JPS6051785A - Method for liquefying brown coal by two-stage hydrogenation - Google Patents
Method for liquefying brown coal by two-stage hydrogenationInfo
- Publication number
- JPS6051785A JPS6051785A JP16104383A JP16104383A JPS6051785A JP S6051785 A JPS6051785 A JP S6051785A JP 16104383 A JP16104383 A JP 16104383A JP 16104383 A JP16104383 A JP 16104383A JP S6051785 A JPS6051785 A JP S6051785A
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- hydrogenation
- deashing
- naphtha
- distillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は褐炭の2段水添液化方法に関し、殊に1次水添
後における溶剤精製炭(SRC)の脱灰工程で灰分と共
にプレアスファルテン成分を効率良く除去し、2次水添
を効率良く進行させることができる様にした2段水添液
化方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-stage hydrogenation and liquefaction method for lignite, and in particular, in the deashing process of solvent refined coal (SRC) after the primary hydrogenation, pre-asphaltene components are efficiently removed together with ash, and the secondary The present invention relates to a two-stage hydrogenation and liquefaction method that allows hydrogenation to proceed efficiently.
近年の資源、エネルギー事情から石油に代わる液体燃料
を得る技術として、埋蔵愈の豊富な石炭を液化する技術
が注目を集めており、殊に埋蔵石炭の大半を占める褐炭
の液化技術は急速に進められている。中でも褐炭を溶剤
及び触媒と混合し、水素の存在下に高温高圧で水素化し
てSRCと液化油を得る水添液化法は代表的なものの1
つである0
ところで水添液化法で液化油を高収率で得る為には、反
応条件を苛酷にしてSRCから液化油への水素分解を高
める方法も考えられるが、この方法では生成した液化油
が更に分解してガス化し、液化油の収率はむしろ低下す
る。こうした問題の改善策として、水添生成物を蒸留し
て液化留出油を回収した後、残ったSRCを再度水素化
処理する2段水添液化法が提案され一定の成果を得てぃ
る。即ち2段水添液化法とは、褐炭粉粒体を適当な溶剤
と混合し、これにFe系の触媒を加えて水素の存在下に
高温高圧で1次水添を行ない、生成物を蒸留して液化油
と残渣油(灰分及び触媒を含む)とに分離する。そして
残渣油を脱灰処理してSRCを得た後、これにFe系触
媒よりも水添活性の高いM□、W、CoXNi等の触媒
を加えて2次水添に付し、1次水添で液化しきれなかっ
たSRCを更に分解して液化油を回収する。上述の脱灰
処理は、周知の通り灰分による2次水添触媒の活性低下
を防止する為に行なわれるものであるが、本発明者等が
実験により確認したところによれば、前記2次水添触媒
の触媒活性は灰分のみならずSRC中のプレアスファル
テン成分によっても著しく低下することが確認された。Due to recent resource and energy issues, technology to liquefy coal, which has abundant reserves, has been attracting attention as a technology to obtain liquid fuel to replace oil.In particular, technology to liquefy lignite, which accounts for the majority of coal reserves, is rapidly progressing. It is being One of the most representative methods is the hydrogenation-liquefaction method, in which lignite is mixed with a solvent and a catalyst and hydrogenated at high temperature and pressure in the presence of hydrogen to obtain SRC and liquefied oil.
By the way, in order to obtain liquefied oil in high yield by the hydrogenation liquefaction method, it is possible to increase the hydrogen decomposition from SRC to liquefied oil by making the reaction conditions harsher. The oil is further decomposed and gasified, and the yield of liquefied oil is rather reduced. As a solution to these problems, a two-stage hydrogenation and liquefaction method has been proposed in which the hydrogenated product is distilled to recover the liquefied distillate oil, and then the remaining SRC is rehydrogenated, and has achieved certain results. In other words, the two-stage hydrogenation and liquefaction method involves mixing lignite powder with a suitable solvent, adding an Fe-based catalyst to the mixture, performing primary hydrogenation at high temperature and pressure in the presence of hydrogen, and distilling the product. Separation into liquefied oil and residual oil (including ash and catalyst). After deashing the residual oil to obtain SRC, a catalyst such as M□, W, or CoXNi, which has higher hydrogenation activity than Fe-based catalysts, is added to it for secondary hydrogenation, and The SRC that could not be completely liquefied by addition is further decomposed to recover liquefied oil. As is well known, the above-mentioned deashing treatment is carried out to prevent a decrease in the activity of the secondary hydrogenation catalyst due to ash content, but according to what the present inventors have confirmed through experiments, the secondary water It was confirmed that the catalytic activity of the added catalyst was significantly reduced not only by the ash content but also by the pre-asphaltene component in the SRC.
そしてこの確認結果を基に、1次水添で得たSRCを一
旦脱プレアスフアルテン処理した後2次水添を行なう方
法を確立し、先に特許出願を行なった(fr&願昭57
−284541号)。Based on this confirmation result, we established a method for performing secondary hydrogenation after first removing pre-asphaltenes from the SRC obtained by primary hydrogenation, and filed a patent application (fr&p.
-284541).
本発明はこうした2段水添液化方法における特に2次水
添液化効率向上の為の研究の一環として行なわれたもの
であって、特に1次水添後の脱灰工程で、脱灰溶剤を特
定することによって触媒失活の主原因となるプレアスフ
ァルテン成分を灰分と共に除去し、もって水添液化効率
を高めようとするものである。即ち本発明に係る2段水
添液化方法の構成は、褐炭に液化用溶剤及び水添触媒を
加えて混合し、水素の存在下に高温高圧で第4次水添を
行ない、得られた水添生成物であるSRCを脱灰した後
固定床水添触媒層にて第2次水添に付す褐炭の2段水添
液化方法において、上記脱灰工程では、脱灰溶剤として
2次水添生成物のうち25℃における溶解度パラメータ
ー(δ)が7.4〜8.5であるナフサ留分を使用し、
脱灰と共にSRC中のプレアスファルテン成分を除去す
ることによって第2次水添効率を高めるところに要旨を
有するものである。The present invention was carried out as a part of research to improve the efficiency of secondary hydrogenation and liquefaction in such a two-stage hydrogenation and liquefaction method. By doing so, the pre-asphaltene component, which is the main cause of catalyst deactivation, is removed together with the ash content, thereby increasing the hydrogenation and liquefaction efficiency. That is, the structure of the two-stage hydrogenation and liquefaction method according to the present invention is to add and mix a liquefaction solvent and a hydrogenation catalyst to lignite, and perform quaternary hydrogenation at high temperature and high pressure in the presence of hydrogen. In a two-stage hydrogenation and liquefaction method for lignite, in which SRC, which is a product, is deashed and then subjected to secondary hydrogenation in a fixed bed hydrogenation catalyst bed, in the deashing step, one of the secondary hydrogenation products is used as a deashing solvent. Using a naphtha fraction having a solubility parameter (δ) of 7.4 to 8.5 at 25°C,
The gist of this method is to increase the secondary hydrogenation efficiency by removing pre-asphaltene components in SRC together with deashing.
本発明においてプレアスファルテン成分とは、例えば「
触媒第22巻第60頁及び第71頁」に示されている如
くピリジン、キノリン或はテトラヒドロフランに可溶で
ベンゼン或はトルエンに不溶な物質と定義されるもので
、これが第2次水添原料たるSRC中に多量に含まれて
いると、前述の如く第2次水添触媒が短時間で失活し液
化油の回収率を高めることができない。しかし以下に詳
述する如く脱灰用溶媒として溶解度パラメーター(δ)
が7.4〜8.5である有機溶剤を使用すると、脱灰工
程で前記プレアスファルテン成分が不溶物として除去さ
れ、2次水添触媒の活性低下が可及的に防止される。In the present invention, the pre-asphaltene component is, for example, “
It is defined as a substance that is soluble in pyridine, quinoline, or tetrahydrofuran and insoluble in benzene or toluene, as shown in "Catalyst Vol. 22, pages 60 and 71," and this is the secondary hydrogenation raw material. If a large amount is contained in the SRC, the secondary hydrogenation catalyst will be deactivated in a short time as described above, making it impossible to increase the recovery rate of liquefied oil. However, as detailed below, the solubility parameter (δ) is used as a solvent for deashing.
When an organic solvent having a ratio of 7.4 to 8.5 is used, the pre-asphaltene component is removed as an insoluble material in the deashing step, and a decrease in the activity of the secondary hydrogenation catalyst is prevented as much as possible.
ところで前述の如く第1次水添生成物中のプレアスファ
ルテン成分を除去するという目的のみからすれば、溶解
度パラメーター(δ)の低い有機溶剤を選択使用すれば
よいのであるが、溶解度パラメーター(δ)が低すぎる
と2次水添原料として供給すべきSRC中のベンゼン可
溶成分(BS)やヘキサン可溶成分(H8)のうちかな
りの量までも不溶物として除去されてしまって液化油の
回収量は大幅に減少する。従って上記の思想を工業的に
有効に活用する為には、脱灰溶媒として、1次水添生成
物中の灰分やプレアスファルテンは極力溶解させること
なく、BS成分やHS成分は極力多く溶解して2次水添
原料のロスをできる限り抑えることのできる様な溶剤を
選択する必要がある。By the way, as mentioned above, from the sole purpose of removing the pre-asphaltene component in the primary hydrogenation product, it is sufficient to select and use an organic solvent with a low solubility parameter (δ). If it is too low, a considerable amount of the benzene soluble components (BS) and hexane soluble components (H8) in the SRC that are to be supplied as secondary hydrogenation raw materials will be removed as insolubles, making it difficult to recover the liquefied oil. The amount will be significantly reduced. Therefore, in order to effectively utilize the above idea industrially, it is necessary to use the deashing solvent as much as possible without dissolving the ash and pre-asphaltenes in the primary hydrogenation product, and as much as possible of the BS and HS components. It is necessary to select a solvent that can suppress the loss of the secondary hydrogenation raw material as much as possible.
そこで本発明者等は1次水添で得られる代表的成分組成
のSRC〔但し灰分は予め除去し有機物のみとしたもの
:ピリジン可溶成分(PS))を対象として、各種有機
溶剤の溶解度パラメーター(2225℃における値)と
上記SRC成分の溶解性との関係を調べた。使用したS
RCのピリジン、ベンゼン、ヘキサンに対する溶解性に
基づく成分割合の一例をあげると下記第1表の通りであ
る。実験に当たっては、SRCを該SRCに対して4倍
量(重量比)の溶剤に分散し、溶剤の臨界温度−30°
Cの温度で濾過し、可溶成分及び不溶成分をめた。Therefore, the present inventors investigated the solubility parameters of various organic solvents for SRC with a typical component composition obtained by primary hydrogenation [however, ash was removed in advance and only organic matter was left: pyridine soluble component (PS)]. (value at 2225°C) and the solubility of the above SRC component was investigated. S used
An example of the component ratio based on the solubility of RC in pyridine, benzene, and hexane is shown in Table 1 below. In the experiment, SRC was dispersed in a solvent four times the amount (weight ratio) of the SRC, and the critical temperature of the solvent was -30°.
The mixture was filtered at a temperature of C to collect soluble and insoluble components.
第1表 SRCの成分割合
但し PS:ピリジン可溶成分
B■:ベンゼン不溶成分
BS:ベンゼン可溶成分
I■l:ヘキサン不溶成分
H8:ヘキサン可溶成分
結果は第1図に示す通りであり、溶剤の溶解度パラメー
ター(δ)が高くなるにつれてSRC中の溶剤可溶分量
は増加してくる。即ち(δ)が7.8の溶剤を使用した
ときの可溶分は80%にすぎないが、(δ)が9.0の
溶剤を使用するとSRCのうち9596が溶解する。こ
こで5RC(PS)のうちプレアスファルテン成分に相
当するBI分が不溶で且つ2次水添原料として好適なり
S分が可溶である溶剤の(δ)は8.2であることが分
かる。但しSRCは周知の通り複雑で且つ多種類の水添
分解生成物の混合物であり、BI分及びBS分を完全に
分離し得る訳ではなく、BI分といえどもその中には若
干量のBS分が混入し、又BS分といえどもその中には
若干量のBI分が混入してくる。しがもSRCの成分割
合自体出発原料たる褐炭の拙類や1次水添条件等によっ
て変わってくる。こうしたSRC成分割合の変動幅は第
1表に示した平均的成分割合の上・下25%程度と考え
られる。従ってこの変動幅を第1図に当てはめて溶解度
パラメーター(δ)の好適範囲をめると、第1図に破線
で示した如く(δ)−7,4〜8.5の範囲となる。ち
なみに(δ)が7.4未満では脱灰工程でBI分と共に
多量のBS分やHI分までも同時に不溶分として除去さ
れてしまい、2次水添原料としてのロスが大きくなって
液化油の回収量が減少する。一方(δ)が8.5を越え
るとSRC中のBI分の相当景が2次水添用SRC中に
混入してくる為、2次水添触媒の失活を有効に防止し得
なくなる。尚上記の趣旨からも明らかな様に脱灰用溶剤
の溶解度パラメーター(δ)は、前記好適範囲の中から
1次水添で得られるSRCの成分割合に応じて最適の(
δ)を選択するのがよく、最も一般的なのは前記第1表
(及び第1図)に示した様な平均的な成分割合のSRC
に対応する最適の(δ)値である約8.2の溶解度パラ
メーターを有する溶剤(例えばシクロヘキサン)である
。尚脱灰用溶剤としては一般の工業用有機溶剤を使用す
ることも勿論可能であるが、以下に詳述する如く2次水
添後の蒸留によって得られる適正(δ)値のナフサを利
用すれば、脱灰用溶剤を当該水添液化設備自体からクロ
ーズドシステムによって供給することができるので極め
て好都合である。即ち脱灰処理後の精SRCは前述の如
く2次水添処理に付された後蒸留により液化油の回収が
行なわれるが、該液化油中のナフサ成分の(δ)値は2
次水添条件をコントロールすることによって前記好適範
囲内に納めることができるので、このナフサ成分を脱灰
用溶剤として返還利用することが可能である。Table 1 Component ratio of SRC PS: Pyridine soluble component B■: Benzene insoluble component BS: Benzene soluble component I■l: Hexane insoluble component H8: Hexane soluble component The results are as shown in Figure 1. As the solubility parameter (δ) of the solvent increases, the amount of solvent-soluble matter in the SRC increases. That is, when a solvent with (δ) of 7.8 is used, the soluble content is only 80%, but when a solvent with (δ) of 9.0 is used, 9596 of the SRC is dissolved. Here, it can be seen that the (δ) of the solvent in which the BI component corresponding to the pre-asphaltene component of 5RC (PS) is insoluble and is suitable as a secondary hydrogenation raw material and the S component is soluble is 8.2. However, as is well known, SRC is a complex mixture of many types of hydrogen cracked products, and it is not possible to completely separate the BI and BS components, and even the BI component contains a small amount of BS. Even if it is a BS component, a small amount of BI component will also be mixed in. However, the component ratio of SRC itself varies depending on the type of lignite used as the starting material, primary hydrogenation conditions, etc. The range of fluctuation in the SRC component ratio is considered to be about 25% above and below the average component ratio shown in Table 1. Therefore, when this fluctuation range is applied to FIG. 1 to determine the preferred range of the solubility parameter (δ), the range (δ) is −7.4 to 8.5, as shown by the broken line in FIG. Incidentally, if (δ) is less than 7.4, a large amount of BS and HI will be removed as insoluble components along with BI in the demineralization process, resulting in a large loss as a raw material for secondary hydrogenation, resulting in a loss of liquefied oil. Collection amount decreases. On the other hand, if (δ) exceeds 8.5, the equivalent amount of BI in the SRC will be mixed into the SRC for secondary hydrogenation, making it impossible to effectively prevent the deactivation of the secondary hydrogenation catalyst. As is clear from the above, the solubility parameter (δ) of the deashing solvent is set to the optimum value (δ) according to the component ratio of SRC obtained by primary hydrogenation from the above-mentioned preferred range.
δ) is best selected, and the most common is SRC with an average component ratio as shown in Table 1 (and Figure 1) above.
A solvent (e.g. cyclohexane) with a solubility parameter of about 8.2, which corresponds to an optimal (δ) value of 8.2. Although it is of course possible to use a general industrial organic solvent as the deashing solvent, it is also possible to use naphtha with an appropriate (δ) value obtained by distillation after secondary hydrogenation, as detailed below. For example, it is very advantageous that the deashing solvent can be supplied in a closed system from the hydrogenation and liquefaction plant itself. That is, the purified SRC after deashing is subjected to secondary hydrogenation treatment as described above, and then liquefied oil is recovered by distillation, but the (δ) value of the naphtha component in the liquefied oil is 2.
Since the subsequent hydrogenation conditions can be kept within the above-mentioned preferred range by controlling the conditions, this naphtha component can be recycled and used as a deashing solvent.
ちなみに第2図は脱灰用溶剤としてシクロへ牛サン又は
二次ナフサを用いた場合における1次水添SRC中の溶
剤可溶成分を対比して示したものである。但し二次ナフ
サとしては、2次水添を400℃で行ない蒸留して得た
(δ)値8.1の2次ナフサと、2次水添を860℃で
行ない蒸留して得た(δ)値8.9の二次ナフサを使用
した。第2図からも明らかな様にシクロヘキサン、又は
(δ)値が8.1の二次ナフサを使用すると、1次水添
SRC中のBS分やHS分を殆んどロスすることなくB
I分を115程度まで減少することができる。しかしく
δ)値の高すぎる二次ナフサを使用するとBI分の65
96程度が可溶分として精SRC巾に混入してきており
、本発明の目的は到底達成することができない。Incidentally, FIG. 2 shows a comparison of the solvent-soluble components in the primary hydrogenated SRC when cyclohexasan or secondary naphtha is used as the deashing solvent. However, the secondary naphtha has a (δ) value of 8.1 obtained by performing secondary hydrogenation at 400°C and distilling it, and the secondary naphtha obtained by performing secondary hydrogenation at 860°C and distilling it (δ). ) A secondary naphtha with a value of 8.9 was used. As is clear from Figure 2, when cyclohexane or secondary naphtha with a (δ) value of 8.1 is used, there is almost no loss of BS or HS in the primary hydrogenated SRC.
The I minute can be reduced to about 115. However, if a secondary naphtha with a too high δ) value is used, 65% of the BI
Approximately 96% of the amount has been mixed into the width of the refined SRC as a soluble component, making it impossible to achieve the object of the present invention.
ところで上記脱灰用溶剤を用いた脱灰の具体的な方法は
本発明の制限的要件ではなく、公知の濾過法、遠心分離
法、重力沈降法等を採用することができる。但し上記方
法には設備面、操業性、分離効率等の点で夫々一長一短
があるので現場の状況に応じて適宜選択して決定すれば
よいが、最も一般的なのは重力沈降法である。By the way, the specific method of deashing using the above deashing solvent is not a limiting requirement of the present invention, and known filtration methods, centrifugation methods, gravity sedimentation methods, etc. can be employed. However, each of the above methods has advantages and disadvantages in terms of equipment, operability, separation efficiency, etc., so it may be selected and determined as appropriate depending on the site situation, but the most common method is the gravity sedimentation method.
次に前述の様な脱灰・脱プレアスファルテン処理を含め
た一連の水添液化工程を、第8図のフロー図に基づいて
簡単に説明するが、これらの説明によって本発明の適用
対象や実施態様が制限を受けることはなく、前・後記の
m旨に反しない程度の変更実施はすべて本発明の技術的
範囲lこ含まれる。図中四角枠は処理内容、括弧書きは
物質を表わしている。即ち原料褐炭を溶剤と共に混合し
て得られるスラリーは、必要に応じて予熱された後高温
高圧下及び鉄系触媒の存在下で1次水添に付される。ス
ラリー化溶剤の糎類や添加量、予熱や1次水添反応の条
件等は本発明の制限的要件ではない01次水添が終了し
た後は必要により減圧下に気液分離を行ない、次いで蒸
留filを行なうが、ここでは平衡溶媒が回収されてS
RCが回収されると共に、製品としてナフサ(芳香族化
合物、ナフテン類及びパラフィン類等からなる混合油)
が得られる。蒸留(1)によって得られたSRC中には
前述の様に灰分が含まれているので、引き続いて脱灰処
理が行なわれるが、本発明ではこの脱灰工程で脱灰用溶
剤として(δ)値が7.4〜8.5の有機溶剤を使用し
、脱灰と同時にSRC中のプレアスファルテン成分を除
去し、次工程の2次水添工程における水添触媒の失活を
防止する。尚脱灰後に改めて蒸留(2)を行ない、脱灰
時に加えた脱灰用溶剤を回収する工程を付加する場合は
、回収溶剤を脱灰用溶剤として循環使用することもでき
る。尚脱灰用溶剤としては後述する如く2次水添後の蒸
留(3)で得たナフサも使用されるが、最初のうちは前
回の操業末期に残してあいた所定(δ)値の2次ナフサ
、或は別途準備した有機溶剤を使用し、一定のランニン
グ状態に入った後は蒸留(2)で得た回収溶剤の不足分
を補なう程度で2次ナフサを補給していけばよい。Next, a series of hydrogenation and liquefaction processes including deashing and pre-asphaltene treatment as described above will be briefly explained based on the flow diagram of Fig. 8. There are no limitations to the embodiments, and all modifications and implementations that do not violate the spirit of the preceding and following paragraphs are included within the technical scope of the present invention. In the figure, square frames represent processing details, and parentheses represent substances. That is, a slurry obtained by mixing raw material lignite with a solvent is preheated if necessary, and then subjected to primary hydrogenation at high temperature and pressure in the presence of an iron-based catalyst. The size and amount of the slurry-forming solvent, the conditions for preheating and the primary hydrogenation reaction, etc. are not limiting requirements of the present invention.After the primary hydrogenation is completed, gas-liquid separation is performed under reduced pressure if necessary, and then Distillation fil is performed, in which the equilibrium solvent is recovered and S
RC is recovered and naphtha (mixed oil consisting of aromatic compounds, naphthenes, paraffins, etc.) is produced as a product.
is obtained. Since the SRC obtained by distillation (1) contains ash as described above, a deashing process is subsequently performed, but in the present invention, (δ) is used as a deashing solvent in this deashing process. An organic solvent having a value of 7.4 to 8.5 is used to remove pre-asphaltene components in SRC simultaneously with deashing, and to prevent deactivation of the hydrogenation catalyst in the next secondary hydrogenation step. In addition, when performing distillation (2) again after deashing and adding a step of recovering the deashing solvent added at the time of deashing, the recovered solvent can also be recycled as the deashing solvent. As a deashing solvent, naphtha obtained by distillation (3) after secondary hydrogenation is also used as described later, but initially, the naphtha with a predetermined (δ) value left at the end of the previous operation is used. Use naphtha or a separately prepared organic solvent, and after entering a certain running state, you can replenish the secondary naphtha to the extent that it makes up for the lack of recovered solvent obtained in distillation (2). .
蒸留f41及び蒸留(2)の条件は格別の制約を受ける
ものではないが、第8図からも明らかな様に少なくとも
ナフサ分(低沸点留分)、平衡溶媒(中温留分)及び5
RC(高温留分)に分留できるものであることが望まれ
る。又脱灰条件についても、適正な(δ)値の脱灰用溶
剤を使用する限り他の条件は特に制限されないが、最も
好ましいのは下記の通りである。The conditions for distillation f41 and distillation (2) are not particularly restricted, but as is clear from Figure 8, at least naphtha fraction (low boiling point fraction), equilibrium solvent (medium temperature fraction), and
It is desired that it can be fractionated into RC (high temperature distillate). The deashing conditions are not particularly limited as long as a deashing solvent with an appropriate (δ) value is used, but the most preferred conditions are as follows.
温度二150〜400℃
より好ましくは180〜800℃
圧力=20〜60 KFI/ cm2
脱灰溶媒量: SRC量に対して2〜20倍より好まし
くは2.5〜4倍(重量比)こうした脱灰工程で、前述
の如<SRC中のプレアスファルテン成分は灰分と共に
可及的に除去され、2次水添触謀の失活を生ぜしめるこ
とのない実質的にBl・HI及びH8からなるm5Rc
となる。従ってこれに平衡溶媒及び2次水添用触縄を加
えて2次水添を行なうと、1次水添工程で分解しきれな
かったSRC成分が更に水添分解を受ける。従ってこれ
を蒸留(3)に付してナフサ及び中質油を回収すること
により、原料褐炭からの液化油の収率を大幅に高めるこ
とができる。尚蒸留(3)で回収された平衡溶媒は2次
水添用溶媒として循環使用し、又2次ナフサの一部は脱
灰用溶剤として返還利用する。ここで脱灰用溶剤として
返還される2次ナフサの(δ)値は、前述の説明からも
明らかな様に7.4〜8.5の範囲のものとすべきであ
ることは言うまでもない。Temperature: 150 to 400°C, more preferably 180 to 800°C Pressure: 20 to 60 KFI/cm2 Amount of deashing solvent: 2 to 20 times, preferably 2.5 to 4 times (weight ratio) to the amount of SRC In the ash process, as mentioned above, the pre-asphaltene components in SRC are removed as much as possible together with the ash content, and m5Rc, which consists essentially of Bl, HI and H8, is removed without causing deactivation of the secondary hydrogenation catalyst.
becomes. Therefore, when secondary hydrogenation is performed by adding an equilibrium solvent and a rope for secondary hydrogenation to this, the SRC component that was not completely decomposed in the primary hydrogenation step is further subjected to hydrogen decomposition. Therefore, by subjecting this to distillation (3) to recover naphtha and medium oil, the yield of liquefied oil from raw brown coal can be greatly increased. The equilibrium solvent recovered in distillation (3) is recycled as a solvent for secondary hydrogenation, and a portion of the secondary naphtha is recycled as a solvent for deashing. It goes without saying that the (δ) value of the secondary naphtha returned as a deashing solvent should be in the range of 7.4 to 8.5, as is clear from the above explanation.
第4図のフロー図は他の実施例を示したもので、蒸留(
3)で得た平衡溶媒を1次水添工程へ返還し、蒸留fl
)で分離された平衡溶媒の一部を製品として抜き出す様
にした他は第8図の例と実質的に同一である。The flow diagram in Figure 4 shows another example, in which distillation (
The equilibrium solvent obtained in 3) is returned to the primary hydrogenation step, and distilled fl.
) is substantially the same as the example shown in FIG. 8, except that a part of the equilibrium solvent separated in step ) is extracted as a product.
次に水添条件は本発明の制限的要件ではなく、原料炭の
性状、平衡溶媒の種類や屋、H2の消費量、触媒の種類
等を勘案して適当に決めればよいが、代表的な条件を例
示すると次の通りである。Next, the hydrogenation conditions are not a limiting requirement of the present invention, and may be determined appropriately by taking into account the properties of the coking coal, the type and type of equilibrium solvent, the amount of H2 consumed, the type of catalyst, etc. Examples of conditions are as follows.
〈1次水添〉
温度:4Bθ〜480”C
圧力ニ1触媒−280
触媒二Fe2O3+s
水添度:8〜496
〈2次水添〉
温度:400℃以下
圧力ニ 1 5 0〜2 8 0Kg/cm2G触媒:
(:Q−M□系、N i −M o系等の金属触媒
水添度:3〜4%
次に本発明の実施例を示す。<Primary Hydrogenation> Temperature: 4Bθ ~ 480"C Pressure Ni 1 Catalyst - 280 Catalyst 2 Fe2O3+s Hydrogenation Degree: 8 ~ 496 <Secondary Hydrogenation> Temperature: 400°C or less Pressure Ni 1 5 0 ~ 2 8 0 Kg/ cm2G catalyst:
(Metal catalyst hydrogenation degree of Q-M□ system, Ni-Mo system, etc.: 3 to 4% Next, examples of the present invention will be shown.
1次氷添によって得られた粗SRC中に15重量%相当
の灰分及び40重型処相当のBI分が含まれている場合
において、この粗SRCを501−の沈降槽に導入し、
蒸留(3)で得た(δ)が8.1のナフサ、シクロヘキ
サン又はトルエンを粗SRCの4倍(重量比ン加え、温
度:250℃、流量701/hrで脱灰・脱プレアスフ
ァルテンを行なった。In the case where the crude SRC obtained by the primary ice addition contains ash equivalent to 15% by weight and BI equivalent to 40% by weight, this crude SRC is introduced into the settling tank of 501-,
Naphtha, cyclohexane, or toluene with a (δ) of 8.1 obtained in distillation (3) was added at a weight ratio of 4 times the crude SRC, and deashing and preasphaltene were performed at a temperature of 250°C and a flow rate of 701/hr. Ta.
結果は第2表に示す通りであり、(δ)値が規定範囲内
にある脱灰溶剤(ナフサ及びシクロヘキサン)を使用し
たものでは、脱灰SRC中のBI分及び灰分共に極めて
少量となっているが、(δ)値が高すぎる溶剤(トルエ
ン)を使用した場合は脱灰工程でプレアスファルテンが
溶出する為、脱灰SRC中のB!が極めて多屋となって
詔り、2次水添工程で触媒の失活を招くことは明白であ
る。The results are shown in Table 2, and when deashing solvents (naphtha and cyclohexane) with (δ) values within the specified range were used, both the BI content and ash content in the deashing SRC were extremely small. However, if a solvent with too high (δ) value (toluene) is used, pre-asphaltene will be eluted during the deashing process, so B! It is clear that this is extremely harmful and leads to deactivation of the catalyst in the secondary hydrogenation process.
第2表
本発明は概略以上の様に構成されており、脱灰工程で2
次水添触媒の失活原因となるプレアスファルテンを可及
的に除去し得る様にしたので、2次水添効率を高レベル
に維持することができ、原料褐炭からの液化油の回収率
を大幅に高めることができた。しかもプレアスファルテ
ンの除去は脱灰用溶剤の(δ)値を適正に設定するだけ
で脱灰工程で同時に行なうことができ、操業性を低下さ
せる恐れもない。しかも説灰用溶謀として2次ナフサを
循環使用する方法を採用すれば、外部から市販の脱灰用
溶剤を供給する必要がないので経済的である等、極めて
実用に即した技術を提供することができた。Table 2 The present invention is roughly constructed as described above, and in the deashing process, 2
Since pre-asphaltene, which causes deactivation of the secondary hydrogenation catalyst, can be removed as much as possible, the secondary hydrogenation efficiency can be maintained at a high level, and the recovery rate of liquefied oil from raw brown coal can be improved. I was able to increase it significantly. Furthermore, pre-asphaltenes can be removed simultaneously in the deashing process by simply setting the (δ) value of the deashing solvent, and there is no risk of deteriorating operability. Moreover, if a method of circulating secondary naphtha is adopted as a melting method for ashing, it is economical since there is no need to supply a commercially available deashing solvent from outside, providing an extremely practical technology. I was able to do that.
第1図は脱灰用溶剤の溶解度tNILラメーター(δ)
とSRC中の溶剤可溶成分量の関係を示すグラフ、第2
図は脱灰用溶剤の種類を変えた場合lこお畢するSRC
中の可溶成分の割合を示すグラフ、第8.4図は本発明
の実施例を示すフロー図である。
出 願 人 株式会社神戸!RfIs所(ほか4り1)Figure 1 shows the solubility tNIL lameter (δ) of the deashing solvent.
Graph showing the relationship between and the amount of solvent-soluble components in SRC, 2nd
The figure shows the SRC that will be damaged if the type of deashing solvent is changed.
Figure 8.4 is a flow diagram showing an embodiment of the present invention. Applicant Kobe Co., Ltd.! RfIs place (and 4 others)
Claims (1)
素の存在下に高温高圧で第1次水添を行ない、得られた
水添生成物である溶剤精製炭を脱灰した後固定床水添触
媒にて第2次水添に付す褐炭の2段水添液化方法におい
て、上記脱灰工程では、脱灰溶剤として2次水添生成物
のうち25℃における溶解度パラメーター(δ)が7.
4〜8.5であるナフサ留分を用い脱灰と共に溶剤精製
炭中のプレアスファルテン成分を除去することを特徴と
する褐炭の2段水添液化方法。 (2、特許請求の範囲第1項において、脱灰溶剤として
、第2次水添生成物を蒸留して得たナフサ留分を循環使
用する褐炭の2段水添液化方法。(1) Brown coal is mixed with a liquefaction solvent and a hydrogenation catalyst, and primary hydrogenation is performed at high temperature and pressure in the presence of hydrogen. The resulting hydrogenated product, solvent-refined coal, is deashed and fixed. In the two-stage hydrogenation and liquefaction method of lignite which is subjected to secondary hydrogenation using a bed hydrogenation catalyst, in the deashing step, the solubility parameter (δ) at 25° C. of the secondary hydrogenation product as a deashing solvent is 7.
A two-stage hydrogenation and liquefaction method for lignite, characterized in that a naphtha fraction having a molecular weight of 4 to 8.5 is used to deash and remove pre-asphaltene components in solvent-refined coal. (2. A two-stage hydrogenation and liquefaction method for lignite according to claim 1, in which a naphtha fraction obtained by distilling a secondary hydrogenation product is recycled as a deashing solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16104383A JPS6051785A (en) | 1983-08-31 | 1983-08-31 | Method for liquefying brown coal by two-stage hydrogenation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16104383A JPS6051785A (en) | 1983-08-31 | 1983-08-31 | Method for liquefying brown coal by two-stage hydrogenation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6051785A true JPS6051785A (en) | 1985-03-23 |
Family
ID=15727509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16104383A Pending JPS6051785A (en) | 1983-08-31 | 1983-08-31 | Method for liquefying brown coal by two-stage hydrogenation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6051785A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61276888A (en) * | 1985-06-03 | 1986-12-06 | Kobe Steel Ltd | Method for removing inorganic material and/or heavy organic material in solvent-purified coal |
JPH01304182A (en) * | 1988-05-31 | 1989-12-07 | Nippon Katsutan Ekika Kk | Coal liquefaction technique |
US10023968B2 (en) | 2007-02-09 | 2018-07-17 | Dipsol Chemicals Co., Ltd. | Electric Al—Zr alloy plating bath using room temperature molten salt bath and plating method using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5984977A (en) * | 1982-11-04 | 1984-05-16 | Kobe Steel Ltd | Liquefaction of coal |
JPS6051784A (en) * | 1983-08-30 | 1985-03-23 | Kobe Steel Ltd | Method of liquefying brown coal |
JPS6126954A (en) * | 1984-07-18 | 1986-02-06 | Ricoh Co Ltd | Photomagnetic recording medium |
-
1983
- 1983-08-31 JP JP16104383A patent/JPS6051785A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5984977A (en) * | 1982-11-04 | 1984-05-16 | Kobe Steel Ltd | Liquefaction of coal |
JPS6051784A (en) * | 1983-08-30 | 1985-03-23 | Kobe Steel Ltd | Method of liquefying brown coal |
JPS6126954A (en) * | 1984-07-18 | 1986-02-06 | Ricoh Co Ltd | Photomagnetic recording medium |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61276888A (en) * | 1985-06-03 | 1986-12-06 | Kobe Steel Ltd | Method for removing inorganic material and/or heavy organic material in solvent-purified coal |
JPS6340834B2 (en) * | 1985-06-03 | 1988-08-12 | Kobe Seikosho Kk | |
JPH01304182A (en) * | 1988-05-31 | 1989-12-07 | Nippon Katsutan Ekika Kk | Coal liquefaction technique |
US10023968B2 (en) | 2007-02-09 | 2018-07-17 | Dipsol Chemicals Co., Ltd. | Electric Al—Zr alloy plating bath using room temperature molten salt bath and plating method using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4285804A (en) | Process for hydrotreating heavy hydrocarbons in liquid phase in the presence of a dispersed catalyst | |
CA2579528C (en) | Method for hydrocracking of petroleum heavy oil | |
DK174303B1 (en) | Process for separating hydro-treated effluent streams | |
DE10147093A1 (en) | Combined process of asphalt removal and delayed coking of a low-content solvent | |
US4133646A (en) | Phenolic recycle solvent in two-stage coal liquefaction process | |
DD139594A5 (en) | CONVERSION PROCESS FOR SOLID, CARBONATED MATERIALS | |
US4565622A (en) | Method of liquefying brown coal | |
DE2824062A1 (en) | COAL LIQUIDATION PROCEDURE | |
JPS6051785A (en) | Method for liquefying brown coal by two-stage hydrogenation | |
DE3038951C2 (en) | ||
JPS5843433B2 (en) | coal liquefaction method | |
DE2806666A1 (en) | PROCESS FOR LIQUID COALING | |
JPS6051784A (en) | Method of liquefying brown coal | |
DE3307373C2 (en) | ||
JPS5984977A (en) | Liquefaction of coal | |
JP2002302680A (en) | Refining method for heavy oil | |
DE2250822A1 (en) | PROCESS FOR THE CONVERSION OF AN ASPHALTIC HYDROCARBON FEED | |
JPH0242400B2 (en) | ||
JPS6247919B2 (en) | ||
DE977260C (en) | Process for the production of a high quality gasoline and a stable mixture heating oil from crude oil | |
JPS59164389A (en) | Liquefaction of coal | |
DD242631A1 (en) | METHOD FOR TREATING HOT DETERGENT RESIDUE | |
JPH0238625B2 (en) | JUYUNYORUSEKITANNOYOBAICHUSHUTSUHO | |
DE3440134A1 (en) | METHOD FOR LIQUIDIZING COAL | |
JPS6247918B2 (en) |