[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2893693B2 - Misalignment measurement method - Google Patents

Misalignment measurement method

Info

Publication number
JP2893693B2
JP2893693B2 JP63315682A JP31568288A JP2893693B2 JP 2893693 B2 JP2893693 B2 JP 2893693B2 JP 63315682 A JP63315682 A JP 63315682A JP 31568288 A JP31568288 A JP 31568288A JP 2893693 B2 JP2893693 B2 JP 2893693B2
Authority
JP
Japan
Prior art keywords
marks
misalignment
boundary
passing
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63315682A
Other languages
Japanese (ja)
Other versions
JPH02159715A (en
Inventor
豊廣 綱川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63315682A priority Critical patent/JP2893693B2/en
Publication of JPH02159715A publication Critical patent/JPH02159715A/en
Application granted granted Critical
Publication of JP2893693B2 publication Critical patent/JP2893693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板の表面を複数の領域に分割して別個に
露光する分割露光のための位置合せずれ測定方法に関す
るものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a misalignment for divided exposure, in which a surface of a substrate is divided into a plurality of regions and exposed separately.

〔発明の概要〕[Summary of the Invention]

本発明は、上記の様な位置合せずれ測定方法におい
て、四辺の長さが互いに等しい四角形である一対の位置
合せずれ測定マークを、夫々の互いに対向する二つの頂
点を通る直線が複数の領域同士の境界線と平行で且つこ
の境界線から所定の距離にあり、夫々の残りの頂点を通
る直線が一直線になる様に、境界線の両側に形成し、こ
れらの位置合せずれ測定マークにおける互いに対向する
頂点を通る直線同士の間隔を求めることによって、境界
線と垂直及び平行な方向における位置合せずれの測定を
極めて簡単に行うことができる様にしたものである。
The present invention provides a method for measuring misalignment as described above, in which a pair of misalignment measurement marks each having a rectangular shape having four sides equal to each other is formed by forming a straight line passing through two opposing vertices into a plurality of regions. Are formed on both sides of the boundary line so that straight lines that are parallel to and at a predetermined distance from this boundary line and pass through the remaining vertices are straight, and are opposed to each other in these misalignment measurement marks. By determining the interval between straight lines passing through the vertices, it is possible to extremely easily measure the misalignment in the direction perpendicular and parallel to the boundary line.

〔従来の技術〕[Conventional technology]

半導体装置の高集積化による微細加工の要求を満たす
ために、半導体ウエハの露光装置として縮小投影露光装
置が多く用いられている。
2. Description of the Related Art In order to satisfy the demand for fine processing by increasing the degree of integration of semiconductor devices, a reduced projection exposure apparatus is often used as an exposure apparatus for a semiconductor wafer.

一方、半導体装置の高集積化に伴ってチップサイズの
大形化も進行しており、縮小投影露光装置による1回の
露光では1チップの全体を露光できなくなってきてい
る。
On the other hand, the chip size has been increased with the increase in the degree of integration of the semiconductor device, and it has become impossible to expose the entirety of one chip by one exposure using the reduced projection exposure apparatus.

このため、例えばCCDの感光部のパターンと蓄積部の
パターンとを別個の露光で形成するという様に、1チッ
プの表面を複数の領域に分割して別個に露光する必要が
ある。
For this reason, it is necessary to divide the surface of one chip into a plurality of regions and separately expose them, for example, by forming the pattern of the photosensitive section and the pattern of the accumulation section of the CCD by separate exposure.

ところが、別個の露光で形成された感光部のパターン
の蓄積部のパターンとが両者の境界で正確に繋がってい
なければ、信号電荷の転送等に支障が生じる。従って、
別個の露光で形成さたパターン同士の位置合せずれを露
光互に測定する必要がある。
However, if the pattern of the photosensitive section formed by the separate exposure and the pattern of the storage section are not accurately connected at the boundary between them, transfer of signal charges and the like will be hindered. Therefore,
It is necessary to measure misalignment between patterns formed by separate exposures.

第2図及び第3図は、この様な測定を行うため位置合
せずれ測定方法の一従来例を示している。第2図は、2
分割された領域同士の境界線に垂直な方向であるX方向
の位置合せずれを測定するためのマークを示している。
FIG. 2 and FIG. 3 show a conventional example of a misalignment measuring method for performing such a measurement. FIG.
A mark for measuring misalignment in the X direction, which is a direction perpendicular to the boundary between the divided areas, is shown.

