[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61220813A - Molding of plastic - Google Patents

Molding of plastic

Info

Publication number
JPS61220813A
JPS61220813A JP6272685A JP6272685A JPS61220813A JP S61220813 A JPS61220813 A JP S61220813A JP 6272685 A JP6272685 A JP 6272685A JP 6272685 A JP6272685 A JP 6272685A JP S61220813 A JPS61220813 A JP S61220813A
Authority
JP
Japan
Prior art keywords
resin composition
mold
conductive
powder
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6272685A
Other languages
Japanese (ja)
Other versions
JPH0236373B2 (en
Inventor
Takao Sakakibara
榊原 隆男
Tsunehiko Toyoda
豊田 常彦
Yoshihisa Nagashima
長島 義久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Tokai Kogyo Co Ltd
Original Assignee
Dai Nippon Toryo KK
Tokai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Tokai Kogyo Co Ltd filed Critical Dai Nippon Toryo KK
Priority to JP6272685A priority Critical patent/JPH0236373B2/en
Publication of JPS61220813A publication Critical patent/JPS61220813A/en
Publication of JPH0236373B2 publication Critical patent/JPH0236373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0011Electromagnetic wave shielding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide the molding method of the molded piece of plastic, which is provided with electrical conductivity, by a method wherein either one of electrically conductive powdered resin composition or electric radiation absorbing powdered resin composition is coated to the inside of a mold by electrostatic coating and the other powdered resin composition is coated thereon through the electrostatic coating, thereafter, the plastic is molded. CONSTITUTION:A masking material 5 is fixed to the unnecessary section of the fixed mold 3a. The electric radiation absorbing powdered resin composition 2a is coated on the surface of the fixed mold 3a by an electrostatic coating machine 6. Subsequently, the electrically conductive powdered resin composition 4a is coated thereon by the electrostatic coating machine 6'. The masking material is removed and coated powdered resin compositions 2a, 4a are plasticized by heating if necessary. A movable mold 3b is put on the fixed mold 3a and the mold is closed, then, molten plastic material is cast into the cavity of the mold through a filling hole 3b' to anchor and adhere an electrical conductive film 4 and an electric radiation absorbing film 2 on the surface of the molded piece 1 of plastic. The mold is opened and the molded piece 1 is taken out of the mold.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラスチック成形体表面に、導電性被膜とそ
の上に形成された電波吸収性被膜、又は電波吸収性被膜
とその上に形成された導電性被膜からなる多層被膜を形
成させるプラスチック成形方法に関する。詳しくは、電
磁波遮蔽、帯電防止等の目的をもったプラスチック成形
体を得る方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a method for forming a conductive film and a radio wave absorbing film formed on the surface of a plastic molded product, or a radio wave absorbing film and a radio wave absorbing film formed thereon. The present invention relates to a plastic molding method for forming a multilayer coating consisting of a conductive coating. Specifically, the present invention relates to a method for obtaining a plastic molded body having the purpose of shielding electromagnetic waves, preventing static electricity, etc.

(従来技術) 近年、半導体素子を使用した電子機器の誤動作の原因が
、tm波や静電気が原因して発生することが明らかにな
り、欧米諸国では発生源となるICやLSI素子を内蔵
した電子機器に対する規制が法令化され始めており、電
子機器業界ではその対策がせまられている。
(Prior art) In recent years, it has become clear that malfunctions in electronic equipment using semiconductor devices are caused by TM waves and static electricity. Regulations regarding devices are beginning to be enacted into law, and the electronic device industry is urged to take countermeasures.

現在、これら妨害tMI波発生源をシールドする方法の
一つとして、例えは、プラスチックにs’rtz性粉末
を混練後、成形し、プラスチック成形体そのものに導電
性機能を付与する方法(例えば特公昭35−9643号
)が知られている。しかしながら、該方法は作業が簡便
であるという利点がある反面、電気導電体を得るには導
電性粉末を多量に含有させる必要があり、その結果成形
後のプラスチックの物理的強度の低下、重量の増加、成
形上の問題点等の如き、その他の各種欠点が生じるため
あまり実用化されていない。
Currently, one method of shielding these sources of interfering tMI waves is to knead s'rtz powder into plastic and then mold it, giving the plastic molded body itself a conductive function (for example, No. 35-9643) is known. However, while this method has the advantage of being easy to work with, it requires the inclusion of a large amount of conductive powder in order to obtain an electrical conductor, which results in a decrease in the physical strength of the plastic after molding, and an increase in weight. It has not been put into practical use much because of various other drawbacks such as increase in size and problems in molding.

シールド方法の他の方法としては、電子機器ハウジング
内面に溶剤可溶型導電性塗料を刷毛あるいはスプレー等
で塗装する方法が知られている。
Another known shielding method is to apply a solvent-soluble conductive paint to the inner surface of an electronic device housing with a brush or spray.

該方法においては、導電性塗料中に含まれる有機溶剤に
よる形状破損、変色等の対策、塗膜密着強度向上や塗膜
剥離防止のための上塗り対策等が必要であるとともに、
大気中への有機溶剤揮散による臭気、人体に対する悪影
響、火災等の危険性等の問題点があった。
In this method, it is necessary to take measures against shape damage and discoloration caused by the organic solvent contained in the conductive paint, as well as overcoat measures to improve the adhesion strength of the paint film and prevent paint film peeling.
There were problems such as odor caused by volatilization of organic solvents into the atmosphere, adverse effects on the human body, and dangers such as fire.

最近では、電子機器ハウジング用成形金型内に溶剤可溶
型導電性塗料を刷毛又はスプレーガンで塗装した後、金
型内でプラスチックを成形し、プラスチ・7り成形体と
導電性被膜を一体化する方法も提案されている(例えば
特公昭4B−25061号)。該方法によれは、成型金
型内にグリース状の組成物を塗布し、その上に黒鉛等の
導電性粉末を吹付けた後、液状合成樹脂を注入して硬化
させ、所定の個所を導電性とする絶縁性成形体を得る方
法が提案されている。しかしながら該方法では導電性粉
末はグリース状組成物との接触点以外では付着力が弱い
という基本的な問題があるため、樹脂注入に際し、細心
の注意力が必要であり、加えてその注入速度も極めて遅
いものとならざるを得ないという作業上の問題点等があ
った。
Recently, after painting a solvent-soluble conductive paint with a brush or spray gun into a mold for electronic device housing, the plastic is molded inside the mold, and the plasti-7 molded body and conductive coating are integrated. A method has also been proposed (for example, Japanese Patent Publication No. 4B-25061). According to this method, a grease-like composition is applied inside the mold, a conductive powder such as graphite is sprayed on top of the composition, and then a liquid synthetic resin is injected and cured to make the predetermined areas conductive. A method has been proposed for obtaining an insulating molded body with high properties. However, this method has the fundamental problem that the conductive powder has weak adhesion at points other than the points of contact with the grease-like composition, so careful attention is required when injecting the resin, and in addition, the injection speed is also limited. There were operational problems such as the fact that it was extremely slow.

それ故、この方法は射出成形方法の如き高速成形方法に
適用することは不可能である。
Therefore, this method cannot be applied to high-speed molding methods such as injection molding methods.

また、前記公知側中には前記導電性粉末の付着力を高め
る目的で、更に合成樹脂接着剤を樹脂注入前に使用する
方法も併記されているが、この方法を採用すると、前述
した溶剤可溶型導電性塗料を成形後塗布する場合の問題
点は何一つ解決されないものであった。
In addition, the above-mentioned known document also describes a method of using a synthetic resin adhesive before resin injection in order to increase the adhesion of the conductive powder, but if this method is adopted, the aforementioned solvent can be removed. None of the problems associated with applying a melt-molded conductive paint after molding have been solved.

一般に、溶剤可溶型塗料のもつ前記各種問題点を解決す
る手段として、例えば溶剤を全く含有しない粉体塗料の
使用が考えられる。
In general, as a means to solve the above-mentioned problems of solvent-soluble paints, it is conceivable to use, for example, powder paints that do not contain any solvent at all.

事実、成形の分野においても通常の着色顔料を少量含有
する粉体塗料を加熱、加圧成形用金型内面に流動床ある
いはスプレーによりあらかじめ付着させた後、SMCや
BMCを用いて圧縮成形し、FRP表面に保護又は着色
被膜を成形させる方法が知られている(例えは、特公昭
58−44459号、特開昭57−181823号、特
開昭58−124610号)。
In fact, in the field of molding as well, powder coatings containing a small amount of ordinary colored pigments are heated and applied to the inner surface of a pressure mold in advance by a fluidized bed or spray, and then compression molded using SMC or BMC. A method of forming a protective or colored film on the surface of FRP is known (for example, Japanese Patent Publication Nos. 44459/1982, 181823/1982, and 124610/1982).

しかして、これらの方法によっても、粉末の飛散、金型
外への付着、膜厚の不均一等の問題点があった。
However, even with these methods, there are problems such as powder scattering, adhesion to the outside of the mold, and uneven film thickness.

一方、導電性被膜は、電磁波を反射する能力を有するが
吸収能力がな(、しかも高周波領域(低波長)の電磁波
のシールドには効果的でないという問題があった。
On the other hand, conductive films have the ability to reflect electromagnetic waves, but do not have the ability to absorb them (and are not effective in shielding electromagnetic waves in the high frequency range (low wavelength)).

更に、導電性の塗膜は導電性であるが故に、電子機器ハ
ウジング内に露出されて塗装された場合、電流の流れて
いる内蔵機器類との接触等により、感電や漏電の危険性
が大きいことも問題点の一つとして挙げられる。
Furthermore, since conductive coatings are conductive, if they are exposed inside an electronic device housing, there is a high risk of electric shock or leakage due to contact with internal devices carrying current. This can also be cited as one of the problems.

(発明が解決しようとする問題点) 本発明は、有機溶剤揮散による安全、衛生上の問題点や
、粉末塗料の飛散、金型外への付着や膜厚の不均一さ等
の問題点を解決し、導電性微粉末を高濃度に含有する粉
末状樹脂組成物を効率良く、かつ均一にプラスチック表
面に付着せしめ、表面抵抗値が10”オームフロ程度以
下の導電性を有するプラスチック成形品の成形方法を提
供しよとするものである。
(Problems to be Solved by the Invention) The present invention solves safety and hygiene problems caused by organic solvent volatilization, and problems such as scattering of powder paint, adhesion to the outside of the mold, and uneven film thickness. A powdered resin composition containing a high concentration of conductive fine powder can be efficiently and uniformly adhered to a plastic surface to form a conductive plastic molded product with a surface resistance value of about 10" ohms or less. It attempts to provide a method.

更には、高周波領域の電磁波を吸収するとともに、場合
により導電性被膜の感電や漏電事故防止機能を有する電
波吸収性被膜を有する多層被膜を形成させるプラスチッ
ク成形方法を提供しようとするものである。
Furthermore, it is an object of the present invention to provide a plastic molding method for forming a multilayer coating having a radio wave absorbing coating that absorbs electromagnetic waves in the high frequency range and, in some cases, has the function of preventing electric shocks and leakage accidents caused by conductive coatings.

