JPS62188834A - Vibration damping supporter - Google Patents
Vibration damping supporterInfo
- Publication number
- JPS62188834A JPS62188834A JP2899486A JP2899486A JPS62188834A JP S62188834 A JPS62188834 A JP S62188834A JP 2899486 A JP2899486 A JP 2899486A JP 2899486 A JP2899486 A JP 2899486A JP S62188834 A JPS62188834 A JP S62188834A
- Authority
- JP
- Japan
- Prior art keywords
- convex spherical
- face
- spherical surface
- convex
- spherical part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013016 damping Methods 0.000 title claims description 8
- 238000005096 rolling process Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 abstract description 3
- 238000010276 construction Methods 0.000 abstract 1
- 230000001133 acceleration Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 230000006735 deficit Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 108010001498 Galectin 1 Proteins 0.000 description 1
- 102100021736 Galectin-1 Human genes 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、地震時の基礎地盤のように振動源となる基盤
と、この振動を伝えたくない構造物、重要機械等の間に
設置して、基盤の振動をこれらの構造物等に伝達しない
ようにするための減振支承装置に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to a system that is installed between a foundation that is a source of vibration, such as a foundation ground during an earthquake, and structures, important machines, etc. that do not want to transmit this vibration. , relates to a vibration damping support device for preventing vibrations of a foundation from being transmitted to these structures.
従来、減振支承装置としては、(1)平坦な上下沓の間
に表面が楕円形の曲面をした支承を配置した構造のもの
、(2)湾曲した曲面をもつ上下沓の間に球体を入れた
構造のもの等がある。しかし、これらはいずれも、地震
時に基盤の変位により支点が変化すると共に上沓をもち
上げるため、上部の構造物に上下振動を与えるなどの欠
点がある。Conventionally, vibration-damping bearing devices have two structures: (1) a structure in which a support with an elliptical curved surface is placed between flat upper and lower shoes, and (2) a spherical body is placed between upper and lower shoes with a curved surface. There are things that have a built-in structure. However, all of these systems have drawbacks such as the fact that during an earthquake, the fulcrum changes due to the displacement of the foundation and the upper shoe is lifted up, giving rise to vertical vibrations to the structure above.
本発明は、このような事情にかんがみなされたものであ
って、上部構造物に地震動が伝わるのを十分に防ぐこと
ができる減振支承装置を提供することを目的とする。The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a vibration damping bearing device that can sufficiently prevent earthquake motion from being transmitted to a superstructure.
〔発明の構成]
このため、本発明は、下面に凹球面を形成した上沓と、
上下両面に中心を同一とした凸球面をそれぞれ形成する
と共に下面の凸球面の曲率半径を上面の凸球面の曲率半
径よりも大とした支承と、上面が平坦な下沓とからなり
、前記上沓の下面の凹球面に前記支承の上面の凸球面を
嵌着させて滑り接触させ、かつ、前記下沓の上面に前記
支承の下面の凸球面を当接して転がり接触させるように
した源振支承装置を要旨とするものである。[Structure of the Invention] Therefore, the present invention provides an upper shoe having a concave spherical surface formed on the lower surface;
It consists of a support in which convex spherical surfaces with the same center are formed on both the upper and lower surfaces, and the radius of curvature of the convex spherical surface on the lower surface is larger than the radius of curvature of the convex spherical surface on the upper surface, and a lower shoe with a flat upper surface. The convex spherical surface of the upper surface of the support is fitted onto the concave spherical surface of the lower surface of the shoe so as to bring them into sliding contact, and the convex spherical surface of the lower surface of the support is brought into rolling contact with the upper surface of the lower shoe. The gist is the bearing device.
以下、図を参照して本発明の構成について詳しく説明す
る。Hereinafter, the configuration of the present invention will be explained in detail with reference to the drawings.
第1図は、本発明の源振支承装置の一例を示す断面説明
図である。この第1図において、lは上沓であって、そ
の下面には凹球面が形成されている。上沓1は、家屋、
ビルディング、各種タンク、重要機械等の減損したい構
造物の下面に取付けられる。FIG. 1 is an explanatory cross-sectional view showing an example of the source vibration support device of the present invention. In FIG. 1, l is an upper shoe, and a concave spherical surface is formed on the lower surface of the shoe. Kamikutsu 1 is a house,
It can be installed on the underside of structures that you want to deplete, such as buildings, various tanks, important machinery, etc.