1回目の露光では、CCDの感光部等のパターン(図示
せず)とは別にマーク11、12がチップのフォトレジスト
に形成され、2回目の露光では、CCDの蓄積部等のパタ
ーン(図示せず)とは別にマーク13、14がチップのフォ
トレジストに形成される。
In the first exposure, marks 11 and 12 are formed on the photoresist of the chip separately from the pattern (not shown) of the photosensitive portion of the CCD, and in the second exposure, the pattern (not shown) of the accumulation portion of the CCD and the like. Marks 13 and 14 are separately formed in the photoresist of the chip.

但し、1回目の露光と2回目の露光とには幅が1μm
に設計されている重複ゾーン15があり、しかもフォトレ
ジストとしては解像度やコントラスト等が高いポジ形レ
ジストを用いている。このため、マーク11、13のうちで
重複ゾーン15に含まれているマーク部11a、13aは、現像
によって消失する。
However, the width of the first exposure and the second exposure is 1 μm.
There is an overlapping zone 15 designed as described above, and a positive resist having high resolution and high contrast is used as a photoresist. Therefore, of the marks 11 and 13, the mark portions 11a and 13a included in the overlap zone 15 disappear by development.

なおマーク11〜14は、第2図に示す様に一群となっ
て、重複ゾーン15に沿う複数の個所に形成される。
The marks 11 to 14 are formed as a group at a plurality of locations along the overlapping zone 15 as shown in FIG.

ところで、実際に形成されたマーク11〜14は、ハレー
ション等のために設計値よりも僅かではあるが小さくな
ってしまう。このため、例えばマーク11、13について
は、設計値A、B、Cに対して、測長SEM等で得られた
実際の値はA′、B′、C′となっている。
The actually formed marks 11 to 14 are slightly smaller than the design values due to halation and the like. Thus, for the marks 11 and 13, for example, the actual values obtained by the length measurement SEM and the like are A ', B' and C 'with respect to the design values A, B and C.

この様に形成されたマーク11、13からX方向の位置合
せずれを測定するには、 の計算を行う。
To measure the misalignment in the X direction from the marks 11 and 13 thus formed, Is calculated.

X方向の位置合せずれを測定するためには、本来は、
マーク11、13のX方向における設計値と実測値との差を
用いるべきであるが、上述の様にマーク部11a、13aが消
失しており、この差を求めることができない。このた
め、X方向とY方向とで上記の差が互いに等しいとみな
して、式ではY方向の差を用いている。
To measure the misalignment in the X direction, originally,
The difference between the design value and the measured value of the marks 11 and 13 in the X direction should be used. However, as described above, the mark portions 11a and 13a have disappeared, and this difference cannot be obtained. For this reason, it is considered that the above difference is equal in the X direction and the Y direction, and the expression uses the difference in the Y direction.

第3図は、2分割された領域同士の境界線と平行な方
向であるY方向の位置合せずれを測定するためのマーク
を示している。これらのマーク21〜24も、重複ゾーン15
に沿う複数の個所で且つマーク11〜14とは異なる位置に
形成される。
FIG. 3 shows marks for measuring misalignment in the Y direction, which is a direction parallel to the boundary between the two divided areas. These marks 21 to 24 also overlap zone 15
Are formed at a plurality of locations along the line and at positions different from the marks 11 to 14.

大きい方のマーク21と小さい方のマーク23との各々の
Y方向の長さA、Bは夫々3μm及び2μmに設計され
ており、且つマーク23、24はマーク21、22のY方向の中
央に位置する様に設計されている。従って、設計値Dは
0.5μmである。
The lengths A and B in the Y direction of the larger mark 21 and the smaller mark 23 are designed to be 3 μm and 2 μm, respectively, and the marks 23 and 24 are located at the center of the marks 21 and 22 in the Y direction. It is designed to be located. Therefore, the design value D is
0.5 μm.

この様に形成されたマーク21、23からY方向の位置合
せずれを測定するには、設計値Dと実測値D′との差を
求める。
To measure the misalignment in the Y direction from the marks 21 and 23 formed in this way, the difference between the design value D and the measured value D 'is obtained.

