[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0147009B2 - - Google Patents

Info

Publication number
JPH0147009B2
JPH0147009B2 JP59074690A JP7469084A JPH0147009B2 JP H0147009 B2 JPH0147009 B2 JP H0147009B2 JP 59074690 A JP59074690 A JP 59074690A JP 7469084 A JP7469084 A JP 7469084A JP H0147009 B2 JPH0147009 B2 JP H0147009B2
Authority
JP
Japan
Prior art keywords
pattern
methacrylate
sensitive material
resist
monomer group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59074690A
Other languages
Japanese (ja)
Other versions
JPS60218843A (en
Inventor
Korehito Matsuda
Katsuyuki Harada
Shigeru Morya
Tetsuyoshi Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7469084A priority Critical patent/JPS60218843A/en
Priority to US06/721,306 priority patent/US4634645A/en
Priority to CA000478690A priority patent/CA1264596A/en
Priority to EP85104417A priority patent/EP0158357B1/en
Priority to DE8585104417T priority patent/DE3581822D1/en
Publication of JPS60218843A publication Critical patent/JPS60218843A/en
Publication of JPH0147009B2 publication Critical patent/JPH0147009B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は半導体集積回路などのパタン形成にお
いて、微細かつ高精度なパタン形成を行なう方法
に関するものである。 〔発明の技術的背景とその問題点〕 半導体集積回路などのパタン形成は半導体基板
に光あるいは電子線などの高エネルギー線に感応
するレジストを塗布し、これに該高エネルギー線
を照射し、その後現象を行ないパタン形成する。
例えば、ポジ形レジストの場合、高エネルギー線
の照射によりレジストがエネルギーを吸収し、こ
れによつてレジストの主鎖あるいは側鎖の切断が
起つて分解し現像溶媒に可溶となる。このため、
現像後に高エネルギー線を照射した部分のレジス
トが除去されパタンが形成される。 パタンが微細化すると、光露光では回折現象に
より形成パタンの解像性が低下するため、電子線
やX線などの高エネルギー線が有利となる。しか
し、これらの高エネルギー線にも解像性を劣化さ
せる要因がある。第1図a,b,cに電子線を用
いた従来のパタン形成方法について示す。第1図
aにおいて、電子線1で基板3に塗布された感応
材料(レジスト2)を照射すると、レジストおよ
び基板内に進入した電子は分子や原子と衝突し、
後方散乱電子4となつて基板外に放出される。後
方散乱電子の飛程は電子線のエネルギーや基板の
密度によつて決るが、通常数ないし十数ミクロン
に及ぶ。この過程でレジストは後方散乱電子によ
り再び感応し、第1図bの点線で示したごとく、
レジスト分解領域は照射した電子線の寸法(ビー
ム寸法)よりも広い範囲に及ぶ。このようにレジ
スト中の電子線によつてもたらされる蓄積エネル
ギー量は、レジストの上層部程ビーム寸法からの
広がりが小さくビーム寸法を反映したものとな
る。現像工程では、レジストの上層部からレジス
トの溶解がすすむため現像溶媒が基板に到達した
時には、第1図cのごとくパタン幅はビーム寸法
に較べ大きく広がつてしまう。すなわち、レジス
トの上層部における蓄積エネルギー量はレジスト
の下層部に比して少ないが、現像溶媒に浸漬され
る時間が長く横方向にレジストの溶解がすすむ。
一方、レジストの下層部はレジスト中の蓄積エネ
ルギー量が大きく、レジストの溶解が急速に進行
するため溶解領域は短時間のうちに広がる。この
ことにより、ビーム寸法よりも広がつたレジスト
パタンが形成される。特に、パタン密度が高い場
合には隣接したパタン部を照射した時に発生する
後方散乱電子の作用によりパタンの解像性は著し
く低下するという欠点があつた。かかる事情はX
線露光における二次電子の発生がもたらす解像性
の低下、あるいは光露光における定在波の介在に
よるパタンエツジの不均一性など基板の影響によ
る解像性の劣化という観点からは共通した問題で
ある。 〔発明の目的〕 本発明は、電子線描画での後方散乱電子、X線
露光での二次電子および光露光での定在波の介在
による解像性や寸法精度の低下を除くため、レジ
ストの上層部に形成したパタンをレジストの下層
部に転写することを特徴としたもので、その目的
は所望の微細パタンを高精度に得ることにある。 〔発明の実施例〕 第2図a〜eは本発明の一実施例示す。第2図
aに示すように、基板3に塗布した感応材料(レ
ジスト2)に電子線1で描画する。この時、照射
量は十分に少なく、例えば適正照射量の1/5〜1/1
0とする。これにより、該レジスト現像すると第
2図bに示したごとくレジスト2の上層部にビー
ム寸法を反映した凹形のパタンが形成される。該
パタンに第2図cに示すごとくレジスト2よりエ
ツチング速度の遅い材料5を塗布する。これに
は、レジストとのエツチング選択比の大きい材
料、例えばシロキサン樹脂やスピンオングラスな
どを用いる。これらの材料はスピンコータで手軽
に、しかも均一性よく塗布できるので非常にプロ
セスを簡略化できる。例えばシロキサン樹脂を塗
布した場合、CF4ガス雰囲気中でエツチングする
とシロキサン樹脂は均一にエツチングされる。エ
ツチング時間を適切に設定すると第2図dで示す
ように、レジストの上層部に形成したパタンの凹
部のほぼ中央までシロキサン樹脂はエツチングさ
れる。その後、異方性エツチング装置を用いて
O2ガス雰囲気中でエツチングすると第2図eに
示すようにシロキサン樹脂の下部以外のレジスト
はすべて除去され、シロキサン樹脂の下部にビー
ム寸法を反映したパタンが形成される。 本実施例でCF4ガスによるシロキサン樹脂のエ
ツチングをレジストの上層部に形成したパタンの
凹部の中央よりさらに深くすると、ビーム寸法よ
りも小さいパタン形成も可能である。また、後方
散乱電子の影響が少ないレジストの上層部に形成
したパタンを使用しているので、弧立パタンで
も、隣接したパタンでも同一条件で描画できる。
さらに、パタン形成のために必要となる照射量も
大幅に減るため生産性の向上にもつながる。 つぎに、本発明の具体的な実施例を示す。シリ
コンウエハ基板に膜厚1μmのポジ形レジスト、フ
エニールメタクリレート−メタクリル酸共重合体
(φ−MAC)を塗布し、200℃で一時間のプリベ
ークをする。この試料に0.2μm寸法の電子線
(30keV)を照射する。照射量は従来のパタン形
成法で必要となる照射量の約1/10の10μC/cm2
した。これを1,4−ジオキサン25%とジイソブ
チルケトン75%の混合液に浸漬し現像すると電子
線照射部にビーム寸法を反映した深さ0.15μm〜
0.2μmの凹パタンが得られた。この上にシロキサ
