[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63228762A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63228762A
JPS63228762A JP6294387A JP6294387A JPS63228762A JP S63228762 A JPS63228762 A JP S63228762A JP 6294387 A JP6294387 A JP 6294387A JP 6294387 A JP6294387 A JP 6294387A JP S63228762 A JPS63228762 A JP S63228762A
Authority
JP
Japan
Prior art keywords
layer
type
gate electrode
ohmic
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6294387A
Other languages
Japanese (ja)
Inventor
Katsunori Nishii
勝則 西井
Koji Watanabe
渡辺 厚司
Masaya Manou
萬濃 正也
Yoshikazu Hori
義和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6294387A priority Critical patent/JPS63228762A/en
Publication of JPS63228762A publication Critical patent/JPS63228762A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve characteristics and the degree of integration by forming a high-concentration N-type layer to an ohmic-electrode forming section and simultaneously shaping an ohmic electrode and a gate electrode by the same metal. CONSTITUTION:An Si-doped high-concentration N-type InxGa1-xAs layer 6 is formed onto an Si-doped N-type GaAs cap layer 5, increasing (x) from zero to 0.7. The layer 6 and the layer 5 in a gate-electrode forming section are removed, and a recessed section is shaped to the layer 5. Schottky metals Ti/Pt/ Au, etc., are evaporated from the direction vertical to a substrate, and a gate electrode 11 and ohmic electrodes 12 are formed. Since the gate electrode 11 is shaped through normal evaporation at that time, the gate electrode 11 is shaped simultaneously without being brought into contact with the ohmic electrodes 12. Accordingly, distances among the electrodes 11 and 12 can be shortened, thus allowing the improvement of characteristics due to the lowering of source parasitic resistance and the enhancement of the degree of integration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関し、特に化合物半導
体を用いたトランジスタの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a transistor using a compound semiconductor.

従来の技術 化合物半導体はSiに比べ電子移動度が大きく高周波特
性に優れた半導体装置を得ることが可能である。化合物
半導体の中でもG a A mは、早くから研究され、
G a A sショットキ障壁型電界効果トランジスタ
は、集積回路への応用が活発に行なわれている。また最
近では結晶成長技術の向上により、ヘヂロ接合構造のデ
バイスの開発も盛んに行なわれるようになり、特にN型
A I G a A sとG a A sの界面にたま
る高移動度の電子をゲート電圧によって制御する高電子
移動度トランジスタ(High Electron M
obility Transistor;HEMT)は
集積回路への応用も既に進められている。しかしながら
これら化合物半導体デバイスの作製プロセスはSt プ
ロセスはど成長しておらず、プロセスの進歩が今後重要
となる。第3図は、HEMTを製造する従来の製造方法
を示すものである。第3図において41は半絶縁性G 
a A s基板、42はノンドープG a A s層、
43はノンドープAlGaAs スペーサ層、44はN
型層 I G a A s 層、46はN型層 a A
 sキャップ層、46はオーミック電極、47はゲート
電極である。
Conventional compound semiconductors have higher electron mobility than Si and can provide semiconductor devices with excellent high frequency characteristics. Among compound semiconductors, GaAm was researched from an early stage.
GaAs Schottky barrier field effect transistors are being actively applied to integrated circuits. In recent years, with the improvement of crystal growth technology, devices with heterojunction structures have been actively developed. High electron mobility transistor (High Electron M) controlled by gate voltage
The application of power transistor (HEMT) to integrated circuits is already underway. However, the St process has not yet developed as a manufacturing process for these compound semiconductor devices, and progress in the process will be important in the future. FIG. 3 shows a conventional manufacturing method for manufacturing a HEMT. In Figure 3, 41 is semi-insulating G
aAs substrate, 42 is a non-doped GaAs layer,
43 is a non-doped AlGaAs spacer layer, 44 is N
Type layer I G a A s layer, 46 is N type layer a A
s cap layer, 46 is an ohmic electrode, and 47 is a gate electrode.