なお、この場合も実際に形成されたマーク21〜24は設
計値よりも小さい方が、第3図からも明らかな様に、こ
の差は実測値D′に現れない。
In this case as well, the difference between the actually formed marks 21 and 24 is smaller than the design value, but this difference does not appear in the measured value D ', as is apparent from FIG.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが上述の一従来例では、4つの値A′〜D′を
実測する必要があり、式の計算もやや複雑である。従
って上述の一従来例では、位置合せずれを簡単には測定
することができない。
However, in the above-described conventional example, it is necessary to actually measure four values A ′ to D ′, and the calculation of the expression is somewhat complicated. Therefore, in the above-described conventional example, the misalignment cannot be easily measured.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による位置合せずれ測定方法は、四辺の長さが
互いに等しい四角形である一対の位置合せずれ測定マー
ク31、33を、夫々の互いに対向する二つの頂点を通る直
線35a、36aが複数の領域同士の境界線15と平行で且つこ
の境界線15から所定の距離にあり、夫々の残りの頂点を
通る直線35b、36bが一直線になる様に、前記境界線15の
両側に形成する工程と、前記一対の位置合せずれ測定マ
ーク31、33における前記二つの頂点を通る直線35a、36a
同士の間隔の実測値と設計値との差を求める工程と、前
記一対の位置合せずれ測定マーク31、33における前記残
りの頂点を通る直線35b、36b同士の前記境界線15と平行
な方向における間隔の実測値を求める工程とを具備す
る。
The method for measuring misregistration according to the present invention includes a method for measuring a pair of misregistration measurement marks 31 and 33 each having a rectangular shape having four sides equal to each other by forming straight lines 35a and 36a passing through two opposing vertices into a plurality of areas. Forming straight lines on both sides of the boundary line 15 so that straight lines 35b and 36b that are parallel to the boundary line 15 between each other and at a predetermined distance from the boundary line 15 and pass through the remaining vertices are straight, Straight lines 35a, 36a passing through the two vertexes of the pair of misalignment measurement marks 31, 33
A step of determining the difference between the measured value and the design value of the interval between the straight lines 35b passing through the remaining vertices of the pair of misalignment measurement marks 31 and 33, in a direction parallel to the boundary line 15 between the straight lines 35b and 36b. Obtaining an actual measured value of the interval.

〔作用〕[Action]

本発明による位置合せずれ測定方法では、四辺の長さ
が互いに等しい四角形である一対の位置合せずれ測定マ
ーク31、33を、夫々の互いに対向する二つの頂点を通る
直線35a、36aが複数の領域同士の境界線15と平行で且つ
この境界線15から所定の距離になる様に、境界線15の両
側に形成するので、分割露光された隣接領域の各々にお
ける二つの頂点を通る直線35a、36a同士の間隔の実測値
と設計値との差を求めることによって、境界線15と垂直
な方向(X)における位置合せずれを測定することがで
きる。
In the misalignment measuring method according to the present invention, a pair of misalignment measuring marks 31 and 33 each having a rectangular shape having four sides equal to each other are formed by forming straight lines 35a and 36a passing through two opposing vertices into a plurality of areas. Since it is formed on both sides of the boundary line 15 so as to be parallel to the boundary line 15 and at a predetermined distance from the boundary line 15, straight lines 35a and 36a passing through two vertices in each of the divided and exposed adjacent regions are formed. By calculating the difference between the measured value and the design value of the distance between the two, the misalignment in the direction (X) perpendicular to the boundary 15 can be measured.

また、一対の位置合せずれ測定マーク31、33の夫々の
残りの頂点を通る直線35b、36bが一直線になる様に、こ
れら一対の位置合せずれ測定マーク31、33を境界線15の
両側に形成するので、分割露光された隣接領域の各々に
おける残りの頂点を通る直線35b、36b同士の境界線15と
平行な方向における間隔の実測値を求めることによっ
て、境界線15と平行な方向(Y)における位置合せずれ
を測定することができる。
In addition, the pair of misalignment measurement marks 31, 33 are formed on both sides of the boundary line 15 so that the straight lines 35b, 36b passing through the remaining vertices of the pair of misalignment measurement marks 31, 33 are aligned. Therefore, by determining the measured value of the interval in the direction parallel to the boundary 15 between the straight lines 35b and 36b passing through the remaining vertices in each of the divided and exposed adjacent regions, the direction parallel to the boundary 15 (Y) Can be measured.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図を参照しながら説明
する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.

本実施例でも、第1図に示す様に、1回目の露光で
は、CCDの感光部等のパターン(図示せず)とは別に位
置合せずれ測定用のマーク31、32がチップのフォトレジ
ストに形成され、2回目の露光では、CCDの蓄積部等の
パターン(図示せず)とは別の位置合せずれ測定用のマ
ーク33、34がチップのフォトレジストに形成される。
Also in this embodiment, as shown in FIG. 1, in the first exposure, marks 31 and 32 for measuring misalignment are formed on the photoresist of the chip separately from a pattern (not shown) such as a photosensitive portion of a CCD. In the second exposure, marks 33 and 34 for measuring the misalignment different from the pattern (not shown) of the CCD storage portion and the like are formed in the photoresist of the chip.