ン樹脂をスピンコータにより膜厚0.6μm塗布する
と、試料表面は平坦となる。この試料を反応性イ
オンエツチング装置により、流量50sccmのCF4
ガスを流して、パワー密度0.3W/cm2で12分間エ
ツチングする。その結果、シロキサン樹脂はレジ
ストパタン凹部のほぼ中央までエツチングされ
た。その後、再び反応性イオンエツチング装置に
より流量50sccmのO2ガスを用いて、パワー密度
0.3W/cm2で10分間エツチングすると、シロキサ
ン樹脂の下部にアスペクト比の高いレジストパタ
ンが形成できた。この場合、シロキサン樹脂はほ
とんどエツチングされず、φ−MACのみがエツ
チングされる。得られたパタン寸法はビーム寸法
を極めて忠実に反映しており、0.05μm以下の寸
法精度であつた。第1図に示す従来の方法では、
後方散乱電子のため0.2μmものパタン寸法の広が
りがあるのに対して、、本方法では高精度なパタ
ン形成が可能であつた。 光露光を用いた実施例について示す。1μm幅の
パタンを有するマスクを介してポジ形レジスト
AZ1350Jに凹形パタン転写をした。光の照射量と
しては通常の約1/10の6mJ/cm2に設定した。光の
波長としてはgライン(0.436μm)を用いた。こ
の試料に前述と同様にシロキサン樹脂をを塗布
し、反応性イオンエツチング装置によりシロキサ
ン樹脂をエツチングした。シロキサン樹脂のエツ
チング工程では少しオーバにエツチングし、レジ
ストに形成されている凹部の先端から約500Åの
ところまでシロキサン樹脂をエツチングした。こ
の試料について前述と同じ方法でレジストをエツ
チングした。その結果得られたパタン寸法はマス
ク寸法よりも小さい0.8μm幅のパタンであつた。
本方法では、付着材料のエツチング条件を制御す
ることにより、設計パタンより微細なパタンを形
成することが可能であつた。また、これらの実施
例では従来法の約1/10の照射量でパタン形成を行
つており、照射時間も大幅に短縮できた。 感応材料を変えた実施例を示す。シリコンウエ
ハに1μm膜厚のポリα,α−ジメチルベンジルメ
タクリレートからなる高分子膜を塗布する。これ
に20μC/cm2の電子線を照射すると該高分子膜の
表面に深さ0.2μmの凹パタンが形成される。これ
に、シロキサン樹脂を付着させ、前述の方法によ
つてシロキサン樹脂およびポリα,α−ジメチル
ベンジルメタクリレートからなる高分子膜のエツ
チングを行い、ビーム寸法と同じ1μmパタンを得
た。このような感応材料では、公知のように電子
線の照射により高分子の主鎖や側鎖の切断が起つ
て分解し、分子が蒸発するため、現像工程が省略
できパタン形成プロセスが簡略化できる。電子線
照射だけで高分子が分解し、現像液を用いる現像
をせずに凹状パタン形成が可能な材料としては上
記ポリα,α−ジメチルベンジルメタクリレート
以外に、M1モノマ群から選ばれるホモポリマま
たはコポリマまたはM1モノマ群とM2モノマ群の
組合せからなるコポリマを用いるもので、M1モ
ノマ群としてはα,α−ジメチルベンジルメタク
リレート、α−メチルベンジルメタクリレート、
ジフエニルメタクリレート、トリフエニルメタク
リレート、フエニルメタクリレートなどのアリー
ルメタクリレートおよび第三ブチルメタクリレー
ト、M2モノマ群としては、CH2=C(CH3
COORで表わされ、アルキル基またはハロアルキ
ル基Rが炭素数5以下であるアルキルメタクリレ
ートおよびハロアルキルメタクリレートを用いて
も、本発明の作用を実現できる。第一表は本実施
例と同じ作用が得られる感応材料の例を示したも
のである。深さ0.2μmの凹パタンを形成するのに
必要な照射量を示してある。これらは高エネルギ
ー線照射により感応材料の上層部のみに凹パタン
を形成すればよいため、材料選択の範囲も広い特
徴がある。
[Technical Field of the Invention] The present invention relates to a method for forming fine and highly accurate patterns in pattern formation for semiconductor integrated circuits and the like. [Technical background of the invention and its problems] Pattern formation for semiconductor integrated circuits, etc. involves coating a semiconductor substrate with a resist that is sensitive to high-energy rays such as light or electron beams, irradiating the resist with the high-energy rays, and then A pattern is formed by performing a phenomenon.
For example, in the case of a positive resist, the resist absorbs energy when irradiated with high-energy rays, which causes the main chain or side chain of the resist to be cut, decomposes, and becomes soluble in a developing solvent. For this reason,
After development, the resist in the areas irradiated with high-energy rays is removed to form a pattern. When a pattern becomes finer, the resolution of the formed pattern decreases due to a diffraction phenomenon in light exposure, so high-energy rays such as electron beams and X-rays are advantageous. However, these high-energy rays also have factors that degrade resolution. A conventional pattern forming method using an electron beam is shown in FIGS. 1a, 1b, and 1c. In FIG. 1a, when a sensitive material (resist 2) coated on a substrate 3 is irradiated with an electron beam 1, the electrons that have entered the resist and the substrate collide with molecules and atoms.
The electrons become backscattered electrons 4 and are emitted to the outside of the substrate. The range of backscattered electrons is determined by the energy of the electron beam and the density of the substrate, but usually ranges from a few to more than ten microns. During this process, the resist becomes sensitized again by the backscattered electrons, and as shown by the dotted line in Figure 1b,
The resist decomposition region extends over a wider range than the dimensions (beam dimensions) of the irradiated electron beam. In this way, the amount of stored energy brought about by the electron beam in the resist has a smaller spread from the beam size in the upper layers of the resist, and reflects the beam size. In the developing process, the resist is dissolved from the upper layer of the resist, so when the developing solvent reaches the substrate, the pattern width becomes larger than the beam dimension, as shown in FIG. 1c. That is, although the amount of energy stored in the upper layer of the resist is smaller than that in the lower layer of the resist, the resist is immersed in the developing solvent for a longer time and dissolution progresses in the lateral direction.
On the other hand, in the lower layer of the resist, the amount of energy stored in the resist is large, and the dissolution of the resist proceeds rapidly, so that the melted region expands in a short period of time. This forms a resist pattern that is wider than the beam dimension. In particular, when the pattern density is high, the resolution of the pattern is significantly reduced due to the effect of backscattered electrons generated when adjacent pattern portions are irradiated. Such circumstances are X
This is a common problem from the viewpoint of resolution degradation caused by the influence of the substrate, such as a decrease in resolution caused by the generation of secondary electrons during line exposure, or non-uniformity of pattern edges due to the presence of standing waves during light exposure. . [Purpose of the Invention] The present invention aims to eliminate the reduction in resolution and dimensional accuracy caused by backscattered electrons in electron beam lithography, secondary electrons in X-ray exposure, and standing waves in light exposure. This method is characterized by transferring the pattern formed on the upper layer to the lower layer of the resist, and its purpose is to obtain a desired fine pattern with high precision. [Embodiment of the Invention] Figures 2a to 2e show an embodiment of the invention. As shown in FIG. 2a, a sensitive material (resist 2) coated on a substrate 3 is drawn with an electron beam 1. As shown in FIG. At this time, the irradiation amount is sufficiently small, for example, 1/5 to 1/1 of the appropriate irradiation amount.
Set to 0. As a result, when the resist is developed, a concave pattern reflecting the beam size is formed in the upper layer of the resist 2, as shown in FIG. 2b. A material 5 having a slower etching speed than the resist 2 is applied to the pattern as shown in FIG. 2c. For this purpose, a material having a high etching selectivity with respect to the resist, such as siloxane resin or spin-on glass, is used. These materials can be applied easily and with good uniformity using a spin coater, which greatly simplifies the process. For example, when a siloxane resin is applied, the siloxane resin is etched uniformly when etched in a CF 4 gas atmosphere. When the etching time is set appropriately, the siloxane resin is etched to approximately the center of the concave portion of the pattern formed in the upper layer of the resist, as shown in FIG. 2d. Then, using an anisotropic etching device,
When etching is carried out in an O 2 gas atmosphere, all of the resist except the lower part of the siloxane resin is removed as shown in FIG. 2e, and a pattern reflecting the beam dimensions is formed under the siloxane resin. In this example, if the etching of the siloxane resin by CF 4 gas is made deeper than the center of the concave portion of the pattern formed in the upper layer of the resist, it is also possible to form a pattern smaller than the beam size. Furthermore, since a pattern formed in the upper layer of the resist is used, which is less affected by backscattered electrons, both arcuate patterns and adjacent patterns can be drawn under the same conditions.
Furthermore, the amount of radiation required for pattern formation is significantly reduced, leading to improved productivity. Next, specific examples of the present invention will be shown. A 1 μm thick positive resist and phenyl methacrylate-methacrylic acid copolymer (φ-MAC) are applied to a silicon wafer substrate, and prebaked at 200°C for one hour. This sample is irradiated with an electron beam (30keV) with a size of 0.2μm. The irradiation dose was set at 10 μC/cm 2, which is approximately 1/10 of the irradiation dose required by conventional pattern formation methods. When this is immersed in a mixed solution of 25% 1,4-dioxane and 75% diisobutyl ketone and developed, the electron beam irradiation area has a depth of 0.15 μm to reflect the beam size.
A concave pattern of 0.2 μm was obtained. When 0.6 μm thick siloxane resin is applied onto this using a spin coater, the sample surface becomes flat. This sample was processed using CF 4 at a flow rate of 50 sccm using a reactive ion etching device.
Etching was performed for 12 minutes at a power density of 0.3 W/cm 2 by flowing gas. As a result, the siloxane resin was etched to almost the center of the recessed portion of the resist pattern. After that, power density was determined using O2 gas at a flow rate of 50 sccm using the reactive ion etching device again.
After etching at 0.3 W/cm 2 for 10 minutes, a resist pattern with a high aspect ratio was formed under the siloxane resin. In this case, the siloxane resin is hardly etched, and only φ-MAC is etched. The pattern dimensions obtained reflected the beam dimensions extremely faithfully, with a dimensional accuracy of 0.05 μm or less. In the conventional method shown in Figure 1,
Although the pattern size spreads by as much as 0.2 μm due to backscattered electrons, this method enabled highly accurate pattern formation. An example using light exposure will be described. Positive resist through a mask with a 1μm wide pattern
I transferred a concave pattern to AZ1350J. The amount of light irradiation was set at 6 mJ/cm 2 , about 1/10 of the normal amount. G-line (0.436 μm) was used as the wavelength of light. This sample was coated with siloxane resin in the same manner as described above, and the siloxane resin was etched using a reactive ion etching device. In the siloxane resin etching step, the siloxane resin was etched a little over-etching, and the siloxane resin was etched to a distance of about 500 Å from the tip of the recess formed in the resist. The resist of this sample was etched in the same manner as described above. The pattern size obtained as a result was a pattern with a width of 0.8 μm, which was smaller than the mask size.
In this method, by controlling the etching conditions of the deposited material, it was possible to form a pattern finer than the designed pattern. Furthermore, in these Examples, pattern formation was performed with approximately 1/10 the irradiation dose of the conventional method, and the irradiation time was also significantly shortened. An example in which the sensitive material is changed will be shown. A 1 μm thick polymer film made of polyα,α-dimethylbenzyl methacrylate is coated on a silicon wafer. When this is irradiated with an electron beam of 20 μC/cm 2 , a concave pattern with a depth of 0.2 μm is formed on the surface of the polymer film. A siloxane resin was attached to this, and a polymer film made of the siloxane resin and poly α, α-dimethylbenzyl methacrylate was etched using the method described above to obtain a 1 μm pattern having the same beam size. In such sensitive materials, as is well known, electron beam irradiation causes the main chains and side chains of the polymer to break, decompose, and evaporate the molecules, which can omit the development step and simplify the pattern formation process. . In addition to the above-mentioned poly α, α-dimethylbenzyl methacrylate, homopolymers or copolymers selected from the M1 monomer group are materials whose polymers are decomposed by electron beam irradiation and can form concave patterns without development using a developer. Alternatively, a copolymer consisting of a combination of M1 monomer group and M2 monomer group is used, where the M1 monomer group includes α,α-dimethylbenzyl methacrylate, α-methylbenzyl methacrylate,
Aryl methacrylates such as diphenyl methacrylate, triphenyl methacrylate, phenyl methacrylate and tert-butyl methacrylate, as the M2 monomer group, CH 2 = C (CH 3 )
The effects of the present invention can also be achieved using alkyl methacrylates and haloalkyl methacrylates represented by COOR in which the alkyl group or haloalkyl group R has 5 or less carbon atoms. Table 1 shows examples of sensitive materials that can provide the same effect as in this example. The amount of irradiation required to form a concave pattern with a depth of 0.2 μm is shown. These are characterized by a wide range of material selection because it is only necessary to form a concave pattern in the upper layer of the sensitive material by irradiation with high-energy rays.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、レジストの上層
部に形成されたパタンをレジストの下層部に転写
するので電子線描画での後方散乱電子、X線露光
での二次電子および光露光での定在波などの影響
が軽減でき、設計パタンに忠実なパタン形成が可
能となる利点がある。また、照射量を大幅に減少
することができるため、パタン形成時間が短縮で
きる利点がある。
As explained above, the present invention transfers the pattern formed on the upper layer of the resist to the lower layer of the resist, so that backscattered electrons in electron beam lithography, secondary electrons in X-ray exposure, and fixed electrons in light exposure are This has the advantage that the effects of waves, etc. can be reduced and it is possible to form a pattern that is faithful to the design pattern. Furthermore, since the amount of irradiation can be significantly reduced, there is an advantage that the pattern formation time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のパタン形成方法の説明図、第2
図は本発明の一実施例を示すパタン形成工程図で
ある。 1…電子線、2…レジスト、3…基板、4…後
方散乱電子、5…感応材料とはエツチング速度の
異なる付着材料。
Figure 1 is an explanatory diagram of the conventional pattern forming method, Figure 2
The figure is a pattern forming process diagram showing an embodiment of the present invention. 1...Electron beam, 2...Resist, 3...Substrate, 4...Backscattered electrons, 5...Adhesive material whose etching rate is different from that of the sensitive material.

Claims (1)

【特許請求の範囲】 1 光.電子線.X線もしくはイオンビームなど
の高エネルギー線を用いて、パタンを形成する方
法において、該高エネルギー線を、これに感応す
る感応材料に照射して、感応材料の上層部に凹状
のパタン形成を行い、該パタン形成部に該感応材
料とのエツチング選択比がとれる材料を付着せし
めて上記感応材料表層部全体を平坦化し、該付着
材料を均一にエツチングした後、上記凹部に残存
する該付着材料をマスクとして該感応材料の下層
部に該マスクパタンを転写することを特徴とする
パタン形成方法。 2 上記感応材料としてポジ形レジストを使用す
ることを特徴とする特許請求の範囲第1項記載の
パタン形成方法。 3 上記付着材料としてシリコンまたはシリコン
化合物を用いることを特徴とする特許請求の範囲
第1項記載のパタン形成方法。 4 上記感応材料として、高エネルギー線の照射
だけで、現像液を用いる現像をせずに凹状パタン
が形成できるM1モノマ群から選ばれるホモポリ
マまたはコポリマまたはM1モノマ群とM2モノマ
群の組合せからなるコポリマを用いるもので、
M1モノマ群としてはα,α−ジメチルベンジル
メタクリレート、α−メチルベンジルメタクリレ
ート、ジフエニルメタクリレート、トリフエニル
メタクリレート、フエニルメタクリレートなどの
アリールメタクリレートおよび第三ブチルメタク
リレート、M2モノマ群としては、CH2=C
(CH3)COORで表わされ、アルキル基またはハ
ロアルキル基Rが炭素数5以下であるアルキルメ
タクリレートおよびハロアルキルメタクリレート
を用いることを特徴とする特許請求の範囲第1項
記載のパタン形成方法。
[Claims] 1. Light. Electron beam. In a method of forming a pattern using high-energy rays such as X-rays or ion beams, the high-energy rays are irradiated onto a sensitive material to form a concave pattern on the upper layer of the sensitive material. After depositing a material that has an etching selectivity with the sensitive material on the pattern forming portion to flatten the entire surface layer of the sensitive material and uniformly etching the deposited material, the deposited material remaining in the recesses is removed. A method for forming a pattern, which comprises transferring the mask pattern to a lower layer of the sensitive material as a mask. 2. The pattern forming method according to claim 1, wherein a positive resist is used as the sensitive material. 3. The pattern forming method according to claim 1, wherein silicon or a silicon compound is used as the adhesion material. 4. As the above-mentioned sensitive material, a homopolymer or copolymer selected from the M1 monomer group or a copolymer consisting of a combination of the M1 monomer group and the M2 monomer group can form a concave pattern simply by irradiation with high-energy rays without developing using a developer. It uses
The M1 monomer group includes aryl methacrylates and tert-butyl methacrylate such as α,α-dimethylbenzyl methacrylate, α-methylbenzyl methacrylate, diphenyl methacrylate, triphenyl methacrylate, and phenyl methacrylate; the M2 monomer group includes CH 2 =C
The pattern forming method according to claim 1, characterized in that an alkyl methacrylate and a haloalkyl methacrylate represented by (CH 3 )COOR and in which the alkyl group or haloalkyl group R has 5 or less carbon atoms are used.
JP7469084A 1984-04-13 1984-04-13 Formation of pattern Granted JPS60218843A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7469084A JPS60218843A (en) 1984-04-13 1984-04-13 Formation of pattern
US06/721,306 US4634645A (en) 1984-04-13 1985-04-09 Method of forming resist micropattern
CA000478690A CA1264596A (en) 1984-04-13 1985-04-10 Method of forming resist micropattern
EP85104417A EP0158357B1 (en) 1984-04-13 1985-04-11 Method of forming resist micropattern
DE8585104417T DE3581822D1 (en) 1984-04-13 1985-04-11 METHOD FOR PRODUCING MICRO PROTECTIVE LACQUER IMAGES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7469084A JPS60218843A (en) 1984-04-13 1984-04-13 Formation of pattern

Publications (2)

Publication Number Publication Date
JPS60218843A JPS60218843A (en) 1985-11-01
JPH0147009B2 true JPH0147009B2 (en) 1989-10-12

Family

ID=13554462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7469084A Granted JPS60218843A (en) 1984-04-13 1984-04-13 Formation of pattern

Country Status (1)

Country Link
JP (1) JPS60218843A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136307A (en) * 1984-07-30 1986-02-21 Mitsubishi Rayon Co Ltd Methacrylic resin having low hygroscopicity
JPS6450425A (en) * 1987-08-20 1989-02-27 Toshiba Corp Formation of fine pattern
JP5655443B2 (en) * 2010-09-06 2015-01-21 住友電気工業株式会社 Inorganic compound film etching method and semiconductor optical device manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155929A (en) * 1983-02-25 1984-09-05 Mitsubishi Electric Corp Forming method of minute pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155929A (en) * 1983-02-25 1984-09-05 Mitsubishi Electric Corp Forming method of minute pattern

Also Published As

Publication number Publication date
JPS60218843A (en) 1985-11-01

Similar Documents

Publication Publication Date Title
US5362606A (en) Positive resist pattern formation through focused ion beam exposure and surface barrier silylation
US7026099B2 (en) Pattern forming method and method for manufacturing semiconductor device
WO1991006041A1 (en) Surface barrier silylation microlithography
JPS6055825B2 (en) Method for forming thin film patterns with large aspect ratio openings in resist structures
US6017658A (en) Lithographic mask and method for fabrication thereof
US6258514B1 (en) Top surface imaging technique using a topcoat delivery system
US4634645A (en) Method of forming resist micropattern
US5266424A (en) Method of forming pattern and method of manufacturing photomask using such method
US5104479A (en) Resist material for energy beam lithography and method of using the same
EP0366460A2 (en) Process for production of semiconductor device
US4405707A (en) Method of producing relief structures for integrated semiconductor circuits
US5064748A (en) Method for anisotropically hardening a protective coating for integrated circuit manufacture
JPH07106224A (en) Pattern forming method
JPH0147009B2 (en)
US4268607A (en) Method of patterning a resist layer for manufacture of a semiconductor element
US4476216A (en) Method for high resolution lithography
JPH0876385A (en) Forming method for fine pattrn
JPS6376438A (en) Pattern formation
JPS6248211B2 (en)
JPS5832420A (en) Electron beam lithography
JPS6360893B2 (en)
JPS59124133A (en) Method of forming negative type resist image
JP2823246B2 (en) Pattern formation method
US4954424A (en) Pattern fabrication by radiation-induced graft copolymerization
JP2848625B2 (en) Pattern formation method