, but may be a liquid distillation residue from a coal liquefaction process. For example, deashing is performed by contacting at high temperature and then cooling through heat transfer type heat exchange. The results of deasphalting are shown in Table 3.
【表】
[実施例]
第1図は、上記考察に基づいて作成された実施
装置の一例に係るフロー説明図であつて、溶剤精
製炭と脱瀝溶剤がコンタクター中で接触され、無
機物質粒子の成長が促進される。適当な時間をお
いて冷却溶剤が追加され、粒子の過剰成長を迎え
つつ沈降槽に導入される。ここでは実用上問題の
ない時間で無機物質が沈降するので沈降物をスラ
ツジとして抜出し、回収された脱瀝溶剤は循環す
る。一方上燈液は無機物質及び重質有機物分を殆
んど含んでおらず、(例えば無機物質にして
1000ppm以下)、これを分離し加熱したフラツシ
ユ蒸留に付すと、脱灰油が得られる。残部は脱瀝
溶剤として循環的に使用すれば良い。
[発明の効果]
本発明は上記の様に構成されているので、無機
物質粒子を成長させて沈降分離が行なわれる様に
なり、従来はフイルター法ですら除去しきれなか
つて様なものでも重力沈降に適した大きさまで成
長させることが可能となつた。又重質有機物も合
わせて除去できるが、この除去率は接触温度や接
触時間の他、脱瀝溶剤の選択によつて制御可能で
ある。上記の様にして無機物質及び重質有機物分
が簡単に且つ効率よく除去される様になつての
で、前者による2次水添反応系の閉塞が防止さ
れ、又後者による2次水添触媒の劣化が防止さ
れ、結局水添反応の円滑化と反応効率の向上に大
きく寄与することとなつた。[Table] [Example] Fig. 1 is a flow explanatory diagram of an example of an implementation apparatus created based on the above considerations, in which solvent-refined coal and deasphalted solvent are brought into contact in a contactor, and inorganic particles are growth is promoted. A cooling solvent is added after an appropriate time and the particles are introduced into the settling tank while overgrowth occurs. Here, since the inorganic substances settle in a time that does not cause any practical problems, the sediment is extracted as sludge, and the recovered deasphalt solvent is circulated. On the other hand, the toplight liquid contains almost no inorganic substances or heavy organic substances (for example, when it comes to inorganic substances,
1000ppm or less), and when this is separated and subjected to heated flash distillation, a demineralized oil is obtained. The remainder may be used cyclically as a deasphalting solvent. [Effects of the Invention] Since the present invention is configured as described above, sedimentation separation can be performed by growing inorganic particles, and even particles that could not be removed by conventional filter methods can be removed by gravity. It has become possible to grow them to a size suitable for sedimentation. In addition, heavy organic substances can also be removed, and the removal rate can be controlled by the contact temperature, contact time, and selection of the deasphalting solvent. As inorganic substances and heavy organic substances can be easily and efficiently removed as described above, clogging of the secondary hydrogenation reaction system by the former is prevented, and the secondary hydrogenation catalyst is prevented from being blocked by the latter. This prevented deterioration and ultimately contributed significantly to smoothing the hydrogenation reaction and improving reaction efficiency.
第1図は本発明の実施例を示すフロー説明図、
第2図は接触温度と無機物質濃度の関係を示すグ
ラフ、第3図は実験装置のフロー説明図である。
FIG. 1 is a flow explanatory diagram showing an embodiment of the present invention;
FIG. 2 is a graph showing the relationship between contact temperature and inorganic substance concentration, and FIG. 3 is a flow diagram of the experimental apparatus.
