[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62195670A - Production of electrophotographic sensitive body - Google Patents

Production of electrophotographic sensitive body

Info

Publication number
JPS62195670A
JPS62195670A JP3756686A JP3756686A JPS62195670A JP S62195670 A JPS62195670 A JP S62195670A JP 3756686 A JP3756686 A JP 3756686A JP 3756686 A JP3756686 A JP 3756686A JP S62195670 A JPS62195670 A JP S62195670A
Authority
JP
Japan
Prior art keywords
base body
glow discharge
amorphous silicon
substrate
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3756686A
Other languages
Japanese (ja)
Inventor
Eiji Imada
今田 英治
Yoshimi Kojima
小島 義己
Hisashi Hayakawa
尚志 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3756686A priority Critical patent/JPS62195670A/en
Publication of JPS62195670A publication Critical patent/JPS62195670A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain an image having a high grade by introducing a gaseous carbon fluoride contg. C and F into a vacuum vessel and impressing a high-frequency electric field thereto to expose a base body surface into glow discharge plasma, thereby forming a photosensitive film essentially consisting of amorphous silicon on the base body. CONSTITUTION:The base body 1 is a cylindrical body made of high-purity aluminum and is installed in the vacuum vessel 3 after thorough solvent cleaning. After the inside of the vessel 3 is evacuated to about 10<-3>Torr, gaseous CF4 which is a carbon fluoride etching gas is introduced into the vessel. The high-frequency voltage is impressed between the base body 1 and an electrode 2 to generate the glow discharge, by which the dust, etc., sticking to the surface of the base body 1 are etched. The photosensitive film essentially consisting of the amorphous silicon is then deposited and formed by executing the introduction of gaseous raw materials and the glow discharge on the base body 1 subjected to the dust removal. The high-grade image having no image defects is obtd. by using such amorphous photosensitive body.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アモルファスシリコンを主体とした電子写真
感光体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an electrophotographic photoreceptor mainly made of amorphous silicon.

(従来の技術) 現在実用化されている電子写真感光体は、アモルファス
セレン(a−3e)やアモルファスセレンひ素(a  
AszSez)等のセレン系材料、硫化カドミウム粉末
を樹脂中に分散したCdS系材料、および有機系材料に
大別できる。これらの内、セレン系材料およびCdS系
材料は、耐熱性、保存安定性に問題があり、また毒性を
有するため簡単に廃棄することができず、回収しなけれ
ばならないという制約がある。また、有機系材料は保存
安定性および毒性に関しては問題が少ない反面、耐久性
において他の材料より劣っている。
(Prior Art) Electrophotographic photoreceptors currently in practical use include amorphous selenium (a-3e) and amorphous selenium arsenide (a
They can be broadly classified into selenium-based materials such as AszSez), CdS-based materials in which cadmium sulfide powder is dispersed in resin, and organic materials. Among these, selenium-based materials and CdS-based materials have problems in heat resistance and storage stability, and are also toxic, so they cannot be easily disposed of and have to be recovered. Furthermore, although organic materials have fewer problems with regard to storage stability and toxicity, they are inferior to other materials in terms of durability.

一方、アモルファスシリコンを主体とした電子写真感光
体(以下a−3t感光体と略記する)は、優れた光感度
、耐久性、耐熱性、保存安定性、無公害性など電子写真
感光体として理想的な特性を兼ね備えているため、最も
重要な感光体の一つとして注目されている。a−3i悪
感光は、最も一般的には真空槽内にモノシランガスある
いはジシランガス等の原料ガスを導入し、高周波電圧印
加によるグロー放電を行うことで、前記原料ガスを分解
し基体上にアモルファスシリコンを主体とする感光膜を
堆積させる、いわゆるプラズマCVD法により製造され
る。
On the other hand, electrophotographic photoreceptors mainly made of amorphous silicon (hereinafter abbreviated as A-3T photoreceptors) are ideal as electrophotographic photoreceptors due to their excellent photosensitivity, durability, heat resistance, storage stability, and pollution-free properties. Because of its unique characteristics, it is attracting attention as one of the most important photoreceptors. The most common method of a-3i is to introduce a raw material gas such as monosilane gas or disilane gas into a vacuum chamber, and to perform glow discharge by applying a high-frequency voltage, the raw material gas is decomposed and amorphous silicon is deposited on the substrate. It is manufactured by the so-called plasma CVD method in which a photoresist film is deposited as the main component.

(発明が解決しようとする問題点) しかしながら、このようなプラズマCVD法により作製
したa−3i悪感光には、通常、感光膜全域にわたって
直径数μm〜100.camの粒状突起様の膜欠陥が発
生し、このような膜欠陥は、感光体を電子写真プロセス
に適用した際に、白斑、白抜は等の著しい画像欠陥とな
って現れるという問題があった。このような膜欠陥の発
生する主な原因は、真空槽内に基体を設置した後真空排
気する際に、装置内のダストが舞い上がり、このダスト
が基体上に付着するためである。基体上に付着したダス
トは数μm程度の大きさであっても、その上に堆積した
感光膜が異常成長し、直径子〜数十μmの粒状突起様の
欠陥となる。特に、高温雰囲気中においては、20μm
程度の微小な膜欠陥であっても大きな画像欠陥をひきお
こすため、重大な問題となっていた。
(Problems to be Solved by the Invention) However, the a-3i photoresist produced by such a plasma CVD method usually has a diameter of several μm to 100 μm over the entire photoresist film. Film defects in the form of granular protrusions occur on the cam, and such film defects appear as significant image defects such as white spots and white spots when the photoreceptor is applied to an electrophotographic process. . The main reason for the occurrence of such film defects is that when a substrate is placed in a vacuum chamber and then evacuated, dust within the device is kicked up and this dust adheres to the substrate. Even if the dust attached to the substrate has a size of about several micrometers, the photoresist film deposited thereon will grow abnormally, resulting in defects in the form of granular protrusions with diameters ranging from several tens of micrometers. In particular, in a high temperature atmosphere, 20 μm
This has been a serious problem because even a small film defect can cause a large image defect.

(問題点を解決するための手段) 本発明は、アモルファスシリコンを主体とした電子写真
窓光体の製造工程において、真空槽内に少なくともCと
Fとを含むフン化炭素系ガスを導入し、高周波電界を印
加することにより得られるグロー放電プラズマ中に基体
表面をさらした後、該基体上にアモルファスシリコンを
主体とした感光膜を形成するものである。
(Means for Solving the Problems) The present invention introduces a fluorinated carbon-based gas containing at least C and F into a vacuum chamber in the manufacturing process of an electrophotographic window illuminator mainly made of amorphous silicon, After exposing the surface of a substrate to glow discharge plasma obtained by applying a high-frequency electric field, a photoresist film mainly made of amorphous silicon is formed on the substrate.

(作用) 真空槽内に少なくともCとFとを含むフン化炭素系ガス
を導入し、高周波電界を印加することにより、グロー放
電プラズマ中に基体表面をさらして、該基体面に付着し
ているダスト等の付着物を除去し、基体表面を清浄化す
る。
(Function) By introducing a fluorinated carbon gas containing at least C and F into a vacuum chamber and applying a high-frequency electric field, the surface of the substrate is exposed to glow discharge plasma, and the gas adheres to the surface of the substrate. Remove deposits such as dust and clean the substrate surface.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図(a)、 (b)は容量結合型プラズマCVD装
置を示している。
FIGS. 1(a) and 1(b) show a capacitively coupled plasma CVD apparatus.

同図において、1は真空槽3内に設置された基体、2は
電極である。
In the figure, 1 is a base placed in a vacuum chamber 3, and 2 is an electrode.

基体1は直径100n、長さ340鰭の高純度アルミニ
ウム製の円筒体で、十分な溶剤洗浄の後真空槽3内に設
置される。この状態で、真空槽3内を10−’torr
になるまで排気した後フッ化炭素系エツチングガスであ
るCF4ガスを導入し、表1の成膜条件により、基体1
と電極2との間に高周波電圧を印加してグロー放電を起
こし、基体1の表面に付着したダスト等の付着物のエツ
チングを行う。
The substrate 1 is a cylindrical body made of high-purity aluminum and has a diameter of 100 nm and a length of 340 fins, and is placed in a vacuum chamber 3 after thorough solvent cleaning. In this state, the inside of the vacuum chamber 3 is set at 10-'torr.
After exhausting the air until
A high frequency voltage is applied between the substrate 1 and the electrode 2 to cause glow discharge, thereby etching deposits such as dust attached to the surface of the substrate 1.

表1 基体1の表面に付着しているダストの大部分は、シリコ
ンと水素よりなるポリマー状化合物である。
Table 1 Most of the dust adhering to the surface of the substrate 1 is a polymeric compound consisting of silicon and hydrogen.

この基体1をフン化炭素系エツチングガスによるグロー
放電プラズマにさらすと、基体表面に付着した前記ポリ
マー状化合物は完全に分解され除去される。なお、フッ
化炭素系エツチングガスとしては、前記したCF、の他
に、C2F6 、C3F8 。
When this substrate 1 is exposed to glow discharge plasma using a fluorinated carbon-based etching gas, the polymeric compound adhering to the surface of the substrate is completely decomposed and removed. In addition to the above-mentioned CF, examples of the fluorocarbon etching gas include C2F6 and C3F8.

Ca F s等のフッ化炭素類、CHF、3.C,H2
F4等のフッ化炭化水素類、CHCβF2+CC1zF
z等の塩素系フン化炭化水素類、その他一般にドライエ
ツチング用として使用されている少なくともフッ素(F
)および炭素(C)を含むガスが使用できる。ただし、
基体1としてAβを用いる場合には、塩素系フッ化炭化
水素類を使用すると基体表面が荒れることがあるため、
塩素を含まないフン化炭素系ガスがより好適に使用され
る。
Fluorocarbons such as CaFs, CHF, 3. C, H2
Fluorinated hydrocarbons such as F4, CHCβF2+CC1zF
Chlorinated fluorinated hydrocarbons such as
) and carbon (C) can be used. however,
When Aβ is used as the substrate 1, the surface of the substrate may become rough if chlorinated fluorohydrocarbons are used.
A fluorinated carbon-based gas that does not contain chlorine is more preferably used.

次に、表2の成膜条件により、原料ガス導入およびグロ
ー放電を行い、ダストが除去された清浄な基体1上にア
モルファスシリコンを主体とする膜厚30μmの感光膜
を堆積形成する。
Next, according to the film forming conditions shown in Table 2, raw material gas is introduced and glow discharge is performed to deposit a 30 μm thick photoresist film mainly composed of amorphous silicon on the clean substrate 1 from which dust has been removed.

(以下余白) 表2 このようにして形成された電子写真感光体の感光膜の構
造を第2図に示す。同図において、4は下部層、5は第
1の中間層、6はアモルファスシリコン光導電層、7ば
第2の中間層、8は表面層である。
(The following is a blank space) Table 2 The structure of the photoresist film of the electrophotographic photoreceptor thus formed is shown in FIG. In the figure, 4 is a lower layer, 5 is a first intermediate layer, 6 is an amorphous silicon photoconductive layer, 7 is a second intermediate layer, and 8 is a surface layer.

このようにして作製されたアモルファスシリコン感光体
の表面を顕微鏡観察したところ、10μm以上の粒状突
起様の膜欠陥は全く見られなかった。
When the surface of the amorphous silicon photoreceptor thus produced was observed under a microscope, no film defects in the form of granular protrusions of 10 μm or more were observed.

また、このアモルファスシリコン感光体を電子写真方式
の複写機に装着して使用した結果、白斑、白抜は等の画
像欠陥の無い高品位の画像が得られた。
Furthermore, when this amorphous silicon photoreceptor was attached to an electrophotographic copying machine and used, high-quality images without image defects such as white spots and white spots were obtained.

(比較例) CF aによって基体1の表面のエツチングを行わない
以外は前記実施例と全く同様にして膜厚30μmのa−
3i悪感光を作製した結果、感光体表面には10μm以
上の粒状突起様の膜欠陥が1−当り約20個観察された
。この感光体を電子写真方式の複写機に装着して使用し
た結果、複写された画像の全面に無数の白斑が現れた。
(Comparative Example) A film with a thickness of 30 μm was prepared in the same manner as in the previous example except that the surface of the substrate 1 was not etched with CF a.
As a result of producing a 3i photoreceptor, about 20 granular protrusion-like film defects of 10 μm or more were observed on the surface of the photoreceptor. When this photoreceptor was attached to an electrophotographic copying machine and used, numerous white spots appeared on the entire surface of the copied image.

(発明の効果) 以上説明したように、本発明によれば、膜欠陥のないア
モルファスシリコン感光体を製造することができる。
(Effects of the Invention) As explained above, according to the present invention, an amorphous silicon photoreceptor without film defects can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al、 (blは本発明の製造方法に用いられ
る容量結合型プラズマCVD装置の概略構成を示す縦断
面図および横断面図、第2図は本発明の製造方法によっ
て作製されたアモルファスシリコン感光体の感光膜の構
造を模式的に示した図である。 1・・・基体     2・・・電極 3・・・真空槽 第1図(a)
FIG. 1 (al, (bl) is a vertical cross-sectional view and a cross-sectional view showing the schematic configuration of a capacitively coupled plasma CVD apparatus used in the manufacturing method of the present invention, and FIG. 1 is a diagram schematically showing the structure of a photosensitive film of a silicon photoreceptor. 1... Base 2... Electrode 3... Vacuum chamber FIG. 1(a)

Claims (1)

【特許請求の範囲】[Claims] 1)アモルファスシリコンを主体とした電子写真感光体
の製造工程において、真空槽内に少なくともCとFとを
含むフッ化炭素系ガスを導入し、高周波電界を印加する
ことにより得られるグロー放電プラズマ中に基体表面を
さらした後、該基体上にアモルファスシリコンを主体と
した感光膜を形成することを特徴とする電子写真感光体
の製造方法。
1) In a glow discharge plasma obtained by introducing a fluorocarbon gas containing at least C and F into a vacuum chamber and applying a high frequency electric field in the manufacturing process of an electrophotographic photoreceptor mainly made of amorphous silicon. 1. A method for producing an electrophotographic photoreceptor, which comprises exposing the surface of the substrate to water, and then forming a photoresist film mainly made of amorphous silicon on the substrate.
JP3756686A 1986-02-21 1986-02-21 Production of electrophotographic sensitive body Pending JPS62195670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3756686A JPS62195670A (en) 1986-02-21 1986-02-21 Production of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3756686A JPS62195670A (en) 1986-02-21 1986-02-21 Production of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS62195670A true JPS62195670A (en) 1987-08-28

Family

ID=12501073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3756686A Pending JPS62195670A (en) 1986-02-21 1986-02-21 Production of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS62195670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258979A (en) * 1989-02-21 1990-10-19 Anelva Corp Method and device for normal-pressure cvd
JPH0310076A (en) * 1989-06-05 1991-01-17 Toshiba Ceramics Co Ltd Method for forming pyrolytic boron nitride film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258979A (en) * 1989-02-21 1990-10-19 Anelva Corp Method and device for normal-pressure cvd
JPH0310076A (en) * 1989-06-05 1991-01-17 Toshiba Ceramics Co Ltd Method for forming pyrolytic boron nitride film

Similar Documents

Publication Publication Date Title
US5849455A (en) Plasma processing method and plasma processing apparatus
KR970059848A (en) A light receiving member having a surface protection layer having a particular outermost surface and a method of manufacturing the same
JPS62195670A (en) Production of electrophotographic sensitive body
US4853309A (en) Photoreceptor for electrophotography with a-Si layers having a gradient concentration of doped atoms and sandwiching the photoconductive layer therebetween
JP3122281B2 (en) Method of forming light receiving member for electrophotography
JPS62198872A (en) Production of electrophotographic sensitive body
JPS62200361A (en) Production of electrophotographic sensitive body
JPS62198871A (en) Production of electrophotographic sensitive body
JPS6293375A (en) Apparatus for producing photoconductor
JPS62291664A (en) Manufacture of electrophotographic sensitive body
JPS62198870A (en) Production of electrophotographic sensitive body
JPH04191748A (en) Electrophotographic sensitive body and manufacture thereof
JPS61273551A (en) Manufacture of electrophotographic sensitive body
KR0156562B1 (en) A method for preparing an electrophotographic photoreceptor
JPS62291665A (en) Manufacture of electrophotographic sensitive body
JPH04247877A (en) Deposited film forming device
JPS6318080A (en) Production of photoconductor
JPS62222262A (en) Electrophotographic sensitive body
JPS60114576A (en) Manufacture of deposited film
JPH01156758A (en) Electrophotographic sensitive body
JPS63166979A (en) Gas etching method
JP2956947B2 (en) Electrophotographic photoreceptor
JPS60125373A (en) Production of deposited film
JPH0594031A (en) Manufacture of electrophotographic sensitive body
JPH01204055A (en) Manufacture of electrophotographic sensitive body