(問題点を解決するための手段) 即ち、本発明は、プラスチック成形方法において、まず
、導電性粉末状樹脂組成物及び電波吸収性粉末状樹脂組
成物のいずれか一方の粉末状樹脂組成物を静電塗装によ
り金型内に塗布し、ついでその上に前記粉末状樹脂組成
物のうち他方の粉末状樹脂組成物を静電塗装により塗布
した後、プラスチックを成形し、導電性被膜と絶縁性被
膜からなる多層被膜をプラスチック成形体表面に投錨密
着させるプラスチックの成形方法に関するものである。
(Means for Solving the Problems) That is, the present invention provides a plastic molding method in which first, a powdery resin composition of either a conductive powdery resin composition or a radio wave absorbing powdery resin composition is used. It is applied into the mold by electrostatic coating, and then the other powdered resin composition of the powdered resin compositions is applied thereon by electrostatic coating, and then the plastic is molded, and a conductive film and an insulating film are formed. The present invention relates to a plastic molding method in which a multilayer film consisting of a film is brought into close contact with the surface of a plastic molded body.

(発明の詳細な説明) 本発明の方法に使用される導電性粉末状樹脂組成物とは
、導電性微粉末を含有する熱硬化性又は熱可塑性樹脂組
成物である。
(Detailed Description of the Invention) The conductive powder resin composition used in the method of the present invention is a thermosetting or thermoplastic resin composition containing conductive fine powder.

前記熱硬化性樹脂としては、アクリル樹脂、ポリエステ
ル樹脂、エポキシ樹脂、アルキド樹脂、ウレタン樹脂、
エポキシ変性ポリエステル樹脂、アクリル変性ポリエス
テル樹脂等が一例として挙げられる。特に、貯蔵安定性
や塗膜の導電性等から、アクリル樹脂、ポリエステル樹
脂、エポキシ樹脂が好ましい。
Examples of the thermosetting resin include acrylic resin, polyester resin, epoxy resin, alkyd resin, urethane resin,
Examples include epoxy modified polyester resin and acrylic modified polyester resin. In particular, acrylic resins, polyester resins, and epoxy resins are preferred from the viewpoint of storage stability and conductivity of the coating film.

前記熱硬化性樹脂は、自己硬化型、硬化剤(架橋剤)硬
化型等の種々の型のものが使用し得る。
Various types of thermosetting resins can be used, such as a self-curing type and a curing agent (crosslinking agent) curing type.

前記熱硬化性樹脂の硬化剤としては、ジシアンジアミド
、酸無水物、イ゛ミダゾール誘導体、芳香族ジアミン、
三フッ化ホウ素アミン諸化合物、ヒドラジド類、デカメ
チレンジカルボン酸、ブロックイソシアネート化合物、
アミノ樹脂等の如き、通常熱硬化性粉体塗料用として用
いられるものが使用可能である。
As the curing agent for the thermosetting resin, dicyandiamide, acid anhydride, imidazole derivative, aromatic diamine,
Boron trifluoride amine compounds, hydrazides, decamethylene dicarboxylic acid, blocked isocyanate compounds,
Those normally used for thermosetting powder coatings, such as amino resins, can be used.

また、前記熱可塑性樹脂としては、ポリエステル樹脂、
ポリエチレン、ポリプロピレン、スチレン重合体、塩化
ビニル重合体、ポリアミド樹脂、ブチラール樹脂、繊維
素樹脂、石油樹脂等公知のものが挙げられる。
Further, as the thermoplastic resin, polyester resin,
Known materials include polyethylene, polypropylene, styrene polymers, vinyl chloride polymers, polyamide resins, butyral resins, cellulose resins, petroleum resins, and the like.

前記熱硬化性樹脂及び熱可塑性樹脂は各々単独もしくは
混合物として、あるいは必要に応じて熱硬化性樹脂と熱
可塑性樹脂とを組合せて使用することが可能である。
The thermosetting resin and the thermoplastic resin can be used individually or as a mixture, or if necessary, the thermosetting resin and the thermoplastic resin can be used in combination.

本発明において前記粉末状樹脂組成物に使用される樹脂
成分の軟化点は40〜160℃、融点は60〜180℃
、好ましくは軟化点60〜130℃、融点70〜160
℃程度のものである。
In the present invention, the resin component used in the powdered resin composition has a softening point of 40 to 160°C and a melting point of 60 to 180°C.
, preferably a softening point of 60-130°C, a melting point of 70-160°C
It is about ℃.

尚、前記軟化点はKofler’s法により、また融点
ばDurran’s法により測定したものである。
The softening point was measured by Kofler's method, and the melting point was measured by Durran's method.

、又、前記導電性微粉末とは、金、白金、パラジウム、
銀、銅、ニッケル等の金属粉末あるいは合金粉末;ニッ
ケルコーティングマイカ粉末等の電気的に不良導体であ
る無機質粉末あるいはプラスチック粉末の表面を、電気
良導体の金属で被覆したもの等の如き、電気的良導電性
の微粉末で、粒子径範囲が0.5〜100μm、好まし
くは1〜50μm程度のものである。該粉末は1種もし
くは2種以上の組合せで使用することが可能である。
, and the conductive fine powder includes gold, platinum, palladium,
Metal powders or alloy powders such as silver, copper, and nickel; electrically good materials such as inorganic powders that are electrically poor conductors, such as nickel-coated mica powder, or plastic powders whose surface is coated with metals that are good electrical conductors. It is a conductive fine powder with a particle size range of 0.5 to 100 μm, preferably about 1 to 50 μm. These powders can be used alone or in combination of two or more.

本発明の目的、即ち良導電性でかつ密着性の優れた被膜
を得るという目的に対し、特にデンドライト形状(樹枝
状)の金属微粉末が有効である。
Dendritic metal fine powder is particularly effective for the purpose of the present invention, that is, to obtain a film with good conductivity and excellent adhesion.

前記導電性微粉末は、導電性粉末状樹脂組成物中に好ま
しくは70〜95重量%、より好ましくは75〜90重
量%の範囲で含有される。
The conductive fine powder is preferably contained in the conductive powder resin composition in an amount of 70 to 95% by weight, more preferably 75 to 90% by weight.

尚、本発明において導電性粉末状樹脂組成物とは、個々
の樹脂粉末の中に全ての導電性微粉末が内包された組成
物と、大部分の導電性微粉末を内包した樹脂粉末と少部
分の導電性微粉末の混合物(但し、導電性微粉末の総量
は前記範囲内にある)とを意味するものである。後者の
場合、粉末状態で電気抵抗が静電塗装可能な程度に高い
ことが必要であるのは当然である。
In the present invention, the conductive powder resin composition includes a composition in which all of the conductive fine powder is encapsulated in each individual resin powder, a resin powder in which most of the conductive fine powder is contained, and a resin powder in which a small amount of the conductive fine powder is contained. A mixture of conductive fine powders (provided that the total amount of conductive fine powders is within the above range). In the latter case, it is natural that the electrical resistance in the powder state must be high enough to allow electrostatic coating.

導電性粉末状樹脂組成物の導電性微粉末の量が70重量
%にみたない場合には、プラスチック成形体表面に良好
な導電性被膜を形成せしめることが出来ず、一方95重
量%をこえる場合には、効率良く静電塗装することが困
難となるため、いずれもあまり好ましない。
If the amount of conductive fine powder in the conductive powder resin composition is less than 70% by weight, a good conductive film cannot be formed on the surface of the plastic molded product, whereas if it exceeds 95% by weight. Since it becomes difficult to perform electrostatic coating efficiently, neither of these methods is particularly preferred.

本発明の方法に使用される導電性粉末状樹脂組成物は、
公知の粉体塗料の製造方法により得られる。
The conductive powder resin composition used in the method of the present invention is
It is obtained by a known powder coating manufacturing method.

例えは、前記樹脂及び導電性粉末、及び其の他必要によ
り硬化剤、添加剤等を加熱溶融混合後、冷却、粉砕、篩
分けする機械粉砕法や、前記樹脂及び導電性微粉末、其
の他必要により硬化剤、添加剤等を溶剤中に分散せしめ
た後、得られた分散液を加熱空気中に噴霧するドライス
プレー法等が適用出来る。
For example, a mechanical pulverization method in which the resin and conductive powder, and other necessary hardening agents, additives, etc. are heated and melted and mixed, and then cooled, pulverized, and sieved; In addition, if necessary, a dry spray method can be applied in which a curing agent, additives, etc. are dispersed in a solvent, and then the resulting dispersion is sprayed into heated air.

しかして、より高濃度に導電性微粉末を含有させた組成
物を得る場合や、融点の低い樹脂を用いる場合あるいは
、粉末状樹脂組成物の凝集防止等を考慮した場合以下に
示す湿式造粒法による製造方法が好ましい。
Therefore, when obtaining a composition containing conductive fine powder at a higher concentration, when using a resin with a low melting point, or when considering prevention of agglomeration of a powdered resin composition, the following wet granulation method is used. A manufacturing method using a method is preferred.

例えは、アルコール類、エチレングリコール誘導体、ジ
エチレングリコール誘導体、エステル類、ケトン類等の
水可溶性溶媒(好ましくは、20℃で水に対する溶解度
が10〜30重量%)中に、前記樹脂を溶解せしめ、つ
いで前記樹脂、及び導電性微粉末、其の他必要により硬
化剤、添加剤等を混合して得られる液体組成物(以下分
散液という)を、該分散液中に含まれる全ての水可溶性
溶媒が溶解する!(分散液の約3〜40倍量)の水中に
乳化、分散する。乳化は、分散液を激しい攪拌下にある
水中に滴下、注入、噴霧する方法、あるいは水と分散液
をラインミキサーで混合する方法等により行われる。
For example, the resin is dissolved in a water-soluble solvent (preferably having a solubility in water of 10 to 30% by weight at 20°C) such as alcohols, ethylene glycol derivatives, diethylene glycol derivatives, esters, and ketones, and then A liquid composition (hereinafter referred to as dispersion) obtained by mixing the resin, conductive fine powder, and other necessary hardening agents, additives, etc., is prepared so that all the water-soluble solvent contained in the dispersion is Dissolve! Emulsify and disperse in water (approximately 3 to 40 times the volume of the dispersion). Emulsification is carried out by dropping, pouring, or spraying the dispersion into water under vigorous stirring, or by mixing water and the dispersion using a line mixer.

前記攪拌もしくはラインミキサーでの混合は、乳濁微粒
子中の溶剤が水中に移行し、粒子が形成される迄行う。
The above-mentioned stirring or mixing using a line mixer is carried out until the solvent in the emulsion fine particles is transferred into water and particles are formed.

かくして、乳濁微粒子中の溶剤が水中に抽出され、樹脂
粒子が得られる。
In this way, the solvent in the emulsion fine particles is extracted into water, and resin particles are obtained.

この樹脂粒子を濾過または遠心分離等により水−溶剤混
合物と分離し、さらに必要ならば水洗及び分離を必要回
数繰り返し、スラリー状ないし含水ケーキ状の樹脂粒子
を得る。ついで、必要によりボールミル、ボットミル、
サンドミル等により調粒を行った後、樹脂粒子が凝集し
ないよう乾燥、好ましくは凍結乾燥、真空乾燥等により
乾燥し、必要により篩分けして本発明の導電性粉末状樹
脂組成物を得る。このような製造方法は、例えば特開昭
48−52851号、特公昭54−5832号、同54
−26250号、同54−31492号、同56−57
96号、同56−29890号公報に詳述されている。
The resin particles are separated from the water-solvent mixture by filtration or centrifugation, and if necessary, water washing and separation are repeated a necessary number of times to obtain resin particles in the form of a slurry or a water-containing cake. Then, if necessary, use a ball mill, bot mill,
After granulation with a sand mill or the like, the resin particles are dried to prevent agglomeration, preferably by freeze drying, vacuum drying, etc., and if necessary, sieved to obtain the conductive powder resin composition of the present invention. Such manufacturing methods are described, for example, in Japanese Patent Application Laid-open No. 48-52851, Japanese Patent Publication No. 54-5832, and Japanese Patent Publication No. 54-54.
-26250, 54-31492, 56-57
No. 96 and No. 56-29890.

更に、本発明の方法に使用される導電性粉末状樹脂組成
物の粒子径範囲は、0.5〜100μm程度、好ましく
は1〜50μm程度のものである。
Further, the particle size range of the conductive powder resin composition used in the method of the present invention is about 0.5 to 100 μm, preferably about 1 to 50 μm.

一方11本発明の方法に使用される電波吸収性粉末状樹
脂組成物とは、電波吸収性微粉末を含有する熱硬化性又
は熱可塑性樹脂組成物である。
On the other hand, the radio wave absorbing powder resin composition used in the method of the present invention is a thermosetting or thermoplastic resin composition containing radio wave absorbing fine powder.

本発明の電波吸収性粉末状樹脂組成物に使用される展色
剤としての樹脂は、前記導電性粉末状樹脂組成物に使用
されるものと同様の熱硬化性又は懸回が性樹脂が全て支
障なく使用出来る。又、電波吸収性粉末状樹脂組成物の
製造方法としては、前記導電性粉末状樹脂組成物を得る
方法と同様の方法が適用出来る。
The resin as a color vehicle used in the electromagnetic wave absorbing powder resin composition of the present invention is entirely thermosetting or suspension resin similar to that used in the conductive powder resin composition. It can be used without any problems. Further, as a method for producing the radio wave absorbing powdered resin composition, a method similar to the method for obtaining the conductive powdered resin composition described above can be applied.

特に、高濃度の電波吸収性微粉末を含有した樹脂組成物
を得る場合や、電波吸収性粉末状樹脂組成物の凝集防止
等を考慮した場合には、前記湿式造粒法による製造方法
が好ましい。
In particular, when obtaining a resin composition containing a high concentration of radio wave absorbing fine powder, or when considering prevention of agglomeration of the radio wave absorbing powder resin composition, the production method using the wet granulation method is preferable. .

電波吸収性粉末状樹脂組成物に使用される樹脂の軟化点
及び融点、更に樹脂組成物の粒子径等も、前記i’を性
粉末状樹脂組成物の場合と同様の範囲内にあることが好
ましい。
The softening point and melting point of the resin used in the radio wave absorbing powdered resin composition, as well as the particle size of the resin composition, etc., may be within the same range as in the case of the powdered resin composition with the above i'. preferable.

前記電波吸収性粉末状樹脂組成物に使用される電波吸収
性微粉末としては、一般式 %式% の2価の金属を示す〕で表わされるスピ■ネル型フェラ
イト粒子が好ましい。
As the radio wave absorbing fine powder used in the radio wave absorbing powder resin composition, spinel type ferrite particles represented by the general formula % (representing a divalent metal) are preferred.

このような粒子としては、例えばN iF e toい
ZnFe、0.、M n F e toa、CuFez
O4、Fe、O,、CoFezOa等、あるいはNi−
Zn、Ni−Mn、Mn−Zn等の複合型フェライト等
が挙げられる。これらは一種もしくは二種以上の混合物
として使用される。
Such particles include, for example, N iF e to ZnFe, O. , M n F e toa, CuFez
O4, Fe, O, CoFezOa, etc., or Ni-
Examples include composite ferrites such as Zn, Ni-Mn, and Mn-Zn. These may be used alone or as a mixture of two or more.

前記スピ■ネル型フェライ+−a粒子の製造方法は、−
iに公知の方法、例えば「粉体及び粉末冶金」第29巻
、第6号、第12頁に記載されている如き方法により得
ることが出来る。
The method for producing the spinel type ferrite +-a particles includes -
It can be obtained by a method known in the art, for example, the method described in "Powders and Powder Metallurgy", Vol. 29, No. 6, p. 12.

本発明の方法に使用される電波吸収性微粒子は、粒子径
0.05〜10μm程度のものであり、該粒子は電波吸
収性粉末状樹脂組成物中好ましくは50〜95重量%程
度含有される。
The radio wave absorbing fine particles used in the method of the present invention have a particle size of about 0.05 to 10 μm, and the particles are preferably contained in the radio wave absorbing powder resin composition in an amount of about 50 to 95% by weight. .

前記範囲において、電波吸収性微粒子が50重量%に満
たない場合には、高周波領域の1を磁波吸収効果があま
り期待出来ず、逆に95重量%をこえると均一な被膜が
得難くなるためいずれもあまり好ましない。
In the above range, if the amount of radio wave absorbing fine particles is less than 50% by weight, the magnetic wave absorption effect in the high frequency region 1 cannot be expected to be very good, and conversely, if it exceeds 95% by weight, it will be difficult to obtain a uniform coating. I don't really like it either.

本発明の電波吸収性粉末状樹脂組成物とは、個々の樹脂
粉末中に全ての電波吸収性微粉末が内包された組成物と
、大部分の電波吸収性微粉末を内包した樹脂粉末と、少
部分の電波吸収性微粉末の混合物(但し、電波吸収性微
粉末の■総量は前記範囲内になる)とを意味するもので
ある。
The radio wave absorbing powder resin composition of the present invention includes a composition in which all of the radio wave absorbing fine powder is encapsulated in each individual resin powder, a resin powder containing most of the radio wave absorbing fine powder, It means a mixture of a small amount of radio wave absorbing fine powder (provided that the total amount of radio wave absorbing fine powder falls within the above range).

前記電波吸収性粉末状樹脂組成物には、必要により前記
成分以外にダレ防止剤、硬化促進剤、酸化防止剤、体質
顔料等の如き、一般に粉体塗料に使用されている成分を
添加混合することも出来る。
In addition to the above-mentioned components, components generally used in powder coatings, such as anti-sag agents, curing accelerators, antioxidants, extender pigments, etc., may be added to the radio wave-absorbing powdered resin composition as necessary. You can also do that.

更に、前記電波吸収性粉末状樹脂組成物の粒子径範囲は
、0.5〜lOOμm程度、好ましくは1〜50μm程
度のものである。
Furthermore, the particle diameter range of the radio wave absorbing powdered resin composition is about 0.5 to 100 μm, preferably about 1 to 50 μm.

一方、本発明の方法が適用出来る成形方法としては特に
制限がなく、一般に行われている成形方法、例えば圧縮
成形方法、トランスファ成形方法、積層成形方法、射出
成形方法(リアクション及びリキッドインジェクション
モールディング法も含む)、プロー成形方法、真空成形
方法等が挙げられる。
On the other hand, there are no particular restrictions on the molding methods to which the method of the present invention can be applied, and commonly used molding methods such as compression molding, transfer molding, lamination molding, and injection molding (reaction and liquid injection molding methods are also applicable). ), blow molding method, vacuum molding method, etc.

また、これらの成形方法に使用されるプラスチック素材
としては、不飽和ポリエステル樹脂、フェノール樹脂、
エポキシ樹脂、ユリア及びメラミン樹脂、スチレン樹脂
、アクリル樹脂、ビニル樹脂、ポリエチレン樹脂、シリ
コーン樹脂、ABS樹脂、ナイロン樹脂、ポリアセター
ル樹脂、ポリカーボネート樹脂、ポリフェニレンオキサ
イド樹脂、ポリプロピレン樹脂等の如き、通常成形用に
使用される熱硬化性あるいは熱可塑性樹脂、及びこれら
の樹脂に強化用繊維、充填材、硬化剤、安定剤、着色剤
、増粘剤、離型剤、発泡剤、難燃化剤等を混練した樹脂
組成物、更にシートモールディングコンパウンド(SM
C) 、バルクモールディングコンパウンド(B M 
C)等が使用可能である。
In addition, the plastic materials used in these molding methods include unsaturated polyester resin, phenolic resin,
Commonly used for molding such as epoxy resins, urea and melamine resins, styrene resins, acrylic resins, vinyl resins, polyethylene resins, silicone resins, ABS resins, nylon resins, polyacetal resins, polycarbonate resins, polyphenylene oxide resins, polypropylene resins, etc. thermosetting or thermoplastic resins, and these resins are kneaded with reinforcing fibers, fillers, curing agents, stabilizers, colorants, thickeners, mold release agents, foaming agents, flame retardants, etc. Resin composition, further sheet molding compound (SM
C), bulk molding compound (B M
C) etc. can be used.

次に、本発明の成形方法を説明する。Next, the molding method of the present invention will be explained.

本発明の方法において、導電性粉末状樹脂組成物及び電
波吸収性粉末状樹脂組成物のいずれが−方の粉末状樹脂
組成物を金型内に静電塗装し、ついでその上に前記粉末
状樹脂組成物のうち他方の粉末状樹脂組成物を静電塗布
する。
In the method of the present invention, either the conductive powdered resin composition or the radio wave absorbing powdered resin composition is electrostatically coated into a mold, and then the powdered resin composition is coated thereon. The other powdered resin composition of the resin compositions is electrostatically applied.

つまり、(1)第一層目として電波吸収性粉末状樹脂組
成物を塗布した場合には、第二層目として導電性粉末状
樹脂組成物を、又、(2)第一層目として導電性粉末状
樹脂組成物を塗布した場合には、第二層目として電波吸
収性粉末状樹脂組成物を塗布するものである。
In other words, (1) when a radio wave absorbing powdered resin composition is applied as the first layer, a conductive powdered resin composition is applied as the second layer, and (2) a conductive powdered resin composition is applied as the first layer. When a radio wave absorbing powdered resin composition is applied, the radio wave absorbing powdered resin composition is applied as a second layer.

二層以上の複合層を得ることが出来るのは当然のことで
あり、その場合には、前に塗布された粉末状樹脂組成物
とは異った種類のものを塗り重ねていけばよい。
It is a matter of course that a composite layer of two or more layers can be obtained, and in that case, it is sufficient to apply a different type of powdered resin composition from the previously applied powdered resin composition.

更に、前記二層目の上に塗布される粉末状樹脂組成物と
して着色餌料を含有するか、もしくは含有しない着色も
しくは透明な粉末状樹脂組成物を塗布し、美装又は保護
機能を発揮させることも可能である。
Furthermore, a colored or transparent powdered resin composition containing or not containing a colored bait is applied as a powdered resin composition applied on the second layer to exhibit an aesthetic or protective function. is also possible.