2は支承であって、上下両面にOを中心点とした(中心
が同一)凸球面A、Bをそれぞれ形成している。凸球面
Bの曲率半径Rは、凸球面Aの曲率半径rよりも大であ
る。凸球面Aは、上沓lの下面の凹球面に嵌着し、該凹
球面と滑り接触するようになっている。Reference numeral 2 denotes a support, and convex spherical surfaces A and B with O as the center point (the centers are the same) are formed on both the upper and lower surfaces, respectively. The radius of curvature R of the convex spherical surface B is larger than the radius of curvature r of the convex spherical surface A. The convex spherical surface A fits into the concave spherical surface on the lower surface of the upper shoe l, and is in sliding contact with the concave spherical surface.
3は下沓である。この下沓3の上面Cは平坦である。上
面Cには支承2の凸球面Bが当接し、転がり接触するよ
うになっている。なお、第1図では、下沓3の両側に立
ち上がり部4を設けているが、この立ち上がり部4はな
くともよい。3 is the lower shoe. The upper surface C of this lower shoe 3 is flat. The convex spherical surface B of the support 2 is in contact with the upper surface C, and is in rolling contact. In addition, in FIG. 1, the rising portions 4 are provided on both sides of the lower shoe 3, but the rising portions 4 may be omitted.
凸球面Aを形成する曲率半径rは、荷重Wおよび材質に
応じて、一般にヘルツの公式により決められる。また、
凸球面Bを形成する曲率半径Rは、次のようにして決め
られる。すなわち、凸球面Aの滑り摩擦係数μを測定し
て決めると、滑り摩擦抵抗力fは、r =wxμとなる
。一方、凸球面Bに働く例えば地震加速度αによる力F
は、F= (W/g)Xαとなり (gは重力加速度)
、シたがってrXf=RXFとなる。これらの式からα
/g=(rXμ)/Rの関係式が成立し、地震加速度α
を決めることによりRが決定される。すなわち、減損し
得る最小の地震加速度により凸球面Bの曲率率iRが決
められる。The radius of curvature r forming the convex spherical surface A is generally determined by Hertz's formula depending on the load W and the material. Also,
The radius of curvature R forming the convex spherical surface B is determined as follows. That is, when the sliding friction coefficient μ of the convex spherical surface A is measured and determined, the sliding friction resistance force f becomes r = wxμ. On the other hand, force F acting on convex spherical surface B, for example, due to earthquake acceleration α
is F= (W/g)Xα (g is gravitational acceleration)
, so rXf=RXF. From these equations α
The relational expression /g=(rXμ)/R is established, and the seismic acceleration α
R is determined by determining . That is, the curvature iR of the convex spherical surface B is determined by the minimum seismic acceleration that can cause impairment.
また、凸球面Bの円弧の長さを地震の最大振幅と定め、
これより必要な円弧長ECを決めてこの円弧長EGに等
しい下沓3の上面C上の距離GE”を定めれば、この距
離GE’ が凸球面Bの上面C上の移動可能距離となる
ので、E゛点に制動壁(立ち上がり部4の側壁)をつく
ることができる。支承2の制動面は、第2図に示すよう
に、OE綿線上DrおよびこのOE線に直角に0点から
引かれる線上のD2である。第2図は、本発明の源振支
承装置の作動状況を示す説明図である。第2図では、地
震により下沓3が最大に移動して制動作用を起しており
、この場合、D2が上沓lの下面に接すると共にDlが
下沓3のE゛点の制動壁に接している。Also, the length of the arc of the convex spherical surface B is determined as the maximum amplitude of the earthquake,
From this, determine the required arc length EC and determine the distance GE'' on the upper surface C of the lower shoe 3 that is equal to this arc length EG, then this distance GE' becomes the movable distance on the upper surface C of the convex spherical surface B. Therefore, a braking wall (side wall of the rising part 4) can be created at point E.The braking surface of the support 2 is located on the OE cotton line Dr and at right angles to this OE line from the 0 point, as shown in Figure 2. D2 on the drawn line. Fig. 2 is an explanatory diagram showing the operating situation of the source vibration support device of the present invention. In Fig. 2, the lower shoe 3 moves to the maximum due to an earthquake and causes a braking action. In this case, D2 is in contact with the lower surface of the upper shoe 1, and D1 is in contact with the braking wall at point E' of the lower shoe 3.
上沓1、支承2、および下沓3のそれぞれの材質は、荷
重Wに応じて適宜選定されればよいが、例えば圧延鋼材
、鍛鋼品、鋳鋼品、合金鋼などである。The materials of each of the upper shoe 1, the support 2, and the lower shoe 3 may be appropriately selected depending on the load W, and are, for example, rolled steel, forged steel, cast steel, alloy steel, etc.
以下に実施例を示す。Examples are shown below.
実施例
第1図に示ず形状の源振支承装置を用いて源振効果を評
価した。EXAMPLE The source vibration effect was evaluated using a source vibration support device having a shape not shown in FIG.
この結果を下記第1表に示す。The results are shown in Table 1 below.
(本頁以下余白)
註)
(11最低地震加速度19.6gal 、19.8ga
lは震度階3 (8,0〜25gal )に相当。(Margins below this page) Note) (11 Minimum seismic acceleration 19.6 gal, 19.8 gal
1 corresponds to seismic intensity scale 3 (8.0 to 25 gal).
(2)許容最大振幅とは限度の振幅であって、これ以上
の振幅が要求される場合にはRを大きくしなければなら
ない。(2) The maximum allowable amplitude is the limit amplitude, and if a larger amplitude is required, R must be increased.
上記第1表から明らかなように、減損を希望する最低地
震加速度とRとの関係が得られる。As is clear from Table 1 above, the relationship between the minimum seismic acceleration and R for which impairment is desired can be obtained.
また、減損し得る最大の地震加速度は、最大変位振幅と
して凸球面Bの円弧長を定めることにより対応できる。Furthermore, the maximum seismic acceleration that can cause impairment can be dealt with by determining the arc length of the convex spherical surface B as the maximum displacement amplitude.
これにより、本発明の減振支承装置は原振効果が大きい
ことが判る。This shows that the vibration damping bearing device of the present invention has a large original vibration effect.
以上説明したように本発明の減振支承装置は特定の形状
の上沓と支承と下沓とからなるため、本発明によれば下
記の効果を奏することができる。As explained above, since the vibration-reducing support device of the present invention includes an upper shoe, a support, and a lower shoe of a specific shape, the present invention can achieve the following effects.
■ 最小の地震加速度にて支承が転がり始め、減損の効
果を生じ、最大地震振幅まで減損する。■ At the minimum seismic acceleration, the bearing begins to roll, causing an impairment effect, and is impaired up to the maximum earthquake amplitude.
異常振幅になると制動作用が起り、上部構造物の倒壊等
を防ぐことができる。When the amplitude becomes abnormal, a braking action occurs, and it is possible to prevent the collapse of the upper structure.
■ 基盤の振動変位を支承の水平方向の転がりにより吸
収する。■ The vibration displacement of the foundation is absorbed by the horizontal rolling of the support.
■ 支承の転がりに際して、凸球面Aは滑りによる回転
のため上部構造物の支点の変化がなく、また、凸球面B
は転がり接触してその接点すなわち支点は凸球面Aの支
点の垂直線上にあるので、上部構造物の倒壊等を十分に
防ぐことができる。■ When the bearing rolls, the fulcrum of the upper structure does not change because the convex spherical surface A rotates due to sliding, and the convex spherical surface B
are in rolling contact and the point of contact, that is, the fulcrum is on a perpendicular line to the fulcrum of the convex spherical surface A, so it is possible to sufficiently prevent the upper structure from collapsing.
■ 凸球面Bの曲率半径Rが凸球面Aの曲率半径rより
も大であるので、凸球面Bの接する下沓側からの支承を
転がす力は小さくてよい。(2) Since the radius of curvature R of the convex spherical surface B is larger than the radius of curvature r of the convex spherical surface A, the force for rolling the support from the lower shoe side that is in contact with the convex spherical surface B may be small.
なお、この力を利用して凸球面Bの曲率半径Rを選定し
、減損し得る地震加速度を定めることができる。一方、
上部構造物の移動による上沓側からの支承を転がす力は
大となる。Note that by using this force, the radius of curvature R of the convex spherical surface B can be selected to determine the seismic acceleration that can be impaired. on the other hand,
The force of rolling the support from the upper shoe side due to the movement of the superstructure becomes large.
第1図は本発明の減振支承装置の一例を示す断面説明図
、第2図は本発明の減振支承装置の作動状況を示す説明
図である。
1・・・上沓、2・・・支承、3・・・下沓、4・・・
立ち上がり部。FIG. 1 is an explanatory cross-sectional view showing an example of the vibration damping bearing device of the present invention, and FIG. 2 is an explanatory diagram showing the operating status of the vibration damping bearing device of the invention. 1... Upper shoe, 2... Support, 3... Lower shoe, 4...
Standing part.
Claims (1)
とした凸球面をそれぞれ形成すると共に下面の凸球面の
曲率半径を上面の凸球面の曲率半径よりも大とした支承
と、上面が平坦な下沓とからなり、前記上沓の下面の凹
球面に前記支承の上面の凸球面を嵌着させて滑り接触さ
せ、かつ、前記下沓の上面に前記支承の下面の凸球面を
当接して転がり接触させるようにした減振支承装置。An upper shoe with a concave spherical surface formed on the lower surface, a support in which convex spherical surfaces with the same center are formed on both the upper and lower surfaces, and the radius of curvature of the convex spherical surface on the lower surface is larger than the radius of curvature of the convex spherical surface on the upper surface, and the upper surface. a flat lower shoe, the convex spherical surface of the upper surface of the support is fitted onto the concave spherical surface of the lower surface of the upper shoe so as to make sliding contact, and the convex spherical surface of the lower surface of the support is fitted onto the upper surface of the lower shoe. A vibration damping bearing device that makes rolling contact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2899486A JPS62188834A (en) | 1986-02-14 | 1986-02-14 | Vibration damping supporter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2899486A JPS62188834A (en) | 1986-02-14 | 1986-02-14 | Vibration damping supporter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62188834A true JPS62188834A (en) | 1987-08-18 |
Family
ID=12263965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2899486A Pending JPS62188834A (en) | 1986-02-14 | 1986-02-14 | Vibration damping supporter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62188834A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01226952A (en) * | 1988-03-07 | 1989-09-11 | Ntn Toyo Bearing Co Ltd | Vibration-proof bearing device |
JPH01284635A (en) * | 1988-05-10 | 1989-11-15 | Ntn Corp | Vibration eliminating support device |
JPH02256937A (en) * | 1989-03-29 | 1990-10-17 | Oiles Ind Co Ltd | Oscillation absorbing device |
JP2010112551A (en) * | 2008-10-07 | 2010-05-20 | Yoichiro Okamoto | Base isolation support |
JP2015017638A (en) * | 2013-07-09 | 2015-01-29 | オイレス工業株式会社 | Base isolation support device |
-
1986
- 1986-02-14 JP JP2899486A patent/JPS62188834A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01226952A (en) * | 1988-03-07 | 1989-09-11 | Ntn Toyo Bearing Co Ltd | Vibration-proof bearing device |
JPH01284635A (en) * | 1988-05-10 | 1989-11-15 | Ntn Corp | Vibration eliminating support device |
JPH02256937A (en) * | 1989-03-29 | 1990-10-17 | Oiles Ind Co Ltd | Oscillation absorbing device |
JP2010112551A (en) * | 2008-10-07 | 2010-05-20 | Yoichiro Okamoto | Base isolation support |
JP2015017638A (en) * | 2013-07-09 | 2015-01-29 | オイレス工業株式会社 | Base isolation support device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4917211A (en) | Seismic isolator | |
JP3421732B2 (en) | Vertical seismic isolation device and three-dimensional seismic isolation device | |
JPH03163240A (en) | Three-dimensional earthquakeproof device | |
JPS62188834A (en) | Vibration damping supporter | |
JPH1046867A (en) | Earthquake-resisting device | |
JP3976423B2 (en) | Vibration suppression device | |
JPH086490B2 (en) | Building damping device | |
JPH0562179B2 (en) | ||
JPH0925990A (en) | Base isolation device | |
JP2001082542A (en) | Three-dimensional base isolation device | |
JP7580644B1 (en) | Tuned mass damper and method for adjusting the natural period of the tuned mass damper | |
JPH033729Y2 (en) | ||
JP7461538B1 (en) | Tuned mass damper and method for adjusting the natural period of the tuned mass damper | |
JPS639745A (en) | Lateral vibration damping mat device | |
JPS61228138A (en) | Earthquake relief device | |
JPS6332278Y2 (en) | ||
JP2020190286A (en) | Seismic isolator | |
JP2552406B2 (en) | Vertical damping system for large-scale structures | |
JPH0112020Y2 (en) | ||
JPH10110777A (en) | Base isolating device for bridge | |
JPS627794Y2 (en) | ||
JPS6339459Y2 (en) | ||
JPH088363Y2 (en) | Anti-vibration device | |
JPH0131714Y2 (en) | ||
JPH0431945Y2 (en) |