本実施例でも、マーク31〜34は、第1図に示す様に一
群となって、重複ゾーン15に沿う複数の個所に形成され
る。
Also in the present embodiment, the marks 31 to 34 are formed in a group as shown in FIG.

但しマーク31、33は、正方形であり、且つ対角を通る
線35a、35b、36a、36bがX方向またはY方向となる様に
設計されている。また、各パターン31〜34は第1図中に
示す寸法に設計されている。
However, the marks 31 and 33 are square, and are designed such that lines 35a, 35b, 36a and 36b passing diagonally are in the X direction or the Y direction. Each of the patterns 31 to 34 is designed to have the dimensions shown in FIG.

この様な本実施例でX方向の位置合せずれを測定する
には、線35a、36aに測長SEMのラインセレクタを一致さ
せて両者の間隔を実測し、この実測値とその設計値であ
る3μmとの差を求める。
In order to measure the misalignment in the X direction in this embodiment, the line selectors of the length measurement SEM are made to coincide with the lines 35a and 36a, and the distance between the two is actually measured. The difference from 3 μm is determined.

またY方向では、線35b、36bに測長SEMのラインセレ
クタを一致させて両者の間隔を実測すれば、この実測値
がY方向の位置合せずれそのものである。
In the Y direction, if the distance between the lines 35b and 36b is measured by matching the line selector of the length measuring SEM to the lines 35b and 36b, the measured value is the actual misalignment in the Y direction.

従って本実施例では、形成したマーク31〜34に対する
実測として線35a、36a同士及び線35b、36b同士の間隔の
2つの値だけを求めればよく、またこれらの値に対する
計算も非常に容易である。このため本実施例では、位置
合せずれを簡単に測定することができる。
Therefore, in the present embodiment, only two values of the distance between the lines 35a and 36a and the distance between the lines 35b and 36b need to be obtained as actual measurement for the formed marks 31 to 34, and the calculation for these values is very easy. . Therefore, in the present embodiment, the misalignment can be easily measured.

なお、本実施例でも実際に形成されるマーク31〜34は
設計値よりも小さいが、第1図から明らかな様に、マー
ク31〜34の大きさに関係なく、線35a、35b、36a、36bの
位置は不変である。
In this embodiment, the marks 31 to 34 actually formed are smaller than the design values. However, as is clear from FIG. 1, regardless of the size of the marks 31 to 34, the lines 35a, 35b, 36a, The position of 36b is unchanged.

また、マーク31、33は線35a、36aについて対称であ
り、しかもCCDの感光部と蓄積部とがX方向に近付き過
ぎた状態で露光された場合はマーク31、33の重複ゾーン
15側がこの重複ゾーン15に含まれて消失する。
Also, the marks 31 and 33 are symmetrical about the lines 35a and 36a, and when the photosensitive portion and the accumulation portion of the CCD are exposed too close in the X direction, the overlap zone of the marks 31 and 33 is formed.
The 15 side disappears as it is included in this overlapping zone 15.

従って、この場合は、線35a、36aを中心にしたマーク
31、33の左右の寸法を比較することによっても、X方向
の位置合せずれを測定することができる。
Therefore, in this case, the marks around the lines 35a and 36a
By comparing the left and right dimensions of 31, 33, the misalignment in the X direction can also be measured.

また、本実施例ではマーク31、33が正方形であるが、
これらのマーク31、33は一般的に菱形であればよい。
In the present embodiment, the marks 31 and 33 are square,
Generally, these marks 31 and 33 may be rhombic.