以下本発明の代表的な例として、前記(1)の場合の方
法について詳述する。
As a typical example of the present invention, the method for the case (1) will be described in detail below.

まず、前記の如(して得られた電波吸収性粉末状樹脂組
成物を静電粉末塗装機等により−60〜−90KVに帯
電させて金型内に塗布する。塗布膜厚等は必要により決
定されるが、通常10〜200μm程度である。
First, the electromagnetic wave-absorbing powder resin composition obtained as described above is charged to -60 to -90 KV using an electrostatic powder coating machine, etc., and applied to the inside of the mold.The thickness of the coating film is determined as necessary. Although it is determined, it is usually about 10 to 200 μm.

ついで、その上に前記導電性粉末状樹脂組成物を前記同
様にして一30KV〜−90KVで静電塗装する。膜厚
は10〜200μm程度が好ましい。
Then, the conductive powder resin composition is electrostatically applied thereon at -30 KV to -90 KV in the same manner as described above. The film thickness is preferably about 10 to 200 μm.

最後に、金型内にプラスチック素材を充填し、各々所定
の温度及び/又は圧力により成形する。
Finally, plastic materials are filled into the molds and molded at predetermined temperatures and/or pressures.

かくして、金型内の各粉末状樹脂組成物は、プラスチッ
ク素材熱及び/又は成形等の熱により成形プラスチック
表面に投錨密着され、表面に均一な電波吸収性及び導電
性被膜を有するプラスチック成形体が得られる。
In this way, each powdered resin composition in the mold is anchored and adhered to the molded plastic surface by the heat of the plastic material and/or the heat of molding, etc., and a plastic molded body having a uniform radio wave absorbing and conductive coating on the surface is formed. can get.

本発明の前記(1)の方法を代表的な射出成形方法につ
いて図面により説明すると、第1図は本発明の方法を示
す概略図であり、第2図は第1図のE工程の点線部分の
拡大図であり、第3図は得られたプラスチック成形体の
要部拡大図である。
The method (1) of the present invention will be explained with reference to drawings regarding a typical injection molding method. FIG. 1 is a schematic diagram showing the method of the present invention, and FIG. 2 is a dotted line portion of step E in FIG. 1. FIG. 3 is an enlarged view of the main part of the obtained plastic molded body.

第1図に示すように、前工程Aにおいては固定金型3(
10)不要部にマスキング材5を定着する。
As shown in FIG. 1, in the pre-process A, the fixed mold 3 (
10) Fix the masking material 5 on unnecessary parts.

塗布工程Bにおいて、静電塗装a6により電波吸収性粉
末状樹脂組成物2aを固定金型3(10)表面に塗布す
る。次いで、更に塗布工程りにおいて、静電塗装機6”
により導電性粉末状樹脂組成物4aを、電波吸収性粉末
状樹脂組成物被膜2a上に塗布する。
In the coating step B, the radio wave absorbing powdered resin composition 2a is applied to the surface of the fixed mold 3 (10) by electrostatic coating a6. Next, in the coating process, an electrostatic coating machine 6”
The conductive powdered resin composition 4a is applied onto the radio wave absorbing powdered resin composition coating 2a.

最後に、マスキング材をはずし必要により、加熱工程E
で加熱し、塗布された粉末状樹脂組成物2a及び4aを
可塑化する。
Finally, remove the masking material and perform the heating step E if necessary.
to plasticize the applied powdered resin compositions 2a and 4a.

ついで、成形工程Fでは、固定金型3a上に可動金型3
bを載置型閉し、型内間隙に充填孔3b″より溶融プラ
スチック素材を充填し成形するとともに、プラスチック
成形体1の表面に導電性被膜4及び電波吸収性塗膜2を
投錨密着せしめる。
Next, in the molding process F, a movable mold 3 is placed on the fixed mold 3a.
b is placed and the mold is closed, and the gap in the mold is filled with molten plastic material through the filling hole 3b'' and molded, and at the same time, the conductive coating 4 and the radio wave absorbing coating 2 are anchored and adhered to the surface of the plastic molded body 1.

脱型工程Gでは、表面に導電性機能を具備した被膜2と
、電波吸収性機能を具備した被膜4を有するプラスチ・
ツク成形体重を型開して取り出す。
In the demolding process G, a plastic plate having a coating 2 with a conductive function and a coating 4 with a radio wave absorbing function on the surface is used.
Open the mold and take out the molded weight.

かくして、均一な厚さの導電性被膜及び電波吸収性被膜
を有するプラスチック成形体が効率良(得られるのであ
る。
In this way, a plastic molded article having a conductive coating and a radio wave absorbing coating of uniform thickness can be efficiently obtained.

尚、本発明の成形方法においては、金型をあらかじめ予
熱するか、常温の金型もしくは予熱温度の低い金型の場
合、粉末状樹脂組成物塗布後熱風、電気、赤外線等によ
り加熱することが好ましい。
In addition, in the molding method of the present invention, the mold may be preheated in advance, or in the case of a mold at room temperature or a mold with a low preheating temperature, it may be heated with hot air, electricity, infrared rays, etc. after applying the powdered resin composition. preferable.

かくすることにより、静電塗装により静電力のみにより
付着している粉末状樹脂組成物の飛散等を防ぐことが出
来る。
By doing so, it is possible to prevent scattering of the powdered resin composition adhered only by electrostatic force by electrostatic coating.

尚、前記金型の予熱とは、外部から熱を加えたりあるい
はプラスチック素材成形時の熱等により金型温度が常温
により高い場合をいう。
Note that the preheating of the mold refers to a case where the mold temperature is higher than room temperature due to heat applied from the outside or heat generated during molding of a plastic material.

又、前記粉末状樹脂組成物塗布後の■加熱は、電波吸収
性粉末状樹脂組成物塗布後の加熱及び/又は導電性粉末
状樹脂組成物塗布後の加熱を云い、樹脂組成物中の樹脂
が一部軟化、溶融して粉末粒子同志が付着し合う程度に
することが好ましい。
In addition, (2) heating after applying the powdered resin composition refers to heating after applying the radio wave absorbing powdered resin composition and/or heating after applying the conductive powdered resin composition, and refers to heating after applying the electroconductive powdered resin composition. It is preferable that the powder particles are partially softened and melted to such an extent that the powder particles adhere to each other.

本発明の方法において、特に、成形時にプラスチック素
材を加圧注入したり、プラスチック素材が移動するよう
な射出成形法、ブロー成形方法、あるいは真空成形方法
等においては、金型予熱温度と、粉末状樹脂組成物中の
樹脂の軟化点及び融点とが、(融点+10℃)≧金型予
熱温度≧軟化点の範囲内にあることが特に好ましい。
In the method of the present invention, the mold preheating temperature and the powder It is particularly preferable that the softening point and melting point of the resin in the resin composition are within the range of (melting point + 10° C.)≧mold preheating temperature≧softening point.

金型予熱温度が樹脂の軟化点より低い場合には、金型と
粉末状樹脂組成物との密着性が低くなり、成形時にプラ
スチック素材に加えられる圧力によるプラスチック素材
の移動や射出時の注入速度及び圧力等により、粉末状樹
脂組成物が移動あるいは飛散するため均一な被膜を得難
くなる。また、金型予熱温度が(樹脂の融点+lO℃)
をこえると、粉末状樹脂組成物は塗布後完全に溶融し、
流動性を示すようになり、前記と同様にプラスチック素
材の移動や注入速度、圧力等により移動し、均ニな被膜
が得難くなる。特に射出成形方法においては、縞模様の
被膜となったり、特に注入口、(ノズル)付近は被膜の
全くない成形品が得られるというような好ましない問題
が生じる可能性がある。
If the mold preheating temperature is lower than the softening point of the resin, the adhesion between the mold and the powdered resin composition will be low, leading to the movement of the plastic material due to the pressure applied to the plastic material during molding and the injection speed during injection. The powdered resin composition moves or scatters due to pressure and the like, making it difficult to obtain a uniform coating. Also, the mold preheating temperature is (melting point of resin + lO℃)
If the temperature exceeds the
It becomes fluid and moves due to the movement of the plastic material, injection speed, pressure, etc. as described above, making it difficult to obtain a uniform coating. Particularly, in the injection molding method, undesirable problems may occur, such as a striped coating or a molded product having no coating at all, especially near the injection port (nozzle).

(発明の効果) 以上の如く、本発明の方法によれは、有機溶剤揮散によ
る安全、衛生上の問題点や、粉末塗料の飛散、金型外へ
の付着や膜厚の不均一さ等の問題点は解消し、導電性微
粉末を高濃度に含有する粉末状樹脂組成物を効率良く、
かつ均一にプラスチック表面に付着せしめることが出来
る−とともに、高周波領域の電磁波を吸収出来、更に最
外層に電波吸収層を設けた場合には、導電性被膜のみの
場合に懸念される感電、漏電事故も防ぐことが出来る。
(Effects of the Invention) As described above, the method of the present invention causes safety and hygiene problems due to organic solvent volatilization, scattering of powder paint, adhesion to the outside of the mold, uneven film thickness, etc. The problem has been solved and a powdered resin composition containing a high concentration of conductive fine powder can be efficiently produced.
It can be uniformly adhered to the plastic surface, and can absorb electromagnetic waves in the high frequency range.Furthermore, when a radio wave absorbing layer is provided as the outermost layer, there are no electric shocks or leakage accidents that would occur if only a conductive film was used. can also be prevented.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

「部」又は「%」は「重量部」又は「重量%」をもって
示す、実施例に先立って、以下に示す配合にて各粉末状
樹脂組成物を製造した。
"Parts" or "%" are expressed as "parts by weight" or "% by weight." Prior to Examples, each powdered resin composition was manufactured using the formulations shown below.

′     ヒ  のLj翫 〔配合1〕 エポキシ樹脂           45%ジシアンジ
アミド           4%Mn−Zn系フェラ
イト粒子 (平均粒子径約1〜2μm)     50%流動助剤
              1%前記エポキシ樹脂は
シェル化学■製商品名エピコート#1004(エポキシ
当量875〜975、融点98℃、軟化点70℃)を、
流動助剤はモンサント社製商品名モダフローを各々使用
した。
'He's Lj' [Formulation 1] Epoxy resin 45% Dicyandiamide 4% Mn-Zn ferrite particles (average particle size approximately 1-2 μm) 50% Flow aid 1% The epoxy resin is manufactured by Shell Chemical ■, trade name: Epicoat # 1004 (epoxy equivalent 875-975, melting point 98°C, softening point 70°C),
As the flow aid, Modaflow (trade name, manufactured by Monsanto) was used.

前記配合1からなる組成物を混合し、加熱ローラーを用
いて110℃以下で練合した後、練合物を冷却し、粉砕
機により粉砕した後、100メシユふるい通過分を電波
吸収性粉末状樹脂組成物(A″″1)として作成した。
The composition of Formulation 1 was mixed and kneaded at 110°C or lower using a heated roller, the kneaded mixture was cooled and pulverized by a pulverizer, and the portion that passed through a 100-mesh sieve was mixed into a radio wave-absorbing powder. It was created as a resin composition (A″″1).

〔配合2〕 エポキシ樹脂           10%メチルエチ
ルケトン        50%Ni−Zn系フェライ
ト粒子 (平均粒子径約0.5〜1μm)    40%前記エ
ポキシ樹脂はシェル化学■製商品名エピコート#100
2 (エポキシ当1600〜700、融点83℃、軟化
点57℃)と91004とをl=1の割合で混合したも
の(融点92℃、軟化点65℃)を使用した。
[Formulation 2] Epoxy resin 10% Methyl ethyl ketone 50% Ni-Zn ferrite particles (average particle size approximately 0.5 to 1 μm) 40% The epoxy resin is manufactured by Shell Kagaku ■, trade name Epicote #100
A mixture of 2 (epoxy weight 1600-700, melting point 83°C, softening point 57°C) and 91004 in a ratio of l=1 (melting point 92°C, softening point 65°C) was used.

前記配合2からなる組成物を、磁性ボットミルで2時間
分散して液体組成物を得た。ついで、前記液体組成物を
高速攪拌下にある水温20℃以下の水3000部中に噴
霧し、前記液体組成物を乳化するとともに溶剤を水中へ
抽出して樹脂粒子を形成せしめた。
The composition consisting of Formulation 2 was dispersed for 2 hours using a magnetic bot mill to obtain a liquid composition. Next, the liquid composition was sprayed into 3000 parts of water with a water temperature of 20° C. or less under high speed stirring to emulsify the liquid composition and extract the solvent into the water to form resin particles.

その後、濾過及び水洗を繰り返し、平均粒子径約100
μmの樹脂粒子を得た。含水率を50%前後に調整した
後、ボールミルで分散を行って、前記樹脂粒子を微粉砕
し、スラリー状の粉末状樹脂組成物を得た。更に水洗を
3回以上繰り返した後、濾過し、20℃以下の乾燥空気
の下で乾燥し、粉砕、篩分け(100メツシユ)して電
波吸収性粉末状樹脂組成物(A−2)を作成した。
After that, filtration and water washing were repeated until the average particle size was approximately 100.
Resin particles of μm were obtained. After adjusting the water content to around 50%, dispersion was performed using a ball mill to pulverize the resin particles to obtain a slurry-like powdered resin composition. Furthermore, after repeating water washing three or more times, it is filtered, dried under dry air at 20°C or less, crushed, and sieved (100 meshes) to create a radio wave absorbing powdered resin composition (A-2). did.

〔配合3〕 ポリエステル樹脂         10%Mn−Zn
系フェライト粒子 (平均粒子径約1〜2μm)     50%メチルエ
チルケトン        40%前記ポリエステル樹
脂は日本ユビカ■製商品名GV−110(融点85℃、
軟化点65℃)を使用した。
[Blend 3] Polyester resin 10% Mn-Zn
ferrite particles (average particle diameter of about 1 to 2 μm) 50% methyl ethyl ketone 40% The polyester resin is manufactured by Nippon Yubika under the trade name GV-110 (melting point 85°C,
(softening point: 65°C) was used.

前記配合3から成る組成物を配合2と同様にして、電波
吸収性粉末状樹脂組成物(A−3)を作成した。
A radio wave absorbing powdered resin composition (A-3) was prepared by using the composition of Formulation 3 in the same manner as Formulation 2.

〔配合4〕 アクリル樹脂             9%Nf−Z
n系フェライト粒子 (平均粒子径約0.5〜1μm)    51%メチル
エチルケトン        40%前記アクリル樹脂
は、大日本インキ化学工業■製商品名A−2243(融
点114℃、軟化点70℃)を使用した。
[Formulation 4] Acrylic resin 9% Nf-Z
N-type ferrite particles (average particle size approximately 0.5 to 1 μm) 51% Methyl ethyl ketone 40% The acrylic resin used was A-2243 (melting point 114°C, softening point 70°C) manufactured by Dainippon Ink & Chemicals. .

前記配合4からなる組成物を配合2と同様にして、電波
吸収性粉末状樹脂組成物(A−4)を作成した。
A radio wave absorbing powdered resin composition (A-4) was prepared by using the composition of Formulation 4 in the same manner as Formulation 2.

・        ・4 ヒ     の  ′告C配
合5〕 エポキシ樹脂           12%デンドライ
ト形状銅粉末      48%流動助剤(配合1と同
一)       1%メチルエチルケトン     
   39%エポキシ樹脂は、シェル化学■製商品名エ
ピコート#1002を、デンドライト形状銅粉末は、三
井金属鉱業■製電解銅粉商品名MD−1(325メツシ
ユ(オープニング44μm)を80%以上通過フを夫々
使用した。
・ ・4 Hi's 'Composition C Formulation 5] Epoxy resin 12% dendrite-shaped copper powder 48% flow aid (same as formulation 1) 1% methyl ethyl ketone
The 39% epoxy resin is Epicoat #1002 manufactured by Shell Chemical Co., Ltd., and the dendrite-shaped copper powder is electrolytic copper powder MD-1 (trade name) manufactured by Mitsui Mining & Mining Co., Ltd. (325 mesh (opening 44 μm), which passes 80% or more. used each.

上記配合からなる組成物を、磁性ボットミルで2時間分
散して液体組成物を得た。
The composition consisting of the above formulation was dispersed in a magnetic bot mill for 2 hours to obtain a liquid composition.

ついで、前記液体組成物を高速攪拌下にある水温20℃
以下の水3000部中に噴霧し、前記液体組成物を乳化
するとともに溶剤を水中へ抽出して樹脂粒子を形成せし
めた。その後、濾過および水洗を繰り返し、平均粒子径
約100μmの樹脂粒子を得た。含水率を50%前後に
調整した後、更に樹脂粒子を微粉砕調粒し、スラリー状
の粉末状樹脂組成物を得た。更に水洗を3回以上繰り返
した後、濾過し、20℃以下の乾燥空気の下で乾燥し、
粉砕、篩分(15oメツシユ)して導電性粉末/樹脂=
80/20 (重量比)の導電性粉末状樹脂組成物(B
−1)を作成した。
Then, the liquid composition was heated to a water temperature of 20°C under high speed stirring.
The following liquid composition was sprayed into 3000 parts of water to emulsify the liquid composition and extract the solvent into the water to form resin particles. Thereafter, filtration and water washing were repeated to obtain resin particles with an average particle diameter of about 100 μm. After adjusting the water content to around 50%, the resin particles were further finely pulverized to obtain a slurry-like powdered resin composition. After repeating water washing three or more times, it is filtered and dried under dry air at a temperature of 20°C or less.
Grind and sieve (15o mesh) to obtain conductive powder/resin
80/20 (weight ratio) conductive powder resin composition (B
-1) was created.

〔配合6〕 エポキシ樹脂            9%デンドライ
ト形状銅粉末      51%流動助剤(配合1と同
一)       1%メチルエチルケトン     
   39%エポキシ樹脂はシェル化学■製商品名エピ
コート#1001(エポキシ当量450〜500.融点
69℃、軟化点50℃)を、デンドライト形状銅粉末は
、三井金属鉱業■製電解銅粉商品名MD−IとMF  
Dt  (重量平均粒子径8μm)を重量でl:1に混
合したものを夫々使用した。
[Formulation 6] Epoxy resin 9% dendrite-shaped copper powder 51% flow aid (same as formulation 1) 1% methyl ethyl ketone
The 39% epoxy resin is manufactured by Shell Chemical Co., Ltd. under the trade name Epikote #1001 (epoxy equivalent: 450-500. Melting point: 69°C, softening point: 50°C). The dendrite-shaped copper powder is manufactured by Mitsui Mining & Co., Ltd., electrolytic copper powder under the trade name MD-. I and MF
A mixture of Dt (weight average particle diameter 8 μm) in a ratio of 1:1 by weight was used in each case.

配合5と同じ方法で液体組成物を作成した後、同様の方
法で導電性微粉末/樹脂=85/15(重量比)の導電
性粉末状樹脂組成物(B−2)を作成した。
A liquid composition was prepared in the same manner as in Formulation 5, and then a conductive powdery resin composition (B-2) having a conductive fine powder/resin ratio of 85/15 (weight ratio) was prepared in the same manner.

〔配合7〕 エポキシ樹脂            6%デンドライ
ト形状銅粉末      54%流動助剤(配合1と同
一)       1%メチルエチルケトン     
   39%エポキシ樹脂はチバガイギー■製商品名ア
ラルダイト6097  (エポキシ当量900〜100
0、融点100℃、軟化点80℃)を、デンドライト形
状銅粉末は、三井金属鉱業側部電解fI粉商品名MF 
 Diを夫々使用した。
[Formulation 7] Epoxy resin 6% dendrite-shaped copper powder 54% flow aid (same as formulation 1) 1% methyl ethyl ketone
The 39% epoxy resin is manufactured by Ciba Geigy and has the trade name Araldite 6097 (epoxy equivalent: 900-100
0, melting point 100℃, softening point 80℃), dendrite-shaped copper powder is Mitsui Mining & Mining Side Electrolysis fI Powder trade name MF
Di was used respectively.

上記配合よりなる組成物をペイントシェーカーで1時間
分散して液体組成物とした。
The composition having the above formulation was dispersed in a paint shaker for 1 hour to obtain a liquid composition.

ついで、配合5と同じ方法で導電性粉末状樹脂組成物を
作成した後、硬化剤として、イミダゾール系エポキシ樹
脂用硬化剤〔前記キュアゾールCIIZ)を、微粉末と
して4 phrの割合で乾式混合し、導電性微粉末/樹
脂=90/10(重量比)の導電性粉末状組成物(B−
3)を作成した。
Next, after creating a conductive powdered resin composition in the same manner as Formulation 5, as a curing agent, an imidazole-based epoxy resin curing agent [the above-mentioned Curazole CIIZ] was dry-mixed as a fine powder at a ratio of 4 phr, Conductive powder composition (B-
3) was created.

〔配合8〕 エポキシ樹脂           12%ニッケル粉
末           48%メチルエチルケトン 
       40%エポキシ樹脂はシェル化学■製商
品名エピコート#1002、#1004、および#10
07(エポキシ当量1750〜2200、融点128℃
、軟化点85℃)を1:1:1  (重量比)の割合で
混合したもの(融点約107℃、軟化点65℃)を、ま
たニッケル粉末はインコ社製商品名#123(平均粒径
約3〜7μm)と9255(平均粒子径約2〜3μm)
をl:1(を量比)で混合したものを夫々使用した。
[Blend 8] Epoxy resin 12% Nickel powder 48% Methyl ethyl ketone
The 40% epoxy resins are manufactured by Shell Chemical and have the trade names Epicote #1002, #1004, and #10.
07 (epoxy equivalent 1750-2200, melting point 128℃
, softening point: 85°C) in a ratio of 1:1:1 (weight ratio) (melting point: approximately 107°C, softening point: 65°C). (approximately 3-7 μm) and 9255 (average particle size approximately 2-3 μm)
A mixture of 1:1 (quantity ratio) was used.

上記配合からなる組成物を配合5と同じ方法で分散せし
め、液体組成物を作成した。
The composition consisting of the above formulation was dispersed in the same manner as Formulation 5 to create a liquid composition.

次に配合5と同じ方法で、上記液体組成物から、導電性
微粉末/樹脂=80/20 (重量比)の導電性粉末状
樹脂組成物(B−4)を作成した。
Next, a conductive powder resin composition (B-4) having a conductive fine powder/resin ratio of 80/20 (weight ratio) was prepared from the above liquid composition in the same manner as in Formulation 5.

〔配合9〕 エポキシ樹脂            9%ニッケル粉
末(配合8と同一)    51%メチルエチルケトン
        40%エポキシ樹脂はシェル化学■商
品名エピコート#1002、#1004、#1007、
及び#1009 (エポキシ当量2400〜3300、
融点約148℃、軟化点90℃)を各々1:1:2:2
(重量比)の割合で混合したもの(融点約135℃、軟
化点75℃)を使用した。
[Formulation 9] Epoxy resin 9% Nickel powder (same as Formulation 8) 51% Methyl ethyl ketone 40% Epoxy resin is manufactured by Shell Chemical ■Product name Epicote #1002, #1004, #1007,
and #1009 (epoxy equivalent 2400-3300,
melting point approximately 148°C, softening point 90°C) in 1:1:2:2, respectively.
(weight ratio) (melting point: about 135°C, softening point: 75°C) was used.

上記配合からなる組成物を、配合5と同様の方法で、導
電性微粉末/樹脂=85/15 (重量比)の導電性粉
末状樹脂組成物(B−5)を作成した。
A conductive powdery resin composition (B-5) having a conductive fine powder/resin ratio of 85/15 (weight ratio) was prepared using the composition consisting of the above formulation in the same manner as in Formulation 5.

〔配合10) エポキシ樹脂           11%銀粉末  
            48%メチルエチルケトン 
       40%ジシアンジアミド       
    1%エポキシ樹脂はエピコート#1007を、
銀粉末は福田金属箔粉工業■製導電性銀粉末(平均粒子
径約1μm)を夫々使用した。
[Formulation 10] Epoxy resin 11% silver powder
48% methyl ethyl ketone
40% dicyandiamide
1% epoxy resin is Epicoat #1007,
As the silver powder, conductive silver powder (average particle diameter of about 1 μm) manufactured by Fukuda Metal Foil and Powder Industry ■ was used.

前記配合からなる組成物を、配合5と同様にして液体組
成物を作成した後、該組成物100部に対して更にメチ
ルエチルケトン50部の割合で加え希釈し、ついでスプ
レードライ法(空気流量:20d/分、液体組成物供給
量200m11分、入口空気温度95℃、出口空気温度
30℃)により、導電性微粉末/樹脂=80/20 (
重量比)の導電性粉末状樹脂組成物(B−6)を作成し
た。
A liquid composition was prepared using the composition described above in the same manner as in Formulation 5, and then diluted by adding 50 parts of methyl ethyl ketone to 100 parts of the composition, followed by spray drying (air flow rate: 20 d). conductive fine powder/resin = 80/20 (
A conductive powdery resin composition (B-6) was prepared (weight ratio).

〔配合11) ポリエステル樹脂(配合3と同一)  12%デンドラ
イト形状銅粉末      48%(配合5と同一) メチルエチルケトン        40%上記配合か
らなる組成物を、磁性ボア)ミルで1時間半分散して液
体組成物を作成し、配合5と同じ方法で前記液体組成物
より、導電性微粉末/樹脂=80/20 (重量比)の
導電性粉末状樹脂組成物(B−7)を作成した。
[Formulation 11] Polyester resin (same as formulation 3) 12% Dendrite-shaped copper powder 48% (same as formulation 5) Methyl ethyl ketone 40% The composition consisting of the above formulation was dispersed in a magnetic bore mill for one and a half hours to form a liquid composition. A conductive powder resin composition (B-7) having a conductive fine powder/resin ratio of 80/20 (weight ratio) was prepared from the liquid composition in the same manner as in Formulation 5.

〔配合12〕 アクリル樹脂(配合4と同一)     9%ニッケル
粉末(配合8と同一)    51%メチルエチルケト
ン        40%上記配合からなる組成物を配
合5と同様にして、導電性微粉末/樹脂=85/15 
(重量比)の導電性粉末状樹脂組成物(B−8)を作成
した。
[Blend 12] Acrylic resin (same as Blend 4) 9% Nickel powder (same as Blend 8) 51% Methyl ethyl ketone 40% A composition consisting of the above blend was prepared in the same manner as Blend 5, conductive fine powder/resin = 85/ 15
(weight ratio) A conductive powdery resin composition (B-8) was prepared.

実施例1 予め80℃に予熱した固定金型内非塗装部分をマスキン
グした後、電波吸収性粉末状樹脂組成物(A−’1)を
−80KVの電圧下で静電塗装し、塗膜を形成せしめた
Example 1 After masking the unpainted part in a fixed mold that had been preheated to 80°C, a radio wave absorbing powdered resin composition (A-'1) was electrostatically applied under a voltage of -80 KV to form a coating film. formed.

ついで、最後に導電性被膜の表面抵抗値を測定するため
、成形品の両端に相当する部分のマスキングを一部外し
た。
Then, in order to finally measure the surface resistance value of the conductive coating, a portion of the masking corresponding to both ends of the molded article was removed.

其の後、導電性粉末状樹脂組成物(B−1)を−40K
Vの電圧下で静電塗装し、塗膜を形成せしめた後残りの
マスキングを外し、固定金型と移動金型を密閉した。
Thereafter, the conductive powder resin composition (B-1) was heated to -40K.
After electrostatic coating was performed under a voltage of V to form a coating film, the remaining masking was removed and the stationary mold and movable mold were sealed.

ついで、樹脂温度270℃の耐熱ポリスチレン樹脂液を
、射出圧力約900kg/calで射出成形した。
Then, a heat-resistant polystyrene resin liquid with a resin temperature of 270° C. was injection molded at an injection pressure of about 900 kg/cal.

かくて、膜厚40μm、表面抵抗値0.81オ一ム/口
の均一で良導電性の被膜とその上に60μmの電波吸収
性被膜を有する耐熱性ポリスチレン成形体を得た。
In this way, a heat-resistant polystyrene molded body was obtained which had a uniform and highly conductive coating having a thickness of 40 μm and a surface resistance value of 0.81 ohm/portion, and a radio wave absorbing coating of 60 μm thereon.

実施例2 予め70℃に予熱した固定金型内非塗装部分をマスキン
グし、電波吸収性粉末状樹脂組成物(A−2)を−70
KVの電圧下で静電塗装し、塗膜を形成せしめた後、実
施例1と同様にマスキングの一部を外した。
Example 2 The non-painted part in a fixed mold preheated to 70°C was masked, and the radio wave absorbing powdered resin composition (A-2) was heated to -70°C.
After electrostatic coating was performed under a voltage of KV to form a coating film, a part of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−2)を−40K
Vの電圧下で静1i塗装し、塗膜を形成せしめた後、残
りのマスキングを外した。。
Then, the conductive powder resin composition (B-2) was heated to -40K.
After static painting was performed under a voltage of V to form a coating film, the remaining masking was removed. .

其の後移動金型と可動金型を密閉し、樹脂温度180℃
の塩化ビニル樹脂液を、射出圧力約750k g / 
c4で射出成形したところ、膜厚60μm、表面抵抗値
0.55オ一ム/口の均一で良導電性の被膜と、其の上
に膜厚40μmの電波吸収性被膜を有する塩化ビニル樹
脂成形体を得られた。
After that, the movable mold and movable mold are sealed, and the resin temperature is 180℃.
of vinyl chloride resin liquid at an injection pressure of approximately 750 kg/
When injection molded with C4, it was found to be a vinyl chloride resin molded product with a uniform and highly conductive coating with a thickness of 60 μm and a surface resistance value of 0.55 ohm/mouth, and a radio wave absorbing coating with a thickness of 40 μm on top of it. I got a body.

実施例3 予め、90℃に予熱した成形型内の非塗装部分をマスキ
ングし、次いで電波吸収性粉末状樹脂組成物(A−1)
を静電塗装装置によって一65KVの電圧下で、その型
内の塗装部分に塗装を行い、塗膜を形成せしめた後、実
施例1と同様にマスキングの一部を外した。
Example 3 The non-painted part in a mold preheated to 90°C was masked, and then the radio wave absorbing powdered resin composition (A-1)
was applied to the painted area in the mold using an electrostatic coating device under a voltage of -65 KV to form a coating film, and then a part of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−3)を−40K
Vの電圧下で静′i!塗装し、塗膜を形成せしめた後、
残りのマスキングを外した。其の後、加熱ヒーターによ
って硬質塩化ビニルシートを125℃に加熱、軟化せし
め、これを上記成形型にクランプ枠によって固定し、次
いで真空ポンプによって型内の空気を真空度720mm
Hgの圧力で吸出し、シートを型面に密着、成形したと
ころ、膜厚60μm、表面抵抗値0.47オ一ム/口の
均一で良導電性の被膜と、その上に膜厚40μmの電波
吸収性被膜を有する硬質塩化ビニル樹脂成形体を得られ
た。
Then, the conductive powder resin composition (B-3) was heated to -40K.
Static under a voltage of V! After painting and forming a coating film,
The remaining masking was removed. Thereafter, the hard vinyl chloride sheet was heated to 125°C using a heating heater to soften it, and was fixed to the above-mentioned mold using a clamp frame, and then the air inside the mold was pumped to a vacuum level of 720 mm using a vacuum pump.
When the sheet was sucked out with Hg pressure and molded by adhering it to the mold surface, a uniform and highly conductive film with a film thickness of 60 μm and a surface resistance value of 0.47 ohm/mouth was formed, and on top of that was a film with a film thickness of 40 μm and radio waves. A hard vinyl chloride resin molded article having an absorbent coating was obtained.

実施例4 予め、70℃に予熱した固定金型内非塗装部分をマスキ
ングし、導電性粉末状樹脂組成物(B−4)を−60K
Vの電圧下で静電塗装し、塗膜を形成せしめた後、電波
吸収性粉末状樹脂組成物(A−2)を−40KVの電圧
下で静電塗装し、塗膜を形成せしめた後、マスキングを
外した。
Example 4 The non-painted part in the fixed mold that was preheated to 70°C was masked, and the conductive powdered resin composition (B-4) was heated to -60K.
After applying electrostatic coating under a voltage of V to form a coating film, electrostatically coating the radio wave absorbing powdered resin composition (A-2) under a voltage of -40 KV to form a coating film. , the masking was removed.

其の後、固定金型と移動金型を密閉し、樹脂温度220
℃のポリエチレン樹脂液を射出圧力約1100kg/a
Jで射出成形したところ、膜厚4゜μmの電波吸収性被
膜上に、膜厚6oμmで、表面抵抗値1.0オ一ム/口
の均一な良導電性被膜を有するポリエチレン樹脂成形体
を得られた。
After that, the fixed mold and the movable mold are sealed, and the resin temperature is set to 220.
Injection pressure of polyethylene resin liquid at ℃ approximately 1100 kg/a
When injection molded with J, a polyethylene resin molded product was obtained, which had a uniform, highly conductive coating with a thickness of 6 µm and a surface resistance value of 1.0 ohm/mouth on a radio wave absorbing coating with a thickness of 4 µm. Obtained.

実施例5 温度、80℃の固定金型内非塗装部分をマスキングし、
電波吸収性粉末状樹脂組成物(A−1)を−70KVの
電圧下で静電塗装した後、実施例1と同様にマスキング
の一部を外した。
Example 5 Masking the non-painted part in the fixed mold at a temperature of 80°C,
After electrostatically applying the radio wave absorbing powdered resin composition (A-1) under a voltage of -70 KV, a portion of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−5)を−40K
Vの電圧下で静電塗装し、塗膜を形成せしめた後、残り
のマスキングを外し、赤外線ヒーターで金型を95℃ま
で加熱し、塗膜を形成せしめた。其の後、固定金型と移
動金型を密閉し、樹脂温度230℃のABS樹脂液を射
出圧力約1000 kg/catで射出成形して、膜厚
60μm、表面抵抗値0.60オ一ム/口の、均一で良
導電性被膜と、その上に膜厚5oμmの電波吸収性被膜
を有するABS樹脂成形体を得た。
Then, the conductive powdered resin composition (B-5) was heated to -40K.
After electrostatic coating was performed under a voltage of V to form a coating film, the remaining masking was removed and the mold was heated to 95° C. with an infrared heater to form a coating film. After that, the fixed mold and the movable mold were sealed, and ABS resin liquid with a resin temperature of 230°C was injection molded at an injection pressure of about 1000 kg/cat to obtain a film thickness of 60 μm and a surface resistance value of 0.60 ohm. An ABS resin molded body having a uniform and highly conductive coating with a diameter of 1.2 mm and a radio wave absorbing coating with a thickness of 5 μm thereon was obtained.

実施例6 予め、87℃に予熱した成形型内面の非塗装部分をマス
キングを処し、電波吸収性粉末状樹脂組成物(A−4)
を静電粉体塗装装置によって一60KVの電圧下で成形
型内面の塗装部分を塗装した後、実施例1と同様にマス
キングの一部を外した。
Example 6 The unpainted part of the inner surface of the mold, which had been preheated to 87°C, was masked and the radio wave absorbing powdered resin composition (A-4) was prepared.
After coating the inner surface of the mold under a voltage of -60 KV using an electrostatic powder coating device, a part of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−4)を−30K
Vの電圧下で静電塗装した後、残りのマスキングを外し
、型内面を赤外線ヒーターで加熱し、成形型を100℃
にした。
Then, the conductive powdered resin composition (B-4) was heated to -30K.
After electrostatic painting under a voltage of V, the remaining masking was removed, the inner surface of the mold was heated with an infrared heater, and the mold was heated to 100℃.
I made it.

其の後、195℃でチューブ状に押出したポリプロピレ
ンを上記成形型にはさみ込み、チューブ内に3.5kg
/cdの圧搾空気を吹き込んで膨張させて、ポリプロピ
レンを成形型内面に密着、成形したところ、膜厚60μ
m、表面抵抗値0.10オ一ム/口の均一な良導電性被
膜と、その上に膜厚5゜μmの電波吸収性被膜を有する
ポリプロピレン樹脂成形体を得られた。
Thereafter, polypropylene extruded into a tube at 195°C was inserted into the mold, and 3.5 kg was placed inside the tube.
/cd of compressed air was blown into the polypropylene to make it expand, and when the polypropylene was tightly attached to the inner surface of the mold and molded, the film thickness was 60 μm.
A polypropylene resin molded article was obtained which had a uniform, highly conductive coating with a surface resistance value of 0.10 ohm/mouth and a radio wave absorbing coating with a thickness of 5 μm thereon.

実施例7 予め、70℃に予熱した成形型内の非塗装部分にマスキ
ングを処し、i電性粉末状樹脂組成物(B−6)を静電
粉体塗装装置によって一70KVの電圧下で、その型内
の塗装部分に塗装し塗膜を形成せしめた後、電波吸収性
粉末状樹脂組成物(A−1)を−40KVの電圧下で静
電塗装し、塗膜を形成せしめた後、マスキングを外した
Example 7 The non-coated parts in a mold preheated to 70°C were masked, and the i-electric powder resin composition (B-6) was coated with an electrostatic powder coating device under a voltage of -70 KV. After coating the painted part in the mold to form a coating film, electrostatically coating the radio wave absorbing powdered resin composition (A-1) under a voltage of -40 KV to form a coating film, I removed the masking.

其の後、成形型内に116℃に予熱したフェノール樹脂
粉末を入れ、成形型内を閉じて155℃に加熱し180
kg/−の圧力で成形型を圧縮し成形したところ、膜厚
50μmの電波吸収性被膜上に、膜厚60μmで、表面
抵抗値0.15オ一ム/口の均一な良導電性被膜を有す
るフェノール樹脂成形体を得られた。
After that, phenol resin powder preheated to 116°C was put into the mold, the inside of the mold was closed, and the mixture was heated to 155°C and heated to 180°C.
When the mold was compressed and molded with a pressure of 1 kg/-, a uniform, highly conductive film with a thickness of 60 μm and a surface resistance of 0.15 ohm/hole was formed on the radio wave absorbing film with a thickness of 50 μm. A phenolic resin molded article having the following properties was obtained.

実施例8 予め、750℃に予熱した金型内郭塗装部分をマスキン
グし、電波吸収性粉末状樹脂組成物(A−2)を−70
KVの電圧下で静電塗装し、塗膜を形成せしめた後、実
施例1と同様にマスキングの一部を外した。
Example 8 The inner coated part of the mold, which had been preheated to 750°C, was masked, and the radio wave absorbing powdered resin composition (A-2) was heated to -70°C.
After electrostatic coating was performed under a voltage of KV to form a coating film, a part of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−7)を−40K
Vの電圧下で静電塗装し、塗膜を形成せしめた後、残、
りのマスキングを外した。其の後、固定金型と移動金型
を密閉し、樹脂温度260 ’cのポリカーボネート樹
脂液を射出圧力1500kg/dで射出成形して、膜厚
4011m、表面抵抗値1.1オ一ム/口の均一で良導
電性の被膜と、その上に膜W−50μmの電波吸収性被
膜を有するポリカーボネート樹脂成形体を得た。
Then, the conductive powdered resin composition (B-7) was heated to -40K.
After electrostatic painting under a voltage of V to form a coating, the remaining
Removed the masking. After that, the fixed mold and the movable mold were sealed, and a polycarbonate resin liquid with a resin temperature of 260'c was injection molded at an injection pressure of 1500 kg/d to obtain a film thickness of 4011 m and a surface resistance value of 1.1 ohm/d. A polycarbonate resin molded body having a uniform and highly conductive film at the mouth and a radio wave absorbing film having a thickness of W-50 μm thereon was obtained.

実施例9 予め、85℃に予熱した金型内郭塗装部分をマスキング
し、前記電波吸収性粉末状樹脂組成物(A−1>を−6
0KVの電圧下で静電塗装し、塗膜を形成せしめた後、
前記実施例1と同様マスキングの一部を外した。
Example 9 The inner coated part of the mold, which had been preheated to 85°C, was masked, and the radio wave absorbing powdered resin composition (A-1> was mixed with -6
After electrostatically painting under a voltage of 0KV to form a coating film,
As in Example 1, part of the masking was removed.

ついで、導電性粉末状樹脂組成物(B−8)を−40K
Vの電圧下で静電塗装した後、残りのマスキングを外し
た。其の後、固定金型と移動金型を密閉し、樹脂温度3
30t’のPPO(ポリフェニレンオキサイド)樹脂を
射出圧力1500kg/−で射出成形し、平均膜厚50
μm、表面抵抗値0.95オ一ム/口の良導電性の被膜
と、その上に膜厚40μmの電波吸収性被膜を有するP
PO樹脂成形体を得た。
Then, the conductive powdered resin composition (B-8) was heated to -40K.
After electrostatic painting under a voltage of V, the remaining masking was removed. After that, the fixed mold and the movable mold are sealed, and the resin temperature is set to 3.
30t' of PPO (polyphenylene oxide) resin was injection molded at an injection pressure of 1500kg/-, with an average film thickness of 50.
P with a highly conductive film with a surface resistance value of 0.95 ohm/mouth and a radio wave absorbing film with a thickness of 40 μm on top of it.
A PO resin molded body was obtained.

実施例10 予め、80℃に予熱した成形型内面の非塗装部分をマス
キングを処し、電波吸収性粉末状樹脂組成物(A−3)
を静電粉体塗装装置によってその成形型の塗装部分を塗
装した後、実施例1と同様にマスキングの一部を外した
Example 10 The unpainted part of the inner surface of the mold, which had been preheated to 80°C, was masked, and the radio wave absorbing powdered resin composition (A-3) was prepared.
After coating the painted portion of the mold using an electrostatic powder coating device, a portion of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−7)を−40K
Vの電圧下で静電塗装した後、残りのマスキングを外し
た。
Then, the conductive powdered resin composition (B-7) was heated to -40K.
After electrostatic painting under a voltage of V, the remaining masking was removed.

其の後、175℃でチューブ状に押出したポリエチレン
樹脂を上記成形型にはさみ込み、3.2 kg/dの圧
搾空気を吹き込み、チューブを膨らませ型内面に密着、
成形したところ、膜厚60μm、表面抵抗値0.67オ
一ム/口の均一な良導電性被膜と、その上に膜厚40.
unの電波吸収性被膜を有するポリエチレン樹脂成形体
を得られた。
Thereafter, the polyethylene resin extruded into a tube shape at 175°C was inserted into the mold, and 3.2 kg/d of compressed air was blown into the tube to inflate it and bring it into close contact with the inner surface of the mold.
When molded, a uniform, highly conductive film with a film thickness of 60 μm and a surface resistance value of 0.67 ohms/hole was formed, and a film with a film thickness of 40.
A polyethylene resin molded body having a radio wave absorbing coating of un was obtained.

実施例11 予め、105℃に予熱した金型内郭塗装部分をマスキン
グし、電波吸収性前記粉末状樹脂組成物(A−4)を−
80KVの電圧で静電塗装し、塗膜を形成せしめた後、
前記実施例1と同様にマスキングの一部を外した。
Example 11 The inner coated part of the mold, which had been preheated to 105°C, was masked, and the electromagnetic wave absorbing powdered resin composition (A-4) was applied to -
After electrostatically painting with a voltage of 80KV to form a coating film,
A portion of the masking was removed in the same manner as in Example 1 above.

