JPS62113136A - Resist composition - Google Patents
Resist compositionInfo
- Publication number
- JPS62113136A JPS62113136A JP25400485A JP25400485A JPS62113136A JP S62113136 A JPS62113136 A JP S62113136A JP 25400485 A JP25400485 A JP 25400485A JP 25400485 A JP25400485 A JP 25400485A JP S62113136 A JPS62113136 A JP S62113136A
- Authority
- JP
- Japan
- Prior art keywords
- resist
- electron beam
- conductivity
- complex
- tetracyanoquinodimethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
高分子ポリカチオン−テトラシアノキノジメタン塩型錯
体を電子線レジストに混合することにより導電性をもた
せたレジスト組成物。DETAILED DESCRIPTION OF THE INVENTION [Summary] A resist composition imparted with electrical conductivity by mixing a polymeric polycation-tetracyanoquinodimethane salt type complex into an electron beam resist.
本発明は電子線レジストの改良に関する。 The present invention relates to improvements in electron beam resists.
大量の情報を高速に処理する方法として情報処理装置の
主体を占める半導体装置は高集積化による大容量化が進
んでおり、LSIよりも一段と容量の大きなVLSIが
実用化されている。2. Description of the Related Art Semiconductor devices, which form the main body of information processing equipment as a means of processing large amounts of information at high speed, are increasing in capacity due to high integration, and VLSIs, which have a much larger capacity than LSIs, are being put into practical use.
ここで、高集積化は単位素子の小形化により行われてお
り、最小パターン幅は1μm以下にまで微少化したもの
が用いられている。Here, high integration is achieved by miniaturizing unit elements, and the minimum pattern width is reduced to 1 μm or less.
さて、半導体装置に限らず磁気バブルメモリ素子や弾性
表面波フィルタなど微細パターンを備えた電子部品は総
て薄膜形成技術と写真食刻波4Xi (ホトリソグラフ
ィ又は電子線゛リソグラフィ)を用いてパターン形成が
行われている。Now, not only semiconductor devices but also all electronic components with fine patterns such as magnetic bubble memory elements and surface acoustic wave filters are patterned using thin film formation technology and photo-etching wave 4Xi (photolithography or electron beam lithography). is being carried out.
すなわち真空蒸着法やスパッタ法などの物理的方法や化
学気相成長法(Chemical Vapor Dep
osition略称CVO法)などの化学的方法で被処
理基板上に金属や絶縁物などの薄膜を形成し、これにレ
ジストを被覆した後、パターンを描画したマスクを通し
て紫外線を照射して選択露光し、ポジ形レジストを用い
る場合は光照射部が現像液に可溶となり、一方ネガ形レ
ジストを用いる場合は光照射部が不溶となる性質を利用
して、レジストパターンを作り、これに化学エツチング
或いは反応イオンエノチングのようなドライエツチング
を行うことにより微細パターンが作られている。That is, physical methods such as vacuum evaporation method and sputtering method, and chemical vapor deposition method (Chemical Vapor Deposition method)
A thin film of metal or insulator is formed on the substrate to be processed using a chemical method such as CVO (abbreviation: CVO method), and after coating this with resist, selective exposure is performed by irradiating ultraviolet rays through a patterned mask. When using a positive resist, the light irradiated area becomes soluble in the developer, while when using a negative resist, the light irradiated area becomes insoluble to create a resist pattern, which is then subjected to chemical etching or reaction. Fine patterns are created by performing dry etching such as ion etching.
然しなから紫外線露光によるパターン形成法では波長に
よる制限から微細パターンの形成は1μm以上の線幅の
ものに限られ、これ以下の微細パターンの形成は困難で
ある。However, in the pattern forming method using ultraviolet light exposure, the formation of fine patterns is limited to lines with a line width of 1 μm or more due to wavelength limitations, and it is difficult to form fine patterns with a line width smaller than this.
一方、電子線の波長は加速電圧により異なるが0.1
人程度であり、光の波長に較べて4桁以上も短いために
大きな解像力が期待でき、0.1 μm幅のパターン形
成も可能となる。On the other hand, the wavelength of an electron beam varies depending on the accelerating voltage, but is 0.1
Since it is about the size of a human and is more than four orders of magnitude shorter than the wavelength of light, it can be expected to have great resolution, and it is also possible to form patterns with a width of 0.1 μm.
そのため微細パターンの形成には従来の紫外線露光に変
わって電子線露光が使用されている。For this reason, electron beam exposure is used instead of conventional ultraviolet exposure to form fine patterns.
然し、電子線露光を行うと電子は負の電荷をもつために
レジストの表面に電荷の蓄積が起こり、そのためにパタ
ーンの位置ずれが生ずると云う問題がある。However, when electron beam exposure is performed, since electrons have a negative charge, charge is accumulated on the surface of the resist, which causes a problem in that the position of the pattern is shifted.
先に記したように電子線は波長が短いために1μm以下
のレジストパターンの描画が可能となる以外に電子線を
走査して直接に描画できることからマスクが不要となり
、そのためマスクの製作時間や光学的欠陥が無くなると
共にコストの低減が達成される。As mentioned earlier, since the electron beam has a short wavelength, it is possible to draw resist patterns of 1 μm or less, and since the electron beam can be scanned and drawn directly, there is no need for a mask, which reduces the mask manufacturing time and optics. Cost reduction is achieved along with the elimination of physical defects.
然し、一方では電子は負の電荷をもつために電子線走査
部(以下略して露光部)に電荷の蓄積が起こり、この蓄
積電荷のにじみによりパターンの位置ずれを生じると云
う問題がある。On the other hand, however, there is a problem in that since electrons have a negative charge, charges are accumulated in the electron beam scanning section (hereinafter referred to as the exposure section), and this accumulated charge bleeds, causing pattern positional displacement.
この位置ずれは従来のようにパターン幅および間隔がμ
m単位の場合は問題とはならないが、1μm以下の所謂
るサブミクロン(Sub−micron)パターンの場
合は問題となっている。This misalignment is caused by the pattern width and spacing being
Although this is not a problem in the case of m units, it is a problem in the case of so-called sub-micron patterns of 1 μm or less.
然し、従来はこの問題については有効な対策が講じられ
ていない。However, no effective measures have been taken to date to deal with this problem.
以上記したように電子線露光を行う場合は露光部に電荷
の蓄積を生じ、このにじみによる位置ずれを如何にして
解決するかが課題である。As described above, when performing electron beam exposure, charge is accumulated in the exposed portion, and the problem is how to solve the positional shift caused by this bleeding.
上記の問題は高分子ポリカチオンとテトラシアノキノジ
メタンとからなる塩型錯体を電子線レジストに混合する
ことにより該電子線レジストに導電性を持たせた電子線
レジストの使用により解決することができる。The above problem can be solved by using an electron beam resist in which conductivity is imparted to the electron beam resist by mixing a salt-type complex consisting of a polymeric polycation and tetracyanoquinodimethane into the electron beam resist. can.
本発明は従来使用している電子線レジストに導電性をも
たせることによりパターンの位置ずれの問題を解決する
ものである。The present invention solves the problem of pattern misalignment by imparting conductivity to the conventionally used electron beam resist.
すなわち電子線レジストにはポジ型レジストとネガ型レ
ジストがあるが、この何れに対しても導電性有機化合物
を添加することにより導電性をもたせることができる。That is, there are two types of electron beam resists: positive type resists and negative type resists, and conductivity can be imparted to either of these resists by adding a conductive organic compound.
ここで本発明は導電性有機化合物として高分子ポリカチ
オンとテトラシアノキノジメタン(略称TCNQ)の塩
型錯体を使用する。Here, the present invention uses a salt-type complex of a polymeric polycation and tetracyanoquinodimethane (abbreviated as TCNQ) as a conductive organic compound.
本発明に使用する塩型錯体は10−9〜10” 5−c
m−1の導電率を示しており、この塩型錯体を10−1
6〜10−” S −cm−’の導電率を示す従来の
電子線レジストに添加することにより帯電防止作用をも
たせるものである。The salt type complex used in the present invention is 10-9 to 10" 5-c
m-1, and this salt type complex has a conductivity of 10-1.
By adding it to a conventional electron beam resist exhibiting a conductivity of 6 to 10-''S-cm-', it imparts an antistatic effect.
すなわち上記の塩型錯体の10〜50重量%の添加によ
り導電率が10”” 2〜10−” S −cm−’
の電子線レジストが実用化でき、露光部の電荷蓄積を解
消することができる。That is, by adding 10 to 50% by weight of the above salt-type complex, the conductivity can be increased to 10''2 to 10-'' S -cm-'
It is possible to put this electron beam resist into practical use and eliminate charge accumulation in exposed areas.
実施例1 (ポジ型レジストに対する適用例):ポリビ
ニルベンジルトリエチルアンモニウムとリチウム(Li
)−TCNQ 塩をそれぞれ別々にエタノールに溶解
して0.04mol/ 1の溶液にした。Example 1 (Application example for positive resist): Polyvinylbenzyltriethylammonium and lithium (Li
)-TCNQ salts were separately dissolved in ethanol to make a 0.04 mol/1 solution.
この両者を混合し、窒素(N2)気流中で室温の条件で
1時間に互って攪拌し、ポリビニルベンジルトリエチル
アンモニウム−TCNQ塩型錯体を合成した。Both were mixed and stirred for 1 hour at room temperature in a nitrogen (N2) stream to synthesize a polyvinylbenzyltriethylammonium-TCNQ salt type complex.
次に従来の代表的なポジ型レジストであるポリメチルメ
タアクリレ−1・(略称PMMA)に対し、この錯体を
30重量%加え、シクロヘキサノンに溶解してレジスト
を作った。Next, 30% by weight of this complex was added to polymethyl methacrylate-1 (abbreviated as PMMA), which is a typical conventional positive resist, and dissolved in cyclohexanone to prepare a resist.
かかるレジストをシリコン(Si)基板上に約1μmの
厚さにスピンコードした後、140℃で30分間ベーキ
ングした。The resist was spin-coded onto a silicon (Si) substrate to a thickness of about 1 μm, and then baked at 140° C. for 30 minutes.
次にSi基板を電子線露光装置にセットし、20KVの
加速電圧で5 Xl0−5C/cm2の露光量でパター
ンの描画を行った後、メチルイソブチルケトンで2分間
に互って現像した。Next, the Si substrate was set in an electron beam exposure device, and a pattern was drawn at an accelerating voltage of 20 KV and an exposure dose of 5 Xl0-5 C/cm2, and then developed with methyl isobutyl ketone for 2 minutes.
このようにして形成したパターンには従来のようにPM
MAのみを用いてパターン形成した場合に生しる位置ず
れは全く認められなかった。The pattern formed in this way is coated with PM as before.
No positional deviation that occurs when patterning is performed using only MA was observed.
注1:
上記の実施例においては高分子ポリカチオンとしてポリ
ビニルベンジルトリエチルアンモニウムを用いたが、こ
の代わりにポリ−4−ビニル−N−メチルビリジウム、
ポリジアリルジメチルアンモニウム、ポリジアリルジメ
チルアンモニウムスルホン、ポリ−N、N、N ’ 、
N ’−テトラメチルヘキサメチレンパラキシレンアン
モニウムなどのTCNQ塩を用いても同様の効果がある
。Note 1: In the above examples, polyvinylbenzyltriethylammonium was used as the polymeric polycation, but poly-4-vinyl-N-methylpyridium,
polydiallyldimethylammonium, polydiallyldimethylammonium sulfone, poly-N, N, N',
Similar effects can be obtained using TCNQ salts such as N'-tetramethylhexamethylene paraxylene ammonium.
また、実施例にはポジ型レジストとしてPMMAを用い
たが、この代わりにPMl’lA−MA (メタクリル
酸)1トリクロロエチルメタクリレート、トリフルオロ
エチルα−クロロアクリレートなどを用いて上記のTC
NQ塩と混合しても同様の効果がある。In addition, although PMMA was used as a positive resist in the examples, PMl'lA-MA (methacrylic acid) 1 trichloroethyl methacrylate, trifluoroethyl α-chloroacrylate, etc. were used instead of the above TC.
A similar effect can be obtained when mixed with NQ salt.
なお、上記の各レジスト材料に上記の各高分子ポリカチ
オンのTCNQ塩型錯体を10〜50重世%加えればど
の組合せの混合でも導電率が10−12〜10−1’S
−cm−’の電子線ポジ型レジストを作ることができる
。In addition, if 10 to 50% of the TCNQ salt type complex of each of the polymeric polycations mentioned above is added to each of the above resist materials, the conductivity will be 10-12 to 10-1'S in any combination.
-cm-' electron beam positive resist can be produced.
実施例2 (ネガ型レジストに対する適用例):従来の
代表的な電子線ネガ型レジストであるクロルメチル化ポ
リスチレン(以下略称CMS)に対し、実施例1と同じ
方法で合成したポリビニルベンジルトリエチルアンモニ
ウム−TCNQ塩型諸体ヲ25重量%加え、シクロヘキ
サノンに溶解してネガ型レジストを作った。Example 2 (Application example to negative resist): Polyvinylbenzyltriethylammonium-TCNQ synthesized by the same method as Example 1 was applied to chloromethylated polystyrene (hereinafter abbreviated as CMS), which is a typical conventional electron beam negative resist. A negative resist was prepared by adding 25% by weight of salt type substances and dissolving them in cyclohexanone.
このレジストをSi基板上に約1μmの厚さにスピンコ
ードした後、80℃で20分間のベーキング処理を行っ
た。This resist was spin-coded onto a Si substrate to a thickness of about 1 μm, and then baked at 80° C. for 20 minutes.
次にSi基板を電子線露光装置にセントし、加速電圧2
0KVの条件で3 X 10−’C/cm2の露光量で
パターン描画を行った後、アセトンで1分間現像し、続
いてIPAでリンスした。Next, place the Si substrate into an electron beam exposure device and apply an acceleration voltage of 2
After pattern writing was performed at an exposure dose of 3 x 10-'C/cm2 at 0 KV, development was performed with acetone for 1 minute, followed by rinsing with IPA.
このように形成したパターンには従来のCMSのみを用
いてパターン形成した際に生ずる位置ずれは全く認めら
れなかった。In the pattern formed in this way, no positional shift that occurs when patterning is performed using only conventional CMS was observed.
注2:
ネガ型レジスト材料として本実施例においてはCMSを
使用したが、これ以外にグリシジルメタクリレート−エ
チルアクリレート共重合(COP) 、ポリジアリルオ
ルソフタレー) (PDOP)を用いても同様な効果が
ある。Note 2: Although CMS was used as the negative resist material in this example, the same effect could be obtained by using glycidyl methacrylate-ethyl acrylate copolymer (COP) or polydiallyl orthophthalate (PDOP). be.
また実施例においては高分子ポリカチオンとしてポリビ
ニルベンジルトリエチルアンモニウムを用いたが、注1
に示したように各種の高分子ポリカチオンを用いること
ができる。In addition, in the examples, polyvinylbenzyltriethylammonium was used as the polymeric polycation, but Note 1
Various polymeric polycations can be used as shown in .
上記の各レジスト材料に上記の各高分子ポリカチオンー
TCNQ塩型錯体を10〜50重量%加えればどの混合
物についても導電率がIQ−12〜1O−15S ・
clll−1の電子線ネガ型レジストを作ることが可能
となる。If 10 to 50% by weight of each of the above polymer polycation-TCNQ salt type complexes is added to each of the above resist materials, the conductivity of any mixture will be IQ-12 to 1O-15S.
It becomes possible to produce a cllll-1 electron beam negative resist.
以上記したように本発明の実施により電荷の蓄積による
パターンの位置ずれを解消することができ、サブミクロ
ンの微細パターンの形成が可能となる。As described above, by carrying out the present invention, it is possible to eliminate pattern misalignment due to charge accumulation, and it becomes possible to form submicron fine patterns.
Claims (1)
る塩型錯体を従来の電子線レジストに混合することによ
り該電子線レジストに導電性を持たせたことを特徴とす
るレジスト組成物。1. A resist composition characterized in that a conventional electron beam resist is made to have electrical conductivity by mixing a salt type complex consisting of a polymeric polycation and tetracyanoquinodimethane with the electron beam resist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25400485A JPS62113136A (en) | 1985-11-13 | 1985-11-13 | Resist composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25400485A JPS62113136A (en) | 1985-11-13 | 1985-11-13 | Resist composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62113136A true JPS62113136A (en) | 1987-05-25 |
Family
ID=17258921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25400485A Pending JPS62113136A (en) | 1985-11-13 | 1985-11-13 | Resist composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62113136A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63100442A (en) * | 1986-10-13 | 1988-05-02 | Mitsubishi Electric Corp | Non-electrifiable resist |
JPH0210354A (en) * | 1988-06-29 | 1990-01-16 | Matsushita Electric Ind Co Ltd | Fine pattern forming material and method therefor |
JPH02101461A (en) * | 1988-10-11 | 1990-04-13 | Matsushita Electric Ind Co Ltd | Material and method for forming fine pattern |
EP0382046A2 (en) * | 1989-02-06 | 1990-08-16 | Hoechst Aktiengesellschaft | Electrically conductive resist composition, process for its production and its use |
US5168030A (en) * | 1986-10-13 | 1992-12-01 | Mitsubishi Denki Kabushiki Kaisha | Positive type o-quinone diazide photo-resist containing antistatic agent selected from hydrazones, ethylcarbazole and bis(dimethylamino)benzene |
JP2011227462A (en) * | 2010-03-31 | 2011-11-10 | Fujifilm Corp | Color tone variable film, production method thereof and electrochromic element obtained by the production method |
-
1985
- 1985-11-13 JP JP25400485A patent/JPS62113136A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63100442A (en) * | 1986-10-13 | 1988-05-02 | Mitsubishi Electric Corp | Non-electrifiable resist |
US5168030A (en) * | 1986-10-13 | 1992-12-01 | Mitsubishi Denki Kabushiki Kaisha | Positive type o-quinone diazide photo-resist containing antistatic agent selected from hydrazones, ethylcarbazole and bis(dimethylamino)benzene |
JPH0210354A (en) * | 1988-06-29 | 1990-01-16 | Matsushita Electric Ind Co Ltd | Fine pattern forming material and method therefor |
JPH02101461A (en) * | 1988-10-11 | 1990-04-13 | Matsushita Electric Ind Co Ltd | Material and method for forming fine pattern |
EP0382046A2 (en) * | 1989-02-06 | 1990-08-16 | Hoechst Aktiengesellschaft | Electrically conductive resist composition, process for its production and its use |
JP2011227462A (en) * | 2010-03-31 | 2011-11-10 | Fujifilm Corp | Color tone variable film, production method thereof and electrochromic element obtained by the production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02103547A (en) | Formation of conductive layer | |
GB1579671A (en) | Photosensitive films for use in microgravure | |
JP2883798B2 (en) | Semiconductor device patterning method | |
JPS62113136A (en) | Resist composition | |
JPH02191957A (en) | Resist composition | |
JPH0722156B2 (en) | Method for forming pattern of semiconductor device | |
JPH02251962A (en) | Fine pattern forming material and pattern forming method | |
JPS62113134A (en) | Formation of micropattern | |
JP2516968B2 (en) | Flattening material for two-layer electron beam resist | |
CN107430333A (en) | Include the patterning method of misregistration error protection | |
JPS6256947A (en) | Composition for flattened layer for resist having two-layered structure | |
JPS63254729A (en) | Forming method for resist pattern | |
JP2867509B2 (en) | Method of forming resist pattern | |
JPS59116745A (en) | Formation of pattern | |
JP2848625B2 (en) | Pattern formation method | |
JPS59124133A (en) | Method of forming negative type resist image | |
JP2548308B2 (en) | Pattern formation method | |
JPS60191245A (en) | Resist film material and formation of resist pattern | |
JPS60102735A (en) | Method of treating electron beam resist | |
JPS6259950A (en) | Ionizing radiation sensitive positive type resist | |
JP2001135563A (en) | Lithography process and method of fabrication for device | |
JP2586584B2 (en) | Fine pattern forming method | |
JPS62113139A (en) | Negative type resist composition | |
JP2618978B2 (en) | Resist material and pattern forming method using the resist material | |
JPH01132122A (en) | Pattern forming method |