〔発明の効果〕〔The invention's effect〕

本発明による位置合せずれ測定マークでは、分割露光
された隣接領域の各々において対向している頂部を通る
直線同士の間隔の実測値を求めることと設計値との比較
とで境界線と垂直及び平行な方向における位置合せずれ
を測定することができるので、この位置合せずれの測定
を極めて簡単に行うことができる。
In the misalignment measurement mark according to the present invention, in each of the divided and exposed adjacent regions, an actual measurement value of a distance between straight lines passing through opposing vertices is obtained and a comparison with a design value is performed so that the boundary line is perpendicular and parallel to the boundary line. Since misalignment in any direction can be measured, the misalignment can be measured very easily.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の平面図、第2図及び第3図
は本発明の一従来例の平面図である。 なお面図に用いた符号において、 15……重複ゾーン 31,33……マーク 35a,35b……線 36a,36b……線 である。
FIG. 1 is a plan view of an embodiment of the present invention, and FIGS. 2 and 3 are plan views of a conventional example of the present invention. In the reference numerals used in the plan views, 15 are overlapping zones 31, 33 are marks 35a, 35b are lines 36a, 36b are lines.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板の表面を複数の領域に分割して別個に
露光する分割露光のための位置合せずれ測定方法におい
て、 四辺の長さが互いに等しい四角形である一対の位置合せ
ずれ測定マークを、夫々の互いに対向する二つの頂点を
通る直線が前記複数の領域同士の境界線と平行で且つこ
の境界線から所定の距離にあり、夫々の残りの頂点を通
る直線が一直線になる様に、前記境界線の両側に形成す
る工程と、 前記一対の位置合せずれ測定マークにおける前記二つの
頂点を通る直線同士の間隔の実測値と設計値との差を求
める工程と、 前記一対の位置合せずれ測定マークにおける前記残りの
頂点を通る直線同士の前記境界線と平行な方向における
間隔の実測値を求める工程と を具備することを特徴とする位置合せずれ測定方法。
1. A method for measuring misregistration for divided exposure in which a surface of a substrate is divided into a plurality of areas and separately exposed, wherein a pair of misalignment measuring marks having a quadrangular shape with four sides equal in length are formed. A straight line passing through the two vertices facing each other is parallel to the boundary between the plurality of regions and at a predetermined distance from this boundary, and the straight line passing through each of the remaining vertices is straight, Forming on both sides of the boundary line; obtaining a difference between a measured value and a design value of a distance between straight lines passing through the two vertexes in the pair of misalignment measurement marks; Obtaining an actual measured value of an interval in a direction parallel to the boundary line between straight lines passing through the remaining vertices in the measurement mark.
JP63315682A 1988-12-14 1988-12-14 Misalignment measurement method Expired - Fee Related JP2893693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315682A JP2893693B2 (en) 1988-12-14 1988-12-14 Misalignment measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315682A JP2893693B2 (en) 1988-12-14 1988-12-14 Misalignment measurement method

Publications (2)

Publication Number Publication Date
JPH02159715A JPH02159715A (en) 1990-06-19
JP2893693B2 true JP2893693B2 (en) 1999-05-24

Family

ID=18068291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315682A Expired - Fee Related JP2893693B2 (en) 1988-12-14 1988-12-14 Misalignment measurement method

Country Status (1)

Country Link
JP (1) JP2893693B2 (en)

Also Published As

Publication number Publication date
JPH02159715A (en) 1990-06-19

Similar Documents

Publication Publication Date Title
JP3042639B2 (en) Photo reticles for semiconductor device manufacturing
EP0370834B1 (en) Method of manufacturing a semiconductor device
JP3118899B2 (en) Alignment check pattern
US5868560A (en) Reticle, pattern transferred thereby, and correction method
US8847416B2 (en) Multi-layer chip overlay target and measurement
JP2870461B2 (en) Photomask alignment mark and semiconductor device
GB2287328A (en) Method for fabricating a photomask
KR20000029347A (en) Reticle having mark for detecting alignment and method for detecting alignment
JP2001093820A (en) Mark, alignment mark, alignment discrepnacy measurement mark and semiconductor wafer
KR100392744B1 (en) Semiconductor device and manufacturing method thereof, and registration accuracy measurement enhancement method
JP4390355B2 (en) Reticle for semiconductor integrated circuit
JP2893693B2 (en) Misalignment measurement method
US7136520B2 (en) Method of checking alignment accuracy of patterns on stacked semiconductor layers
US6544859B2 (en) Semiconductor processing methods and structures for determining alignment during semiconductor wafer processing
JPS5846054B2 (en) photo mask
JPS6338697B2 (en)
US6326106B1 (en) Overlay measuring pattern, and photomask
JP2824318B2 (en) Evaluation method of overlay accuracy and dimensional accuracy
JP3580992B2 (en) Photo mask
EP1280009A2 (en) Photolithographic structuring method
JP2866353B2 (en) Phase error detection method for phase inversion mask
JPS588132B2 (en) Integrated circuit manufacturing method
KR100546336B1 (en) Overlay key having plurality of crossing and method for measuring overlay using the same
JPH05217845A (en) Pattern for alignment measurement
KR100850176B1 (en) Calculating method of numerical middle value of metal layer for overlay measurement and overlay measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees