[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62249419A - Evaluation of alignment accuracy - Google Patents

Evaluation of alignment accuracy

Info

Publication number
JPS62249419A
JPS62249419A JP61095125A JP9512586A JPS62249419A JP S62249419 A JPS62249419 A JP S62249419A JP 61095125 A JP61095125 A JP 61095125A JP 9512586 A JP9512586 A JP 9512586A JP S62249419 A JPS62249419 A JP S62249419A
Authority
JP
Japan
Prior art keywords
pattern
upper layer
layer pattern
foundation
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61095125A
Other languages
Japanese (ja)
Inventor
Masayuki Nakajima
真之 中島
Noriaki Ishio
石尾 則明
Keiji Fujiwara
啓司 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61095125A priority Critical patent/JPS62249419A/en
Publication of JPS62249419A publication Critical patent/JPS62249419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To realize highly accurate inspection and evaluation by a method wherein areas surrounded by a foundation pattern and an upper layer pattern are measured and the alignment error is automatically measured and the alignment accruacy is evaluated. CONSTITUTION:An upper layer pattern 2 is formed on a foundation pattern 1 corresponding to the foundation pattern 1. If the upper layer pattern 2 is composed of patterns along the directions X and Y and along the directions of 45 degrees, areas of the respective regions A-H surrounded by the foundation pattern 1 and the upper layer pattern 2 can be measured by counting the number of the smallest units of images by utilizing an image processor. If the areas of the regions A, B...H are expressed by A, B... H, the alignment error Rx of the direction X is expressed by the attached formula. In the formula, a letter Y denotes the distance of the foundation pattern 1 along the direction Y and the area squareXY of the foundation pattern is squareXYapprox.= A+ B+...+ H. The alignment error of the direction Y can be also obtained in the same way. Moreover, if the summation of B- E and the summation of F- H and A are compared, the alignment error of the direction of 45 degrees can be also evaluated. With this constitution, plenty of information can be measured automatically and with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体集積回路装置の製造工程等における
写真製版技術を適用した微細パターン形成時において、
その重ね合せ精度の検査評価方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for forming fine patterns using photolithography technology in the manufacturing process of semiconductor integrated circuit devices, etc.
The present invention relates to a method for inspecting and evaluating overlay accuracy.

〔従来の技術〕[Conventional technology]

従来の重ね合せ精度評価方法としては、第2図に示すよ
うなバーニア法と呼ばれる評価方法が用いられ、ピッチ
の異なるパターンを転写することにより、目視検査で重
ね合せ誤差を読み取っていた。
As a conventional overlay accuracy evaluation method, an evaluation method called the Vernier method as shown in FIG. 2 is used, and overlay errors are read by visual inspection by transferring patterns with different pitches.

次に、従来技術であるバーニア法について説明する。第
2図に示すように、第1のパターン1を前工程で形成し
、その上に第2のパターン2が形成される。第1のパタ
ーン1と第2のパターン2とはあらかじめ互いにピッチ
が異なるように描かれている(測定器のノギスの微小読
み取り目盛りと同様)。したがって、両パターン1,2
の各単位パターン■〜■について両パターン1,2の相
互位置が図示のように順次ずれろ。その中で1個所量も
左右均等なパターンの位置を目視で見つけ、(第2図1
〜■の中では■のパターン)重ね合せずれ量として判断
していた。
Next, the Vernier method, which is a conventional technique, will be explained. As shown in FIG. 2, a first pattern 1 is formed in the previous step, and a second pattern 2 is formed thereon. The first pattern 1 and the second pattern 2 are drawn in advance so that their pitches differ from each other (similar to the minute reading scale of a caliper of a measuring instrument). Therefore, both patterns 1 and 2
For each of the unit patterns (1) to (2), the mutual positions of both patterns 1 and 2 are sequentially shifted as shown. Visually find one spot in the pattern that is even on both sides (Fig. 2-1).
~ Pattern (■ in ■)) was judged as the amount of overlay deviation.

次に従来技術のもう一つの方法である寸法測定法ニつい
て説明する。これは第3図(a)、(b)に示すように
前工程で基板3上に形成された下地パターン1の中に次
工程で形成された上層パターン2を入れ、両パターン1
,2間の四方向の距離(第3図(Q)に←で示す)6!
測定することにより、重ね合せのずれ量を求めていた。
Next, the dimension measurement method, which is another conventional method, will be explained. As shown in FIGS. 3(a) and 3(b), the upper layer pattern 2 formed in the next step is inserted into the base pattern 1 formed on the substrate 3 in the previous step, and both patterns 1
, 2 in four directions (indicated by ← in Figure 3 (Q)) 6!
By measuring, the amount of misalignment in overlay was determined.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のバーニア法では、人の目により判断することから
精度としては低く、ばらつきもあり、またデータ処理法
としても非常に時間がかかり、バク〜ンのサイズも人が
読み取り易くする必要がある等の欠点があった。
In the conventional Vernier method, the accuracy is low and there is variation because the judgment is made by the human eye, and the data processing method is also very time-consuming, and the size of the vernier needs to be easily readable by humans. There was a drawback.

また寸法測定法の場合にも、限られた領域からしかデー
タが得られないため情報量に欠けるほか、任意方向の重
ね合せ精度測定が困難である等の欠点があった。
Furthermore, in the case of the dimension measurement method, there are drawbacks such as a lack of information because data can only be obtained from a limited area, and it is difficult to measure overlay accuracy in any direction.

この発明は、上記のような問題点を解消するため1こな
されたもので、豊富な情報量が精度よく、かつ自動的に
測定できるとともに、またX、Y方向のみならず任意方
向の重ね合せ誤差もマスク作成時にパターンの方向を考
慮することで容易に測定することができる重ね合せ精度
評価方法を得ろことを目的とする。
This invention was developed to solve the above-mentioned problems, and it is possible to measure a rich amount of information accurately and automatically, and also to superimpose not only the X and Y directions but also any direction. The purpose of this invention is to obtain an overlay accuracy evaluation method that can easily measure errors by considering the direction of the pattern when creating a mask.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る重ね合せ精度評価方法は、重ね合せるべ
き下地パターンと上層のパターンとにより囲まれた領域
の面積を測定し、自動的に重ね合せ誤差量を求めるもの
である。
The overlay accuracy evaluation method according to the present invention measures the area of a region surrounded by a base pattern to be overlaid and an upper layer pattern, and automatically determines an overlay error amount.

〔作用〕[Effect]

この発明におけろ重ね合せ精度評価方法は、下地パター
ンと上層パターンにより囲まれた領域を画像処理を用い
て面積測定をし、あらかじめマスクパターンに描かれて
いる方向の重ね合せ誤差量を仕切られた領域の面積の和
を求めることで算出し評価するものである。
The overlay accuracy evaluation method in this invention measures the area of the area surrounded by the base pattern and the upper layer pattern using image processing, and calculates the amount of overlay error in the direction drawn on the mask pattern in advance. It is calculated and evaluated by finding the sum of the areas of the regions.

〔実施例〕〔Example〕

第1図(a)、(b)はこの発明の重ね合せ精度評価方
法の一実施例を説明するための平面図および断面図であ
る。第1図(a)、(b)において、1は基板3上に形
成された下地パターン、2は前記下地パターン】に重ね
合された上層パターンである。
FIGS. 1(a) and 1(b) are a plan view and a sectional view for explaining an embodiment of the overlay accuracy evaluation method of the present invention. In FIGS. 1(a) and 1(b), 1 is a base pattern formed on a substrate 3, and 2 is an upper layer pattern superimposed on the base pattern.

第1図(a)において、あらかじめ形成された下地パタ
ーン1に対して上層パターン2がその上に形成される。
In FIG. 1(a), an upper layer pattern 2 is formed on a base pattern 1 formed in advance.

いま、上層パターン2が第1図(a)のようにX、Y方
向および各45度のパターンをもつとすると、下地パタ
ーンと上層パターン2とで囲まれた領域はA 、 B 
、 C、D 、 E 、 F 、 G 、 Hに分ける
ことができる。各領域A−Hの面積測定は画像処理装置
(図示せず)を用いて画像の最小単位(ピクセル)の数
をカウントすることで求めることができる。例えば領域
Aで0.1μmピクセルを用いて(この場合、画像の最
小単位が0.1μm X 0 、1 μm = 0 、
01 p m 2 となる) 1000個のピクセルが
入ったとすると0.01μm2X1000=10.00
μm2の面積となる。同様に領域B−Hの面積を測定す
る。いま、領域Aの面積をΔ^、領域領域面積をΔB、
・・領域Hの面積をΔHとすると、X方向の重ね合せ誤
差量R。
Now, assuming that the upper layer pattern 2 has a pattern of 45 degrees in each direction in the X and Y directions as shown in FIG. 1(a), the areas surrounded by the base pattern and the upper layer pattern 2 are A and B.
, C, D, E, F, G, and H. The area measurement of each region A-H can be obtained by counting the number of minimum units (pixels) of the image using an image processing device (not shown). For example, using 0.1 μm pixels in area A (in this case, the minimum unit of the image is 0.1 μm x 0, 1 μm = 0,
01 p m 2) If there are 1000 pixels, 0.01 μm2X1000=10.00
The area is μm2. Similarly, measure the area of region B-H. Now, the area of region A is Δ^, the area of the region is ΔB,
...If the area of region H is ΔH, then the overlay error amount R in the X direction.

は、 ただし、Y=下地パターン1のY方向の距離であり、下
地パターンの面積口xYは、口XYに2^+78+・・
+−間とする同様にしてY方向の重ね合せ誤差量も求め
ることができる。
However, Y is the distance in the Y direction of the base pattern 1, and the area opening xY of the base pattern is 2^+78+...
The amount of overlay error in the Y direction can also be determined in the same manner as between + and -.

またΔl ) J C)Δo、Asの和と、ΔF、ΔG
Also, the sum of Δl) J C) Δo, As, ΔF, ΔG
.

ΔH2Δ8の和を比較することにより、右上から左下へ
45度方向の重ね合せ誤差量も評価することができろ。
By comparing the sum of ΔH2Δ8, it is also possible to evaluate the amount of overlay error in the 45-degree direction from the upper right to the lower left.

この場合、上層パターン2をX、 Y方向および45度
パターンに限定しているが、実際にデバイス構造と同方
向の上層パターンを描くことにより任意の角度のパター
ンも重ね合せ評価することができる。
In this case, the upper layer pattern 2 is limited to X, Y directions and 45 degree patterns, but by actually drawing the upper layer pattern in the same direction as the device structure, it is possible to overlay and evaluate patterns at any angle.

なお、上記実施例では四角形の下地パターン1に、四方
向に長方形をした上層パターン2を重ね合せろ例を示し
たが、下地パターン1が円形であっても、上層パターン
2が長方形以外のパターンであっても構わない。
In addition, in the above embodiment, an example was shown in which the rectangular upper pattern 2 is superimposed on the rectangular base pattern 1 in four directions, but even if the base pattern 1 is circular, the upper layer pattern 2 may be a pattern other than a rectangle. It doesn't matter.

また上層パターン2が四方向のパターンの例を示したが
、1つのパターンに何方向のパターンを入れろことも可
能である。
Further, although an example has been shown in which the upper layer pattern 2 is a pattern in four directions, it is also possible to include patterns in any number of directions in one pattern.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、写真製版技術を用いて
基板上に形成された下地パターンと、この下地パターン
の上に形成された上層パターンとの重ね合せ精度評価方
法において、下地パターンと上層パターンにより囲まれ
た領域の面積を測定することにより、自動的に重ね合せ
誤差量を求めて重ね合せ精度を評価するようにしたので
、豊富な情報量が自動的に精度よく、またいかなる方向
(角度)の重ね合せ誤差をも測定することが可能となる
利点がある。
As explained above, the present invention provides a method for evaluating the overlay accuracy of a base pattern formed on a substrate using photolithography and an upper layer pattern formed on the base pattern. By measuring the area of the enclosed area, the amount of overlay error is automatically determined and the overlay accuracy is evaluated, so the rich amount of information can be automatically used with high precision and regardless of direction (angle). This has the advantage that it is also possible to measure overlay errors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)はこの発明の一実施例を示す重ね
合せ精度評価方法を説明するパターンの平面図および断
面図、第2図は従来のバーニア法による重ね合せ評価方
法を説明する図、第3図(a)。 (b)は従来の他の重ね合せ精度評価方法を説明するパ
ターンの平面図および断面図である。 図において、1は下地パターン、2は上層パターン、A
 −H1,を領域である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)第1図 第2図 第3図 手続補正書(自発)
FIGS. 1(a) and (b) are a plan view and a sectional view of a pattern to explain an overlay accuracy evaluation method according to an embodiment of the present invention, and FIG. 2 is an illustration of an overlay evaluation method using the conventional Vernier method. Figure 3(a). (b) is a plan view and a cross-sectional view of a pattern explaining another conventional overlay accuracy evaluation method. In the figure, 1 is the base pattern, 2 is the upper layer pattern, and A
−H1, is the region. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others) Figure 1 Figure 2 Figure 3 Procedure amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 写真製版技術を用いて基板上に形成された下地パターン
と、この下地パターンの上に形成された上層パターンと
の重ね合せ精度評価方法において、前記下地パターンと
上層パターンにより囲まれた領域の面積を測定すること
により、自動的に重ね合せ誤差量を求めて重ね合せ精度
を評価することを特徴とする重ね合せ精度評価方法。
In a method for evaluating the overlay accuracy of a base pattern formed on a substrate using photolithography and an upper layer pattern formed on the base pattern, the area of the area surrounded by the base pattern and the upper layer pattern is An overlay accuracy evaluation method characterized in that the overlay accuracy is evaluated by automatically determining the amount of overlay error through measurement.
JP61095125A 1986-04-22 1986-04-22 Evaluation of alignment accuracy Pending JPS62249419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61095125A JPS62249419A (en) 1986-04-22 1986-04-22 Evaluation of alignment accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61095125A JPS62249419A (en) 1986-04-22 1986-04-22 Evaluation of alignment accuracy

Publications (1)

Publication Number Publication Date
JPS62249419A true JPS62249419A (en) 1987-10-30

Family

ID=14129106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61095125A Pending JPS62249419A (en) 1986-04-22 1986-04-22 Evaluation of alignment accuracy

Country Status (1)

Country Link
JP (1) JPS62249419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175270A (en) * 2003-12-12 2005-06-30 Nikon Corp Mark for detecting displacement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175270A (en) * 2003-12-12 2005-06-30 Nikon Corp Mark for detecting displacement
JP4525067B2 (en) * 2003-12-12 2010-08-18 株式会社ニコン Misalignment detection mark

Similar Documents

Publication Publication Date Title
US5262258A (en) Process of manufacturing semiconductor devices
US4423127A (en) Method of manufacturing a semiconductor device
CN102466977B (en) Mark structure used for measuring distortion of projection object lens and its method
JPH11126746A (en) Pattern and method for measuring alignment accuracy
US6275621B1 (en) Moire overlay target
JP3552884B2 (en) Pattern for measuring overlay accuracy
JPS62249419A (en) Evaluation of alignment accuracy
KR100256815B1 (en) Magnifi-cation measuring mark
US6330355B1 (en) Frame layout to monitor overlay performance of chip composed of multi-exposure images
KR100587638B1 (en) Overlay vernier and method detecting overlay using the same
KR100263323B1 (en) Measuring method of alignment accuracy in exposure apparatus
JP2000294487A (en) Arrangement structure of register mark for manufacturing semiconductor device
JP2829211B2 (en) Misalignment measurement method
JPS5983167A (en) Registering method of multilayer printing
JPS6232783B2 (en)
CN101097410A (en) Method of detecting displacement of exposure position marks
JPH08321533A (en) Inspection method of position deviation of alignment mark
JP2513540Y2 (en) Alignment measuring device
KR19990013281A (en) A set of measurement patterns and methods for measuring dimensional accuracy and superposition accuracy of a circuit pattern
WO2004090980A2 (en) Overlay metrology mark
JP4370803B2 (en) Misalignment detection mark, wafer, reticle, and pattern misalignment measuring method
JP2530950Y2 (en) Substrate alignment pattern
JP2893693B2 (en) Misalignment measurement method
TW480366B (en) Inspecting method of dual-side alignment
JPH07226365A (en) Stage accuracy measuring method