JPH03238710A - Manufacture of substrate - Google Patents
Manufacture of substrateInfo
- Publication number
- JPH03238710A JPH03238710A JP3396290A JP3396290A JPH03238710A JP H03238710 A JPH03238710 A JP H03238710A JP 3396290 A JP3396290 A JP 3396290A JP 3396290 A JP3396290 A JP 3396290A JP H03238710 A JPH03238710 A JP H03238710A
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- substrate
- pattern
- manufacturing
- transparent conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 51
- 239000002184 metal Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000007772 electroless plating Methods 0.000 claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 5
- 239000000956 alloy Substances 0.000 claims abstract description 5
- 239000003054 catalyst Substances 0.000 claims description 32
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052763 palladium Inorganic materials 0.000 abstract description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 6
- 150000004706 metal oxides Chemical class 0.000 abstract description 5
- 238000004544 sputter deposition Methods 0.000 abstract description 5
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 229910052697 platinum Inorganic materials 0.000 abstract description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 239000010931 gold Substances 0.000 abstract description 2
- 229910052709 silver Inorganic materials 0.000 abstract description 2
- 239000004332 silver Substances 0.000 abstract description 2
- 230000003197 catalytic effect Effects 0.000 abstract 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract 4
- 229910003437 indium oxide Inorganic materials 0.000 abstract 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 abstract 2
- 239000000463 material Substances 0.000 abstract 1
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- 229910000521 B alloy Inorganic materials 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 206010063836 Atrioventricular septal defect Diseases 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000001211 electron capture detection Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- -1 O is formed Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えばCOP (チップオンパネル)基板、
ロータリーエンコーダ板、デイスプレィ用遮光膜あるい
はプラズマ光学ヘッドのカソード電極等を製造する場合
に使用して好適な基板の製造方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to, for example, COP (chip-on-panel) substrates,
The present invention relates to a method of manufacturing a substrate suitable for use in manufacturing a rotary encoder plate, a light-shielding film for a display, a cathode electrode of a plasma optical head, etc.
従来、この種の基板の製造方法は、通常第4図(a)〜
(f)に示すような手順を経て行われる。すなわち、先
ず同図(a)に示すように例えばガラス等の透光性絶縁
板l上に例えばI T O,S n OxあるいはZn
O等の金属酸化物からなる透光性導電膜2を形成し、次
いで同図中)に示すようにこの透光性導電膜2上にホト
レジストパターン3を形成し、しかる後同図(C)に示
すようにこのホトレジストパターン3をマスクとして透
光性導電膜2の導電パターン4をエツチングによって形
成し、同図(d)に示すようにホトレジストパターン3
を除去して導電パターン4を外部に露呈させてから、同
図(13)に示すようにこの導電パターン4上に例えば
金、銀。Conventionally, the manufacturing method for this type of substrate is usually as shown in FIGS.
This is done through the steps shown in (f). That is, first, as shown in FIG.
A transparent conductive film 2 made of a metal oxide such as O is formed, and then a photoresist pattern 3 is formed on the transparent conductive film 2 as shown in (C) of the same figure. Using this photoresist pattern 3 as a mask, a conductive pattern 4 of the transparent conductive film 2 is formed by etching as shown in FIG.
After removing the conductive pattern 4 to expose it to the outside, as shown in FIG.
白金あるいはパラジウム等の金属触媒核5を形成して同
図(f)に示すように無電解めっき処理を施すことによ
り金属膜6を形成するのである。A metal film 6 is formed by forming a metal catalyst nucleus 5 of platinum, palladium, or the like, and then performing electroless plating as shown in FIG. 2(f).
ところで、従来の基板の製造方法においては、■センシ
タイジング、アクチベーティングの工程あるいは■キャ
タライジング、アクセレーティングの工程を備えた湿式
の触媒処理方法を含むものであり、このため各触媒処理
方法の各工程前後に水洗処理工程を備える必要があった
。この結果、基板を製造するにあたり工程数が嵩み、多
大の製造時間を費やすばかりか、コスト高になるという
問題があった。また、導電パターン4上に金属触媒核5
を形成するには、透光性絶縁板1の一部が外部に露呈し
た状態で行われるものであるため、透光性絶縁板1の外
部露呈面上に金属触媒核5が形成されてしまうことがあ
り、品質上の信輔性が高い基板を得ることができないと
いう問題もあった。By the way, conventional substrate manufacturing methods include a wet catalyst treatment method that includes the steps of ■ sensitizing and activating or ■ catalyzing and accelerating. It was necessary to provide a water washing process before and after each process. As a result, there are problems in that the number of steps required to manufacture the substrate increases, a large amount of manufacturing time is consumed, and costs increase. Further, metal catalyst nuclei 5 are placed on the conductive pattern 4.
In order to form this, a part of the transparent insulating plate 1 is exposed to the outside, so that metal catalyst nuclei 5 are formed on the externally exposed surface of the transparent insulating plate 1. There was also the problem that it was not possible to obtain a substrate with high reliability in terms of quality.
本発明はこのような事情に鑑みてなされたもので、製造
時間の短縮化およびコストの低廉化を図ることができる
と共に、品質上の信顛性が高い基板を得ることができる
基板の製造方法を提供するものである。The present invention has been made in view of the above circumstances, and provides a method for manufacturing a substrate that can shorten manufacturing time and reduce costs, as well as obtain a substrate with high reliability in terms of quality. It provides:
本発明に係る基板の製造方法は、透光性絶縁板上に透光
性導電膜を形成し、次いでこの透光性導電膜によるパタ
ーンを形成し、しかる後このパターン上に無電解めっき
処理を施すことによりNi −B系の合金からなる金属
膜を形成する基板の製造方法であって、透光性絶縁板上
に透光性導電膜を形成するに際して透光性導電膜中に無
電解めっき処理用の金属触媒核を混入するものである。The method for manufacturing a substrate according to the present invention includes forming a light-transmitting conductive film on a light-transmitting insulating plate, forming a pattern using the light-transmitting conductive film, and then performing electroless plating treatment on this pattern. A method for manufacturing a substrate forming a metal film made of a Ni-B alloy by applying electroless plating to the light-transmitting conductive film when forming the light-transmitting conductive film on the light-transmitting insulating plate. It is mixed with metal catalyst nuclei for treatment.
また、本発明の別の発明に係る基板の製造方法は、透光
性絶縁板上に透光性導電膜を形成し、次いでこの透光性
導電膜によるパターンを形成し、しかる後このパターン
上に無電解めっき処理を施すことによりNi−B系の合
金からなる金属膜を形成する基板の製造方法であって、
パターンを形成する以前に透光性性導電膜上に無電解め
っき処理用の金属触媒核を分散形成するものである。Further, in a method for manufacturing a substrate according to another aspect of the present invention, a transparent conductive film is formed on a transparent insulating plate, a pattern is formed using the transparent conductive film, and then a pattern is formed on the pattern. A method for manufacturing a substrate in which a metal film made of a Ni-B alloy is formed by subjecting the substrate to an electroless plating process, the method comprising:
Before forming a pattern, metal catalyst nuclei for electroless plating are dispersed and formed on a transparent conductive film.
本発明においては、透光性導電膜のパターン中にのみ無
電解めっき処理用の金属触媒核を形成することができる
。In the present invention, metal catalyst nuclei for electroless plating can be formed only in the pattern of the transparent conductive film.
また、本発明の別の発明においては、透光性導電膜のパ
ターン上にのみ無電解めっき処理用の金属触媒核を形成
することができる。Further, in another aspect of the present invention, metal catalyst nuclei for electroless plating can be formed only on the pattern of the transparent conductive film.
先ず、本発明の構成等を図に示す実施例によって詳細に
説明する。First, the configuration of the present invention will be explained in detail with reference to embodiments shown in the drawings.
第1図(a)〜(elは本発明に係る基板の製造方法の
手順を示す断面図である。FIGS. 1(a) to 1(el) are cross-sectional views showing the steps of the method for manufacturing a substrate according to the present invention.
先ず、同図(a)に示すように例えばガラス等の透光性
絶縁板ll上にInzOz(95wt%)、Snug(
5wt%)の金属酸化物(ITO)からなる成分組成中
に例えば金、銀、白金あるいはパラジウム等の無電解め
っき処理用金属触媒核13を成る所定の割合で分散添加
し、スパッタリング装置によって透光性導電膜12を形
成する。なお、第2図は、無電解めっき処理用金属触媒
核としてパラジウムを使用し、パラジウム濃度を種々変
化させITO中に分散添加し、RFスパッタリング装置
を用いて膜厚が500人の寸法に設定した時の基板の透
過率を測定した実験例を示す。同図に示すように、パラ
ジウム添加量を増加すると、透過率は低下する傾向にあ
り、基板を単に遮光膜等に応用する場合は高濃度側が望
ましく、またLCD、 ECD、プラズマデイスプレィ
等のチフブオンパネル等透過率を重要視する場合には低
濃度側が望ましい。次いで、第1図(′b)に示すよう
に金属触媒核13が混入された透光性導電膜12上にホ
トレジストパターン14を形成する。しかる後、同図(
C)に示すようにこのホトレジストパターン14をマス
クとして透光性導電膜12にエツチング処理を施すこと
により導電パターン15を形成し、同図(d)に示すよ
うにホトレジストパターン14を除去することにより導
電パターン15を外部に露呈させてから、同図(81に
示すようにこの導電パターン15上にNi−B系のめっ
き液5B−55(日本カニゼン製)を使用して無電解め
っき処理(浴温63℃)を施すことによりNi−B系の
合金からなる金属膜16を形成する。First, as shown in Figure (a), InzOz (95 wt%) and Snug (
Metal catalyst nuclei 13 for electroless plating, such as gold, silver, platinum, or palladium, are dispersed and added at a predetermined ratio into a component composition consisting of a metal oxide (ITO) of 5 wt %), and then translucent by a sputtering device. A conductive film 12 is formed. In Fig. 2, palladium was used as a metal catalyst core for electroless plating, the palladium concentration was varied and added dispersed in ITO, and the film thickness was set to 500 mm using an RF sputtering device. An experimental example is shown in which the transmittance of the substrate was measured at the following times. As shown in the figure, as the amount of palladium added increases, the transmittance tends to decrease, and when the substrate is simply used as a light-shielding film, a higher concentration is preferable. If equal transmittance is important, the lower concentration side is preferable. Next, as shown in FIG. 1('b), a photoresist pattern 14 is formed on the transparent conductive film 12 into which the metal catalyst nuclei 13 are mixed. After that, the same figure (
As shown in (C), a conductive pattern 15 is formed by etching the transparent conductive film 12 using the photoresist pattern 14 as a mask, and by removing the photoresist pattern 14 as shown in (d) of the same figure. After the conductive pattern 15 is exposed to the outside, electroless plating treatment (bath bath) is performed on the conductive pattern 15 using Ni-B based plating solution 5B-55 (manufactured by Nippon Kanigen) as shown in the same figure (81). A metal film 16 made of a Ni-B alloy is formed by applying a temperature of 63°C.
このようにして、基板を確実に製造することができる。In this way, the substrate can be manufactured reliably.
したがって、本実施例においては、導電パターン15中
にのみ金属触媒核13を形成することができるから、従
来のように透光性絶縁板llの外部露呈面上に金属膜1
6が形成されることがない。Therefore, in this embodiment, since the metal catalyst nuclei 13 can be formed only in the conductive pattern 15, the metal film 13 can be formed on the externally exposed surface of the light-transmitting insulating plate 11 as in the conventional case.
6 is never formed.
また、本実施例においては、透光性絶縁板11上に導電
パターン15を形成した後、この導電パターン15上に
金属触媒核13を形成するものでないから、従来必要と
した触媒処理工程および水洗処理工程が不要になり、基
板を製造するにあたり工程数を削減することができる。Furthermore, in this embodiment, the metal catalyst cores 13 are not formed on the conductive pattern 15 after the conductive pattern 15 is formed on the light-transmitting insulating plate 11. No processing steps are required, and the number of steps in manufacturing the substrate can be reduced.
さらに−本実施例においては、従来の例えばNi−P系
のめっき液(奥野製薬ITO−70)で金属被膜を析出
させる場合、表1に示すように透過率が72%程度以下
までの基板までしかめっき析出が起こらなかったが、N
i−B系(日本カイゼン5B−55)のめっき液を使用
した場合には、表2に示すように透過率が80%以上の
ものまでめっき析出が起こり、LCD、 ECD、プラ
ズマデイスプレィ等のチップオンパネルといった透光性
導電膜の高い透過率を重要視する場合のものまでも通用
可能となり、また被膜の導電性もNi−P系に比較して
低いため、その効果は大である。Furthermore, in this example, when depositing a metal film using a conventional Ni-P based plating solution (Okuno Pharmaceutical ITO-70), as shown in Table 1, it is possible to deposit a metal film on a substrate with a transmittance of about 72% or less. No plating precipitation occurred, but N
When i-B series (Nippon Kaizen 5B-55) plating solution is used, plating precipitation occurs even when the transmittance is 80% or more, as shown in Table 2, and it is suitable for LCD, ECD, plasma display, etc. It can be used even in cases where high transmittance of a light-transmitting conductive film is important, such as a chip-on-panel, and since the conductivity of the film is also lower than that of Ni-P, the effect is great.
表1
表2
ここで、Oは導電パターン上の全面にニッケル膜が形成
された場合を示し、また×はニッケル膜が形成されなか
った場合を示す。Table 1 Table 2 Here, O indicates the case where the nickel film was formed on the entire surface of the conductive pattern, and x indicates the case where the nickel film was not formed.
なお、本実施例における基板の製造時においては、透光
性導電膜12の形成後にITOクリーナー(奥野製薬製
)によって脱脂処理(50℃、3分間)が施された後、
さらに1%硫酸中に浸漬することによりコンディショニ
ング処理(常温、1.5分間)が施される。In addition, when manufacturing the substrate in this example, after the formation of the transparent conductive film 12, degreasing treatment (50° C., 3 minutes) was performed using an ITO cleaner (manufactured by Okuno Pharmaceutical Co., Ltd.).
Further, conditioning treatment (room temperature, 1.5 minutes) is performed by immersing it in 1% sulfuric acid.
また、本実施例においては、透光性導電膜12および金
属触媒核13の形成にスパッタリング法を使用する例を
示したが、本発明はこれに限定されるものではなく、例
えば電子ビーム蒸着法を使用してもよいことは勿論であ
る。Further, in this embodiment, an example is shown in which a sputtering method is used to form the transparent conductive film 12 and the metal catalyst core 13, but the present invention is not limited to this, and for example, an electron beam evaporation method is used. Of course, you may also use .
さらに、本実施例においては、第1図(a)〜(e)に
示す工程を備えたものを示したが、本発明は同図中)〜
(dlに示す工程が他のバターニング手法によってパタ
ーン形成してなるものでもよいことは明らかである。Further, in this embodiment, the steps shown in FIGS. 1(a) to (e) are shown, but the present invention includes
(It is clear that the step shown in dl may be formed by patterning by other patterning methods.
次に、本発明の別の発明に係る基板の製造方法について
説明する。Next, a method for manufacturing a substrate according to another aspect of the present invention will be described.
第3図(a)〜(f)は本発明の別の発明に係る基板の
製造方法の手順を示す断面図である。FIGS. 3(a) to 3(f) are cross-sectional views showing the steps of a method for manufacturing a substrate according to another invention of the present invention.
先ず、同図1M)に示すように例えばガラス等の透光性
絶縁板21上に例えばIflzOz(95wt%) 、
Snug (5wt%)の成分組成を有しかつその膜
厚が300λ〜500人の寸法に設定されたITOの金
属酸化物からなる透光性導電膜22をRFスパッタリン
グ装置によって形成する。次いで、同図(b)に示すよ
うに透光性導電膜22上にその厚さ(高さ)が100Å
以下の寸法に設定された例えば金、銀、白金あるいはパ
ラジウム等の無電解めっき処理用の金属触媒核23をR
Fスパッタリング装置によって分散形成する。しかる後
、同図(C1に示すように金属触媒核23が付着された
透光性導電膜22上にホトレジストパターン24を形成
し、同図(dlに示すようにホトレジストパターン24
をマスクとして透光性導電膜22にエツチング処理を施
すことにより導電パターン25を形成し、同図(e)に
示すようにホトレジストパターン24を除去することに
より導電パターン25を外部に露呈させてから、同図(
「)に示すようにこの導電パターン25上にNi−B系
のめっき液5B−55(日本カニゼン製)を使用して無
電解めっき処理(浴温63℃)を施すことによりその膜
厚が約5000人の寸法に設定されたNi−B系の合金
からなる金属膜26を形成する。First, as shown in FIG. 1M), for example, IflzOz (95 wt%),
A transparent conductive film 22 made of a metal oxide of ITO having a component composition of Snug (5 wt %) and having a film thickness of 300 λ to 500 λ is formed using an RF sputtering device. Next, as shown in FIG.
R
It is dispersed and formed using an F sputtering device. Thereafter, a photoresist pattern 24 is formed on the transparent conductive film 22 to which the metal catalyst nuclei 23 are attached as shown in FIG.
A conductive pattern 25 is formed by etching the transparent conductive film 22 using the photoresist pattern 24 as a mask, and the conductive pattern 25 is exposed to the outside by removing the photoresist pattern 24 as shown in FIG. , the same figure (
As shown in ), electroless plating treatment (bath temperature: 63°C) using Ni-B based plating solution 5B-55 (manufactured by Nippon Kanizen) is applied to the conductive pattern 25, so that the film thickness is approximately A metal film 26 made of a Ni-B alloy having dimensions of 5000 mm is formed.
このようにして、本発明の別の発明による基板を製造す
ることができる。In this way, a substrate according to another aspect of the present invention can be manufactured.
したがって、本実施例においては、導電パターン25上
にのみ金属触媒核23を形成することができるから、従
来のように透光性絶縁板21の外部露呈面上に金属膜2
6が形成されることがない。Therefore, in this embodiment, since the metal catalyst core 23 can be formed only on the conductive pattern 25, the metal film 23 can be formed on the externally exposed surface of the light-transmitting insulating plate 21 as in the conventional case.
6 is never formed.
また、本実施例においては、透光性絶縁板21上に導電
パターン25を形成した後、この導電パターン25上に
金属触媒核23を形成するものでないから、従来必要と
した触媒処理工程および水洗処理工程が不要になり、基
板を製造するにあたり工程数を削減することができる。Furthermore, in this embodiment, the metal catalyst core 23 is not formed on the conductive pattern 25 after the conductive pattern 25 is formed on the transparent insulating plate 21, so that the catalyst treatment step and water washing that are conventionally required are not necessary. No processing steps are required, and the number of steps in manufacturing the substrate can be reduced.
さらに、本実施例においては、金属触媒核23を透光性
導電膜22上に分散形成するものであるから、透光性導
電膜22がもつ電気的および光学的な特性を維持するこ
とができる。Furthermore, in this example, since the metal catalyst nuclei 23 are dispersed and formed on the transparent conductive film 22, the electrical and optical characteristics of the transparent conductive film 22 can be maintained. .
さらにまた、本実施例における金属触媒核23は、厚さ
(高さ)を100Å以下の寸法に設定するものであるか
ら、透光性導電膜22のパターン形成時にエツチング処
理によって同時にバターニングされる。Furthermore, since the metal catalyst core 23 in this example is set to have a thickness (height) of 100 Å or less, it is simultaneously patterned by etching when patterning the transparent conductive film 22. .
この他、本実施例においては、金属膜26がNiB系の
合金であることから、従来の例えばNi −P系の合金
からなる金属膜(図示せず)と比較して導電パターン2
5の透過率を高めることができる。このことは、前述の
本発明の実施例と同様に表1および表2から理解するこ
とができる。In addition, in this embodiment, since the metal film 26 is made of a NiB-based alloy, the conductive pattern 26 is
The transmittance of 5 can be increased. This can be understood from Tables 1 and 2 as well as the examples of the present invention described above.
なお、本実施例における基板の製造時においては、透光
性導電膜22の形成後にITOクリーナー(奥野製薬製
)によって脱脂処理(50℃、3分間)が施された後、
さらに1%硫酸中に浸漬することによりコンディショニ
ング処理(常温、1.5分間)が施される。In addition, when manufacturing the substrate in this example, after the formation of the transparent conductive film 22, degreasing treatment (50° C., 3 minutes) was performed using an ITO cleaner (manufactured by Okuno Pharmaceutical Co., Ltd.).
Further, conditioning treatment (room temperature, 1.5 minutes) is performed by immersing it in 1% sulfuric acid.
また、本実施例においては、透光性導電膜22および金
属触媒核23の形成にスパンタリング法を使用する例を
示したが、本発明の別の発明はこれに限定されるもので
はなく、例えば電子ビーム蒸着法を使用してもよいこと
は勿論である。Further, in this embodiment, an example is shown in which the sputtering method is used to form the transparent conductive film 22 and the metal catalyst core 23, but another invention of the present invention is not limited to this. Of course, for example, electron beam evaporation may be used.
C発明の効果〕
以上説明したように本発明によれば、透光性絶縁板上に
透光性導電膜を形成し、次いでこの透光性導電膜による
パターンを形成し、しかる後パターン上に無電解めっき
処理を施すことによりNi −B系の合金からなる金属
膜を形成する基板の製造方法であって、透光性絶縁板上
に透光性導電膜を形成するに際して透光性導電膜中に無
電解めっき処理用の金属触媒核を混入するので、透光性
導電膜のパターン中にのみ金属触媒核を形成することが
できる。また、本発明の別の発明によれば、透光性絶縁
板上に透光性導電膜を形成し、次いでこの透光性導電膜
によるパターンを形成し、しかる後パターン上に無電解
めっき処理を施すことにより金属膜を形成する基板の製
造方法であって、パターンを形成する以前に透光性性導
電膜上に無電解めっき処理用の金属触媒核を分散形成す
るので、透光性導電膜のパターン上にのみ金属触媒核を
形成することができる。したがって、従来のように透光
性絶縁板の外部露呈面上に金属膜が形成されることがな
いから、品質上の信頼性が高い基板を得ることができる
。また、透光性絶縁板上に透光性導電膜のパターンを形
成した後、このパターン上に金属触媒核を形成するもの
でないから、従来必要とした触媒処理工程および水洗処
理工程が不要になり、基板を製造するにあたり工程数を
削減することができ、製造時間の短縮化およびコストの
低廉化を図ることができる。さらに、本発明の別の発明
においては、透光性導電膜上に金属触媒核を分散形成す
るものであるから、透光性導電膜がもつ電気的および光
学的な特性を維持することができるといった利点もある
。さらにまた、金属膜がNi−B系の合金であることか
ら、例えばNiP系の合金からなる金属膜と比較して透
光性導電膜のパターンの透過率を高めることができ、高
透過率の基板を必要とするLCD、 ECD等の表示素
子の遮光膜やCOP基板に適用してきわめて有効である
。C Effects of the Invention] As explained above, according to the present invention, a light-transmitting conductive film is formed on a light-transmitting insulating plate, a pattern is formed using this light-transmitting conductive film, and then a light-transmitting conductive film is formed on the pattern. A method for manufacturing a substrate in which a metal film made of a Ni-B alloy is formed by electroless plating, the method comprising: forming a transparent conductive film on a transparent insulating plate; Since metal catalyst nuclei for electroless plating are mixed therein, the metal catalyst nuclei can be formed only in the pattern of the transparent conductive film. According to another aspect of the present invention, a light-transmitting conductive film is formed on a light-transmitting insulating plate, a pattern is formed using the light-transmitting conductive film, and then electroless plating is performed on the pattern. This is a manufacturing method for a substrate in which a metal film is formed by applying a pattern, and metal catalyst nuclei for electroless plating are dispersed and formed on a transparent conductive film before forming a pattern. Metal catalyst nuclei can only be formed on the pattern of the membrane. Therefore, since a metal film is not formed on the externally exposed surface of the light-transmitting insulating plate as in the conventional case, a substrate with high quality reliability can be obtained. Furthermore, since metal catalyst nuclei are not formed on the pattern after forming a pattern of a transparent conductive film on a transparent insulating plate, the conventional catalyst treatment process and water washing process are no longer necessary. , the number of steps in manufacturing the substrate can be reduced, manufacturing time can be shortened, and costs can be reduced. Furthermore, in another aspect of the present invention, metal catalyst nuclei are dispersed and formed on the transparent conductive film, so that the electrical and optical properties of the transparent conductive film can be maintained. There are also advantages. Furthermore, since the metal film is a Ni-B alloy, the transmittance of the pattern of the light-transmitting conductive film can be increased compared to, for example, a metal film made of a NiP-based alloy. It is extremely effective when applied to light-shielding films for display elements such as LCDs and ECDs that require a substrate, and COP substrates.
第1図(al〜(elは本発明に係る基板の製造方法の
手順を示す断面図、第2図は金属触媒核の濃度と基板の
透過率の関係を示す図、第3図(a)〜(f)は本発明
の別の発明に係る基板の製造方法の手順を示す断面図、
第4図(a)〜(f)は従来の基板の製造方法の手順を
示す断面図である。
11.21・・・透光性絶縁板、12.22・・・透光
性導電膜、13.23・・・金属触媒核、14.24・
・・ホトレジストパターン、15゜25・・・導電パタ
ーン、16.26・・・金属膜。Figure 1 (al~(el) is a cross-sectional view showing the steps of the method for manufacturing a substrate according to the present invention, Figure 2 is a diagram showing the relationship between the concentration of metal catalyst nuclei and the transmittance of the substrate, and Figure 3 (a) ~(f) is a cross-sectional view showing the steps of a method for manufacturing a substrate according to another invention of the present invention,
FIGS. 4(a) to 4(f) are cross-sectional views showing the steps of a conventional substrate manufacturing method. 11.21... Transparent insulating plate, 12.22... Transparent conductive film, 13.23... Metal catalyst nucleus, 14.24.