半絶縁性G a A s基板41上に分子線エピタキシ
ー法でノンドープG a A s層42、ノンドープA
 I G a A s スペーサ層43、N型層 I 
G a A s  層44、N型層 a A s層46
は成長する(a)。その後、リフトオフ法でオーミック
金属例えばA u G@/Ni/Auを形成し460℃
、6分間アロイレオ−ミック電極46を形成する(b)
。次にソース・ドレイン電極間にゲート電極開口部をフ
ォトレジスト等で形成し、N型層 a A−キャップ層
45を除去しN型層 I G a A s上にゲート金
属例えばTi/Pt/Auをリフトオフ法で形成しゲー
ト電極47を形成し、HEMTを完成する(C)。
A non-doped Ga As layer 42 and a non-doped A layer are formed on a semi-insulating Ga As substrate 41 by molecular beam epitaxy.
I Ga As spacer layer 43, N type layer I
G a As layer 44, N type layer a As layer 46
grows (a). After that, an ohmic metal such as AuG@/Ni/Au is formed using a lift-off method at 460°C.
, forming the alloy rheomic electrode 46 for 6 minutes (b)
. Next, a gate electrode opening is formed between the source and drain electrodes using a photoresist or the like, the N-type layer aA-cap layer 45 is removed, and a gate metal such as Ti/Pt/Au is formed on the N-type layer IGaAs. A gate electrode 47 is formed by a lift-off method, and the HEMT is completed (C).

発明が解決しようとする問題点 第3図で説明したようなHEMTの製造方法は、オーミ
ック接触のオーミック電極とショットキ接触のゲート電
極は異種の材料からなり、ゲート電極は、ソースオーミ
ック電極とドレインオーミック電極の間に別の工程で形
成しなければならなく、ソース・ドレインオーミック電
極とゲート電極の短絡を防ぐためにソース電極およびド
レイン電極とゲート電極の間隔はある程度大きくしなけ
ればならなかった。このためソース寄生抵抗は増大し素
子特性に悪影響を及ぼしていた。また素子占有面積も大
きく集積化には問題があった。
Problems to be Solved by the Invention In the HEMT manufacturing method as explained in FIG. The electrodes must be formed in a separate process, and the distance between the source and drain ohmic electrodes and the gate electrode must be increased to some extent to prevent short circuits between the source and drain ohmic electrodes and the gate electrode. As a result, the source parasitic resistance increases, which adversely affects device characteristics. Furthermore, the device occupies a large area, which poses a problem in integration.

問題点を解決するための手段 前記問題点を解決するために本発明は、表面層がN型層
 a A s層からなる化合物半導体基板表面に高濃度
N型InxGa1−xAs 層を形成する工程と、ゲー
ト電極形成部の前記高濃度N型InxGa1−xAS層
を除去し前記N型G a A s層を露出させる工程と
、?N型InxGa1 −xAs  層下部に凹部を形
成する工程と、前記ゲート電極形成部および前記高濃度
N型I nxGal、Art  層上にフォトレジスト
を用いて単一の開口部を形成する工程と、ショットキ金
属を基板と垂直の方向から全面に形成する工程と、前記
7オトレジスト上のショットキ金属を選択的に除去する
工程からなるものである。
Means for Solving the Problems In order to solve the above problems, the present invention includes a step of forming a highly concentrated N-type InxGa1-xAs layer on the surface of a compound semiconductor substrate whose surface layer is an N-type layer aAs layer. , a step of removing the high concentration N-type InxGa1-xAS layer in the gate electrode forming portion and exposing the N-type GaAs layer; A step of forming a recess in the lower part of the N-type InxGa1-xAs layer, a step of forming a single opening using a photoresist on the gate electrode forming part and the high concentration N-type InxGal, Art layer, and a Schottky method. This process consists of a step of forming metal on the entire surface in a direction perpendicular to the substrate, and a step of selectively removing the Schottky metal on the photoresist.

作  用 本発明は上記した構成により、オーミック電極形成部に
高濃度N型層を設け、オーミック電極とゲート電極を同
一の電極金属でしかも同時に形成できるトランジスタの
製造方法を提供するものである。また、本発明では、オ
ーミック電極とゲート電極との距離が短かくできソース
寄生抵抗の低減による特性の向上や、素子面積の減少に
よる高集積化も可能となる。
Function The present invention provides a method of manufacturing a transistor having the above-described structure, in which a highly concentrated N-type layer is provided in the ohmic electrode forming portion, and the ohmic electrode and the gate electrode can be formed using the same electrode metal and at the same time. Further, according to the present invention, the distance between the ohmic electrode and the gate electrode can be shortened, and characteristics can be improved by reducing source parasitic resistance, and high integration can be achieved by reducing the element area.

実施例 本発明半導体装置の製造方法の第1の実施例を第1図に
示す。第1図において1は半絶縁性GaAs基板、2は
ノンドープG a A s層、3はノンドープA4Ga
As スペーサ層、4はN型層 I G a A s 
 層、6はN型層 a A sキャップ層、6は高濃度
N型InGaAs層、7はゲート電極形成部、τは凹部
、8はオーミック電極形成部、9はフォトレジスト、1
0はショットキ金属、11はゲート電極、12はオーミ
ック電極である。
Embodiment A first embodiment of the method for manufacturing a semiconductor device of the present invention is shown in FIG. In FIG. 1, 1 is a semi-insulating GaAs substrate, 2 is a non-doped GaAs layer, and 3 is a non-doped A4Ga substrate.
As spacer layer, 4 is N type layer I Ga As
6 is an N-type layer aAs cap layer, 6 is a high concentration N-type InGaAs layer, 7 is a gate electrode formation part, τ is a recessed part, 8 is an ohmic electrode formation part, 9 is a photoresist, 1
0 is a Schottky metal, 11 is a gate electrode, and 12 is an ohmic electrode.

半絶縁性G a A t*基板1上に分子線エピタキシ
ー法を用いてノンドープG a A s層2を5000
A、ノンドープAlGaAs 、X、ペーサ層3を20
人、SLをI X 1 o18C1l−5ドープしたN
型層 I G a A s 層4を400人、stを5
 X 10”4”−3ドープしたN型層aAlキ+7ブ
層6を100OA、その上に81を5X10  (Fl
ll  ドープした高濃度N型I n xG a 1x
 A m  層6をIを0から0.7’dで増大させな
がら500人形成する(a)。次にゲート電極形成部7
の高濃度N型InxGa1−xAs  層をイオンミリ
ングで除去しN型層 a A sキャップ層6を露出さ
せ、その後活性層をメサエッチングする伽)。
A non-doped GaAs layer 2 with a thickness of 5000 nm is formed on a semi-insulating GaAt* substrate 1 using molecular beam epitaxy.
A, non-doped AlGaAs, X, spacer layer 3 at 20
Human, SL I X 1 o18C1l-5 doped N
Type layer I G a A s 400 people in layer 4, 5 people in st
X 10"4"-3 doped N type layer aAl +7 layer 6 at 100OA, 81 on top
ll Doped highly concentrated N-type I n xG a 1x
500 A m layers 6 are formed while increasing I from 0 to 0.7'd (a). Next, the gate electrode forming part 7
The high concentration N-type InxGa1-xAs layer is removed by ion milling to expose the N-type aAs cap layer 6, and then the active layer is mesa-etched.

次に、ゲート電極形成部7のn型層 a A sキャッ
プ層6をCCl2F2ガスのりアクティブイオンエツチ
ングで選択的に除去し、わずかにサイドエツチングし高
濃度N型InxGa1−xAS 層6の下部に凹部7′
を形成する(c)。次に7オトレジスト9を用いてゲー
ト電極形成部7およびオーミック電極形成部8の高濃度
N型InGaAs 層e上に単一の開口部を設け、全面
にショットキ金属10例えばTi/Pt/Auを基板と
垂直方向から蒸着で形成する(d)。その後リフトオフ
法でフォトレジストs上の不要ゲート金属1oを除去し
、開口部のみにゲート金属1oを残こす。この時、ゲー
ト金属10は法線蒸着により形成するため、オーミック
電極形成部とゲート電極形成部のゲート金属は接触する
ことなく形成でき、ゲート電極11とオーミック電極1
2が同時に形成できHEMTが完成する(e)。
Next, the n-type aAs cap layer 6 of the gate electrode forming portion 7 is selectively removed by active ion etching using CCl2F2 gas, and slightly side-etched to create a recess at the bottom of the highly concentrated N-type InxGa1-xAS layer 6. 7′
(c). Next, a single opening is formed on the highly doped N-type InGaAs layer e of the gate electrode forming part 7 and the ohmic electrode forming part 8 using a 7-photoresist 9, and a Schottky metal 10 such as Ti/Pt/Au is applied to the entire surface of the substrate. (d). Thereafter, the unnecessary gate metal 1o on the photoresist s is removed by a lift-off method, leaving the gate metal 1o only in the opening. At this time, since the gate metal 10 is formed by normal vapor deposition, the gate metals in the ohmic electrode forming part and the gate electrode forming part can be formed without contacting each other, and the gate electrode 11 and the ohmic electrode 1 can be formed without contacting each other.
2 can be formed at the same time, completing the HEMT (e).

次に第2の実施例を第2図に示す。第2図において、2
1は半絶縁性G a A s基板、22は活性層、23
は高濃度N型InxGa1−xAs  層、24はゲー
ト電極形成部、24′は凹部、26は絶縁膜、26は絶
縁膜の側壁部、27はフォトレジスト、28はショット
キ金属、29はオーミック電極、3゜はゲート電極であ
る。
Next, a second embodiment is shown in FIG. In Figure 2, 2
1 is a semi-insulating GaAs substrate, 22 is an active layer, 23
24 is a gate electrode formation part, 24' is a recessed part, 26 is an insulating film, 26 is a side wall part of the insulating film, 27 is a photoresist, 28 is a Schottky metal, 29 is an ohmic electrode, 3° is the gate electrode.

半絶縁性G a A s基板21にイオン注入法を用い
てSLイオンを50 Kevで5X10  c!Rイオ
ン注入し、アルシン雰囲気中で820℃15分間熱処理
し活性層22を形成する(a)。次に分子線エピタキシ
ー法でStを5 X 10”cs−’  ドーピングし
た高濃度N型InGaAs層23を全面に形成する(b
)。次にイオンミリングでゲート電極形成部24の高濃
度N型InGaAs を除去する(C)。そして全面に
絶縁膜26例えばシリコン窒化膜をプラズマCVD法で
形成する(d)。その後全面をリアクティブイオンエツ
チングし平坦部のシリコン窒化膜を除去し、ゲート電極
形成部24の側壁のみに絶縁膜の側壁部26を形成する
(・)。次に活性層22をリン酸系エッチャントでエツ
チングし高濃度N型I n 、G a 1.A s  
23下部に凹部24′を形成しフォトレジスト27を用
いてゲート電極形成部24およびゲート電極形成部24
の両側のオーミック電極形成部上に単一の開口部を形成
し、全面にショットキ金属28例えばTi/Pt/Au
を法線蒸着で形成する(f)。その後リフトオフ法でフ
ォトレジスト27上の不要ゲート金属を除去し、開口部
のみにゲート金属28を残こす。この時ゲート電極形成
部とオーミック電極形成部は絶縁膜で分離されているた
め接触はせず、オーミック電極29とゲート電極30が
同時に形成でき、FETが形成できる(q)。以上、2
つの実施例を説明したが、ゲート金属のT i /P 
t /Auは、n型層aAs+niA I G a A
 a上ではショットキ接合となりオーミック接合にはな
らない。しかし、jgGaAiはバンドギャップが狭く
かつ高濃度にドーピングしたN型InGaAs上では、
Ti/Pt/Auでもオーミック接合となる。このため
本発明では高濃度N型InGaAs を用いることによ
り、一種類の金属でオーミック電極とショットキゲート
電極が、同一プロセスでセルフアライメントで形成でき
るのである。
Using the ion implantation method, SL ions are implanted into the semi-insulating GaAs substrate 21 at 50 Kev in 5×10 c! R ions are implanted and heat treated at 820° C. for 15 minutes in an arsine atmosphere to form an active layer 22 (a). Next, a high concentration N-type InGaAs layer 23 doped with 5 x 10"cs-' of St is formed on the entire surface by molecular beam epitaxy (b
). Next, the high concentration N-type InGaAs in the gate electrode forming portion 24 is removed by ion milling (C). Then, an insulating film 26, such as a silicon nitride film, is formed on the entire surface by plasma CVD (d). Thereafter, the entire surface is subjected to reactive ion etching to remove the silicon nitride film in the flat portion, and a side wall portion 26 of the insulating film is formed only on the side wall of the gate electrode forming portion 24 (.). Next, the active layer 22 is etched with a phosphoric acid etchant to form high concentration N-type In, Ga 1. As
A recess 24' is formed in the lower part of 23, and a photoresist 27 is used to form a gate electrode forming part 24 and a gate electrode forming part 24.
A single opening is formed on the ohmic electrode formation portion on both sides of the ohmic electrode, and a Schottky metal 28 (for example, Ti/Pt/Au) is formed on the entire surface.
is formed by normal evaporation (f). Thereafter, unnecessary gate metal on the photoresist 27 is removed by a lift-off method, leaving the gate metal 28 only in the opening. At this time, since the gate electrode forming part and the ohmic electrode forming part are separated by an insulating film, they do not come into contact with each other, so that the ohmic electrode 29 and the gate electrode 30 can be formed at the same time, and an FET can be formed (q). Above, 2
Although two embodiments have been described, T i /P of the gate metal
t/Au is the n-type layer aAs+niA I G a A
On a, there is a Schottky junction and no ohmic junction. However, jgGaAi has a narrow bandgap and is formed on heavily doped N-type InGaAs.
Ti/Pt/Au also forms an ohmic junction. Therefore, in the present invention, by using highly doped N-type InGaAs, an ohmic electrode and a Schottky gate electrode can be formed using one type of metal in the same process in a self-aligned manner.

また、第1の実施例では高濃度N型InxGa1  x
AsのXを0から順次増大させ0.7まで成長したのは
G a A sとInGaAs との格子不整合による
歪等を防ぐためであり、これは例えば、0 、0.1.
0.2・・・0.7と段階的に行ってもよい。
Furthermore, in the first embodiment, high concentration N-type InxGa1 x
The reason why X of As was increased sequentially from 0 to 0.7 was to prevent distortion due to lattice mismatch between GaAs and InGaAs.
It may be performed in steps of 0.2...0.7.

なお、本実施例ではゲート金属にTi/Pt/Auを用
いたがゲート金属はこれに限らず高濃度N型InGaA
s上でオーミック接合となるショットキ金属であれば何
でも良く、例としてW、Pt、A4等があげられる。
Note that although Ti/Pt/Au was used for the gate metal in this example, the gate metal is not limited to this.
Any Schottky metal can be used as long as it forms an ohmic contact on s, and examples include W, Pt, A4, etc.

発明の効果 本発明は、オーミック電極形成部に高濃度n型層を用い
ることにより、オーミック電極とゲート電極を同一の電
極金属でしかも同時に形成することができプロセスが簡
略化される。またオーミック電極とゲート電極との距離
が短かくでき、ソース寄生抵抗の低減による特性の向上
や、素子面積の減少でき高集積化も容易に行うことがで
きる。
Effects of the Invention In the present invention, by using a highly doped n-type layer in the ohmic electrode forming portion, the ohmic electrode and the gate electrode can be formed using the same electrode metal and at the same time, thereby simplifying the process. Furthermore, the distance between the ohmic electrode and the gate electrode can be shortened, characteristics can be improved by reducing source parasitic resistance, and the device area can be reduced, making it easy to achieve high integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における半導体装置の製
造方法を説明するだめの工程断面図、第2図は本発明の
第2の実施例における半導体装置の製造方法を説明する
ための工程断面図、第3図は従来の製造方法を説明する
ための工程断面図である。 1・・・・・・半絶縁性G a A s基板、6・・・
・・・N型G a A s層、6゛°パ・・高濃度n型
InGaAs  層、7・・・・・・ゲート電極形成部
、7′・川・凹部、9・・・・・・フォトレジスト、1
0・・・・・・ショットキ金属。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
41とB柱Gtt、1Isl、飯 温1図 9−−−フ坪しリZト (O−一−ショット〒虐シ1 25−艶1盈膿 第2図 ’26;’    2f;’−111f静第 3 図・
FIG. 1 is a process sectional view for explaining the method of manufacturing a semiconductor device according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view for explaining the method of manufacturing the semiconductor device according to the second embodiment of the present invention. FIG. 3 is a process cross-sectional view for explaining a conventional manufacturing method. 1...Semi-insulating GaAs substrate, 6...
...N-type GaAs layer, 6゛°pa...high concentration n-type InGaAs layer, 7...gate electrode formation part, 7', river, recess, 9... Photoresist, 1
0... Schottky metal. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
41 and B pillar Gtt, 1Isl, Ion 1 Figure 9 --- Futsuboshirito Z (O-1-shot 〒弒し 1 25-缝 1 终pus 2 Figure '26;'2f;'-111f Still Figure 3・

Claims (2)

【特許請求の範囲】[Claims] (1)表面層がN型GaAs層からなる化合物半導体基
板表面に高濃度N型In_xGa_1_−_xAs層を
形成する工程と、ゲート電極形成部の前記高濃度N型I
n_xGa_1_−_xAs層を除去し前記N型GaA
a層を露出させる工程と、前記露出したN型GaAs層
をエッチングし、高濃度N型In_xGa_1_−_x
As層下部に凹部を形成する工程と、前記ゲート電極形
成部および前記高濃度N型In_xGa_1_−_xA
s層上にフォトレジストを用いて単一の開口部を形成す
る工程と、ショットキ金属を基板と垂直の方向から全面
に形成する工程と、前記フォトレジスト上のショットキ
金属を選択的に除去する工程を有してなる半導体装置の
製造方法。
(1) A step of forming a high concentration N-type In_xGa_1_-_xAs layer on the surface of a compound semiconductor substrate whose surface layer is an N-type GaAs layer, and the step of forming a high concentration N-type I
The n_xGa_1_-_xAs layer is removed and the N-type GaA
A step of exposing the a layer and etching the exposed N-type GaAs layer to form a high concentration N-type In_xGa_1_-_x
A step of forming a concave portion in the lower part of the As layer, and forming the gate electrode forming portion and the high concentration N-type In_xGa_1_-_xA.
A step of forming a single opening on the S layer using a photoresist, a step of forming a Schottky metal on the entire surface in a direction perpendicular to the substrate, and a step of selectively removing the Schottky metal on the photoresist. A method for manufacturing a semiconductor device comprising:
(2)高濃度N型In_xGa_1_−_xAs層を、
xを0から順次増大させて形成する特許請求の範囲第1
項記載の半導体装置の製造方法。
(2) High concentration N-type In_xGa_1_-_xAs layer,
Claim 1 formed by sequentially increasing x from 0
A method for manufacturing a semiconductor device according to section 1.
JP6294387A 1987-03-18 1987-03-18 Manufacture of semiconductor device Pending JPS63228762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6294387A JPS63228762A (en) 1987-03-18 1987-03-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6294387A JPS63228762A (en) 1987-03-18 1987-03-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63228762A true JPS63228762A (en) 1988-09-22

Family

ID=13214890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6294387A Pending JPS63228762A (en) 1987-03-18 1987-03-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63228762A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120871A (en) * 1987-11-05 1989-05-12 Fujitsu Ltd Semiconductor device
EP0394590A2 (en) * 1989-04-27 1990-10-31 Mitsubishi Denki Kabushiki Kaisha Field effect transistors and method of making a field effect transistor
US5231040A (en) * 1989-04-27 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120871A (en) * 1987-11-05 1989-05-12 Fujitsu Ltd Semiconductor device
EP0394590A2 (en) * 1989-04-27 1990-10-31 Mitsubishi Denki Kabushiki Kaisha Field effect transistors and method of making a field effect transistor
US5231040A (en) * 1989-04-27 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor

Similar Documents

Publication Publication Date Title
JPS63276267A (en) Manufacture of semiconductor device
JPH06342811A (en) Field effect transistor and its manufacture
JPS63228762A (en) Manufacture of semiconductor device
JP3381787B2 (en) Semiconductor device and manufacturing method thereof
JP2001210658A (en) Method of manufacturing eifld effect transistor
JPH11121737A (en) Field-effect transistor and manufacture thereof
JPS6115375A (en) Hetero junction fet
JP2787589B2 (en) Semiconductor device
JPH0523497B2 (en)
JPH04291732A (en) Manufacture of field-effect transistor
JPS62204578A (en) Manufacture of field-effect transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH0656857B2 (en) Method for manufacturing field effect transistor
JPH0472635A (en) Field-effect transistor and manufacture thereof
JPH043944A (en) Field-effect transistor
JPS58162070A (en) Field effect transistor
JPH06302618A (en) Field-effect transistor and fabrication thereof
JPH0992816A (en) Field-effect transistor and its manufacture
JPH0397232A (en) Field-effect transistor
JPS63115384A (en) Manufacture of semiconductor device
JPH07254614A (en) Compound semiconductor device
JPS60136264A (en) Manufacture of semiconductor device
JPH06232168A (en) Field effect transistor and its manufacture
JPS6143443A (en) Manufacture of semiconductor device
JPS6249671A (en) Gallium-arsenide fe transistor and making thereof