[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6318080A - Production of photoconductor - Google Patents

Production of photoconductor

Info

Publication number
JPS6318080A
JPS6318080A JP61162632A JP16263286A JPS6318080A JP S6318080 A JPS6318080 A JP S6318080A JP 61162632 A JP61162632 A JP 61162632A JP 16263286 A JP16263286 A JP 16263286A JP S6318080 A JPS6318080 A JP S6318080A
Authority
JP
Japan
Prior art keywords
gas
chamber
reaction chamber
dust
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61162632A
Other languages
Japanese (ja)
Inventor
Shoichi Nagata
永田 祥一
Shoji Nakamura
昌次 中村
Kazuki Wakita
脇田 和樹
Katsuhiro Nagayama
勝浩 永山
Kunio Ohashi
邦夫 大橋
Tadashi Tonegawa
利根川 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61162632A priority Critical patent/JPS6318080A/en
Publication of JPS6318080A publication Critical patent/JPS6318080A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a photoconductor nearly free from surface defects by repeatedly carrying out the introduction of gaseous N2 or an inert gas contg. little dust into a reaction chamber and the exhaust of the gas from the chamber several times, introducing gaseous starting material and carrying out plasma chemical vapor growth. CONSTITUTION:Gaseous starting material in a gas cylinder 12 is fed into a reaction chamber 2 through a gas introducing pipe 10 after the composition is regulated in a control box 11. The chamber 2 is then evacuated to a prescribed pressure with an evacuator 4 through the exhaust port 3. High frequency voltage is applied between the side wall 6 of the chamber 2 and a support 9 rotated by a driving device 8 from a high frequency power source 7 to generate plasma and a photoconductive layer is formed on an Al substrate 1 on the support 9 by plasma chemical vapor growth. When the photoconductor is produced, the introduction of gaseous N2 or an inert gas contg. little dust into the chamber 2 and the exhaust of the gas from the chamber 2 are repeated several times to well remove dust from the chamber 2 before the gaseous starting material is introduced.

Description

【発明の詳細な説明】 く技術分野〉 この発明は、プラズマ化学気相成長装置を用いて基体表
面で原料ガスで反応させるとこにより前記基体表面に光
導電体層を形成する光導電体の製造方法に関する。
Detailed Description of the Invention [Technical Field] This invention relates to the production of a photoconductor in which a photoconductor layer is formed on the surface of a substrate by reacting a source gas on the surface of the substrate using a plasma chemical vapor deposition apparatus. Regarding the method.

〈発明の背景〉 近年、電子写真装置や原稿読み取り装置などにおける感
光材料として、高い光感度、高耐久性。
<Background of the Invention> In recent years, high light sensitivity and high durability have been used as photosensitive materials for electrophotographic devices, document reading devices, etc.

無公害などの長所が期待されるアモルファスシリコンか
らなる光導電体の実用化が期待されているこのアモルフ
ァスシリコンからなる光導電体の製造方法としては、プ
ラズマ化学気相成長装置(=プラズマChellica
l Vapor Deposition;以下プラズマ
CVD装置という)を用いて基体表面に光導電体層を形
成する方法がある。第3図は複写機などに使用される感
光体ドラムとしての光導電体を形成するプラズマCVD
装置の概略構成を表した図である。この装置の構成およ
び光導電体層の製造方法を簡単に説明すると、反応室2
は密閉可能になっており排気口3から真空装置4によっ
て排気される。この反応室2の上方には蓋5が設けられ
ており、まず、この蓋5を開けてアルミニウムなどから
なる基体1を支持体9に装着する。この基体1および支
持体9は駆動装置8によって回転される。次に、真空装
置4によって排気口3から反応室2内の排気を行なう。
Photoconductors made of amorphous silicon are expected to be put into practical use due to their advantages such as being non-polluting. As a manufacturing method for photoconductors made of amorphous silicon, a plasma chemical vapor deposition apparatus (= plasma chemical vapor deposition apparatus) is used.
There is a method of forming a photoconductor layer on the surface of a substrate using a vapor deposition (hereinafter referred to as a plasma CVD apparatus). Figure 3 shows the plasma CVD process used to form photoconductors as photosensitive drums used in copying machines, etc.
1 is a diagram showing a schematic configuration of an apparatus. To briefly explain the configuration of this device and the method for manufacturing the photoconductor layer, the reaction chamber 2
is airtight and is evacuated from an exhaust port 3 by a vacuum device 4. A lid 5 is provided above the reaction chamber 2. First, the lid 5 is opened and the base 1 made of aluminum or the like is mounted on the support 9. The base body 1 and the support body 9 are rotated by a drive device 8 . Next, the inside of the reaction chamber 2 is evacuated from the exhaust port 3 by the vacuum device 4 .

排気が終了すると、支持体9の周囲に複数本配設された
ガス導入バイブ10から原料ガスを導入する。この原料
ガスはコントロールボックス1)によってガスボンへ1
2のガスが所定の混合比に調整されたものである。この
ようにして反応室2内の雰囲気の調整が終了すると、反
応室2の側壁を兼ねる電極6と、接地することによって
もう一方の電極を構成している支持体9との間に高周波
電源7によって高周波電圧を印加する。これによって反
応室2内の原料ガスが反応し基体1の表面に光導電体層
を形成する。
When the evacuation is completed, raw material gas is introduced from a plurality of gas introduction vibes 10 arranged around the support body 9. This raw material gas is transferred to the gas cylinder 1 by the control box 1).
The two gases are adjusted to a predetermined mixing ratio. When the atmosphere in the reaction chamber 2 has been adjusted in this way, a high-frequency power source 7 is connected between the electrode 6, which also serves as the side wall of the reaction chamber 2, and the support 9, which constitutes the other electrode by being grounded. A high frequency voltage is applied. As a result, the raw material gas in the reaction chamber 2 reacts to form a photoconductor layer on the surface of the substrate 1.

以上のようにしてアルミニウムからなる光導電体層を形
成した感光体ドラムを製造することができるが、この感
光体ドラムを用いて画像形成を行うと画像中にトナーが
付着されない白抜は現象が発生することがある。特に中
間調の画像においてはこの白抜は現象が顕著となり画像
品質が著しく低下する。この白抜は現象の原因は鋭意、
検討・実験の結果、感光体ドラムの製造時に基体1の表
面に異物が付着し、この異物上に光導電体層が形成され
るとアモルファスシリコンが異常成長し凸  、状の欠
陥部分を形成するためであることが分かった。この凸状
の欠陥部分の直径が30μmを超えると白抜は現象が多
く発生し、画像品質が著しく低下してしまうことがあっ
た。
A photoreceptor drum with a photoconductor layer made of aluminum formed thereon can be manufactured in the manner described above, but when an image is formed using this photoreceptor drum, the phenomenon of white areas where toner does not adhere to the image occurs. This may occur. Particularly in half-tone images, this phenomenon of white spots becomes noticeable and the image quality is significantly degraded. This blank area is caused by the phenomenon,
As a result of studies and experiments, it was found that foreign matter adheres to the surface of the substrate 1 during the manufacture of the photoreceptor drum, and when a photoconductor layer is formed on this foreign matter, amorphous silicon grows abnormally and forms a convex, 2-shaped defective part. It turned out that it was for a reason. When the diameter of this convex defect exceeds 30 μm, white spots often occur, and the image quality may be significantly degraded.

そこで、これらの問題を解決するために基体1の表面や
反応室2の内部を公知の方法を用い、純水や溶剤などで
洗浄していた。しかしながら、反応室2の隅等に付着し
たダストが洗浄しても残留することがあり、このダスト
が減圧によって反応室の雰囲気中で浮遊してしまう等、
雰囲気中のダストを充分に取り除くことはできなかった
Therefore, in order to solve these problems, the surface of the substrate 1 and the inside of the reaction chamber 2 have been cleaned with pure water, a solvent, etc. using a known method. However, dust adhering to the corners of the reaction chamber 2 may remain even after cleaning, and this dust may become suspended in the atmosphere of the reaction chamber due to reduced pressure.
Dust in the atmosphere could not be removed sufficiently.

〈発明の目的〉 この発明は、上記のような事情に鑑み、反応室2内の雰
囲気中のダスト量を減少させ、光導電体表面の欠陥部分
を減少させることを目的とする。
<Objective of the Invention> In view of the above-mentioned circumstances, the present invention aims to reduce the amount of dust in the atmosphere within the reaction chamber 2 and reduce the number of defective portions on the surface of the photoconductor.

〈発明の構成〉 この発明は、プラズマCVD装置を用いて基体表面に光
導電体層を形成する光導電体の製造方法において、前記
プラズマCVD装置の反応室に対して低ダストのN2ガ
スまたは不活性ガスの導入・排気を数回行った後、この
反応室へ原料ガスを導入することを特徴とする。
<Structure of the Invention> The present invention provides a method for manufacturing a photoconductor in which a photoconductor layer is formed on a substrate surface using a plasma CVD apparatus, in which a low-dust N2 gas or a non-conductive gas is supplied to a reaction chamber of the plasma CVD apparatus. The method is characterized in that after the active gas is introduced and exhausted several times, the raw material gas is introduced into the reaction chamber.

く作用〉 この発明においては、排気された反応室に低ダストのN
2ガスまたは不活性ガスが導入されることによって反応
室内に浮遊しているダストの濃度が低下する。この後反
応室を排気し、再び低ダストのN2ガスまたは不活性ガ
スを導入すると排気の後に残留していた残留ガスと低ダ
ストのN2ガスまたは不活性ガスとが混ざって前回の導
入時のガスと量に比ベダスト濃度はさらに低下する。
In this invention, low dust N is added to the evacuated reaction chamber.
By introducing two gases or an inert gas, the concentration of dust suspended in the reaction chamber is reduced. After this, when the reaction chamber is evacuated and low-dust N2 gas or inert gas is introduced again, the residual gas that remained after the exhaust is mixed with the low-dust N2 gas or inert gas, resulting in the gas from the previous introduction. The dust concentration is further reduced compared to the amount.

〈発明の効果〉 以上のようにこの発明によれば、低ダストのN2ガスま
たは不活性ガスの導入・排気毎に反応室内のダスト濃度
が低下し反応室内のダストを充分に取り除くことができ
る。これにより、基体の表面にダスト(異物)が付着す
るのを防止することができ、凸状の欠陥部分が発生する
のを防止することができる。
<Effects of the Invention> As described above, according to the present invention, the dust concentration in the reaction chamber decreases each time low-dust N2 gas or inert gas is introduced or exhausted, and the dust in the reaction chamber can be sufficiently removed. Thereby, it is possible to prevent dust (foreign matter) from adhering to the surface of the substrate, and it is possible to prevent the occurrence of convex defective portions.

〈実施例〉 第3図に示したプラズマCVD装置を用いて複写機の感
光体ドラムを製造する方法を説明する。
<Example> A method of manufacturing a photosensitive drum for a copying machine using the plasma CVD apparatus shown in FIG. 3 will be described.

まず、反応室2の内部を純水または溶剤を用いて洗浄し
乾燥させる。次に、真空装置4により反応室2の内部を
I X 10−’〜I X l 0−6Torr程度の
真空状態とした後、コントロールボックス1)からN2
ガスまたはAr等の不活性ガスを導入させ、雰囲気を大
気圧とする。このとき、ガス導入パイプ10に0. 5
μm以上のダストを殆ど通さない、すなわち、クラス1
00以下のガスを通過させるフィルタを設ける、等によ
りガスを低ダストとした。そして大気圧にした直後に反
応室2内のダスト量をダストカウンタを用い測定した。
First, the inside of the reaction chamber 2 is washed with pure water or a solvent and dried. Next, the interior of the reaction chamber 2 is brought into a vacuum state of about IX10-' to IX10-6 Torr by the vacuum device 4, and then N2 is supplied from the control box 1).
A gas or an inert gas such as Ar is introduced to bring the atmosphere to atmospheric pressure. At this time, the gas introduction pipe 10 is 0. 5
Almost impermeable to dust of μm or larger, i.e. class 1
The gas was made to have low dust by providing a filter that allows gas of 0.00 or less to pass through. Immediately after the pressure was set to atmospheric pressure, the amount of dust in the reaction chamber 2 was measured using a dust counter.

この後、再び前述の工程と同様に反応室2内を排気・ガ
ス導入を行ない、大気圧にして前述と同様にダスト量の
測定を行った。
Thereafter, the inside of the reaction chamber 2 was again evacuated and gas introduced in the same manner as in the above-mentioned process, and the pressure was brought to atmospheric pressure, and the amount of dust was measured in the same manner as above.

このような作業を4回繰り返し反応室2内のダスト量の
変化を調べた結果が第1図(Alである。図において、
横軸は反応室2内の排気を行った後、低ダストのN2ガ
スまたはArなどの不活性ガスを導入して大気圧に戻し
た回数であり、縦軸はダスト数を表してしる。明らかに
ガス導入回数が増えるに従い反応室2内のダスト数が減
少している。なお、本実施例で用いたダストカウンタで
は1×102以下のダストを測定することはできないた
め図においては破線で表している。
The results of repeating this process four times and examining the change in the amount of dust in the reaction chamber 2 are shown in Figure 1 (Al).
The horizontal axis represents the number of times that the reaction chamber 2 was evacuated and then a low-dust N2 gas or an inert gas such as Ar was introduced to return the pressure to atmospheric pressure, and the vertical axis represents the number of dust particles. It is clear that the number of dust particles in the reaction chamber 2 decreases as the number of times gas is introduced increases. Incidentally, since the dust counter used in this example cannot measure dust of 1×10 2 or less, it is represented by a broken line in the figure.

このようにして反応室2内に対しての低ダストのN2ガ
スまたは不活性ガスの導入をした後、N2ガスまたは不
活性ガスを流通させながら蓋5を開いて基体lを支持体
9に装着する。この基体1はフロン超音波洗浄層や上記
洗浄層で十分に洗浄されたものを用いる。次に、真空装
置4によって反応室2内の排気を行った後、コントロー
ルボックス1)によって所定の混合比に調整された原料
ガスを反応室2内に導入する。このとき、真空装置4を
調節して反応室2内の圧力がQ 、  5 Torrに
なるようにする。また、基体1の表面温度を28℃ 0=に保つ。次に、高周波電源7に0.3W/aJの高
周波電力をかけ原料ガスを基体lの表面で反応させて基
体10表面に光導電体層を形成させる。以上のような操
作を繰り返し、第2図に示したような条件で第1層から
第3層までのアモルファスシリコン膜を形成した感光体
ドラムを製造した製造された感光体ドラム表面の凸状の
欠陥部分の個数を顕微鏡を用いて観察した。第1図(B
)はその結果を表した図である。比較として従来の製造
方法すなわち、低ダストのNtガスまたは不活性ガスの
導入・排気を行わず、第2図に示した条件で製造した感
光体ドラムの凸状の欠陥部分を測定した。明らかに、本
発明の方法で製造した感光体ドラムでは画像形成時の白
抜けの原因となる30μm以上の直径を持つ欠陥部分が
大幅に減少している。
After introducing low-dust N2 gas or inert gas into the reaction chamber 2 in this manner, the lid 5 is opened while the N2 gas or inert gas is flowing, and the substrate 1 is mounted on the support 9. do. The substrate 1 used is one that has been thoroughly cleaned with a fluorocarbon ultrasonic cleaning layer or the above-mentioned cleaning layer. Next, after the reaction chamber 2 is evacuated by the vacuum device 4, the raw material gas adjusted to a predetermined mixing ratio by the control box 1) is introduced into the reaction chamber 2. At this time, the vacuum device 4 is adjusted so that the pressure inside the reaction chamber 2 is Q.5 Torr. Further, the surface temperature of the substrate 1 is maintained at 28° C. 0=. Next, a high frequency power of 0.3 W/aJ is applied to the high frequency power supply 7 to cause the raw material gas to react on the surface of the substrate 1 to form a photoconductor layer on the surface of the substrate 10. The above operations were repeated to produce a photoreceptor drum on which the first to third layers of amorphous silicon films were formed under the conditions shown in Figure 2. The number of defective parts was observed using a microscope. Figure 1 (B
) is a diagram showing the results. For comparison, the convex defect portion of a photoreceptor drum manufactured under the conditions shown in FIG. 2 without introducing or exhausting low-dust Nt gas or inert gas was measured. Apparently, in the photosensitive drum manufactured by the method of the present invention, defective portions having a diameter of 30 μm or more, which cause white spots during image formation, are significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1回込)は本発明の実施例である製造方法により反応
室内のダストが減少する様子を表した図、第1図(B)
は本発明の製造方法により製造した感光体ドラム(光導
電体)と従来の方法により製造した感光体ドラム(光導
電体)の表面に現れる欠陥の個数を比較した図、第2図
はその感光体ドラム(光導電体)を製造した条件を表し
た図、第3図は感光体ドラム(光導電体)の製造装置の
概略構成を表した図である。
Figure 1 (B) is a diagram showing how the dust in the reaction chamber is reduced by the manufacturing method that is an embodiment of the present invention.
Figure 2 is a diagram comparing the number of defects appearing on the surface of a photoconductor drum (photoconductor) manufactured by the manufacturing method of the present invention and a photoconductor drum (photoconductor) manufactured by a conventional method. FIG. 3 is a diagram showing the conditions under which the photoconductor drum (photoconductor) was manufactured. FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)プラズマ化学気相成長装置を用いて基体表面に光
導電体層を形成する光導電体の製造方法において、 前記プラズマ化学気相成長装置の反応室に対して低ダス
トのN_2ガスまたは不活性ガスの導入・排気を数回行
った後、この反応室へ原料ガスを導入することを特徴と
する光導電体の製造方法。
(1) In a method for manufacturing a photoconductor in which a photoconductor layer is formed on the surface of a substrate using a plasma chemical vapor deposition apparatus, a low-dust N_2 gas or a nitrogen gas is added to the reaction chamber of the plasma chemical vapor deposition apparatus. A method for producing a photoconductor, which comprises introducing a raw material gas into the reaction chamber after introducing and exhausting an active gas several times.
JP61162632A 1986-07-09 1986-07-09 Production of photoconductor Pending JPS6318080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162632A JPS6318080A (en) 1986-07-09 1986-07-09 Production of photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162632A JPS6318080A (en) 1986-07-09 1986-07-09 Production of photoconductor

Publications (1)

Publication Number Publication Date
JPS6318080A true JPS6318080A (en) 1988-01-25

Family

ID=15758300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162632A Pending JPS6318080A (en) 1986-07-09 1986-07-09 Production of photoconductor

Country Status (1)

Country Link
JP (1) JPS6318080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429151A2 (en) * 1989-11-17 1991-05-29 berolina Schriftbild, Wilcke, Wolff, Busch &amp; Partner KG Method for the treatment of a photoconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429151A2 (en) * 1989-11-17 1991-05-29 berolina Schriftbild, Wilcke, Wolff, Busch &amp; Partner KG Method for the treatment of a photoconductor

Similar Documents

Publication Publication Date Title
US5849455A (en) Plasma processing method and plasma processing apparatus
JP2994652B2 (en) Deposition film forming apparatus by microwave plasma CVD method
JPS6318080A (en) Production of photoconductor
US6753123B2 (en) Process and apparatus for manufacturing electrophotographic photosensitive member
JPS637369A (en) Film forming device by chemical vapor growth method
JPS62205273A (en) Production of photoconductor
JPH0277579A (en) Method for cleaning deposited film forming device
JPS62205274A (en) Production of photoconductor
JPS62195670A (en) Production of electrophotographic sensitive body
JPS62232659A (en) Production of photoconductor
JPS62200361A (en) Production of electrophotographic sensitive body
JPS62198872A (en) Production of electrophotographic sensitive body
JPS6293375A (en) Apparatus for producing photoconductor
JPS6311981A (en) Method for cleaning photoconductive body manufacturing device
JPS5987462A (en) Manufacture of amorphous photosensitive drum
JPS60125373A (en) Production of deposited film
JP2991349B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS63160335A (en) Gas etching
JPS62198871A (en) Production of electrophotographic sensitive body
JPS5950446A (en) Production of amorphous photosensitive drum
JPS63166979A (en) Gas etching method
JPH0897161A (en) Method and system for forming deposition film by rf plasma cvd
JP2002212731A (en) Cleaning treatment method for deposited film forming system
JPS62291664A (en) Manufacture of electrophotographic sensitive body
JPS63128716A (en) Gas etching