... Photoresist pattern, 15°25 ... Conductive pattern, 16.26 ... Metal film.
Claims (2)
この透光性導電膜によるパターンを形成し、しかる後こ
のパターン上に無電解めっき処理を施すことによりNi
−B系の合金からなる金属膜を形成する基板の製造方法
であって、前記透光性絶縁板上に前記透光性導電膜を形
成するに際して透光性導電膜中に無電解めっき処理用の
金属触媒核を混入することを特徴とする基板の製造方法
。(1) Form a transparent conductive film on a transparent insulating plate, then form a pattern using this transparent conductive film, and then perform electroless plating on this pattern to coat Ni.
- A method for manufacturing a substrate on which a metal film made of a B-based alloy is formed, wherein the transparent conductive film is formed on the transparent insulating plate by electroless plating in the transparent conductive film. 1. A method for manufacturing a substrate, comprising mixing a metal catalyst nucleus.
この透光性導電膜によるパターンを形成し、しかる後こ
のパターン上に無電解めっき処理を施すことによりNi
−B系の合金からなる金属膜を形成する基板の製造方法
であって、前記透光性導電膜のパターンを形成する以前
に前記透光性性導電膜上に無電解めっき処理用の金属触
媒核を分散形成することを特徴とする基板の製造方法。(2) Form a transparent conductive film on a transparent insulating plate, then form a pattern using this transparent conductive film, and then perform electroless plating on this pattern to coat Ni.
- A method for manufacturing a substrate on which a metal film made of a B-based alloy is formed, wherein a metal catalyst for electroless plating is applied on the light-transparent conductive film before forming a pattern of the light-transparent conductive film. A method for manufacturing a substrate, characterized by forming nuclei in a dispersed manner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3396290A JPH03238710A (en) | 1990-02-16 | 1990-02-16 | Manufacture of substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3396290A JPH03238710A (en) | 1990-02-16 | 1990-02-16 | Manufacture of substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03238710A true JPH03238710A (en) | 1991-10-24 |
Family
ID=12401122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3396290A Pending JPH03238710A (en) | 1990-02-16 | 1990-02-16 | Manufacture of substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03238710A (en) |
-
1990
- 1990-02-16 JP JP3396290A patent/JPH03238710A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6798032B2 (en) | Metal film pattern and manufacturing method thereof | |
DE69829018T2 (en) | Substrate and process for its preparation | |
US20080044559A1 (en) | Method for forming metal pattern flat panel display using metal pattern formed by the method | |
US20050003242A1 (en) | Method for forming metal pattern and electromagnetic interference filter using pattern formed by the method | |
US7504199B2 (en) | Method of forming metal pattern having low resistivity | |
JPH03238710A (en) | Manufacture of substrate | |
TWI417948B (en) | Electroless nip adhesion and/or capping layer for copper interconnection layer | |
KR20010067098A (en) | Method for fabricating metal wirings | |
JPH03238709A (en) | Manufacture of substrate | |
JPH03238711A (en) | Manufacture of substrate | |
KR100555896B1 (en) | Method of fabricating metal bus electrode of plasma display panel | |
US7488570B2 (en) | Method of forming metal pattern having low resistivity | |
JP3821868B2 (en) | Method for plating on insulating base material and plating product obtained by the method | |
JPH01221750A (en) | Pattern forming or correcting method | |
JPH026833B2 (en) | ||
JP3299167B2 (en) | Method of manufacturing substrate with embedded electrode | |
JPH05125552A (en) | Method for plating transparent conductive film with gold | |
JPS6290982A (en) | Manufacture of conductive film | |
JPS63124003A (en) | Production of color filter | |
JP3047183B2 (en) | Liquid crystal device manufacturing method | |
JP3255769B2 (en) | How to plate on insulator | |
JPH0466919A (en) | Production of liquid crystal display device | |
JPS60141874A (en) | Electroless plating method | |
JPS59168486A (en) | Manufacture of liquid crystal display panel electrode | |
JPS60121616A (en) | Method of forming transparent conductive film |