Claims (1)
力沈降法に従つて除去するに当たり、脱瀝溶剤を
150℃を超える高温下で溶剤精製炭に接触混合す
ることにより無機物質及び重質有機物の粒子の成
長を促し、次いで前記混合物を150℃以下に冷却
せしめて成長粒子同士の付着性を軽減した後、重
力沈降工程に対し沈降物を系外に除去することを
特徴とする溶剤精製炭中の無機物質及び重質有機
物の除去方法。1. When removing inorganic substances and heavy organic substances from solvent-refined coal using the gravity sedimentation method, a deasphalting solvent is used.
After promoting the growth of particles of inorganic substances and heavy organic substances by contact-mixing with solvent-refined coal at a high temperature exceeding 150°C, and then cooling the mixture to below 150°C to reduce the adhesion of the grown particles to each other. A method for removing inorganic substances and heavy organic substances from solvent-refined coal, which comprises removing sediments from the system in a gravity sedimentation process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12008785A JPS61276888A (en) | 1985-06-03 | 1985-06-03 | Method for removing inorganic material and/or heavy organic material in solvent-purified coal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12008785A JPS61276888A (en) | 1985-06-03 | 1985-06-03 | Method for removing inorganic material and/or heavy organic material in solvent-purified coal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61276888A JPS61276888A (en) | 1986-12-06 |
JPS6340834B2 true JPS6340834B2 (en) | 1988-08-12 |
Family
ID=14777584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12008785A Granted JPS61276888A (en) | 1985-06-03 | 1985-06-03 | Method for removing inorganic material and/or heavy organic material in solvent-purified coal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61276888A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6051785A (en) * | 1983-08-31 | 1985-03-23 | Kobe Steel Ltd | Method for liquefying brown coal by two-stage hydrogenation |
-
1985
- 1985-06-03 JP JP12008785A patent/JPS61276888A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6051785A (en) * | 1983-08-31 | 1985-03-23 | Kobe Steel Ltd | Method for liquefying brown coal by two-stage hydrogenation |
Also Published As
Publication number | Publication date |
---|---|
JPS61276888A (en) | 1986-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5453108B2 (en) | Method for recovering ultrafine solids from hydrocarbon liquids | |
US2871181A (en) | Method of removing finely divided solid particles from hydrocarbonaceous liquids | |
JP2008512557A (en) | Recycling method of active slurry catalyst composition in heavy oil upgrade | |
JP2001523557A (en) | Treatment of refinery effluent | |
CN86102643B (en) | Process for treating heavy petroleum oil reside | |
CA1102265A (en) | Process of removing chemical compounds of arsenic and/or antimony | |
JPH0225950B2 (en) | ||
EP1171546B1 (en) | Method of disposing of waste in a coking process | |
JPS6340834B2 (en) | ||
RU2744853C1 (en) | Method of physical separation of outcoming oil refining flows | |
CA1163943A (en) | Process for selectively aggregating coal powder | |
NL8204746A (en) | METHOD FOR LIQUIDIFYING COAL WITH REGULAR RECIRCULATION OF INSOLUBLES IN ETHYL ACETATE. | |
US2060447A (en) | Working-up of carbonaceous materials | |
CA1225378A (en) | Treatment for phosphorus-containing waste material | |
JP6715709B2 (en) | Method for producing hydrocracked oil and apparatus for producing hydrocracked oil | |
JPS58118890A (en) | Coal hydrogenation producing hydrocarbon liquid and gas product | |
US4021328A (en) | Solidifying solvent refined coal | |
US5028313A (en) | Process for treating a temperature-sensitive hydrocarbonaceous stream containing a non-distillable component to produce a distillable hydrocarbonaceous product | |
US4889618A (en) | Treatment of catalyst fines-oil mixtures | |
AU613713B2 (en) | Treating a temperature-sensitive hydrocarbonaceous waste stream containing a non-distillable component | |
JPS61118494A (en) | Method for liquefying coal | |
JPS6051784A (en) | Method of liquefying brown coal | |
JPH0452315B2 (en) | ||
US2279195A (en) | Refining cracked motor fuel distillates | |
JPS63152693A (en) | Treatment of tar sediment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |