[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6290982A - Manufacture of conductive film - Google Patents

Manufacture of conductive film

Info

Publication number
JPS6290982A
JPS6290982A JP60229944A JP22994485A JPS6290982A JP S6290982 A JPS6290982 A JP S6290982A JP 60229944 A JP60229944 A JP 60229944A JP 22994485 A JP22994485 A JP 22994485A JP S6290982 A JPS6290982 A JP S6290982A
Authority
JP
Japan
Prior art keywords
film
conductive film
transparent conductive
electrolessly
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60229944A
Other languages
Japanese (ja)
Inventor
Mitsuaki Morikawa
森川 光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Itron Corp
Original Assignee
Ise Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ise Electronics Corp filed Critical Ise Electronics Corp
Priority to JP60229944A priority Critical patent/JPS6290982A/en
Publication of JPS6290982A publication Critical patent/JPS6290982A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To reduce the number of steps and to increase the bonding strength of a plated film by containing at least one type of metal content having catalytic function such as Pd on a transparent conductive film made of metal oxide to electrolessly plate it. CONSTITUTION:When forming a transparent conductive film containing metal oxide as one content on a substrate 1 of glass substrate, the film is formed to contain at least one of the 8 group metals of Fe, Co, Ni, Ru, Rn, Pd, Os, Ir, Pt and Cu, Ag, Au, Be, Ge, Al, C, V, Mo, Cr, Se, Ti, U. When the film is patterned by photoetching, the film 2 of a predetermined pattern given by catalytic function is formed. Then, catalytic nucleus presented on the surface of the film 2 is activated by an activating agent to further improve the bondability to the electrolessly plated film of next step. Then, the electrolessly plated film 3 is covered by electrolessly plating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、gL発光素子や液晶表示素子などの透明は極
として用いられる透明導′屯膜に関し、特にIn20x
 (x=3) hるいは5nOy(y≦2)などの金属
酸化物を一成分とした透明4電膜上にソルダプルな無電
解メッキ膜を形成する導電膜の製造方法に関するもので
ある。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a transparent conductive film used as a transparent electrode in gL light emitting devices, liquid crystal display devices, etc.
The present invention relates to a method for manufacturing a conductive film in which a solder-pull electroless plating film is formed on a transparent 4-electrode film containing a metal oxide such as (x=3) or 5nOy (y≦2) as one component.

〔従来の技術〕[Conventional technology]

近年、In20113るいはSnO□ などの金属酸化
物を一成分とした透明導電膜がgL発光素子、液晶表示
素子、太陽電池などの透明電極として広く用いられてお
り、生産量も年々増加の一途を辿っている。しかし、こ
の透明導電膜は本質的な欠点を有しており、それは、外
部装置に接続する端子部が一般に用いられているハンダ
付けが直接にはできないという点である。
In recent years, transparent conductive films containing metal oxides such as In20113 or SnO□ have been widely used as transparent electrodes in GL light emitting devices, liquid crystal display devices, solar cells, etc., and the production volume continues to increase year by year. I'm following it. However, this transparent conductive film has an essential drawback in that the terminal portion for connecting to an external device cannot be directly soldered, which is commonly used.

このように透明導電膜には直接ハンダ付けができないの
で、従来より電極の堆り出しに際しては幾つかの方法が
とられているが、そのうち無電解メッキを利用して透明
溝11膜上にハンダ付は可hヒなCu、Niなどの金4
膜を形成する方法を第2図を診照して説明する。
Since it is not possible to directly solder the transparent conductive film, several methods have been used to deposit the electrodes, one of which is to use electroless plating to solder the electrodes onto the transparent groove 11 film. It is possible to attach metals such as Cu and Ni.
The method of forming the film will be explained with reference to FIG.

この従来の方法は、その概略工程を第2図に示すように
、ガラス基板などの基体1上にIn2O3ロるいはSn
O2などの金属酸化物を一成分とした透明導電膜11を
所望のパターンに形成したうえ(同図(a))、その表
面のエツチング処理を行う(同図(b))。次に前記透
明導電膜11上のメッキ膜を析出嘔ぜるべき部分にPd
などの触媒性金属12を付着させる(同図(C))。次
いで、この金属12を活性化(アクセレーテイングとも
いう)しだ後(同図(d))、所定の条件でCu″!た
はNiなどの無電解メッキを行いメッキ膜13を形成す
ることにより、ソルダプル仕上げとしていた。
In this conventional method, as shown in the schematic steps in FIG. 2, In2O3 or Sn
A transparent conductive film 11 containing a metal oxide such as O2 as one component is formed into a desired pattern (FIG. 2(a)), and its surface is etched (FIG. 2(b)). Next, the plated film on the transparent conductive film 11 is deposited on the part where Pd is to be deposited.
A catalytic metal 12 such as the like is attached ((C) of the same figure). Next, after activating (also called accelerating) this metal 12 (FIG. 1(d)), electroless plating with Cu''! or Ni is performed under predetermined conditions to form a plating film 13. It had a solder pull finish.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような従来の方法によるものは、下記に示
す重大な欠点を有していた。
However, such conventional methods had the following serious drawbacks.

(1)透明導電膜上に直接無電解メッキはできないので
、透明導電膜上に触媒物質(例えばPd塩など)を形成
する工程、あるいはメッキ膜の接着力を上げるための表
面エツチング工程等が必要であり、工数がかかる。
(1) Electroless plating cannot be performed directly on the transparent conductive film, so a process of forming a catalyst substance (such as Pd salt) on the transparent conductive film or a surface etching process to increase the adhesion of the plating film is required. , and it takes a lot of man-hours.

(2)透明導電膜に触媒能を賦与でせる工程はPdなど
の金属塩の入った溶液中に透明導電膜を浸漬し、透明導
電膜の表面にPd塩を付着式せるだけでhり無電解メッ
キを行ってもメッキ膜の透明導電膜に対する付着力がそ
れ程強くなく剥離する欠点がめった。
(2) The process of imparting catalytic ability to a transparent conductive film is as simple as immersing the transparent conductive film in a solution containing a metal salt such as Pd and depositing Pd salt on the surface of the transparent conductive film. Even when electrolytic plating is performed, the adhesion of the plating film to the transparent conductive film is not very strong and it rarely peels off.

(3)触媒能を賦与きせる溶液は、液の濃度や温度、攪
拌程度等の管理が煩雑であり、また液寿命も短くて高価
でbつだ。でらに廃液の処理も公害上問題であった。
(3) The solution that imparts catalytic ability is complicated to control the concentration, temperature, degree of stirring, etc., and also has a short lifespan and is expensive. In addition, the treatment of waste liquid was also a pollution problem.

本発明は、以上の欠点に鑑みなてれたもので、透明導電
膜上に無電解メッキ膜を形成するに際しその工数を低減
化し、しかもメッキ膜の付着力を増大δせることかでき
る導電膜の製造方法を提供するものである。
The present invention has been developed in view of the above drawbacks, and is a conductive film that can reduce the number of steps when forming an electroless plating film on a transparent conductive film and increase the adhesion of the plating film. The present invention provides a method for manufacturing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る導電膜の製造方法は、金属酸化物からなる
透明導電膜にPdなどの触媒能をもった少くとも一種類
の金属成分を含有させることにより、この透明導電膜上
の全部または一部分に無電解メッキを施すことを特徴と
するものでるる。
In the method for producing a conductive film according to the present invention, the transparent conductive film made of a metal oxide contains at least one kind of metal component having catalytic ability such as Pd. It is characterized by applying electroless plating to.

〔作 用〕[For production]

本発明においては、透明4を膜中にあらかじめ触媒能を
もつPdなどの金属を含有させておくことによって、こ
の透明導電膜上−直接、無電解メッキを行うことができ
る。
In the present invention, electroless plating can be performed directly on the transparent conductive film by pre-containing a metal such as Pd having catalytic ability in the film of Transparent 4.

〔実施例〕〔Example〕

以下、本発明を第1図を参照して詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to FIG.

第1図(a′)乃至(e)は本発明に係る導電膜の製造
方法の一実施例を示す基本的な工程断面図でるる。
FIGS. 1(a') to 1(e) are basic process sectional views showing one embodiment of the method for manufacturing a conductive film according to the present invention.

まず、ガラス基板などの基体1上にIn20Bあるいは
5n02などの金属酸化物を一部分とした透明導電膜を
真空蒸着、電子ビーム蒸着、スパッタリング、 CVD
法等に!、9形成す、6に際し、Fe 、 Co 、N
i 。
First, a transparent conductive film partially made of a metal oxide such as In20B or 5n02 is deposited on a substrate 1 such as a glass substrate by vacuum evaporation, electron beam evaporation, sputtering, or CVD.
To the law! , 9 When forming 6, Fe , Co , N
i.

Ru 、Rn、Pd 、Oa 、 Ir +Ptなどの
第8族金属およびCu。
Group 8 metals such as Ru, Rn, Pd, Oa, Ir + Pt and Cu.

Ag 、Au 、 Be 、Ge 、AL、C,V、M
O、Cr 、Se 、’rt 、Uの肉食くとも一種類
を含むように透明導電膜を形成する。そして、この透明
導電膜をフォトエンチングでパターニングすると、触媒
能が賦与でれた所定パターンの透明導電膜2が形成され
る(同図(a))。次に。
Ag, Au, Be, Ge, AL, C, V, M
A transparent conductive film is formed so as to contain at least one type of O, Cr, Se, 'rt, and U. When this transparent conductive film is patterned by photo-etching, a transparent conductive film 2 having a predetermined pattern imparted with catalytic ability is formed (FIG. 2(a)). next.

この透明導電膜2の表面に出ている触媒核を例えば硫酸
等の活性化剤によって活性化(アクセレーテイング)シ
(同図(b))、次工程の無電解メッキ膜との密着性を
よシ一層向上させる。次いで、CuまたはNi などの
無電解メッキを行うことにより、前記透明溝を模2上の
全部または一部分に第1図(C)に示すような無電解メ
ッキ膜3を被着形成することができる。
The catalyst nuclei exposed on the surface of the transparent conductive film 2 are activated (accelerated) with an activating agent such as sulfuric acid (see figure (b)) to improve adhesion to the electroless plating film in the next step. further improve performance. Next, by performing electroless plating with Cu or Ni, an electroless plating film 3 as shown in FIG. 1(C) can be formed on all or part of the pattern 2 to form the transparent grooves. .

つぎに、本発明の実施態様を具体的に説明する。Next, embodiments of the present invention will be specifically described.

まず、ガラス基板上に触媒能を有した透明41を膜を形
成するが、ここでは成膜法にスパッタリング法を用いた
。すなわち、スパッタに用いるターゲットは工n20x
(x≦3)と5nOy(y≦2)があらかじめ混合され
プレス成形されたもの(以下工■ターゲットと称する)
で、このターゲット上にPd金属の板状ターゲン) (
ITOターゲットとの面積比はPd/ ITO= 0.
005 )を乗せ、Ar ガスを導入してスパッタリン
グを行うと、ターゲットからはITO成分とPd成分が
混在した状態でガラス基板上に堆積し被膜を形成する。
First, a transparent film 41 having a catalytic ability is formed on a glass substrate, and here a sputtering method is used as a film forming method. In other words, the target used for sputtering is
(x≦3) and 5nOy (y≦2) are mixed in advance and press-molded (hereinafter referred to as the target)
Then, on this target, a Pd metal plate-like targen) (
The area ratio with the ITO target is Pd/ITO=0.
005), and sputtering is performed by introducing Ar gas, a mixture of ITO components and Pd components are deposited from the target on the glass substrate to form a film.

このとき、透明導電膜は膜厚1500A 、透過率85
%、固有抵抗20〜50幅程度の膜を得た。
At this time, the transparent conductive film has a thickness of 1500A and a transmittance of 85.
%, and a film having a width of about 20 to 50% specific resistance was obtained.

次いで、この透明導電膜を通常のフォトリソグラフィ一
工程にて所定のパターンにフォトエンチングし、Ni 
メンキ膜を被着でせるべき部分以外の部分をレジストに
て被覆してアクセレーション工程にて活性化した後、N
iの無電解メッキ液に浸漬してNiメッキを行った。N
i無電解メッキの条件は液温65℃、メッキ時間20分
で、3μm厚のNi膜を得た。
Next, this transparent conductive film is photo-etched into a predetermined pattern in one step of normal photolithography, and Ni
After covering the areas other than the areas where the Menki film should be applied with resist and activating it in the acceleration process, N
Ni plating was performed by immersing it in the electroless plating solution of i. N
i Electroless plating was performed at a liquid temperature of 65° C. and a plating time of 20 minutes to obtain a 3 μm thick Ni film.

このNi無電解メッキの工程では前記透明導電膜の表面
にあったPd原子が触媒となってNi メンキ液中の次
亜リン酸陰イオンを分解して脱水素現象を起し、その原
子状水素がNi メンキ液中のニンケル陽イオンを還元
して金属ニッケルとなシ透明導電膜上にNi膜を析出で
せるのでるる。
In this Ni electroless plating process, the Pd atoms on the surface of the transparent conductive film act as a catalyst to decompose the hypophosphite anions in the Ni-Mencki solution, causing a dehydrogenation phenomenon, and the atomic hydrogen The nickel cations in the Ni solution are reduced to metallic nickel, and a Ni film is deposited on the transparent conductive film.

このようにして形成し九Nl膜の透明導電膜に対する付
着力を引っ張り試験機にて垂直力向に引っ張り試験した
ところ、約100 Kf/Crn以上の引っ張り強度を
示し良好であった。また、一般に用いるハンダにてハン
ダ付けを行ったところ、ハンダの濡れ性は非常に良好で
ろジ、全く問題はなかった。
When the adhesion force of the thus formed 9Nl film to the transparent conductive film was tested in the vertical direction using a tensile tester, the tensile strength was about 100 Kf/Crn or more, which was good. Furthermore, when soldering was carried out using commonly used solder, the wettability of the solder was very good, and there were no problems at all.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、透明溝′区膜にら
らかじめ触媒能が賦与ちれているので、従来のように触
媒液に浸漬する工程は全く不要となり、これによって工
数が減り、また液の管理等も全く必要なく、廃液処理も
不要になる。さらに、透明導電膜中に含有させた触媒核
は従来の溶液浸漬とは異なり、透明導電膜表面に非常に
強固に固着し、いわゆる透明導電膜の一部を構成してい
るので、後工程の無電解メッキ膜の付着力が著しく向上
するなどの効果がるる。
As explained above, according to the present invention, the transparent groove membrane is given catalytic ability in advance, so the conventional process of immersing it in a catalyst liquid is completely unnecessary, thereby reducing the number of man-hours. Moreover, there is no need for liquid management, and no waste liquid treatment is required. Furthermore, unlike conventional solution immersion, the catalyst nuclei contained in the transparent conductive film adhere very firmly to the surface of the transparent conductive film and constitute a part of the so-called transparent conductive film, so they can be used in subsequent processes. There are effects such as a marked improvement in the adhesion of the electroless plating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(轟)乃至(c)は本発明に係る導電膜の製造方
法の一実施例を示す基本的な工程断面図、第2図(a)
乃至(、)は従来による透明導電膜の製造方法の一例を
示す工程断面図である。 1・・・・基体、2・・・・透明導電膜、3・・・・無
電解メッキ膜。 特許出願人  伊勢電子工業株式会社 代理人 山川政樹(fジ12名) 第1図 第2図
Figures 1 (Todoroki) to (c) are basic process sectional views showing one embodiment of the method for manufacturing a conductive film according to the present invention, and Figure 2 (a)
1 to 2 are process cross-sectional views showing an example of a conventional method for manufacturing a transparent conductive film. 1...Base, 2...Transparent conductive film, 3...Electroless plating film. Patent Applicant: Ise Electronics Co., Ltd. Agent: Masaki Yamakawa (12 members of FJ) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 金属酸化物からなる透明導電膜において、この透明導電
膜にはPdなどの触媒能をもつた少くとも一種類の金属
成分を含有させてなり、該透明導電膜上に無電解メッキ
を施すことを特徴とする導電膜の製造方法。
In a transparent conductive film made of a metal oxide, the transparent conductive film contains at least one kind of metal component having catalytic ability such as Pd, and electroless plating is performed on the transparent conductive film. Characteristic method for manufacturing a conductive film.
JP60229944A 1985-10-17 1985-10-17 Manufacture of conductive film Pending JPS6290982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60229944A JPS6290982A (en) 1985-10-17 1985-10-17 Manufacture of conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60229944A JPS6290982A (en) 1985-10-17 1985-10-17 Manufacture of conductive film

Publications (1)

Publication Number Publication Date
JPS6290982A true JPS6290982A (en) 1987-04-25

Family

ID=16900164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229944A Pending JPS6290982A (en) 1985-10-17 1985-10-17 Manufacture of conductive film

Country Status (1)

Country Link
JP (1) JPS6290982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270229A (en) * 1989-03-07 1993-12-14 Matsushita Electric Industrial Co., Ltd. Thin film semiconductor device and process for producing thereof
JP2001189473A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Photosensor and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270229A (en) * 1989-03-07 1993-12-14 Matsushita Electric Industrial Co., Ltd. Thin film semiconductor device and process for producing thereof
JP2001189473A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Photosensor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
DE69829018T2 (en) Substrate and process for its preparation
DE2321099A1 (en) METHOD OF MAKING AN ARRANGEMENT WITH A TRANSPARENT CONDUCTOR PATTERN AND ARRANGEMENT PRODUCED BY THIS METHOD
EP0259754A2 (en) Flexible circuits
EP0083458B1 (en) Method of partially metallising electrically conductive non-metallic patterns
DE69204564T2 (en) Process for the selective electroless plating of a sample from a material other than glass on a glass substrate.
DE2555257A1 (en) CATALYST SOLUTION
JPS6290982A (en) Manufacture of conductive film
JPH022948B2 (en)
JPS59149326A (en) Production of liquid crystal panel
KR100555896B1 (en) Method of fabricating metal bus electrode of plasma display panel
JP3047183B2 (en) Liquid crystal device manufacturing method
JPH0585637B2 (en)
US20050133904A1 (en) Method of forming metal pattern for hermetic sealing of package
JPS60121616A (en) Method of forming transparent conductive film
JPS63891B2 (en)
DE2448148C3 (en)
JPH06109411A (en) Strain element
JPH03238710A (en) Manufacture of substrate
JP3255769B2 (en) How to plate on insulator
JPS621245B2 (en)
JPS61145529A (en) Formation of transparent electrode pattern
JPS60198517A (en) Partial plating method of liquid crystal panel
JPH05125552A (en) Method for plating transparent conductive film with gold
JPH03238711A (en) Manufacture of substrate
KR910009165B1 (en) Method for making an activating solution of electroless nickel plating