ついで、導電性粉末状樹脂組成物(B−8)を−40K
Vの電圧下で静電塗装した後、残りのマスキングを外し
た。
Then, the conductive powdered resin composition (B-8) was heated to -40K.
After electrostatic painting under a voltage of V, the remaining masking was removed.

其の後、固定金型と移動金型を密閉し、樹脂温度240
℃のポリプロピレン樹脂液を射出圧力1500kg/c
dで射出成形して、膜厚60.crm、表面抵抗値0.
51オ一ム/口の、均一で、良導電性の被膜と、その上
に膜厚40μmの電波吸収性被膜を有するポリプロピレ
ン樹脂成形体を得た。
After that, the fixed mold and the movable mold are sealed, and the resin temperature is set to 240.
Injection pressure of polypropylene resin liquid at ℃ 1500kg/c
Injection molded at d, film thickness 60. crm, surface resistance value 0.
A polypropylene resin molded article was obtained which had a uniform, highly conductive coating of 51 ohm/mouth and a radio wave absorbing coating with a thickness of 40 μm thereon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Gは本発明方法の一例である射出成形方法を
示す工程概略図である。 第2図は第1図E工程における点線部分の拡大図、第3
図は本発明方法により得られたプラスチツク成形体の拡
大断面図である。 1・・・プラスチック成形体、2・・・電波吸収性被膜
、3・・・成形金型、4・・・導電性被膜、5・・・マ
スキング材、6・・・静電塗装機。 昭和  年  月  日 1、事件の表示  昭和60年特許願第62726号2
、発明の名称    プラスチック成形方法3、補正を
する者 事件との関係   出願人 名 称 (332)大日本塗料株式会社同    化成
工業株式会社 4、代理人 づ、補正の対象    明細書の発明の詳細な説明の欄
■、 明細書中下記箇所を下記の通り訂正する。
FIGS. 1A to 1G are process schematic diagrams showing an injection molding method which is an example of the method of the present invention. Figure 2 is an enlarged view of the dotted line in process E in Figure 1.
The figure is an enlarged sectional view of a plastic molded article obtained by the method of the present invention. DESCRIPTION OF SYMBOLS 1... Plastic molded object, 2... Radio wave absorbing coating, 3... Molding die, 4... Conductive coating, 5... Masking material, 6... Electrostatic coating machine. Showa year, month, day 1, case description 1985 patent application No. 62726 2
, Title of the invention Plastic molding method 3, Relationship with the case of the person making the amendment Applicant name (332) Dainippon Toyo Co., Ltd. Kasei Kogyo Co., Ltd. 4, Agent, Subject of amendment Detailed explanation of the invention in the specification In column ■, the following parts of the description should be corrected as follows.

Claims (11)

【特許請求の範囲】[Claims] (1)プラスチック成形方法において、まず、導電性粉
末状樹脂組成物及び電波吸収性粉末状樹脂組成物のいず
れか一方の粉末状樹脂組成物を静電塗装により金型内に
塗布し、ついでその上に前記粉末状樹脂組成物のうち他
方の粉末状樹脂組成物を静電塗装により塗布した後、プ
ラスチック素材を充填成形し、充填素材熱及び/又は成
形時の熱により前記粉末状樹脂組成物を可塑化圧縮して
、成形プラスチック表面に熱硬化性又は熱可塑性樹脂被
膜を投錨密着させることを特徴とする、プラスチック成
形体表面に多層被膜を形成させるプラスチック成形方法
(1) In the plastic molding method, first, a powdered resin composition, either a conductive powdered resin composition or a radio wave absorbing powdered resin composition, is applied into a mold by electrostatic coating, and then the After applying the other powdered resin composition of the powdered resin compositions on top by electrostatic coating, a plastic material is filled and molded, and the powdered resin composition is heated by the heat of the filling material and/or the heat during molding. A plastic molding method for forming a multilayer coating on the surface of a plastic molded article, which method comprises plasticizing and compressing the molded plastic to bring a thermosetting or thermoplastic resin coating into close contact with the surface of the molded plastic.
(2)導電性粉末状樹脂組成物は、導電性微粉末を70
〜95重量%の範囲で含有する熱可塑性又は熱硬化性粉
末状樹脂組成物である特許請求の範囲第(1)項記載の
プラスチック成形方法。
(2) The conductive powder resin composition contains 70% conductive fine powder.
The plastic molding method according to claim 1, which is a thermoplastic or thermosetting powdery resin composition containing in a range of 95% by weight.
(3)電波吸収性粉末状樹脂組成物は、電波吸収性微粉
末を50〜95重量%の範囲で含有する熱可塑性又は熱
硬化性粉末状樹脂組成物である特許請求の範囲第(1)
項記載のプラスチック成形方法。
(3) The radio wave absorbing powder resin composition is a thermoplastic or thermosetting powder resin composition containing radio wave absorbing fine powder in a range of 50 to 95% by weight.
Plastic molding method described in section.
(4)プラスチック成形方法が、射出成形方法、ブロー
成形方法、トランスファー成形方法又は真空成形方法で
ある特許請求の範囲第(1)項記載のプラスチック成形
方法。
(4) The plastic molding method according to claim (1), wherein the plastic molding method is an injection molding method, a blow molding method, a transfer molding method, or a vacuum molding method.
(5)金型は、予め予熱されている金型である特許請求
の範囲第(1)項記載のプラスチック成形方法。
(5) The plastic molding method according to claim (1), wherein the mold is a preheated mold.
(6)プラスチック素材を充填する前に、加熱すること
により導電性及び/又は電波吸収性粉末状樹脂組成物を
融着、又は硬化させる特許請求の範囲第(1)項記載の
プラスチック成形方法。
(6) The plastic molding method according to claim (1), wherein the conductive and/or radio wave absorbing powdered resin composition is fused or hardened by heating before being filled with the plastic material.
(7)導電性及び電波吸収性粉末状樹脂組成物に使用す
る各樹脂成分の融点及び軟化点と、金型予熱温度とは、
(融点+10℃)≧金型予熱温度≧軟化点、の範囲であ
る特許請求の範囲第(5)項記載のプラスチック成形方
法。
(7) The melting point and softening point of each resin component used in the conductive and radio wave absorbing powdered resin composition and the mold preheating temperature are:
The plastic molding method according to claim (5), wherein (melting point +10°C)≧mold preheating temperature≧softening point.
(8)導電性粉末は、デンドライト形状をした金属微粉
末である特許請求の範囲第(1)項又は第(2)項記載
のプラスチック成形方法。
(8) The plastic molding method according to claim (1) or (2), wherein the conductive powder is a fine metal powder having a dendrite shape.
(9)電波吸収性粉末は、スピネル型フェライト粉末で
ある特許請求の範囲第(1)項又は第(3)項記載のプ
ラスチック成形方法。
(9) The plastic molding method according to claim (1) or (3), wherein the radio wave absorbing powder is spinel type ferrite powder.
(10)導電性粉末状樹脂組成物は、水可溶性溶媒、水
不溶性でかつ前記溶媒可溶性樹脂、及び導電性微粉末か
らなる液体組成物を、水中で分散、造粒、溶媒抽出した
後、分離、乾燥する湿式造粒法により得られた粉末状樹
脂組成物である特許請求の範囲第(1)項記載のプラス
チック成形方法。
(10) The conductive powdered resin composition is obtained by dispersing, granulating, and solvent extracting a liquid composition consisting of a water-soluble solvent, a water-insoluble and water-insoluble resin, and a conductive fine powder, and then separating the composition. The plastic molding method according to claim 1, which is a powdered resin composition obtained by a wet granulation method in which the resin composition is dried.
(11)電波吸収性粉末状樹脂組成物は、水可溶性溶媒
、水不溶性でかつ前記溶媒可溶性樹脂、及び電波吸収性
微粉末からなる液体組成物を、水中で分散、造粒、溶媒
抽出した後、分離し、乾燥する湿式造粒法により得られ
た粉末状樹脂組成物である特許請求の範囲第(1)項記
載のプラスチック成形方法。
(11) The radio wave-absorbing powdered resin composition is prepared by dispersing, granulating, and solvent-extracting a liquid composition consisting of a water-soluble solvent, the water-insoluble and solvent-soluble resin, and radio wave-absorbing fine powder in water. The plastic molding method according to claim (1), which is a powdered resin composition obtained by a wet granulation method in which the resin composition is separated and dried.
JP6272685A 1985-03-27 1985-03-27 PURASUCHITSUKUSEIKEIHOHO Expired - Lifetime JPH0236373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6272685A JPH0236373B2 (en) 1985-03-27 1985-03-27 PURASUCHITSUKUSEIKEIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6272685A JPH0236373B2 (en) 1985-03-27 1985-03-27 PURASUCHITSUKUSEIKEIHOHO

Publications (2)

Publication Number Publication Date
JPS61220813A true JPS61220813A (en) 1986-10-01
JPH0236373B2 JPH0236373B2 (en) 1990-08-16

Family

ID=13208653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6272685A Expired - Lifetime JPH0236373B2 (en) 1985-03-27 1985-03-27 PURASUCHITSUKUSEIKEIHOHO

Country Status (1)

Country Link
JP (1) JPH0236373B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259829A (en) * 1986-05-07 1987-11-12 Dainippon Toryo Co Ltd Method for molding plastic
JPS63251206A (en) * 1987-04-07 1988-10-18 Sumitomo Chem Co Ltd Manufacture of multi-layer molded item
KR100708548B1 (en) * 2005-10-17 2007-04-18 채영규 The manufacturig method of a container in syntheticresins with mixing copper powder and the container in syntheticresins
JP2008002653A (en) * 2006-06-26 2008-01-10 Akebono Brake Ind Co Ltd Friction member manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410775U (en) * 1990-05-16 1992-01-29

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259829A (en) * 1986-05-07 1987-11-12 Dainippon Toryo Co Ltd Method for molding plastic
JPH0358573B2 (en) * 1986-05-07 1991-09-05 Dainippon Toryo Kk
JPS63251206A (en) * 1987-04-07 1988-10-18 Sumitomo Chem Co Ltd Manufacture of multi-layer molded item
JPH0519888B2 (en) * 1987-04-07 1993-03-18 Sumitomo Chemical Co
KR100708548B1 (en) * 2005-10-17 2007-04-18 채영규 The manufacturig method of a container in syntheticresins with mixing copper powder and the container in syntheticresins
JP2008002653A (en) * 2006-06-26 2008-01-10 Akebono Brake Ind Co Ltd Friction member manufacturing method

Also Published As

Publication number Publication date
JPH0236373B2 (en) 1990-08-16

Similar Documents

Publication Publication Date Title
KR900003733B1 (en) Molding of plastic
JP5156189B2 (en) Use of polyarylene ether ketone powder in a manufacturing method without using a mold based on a three-dimensional powder and a molded body produced therefrom
ES2656009T3 (en) Powder coating method and apparatus for absorbing electromagnetic interference (EMI)
US4205028A (en) Forming protective skin on intricately molded product
JPS61220813A (en) Molding of plastic
FR2637839A1 (en)
US7335316B2 (en) Plastic magnet precursor, production method for the same, and plastic magnet
JPS6320270B2 (en)
US4680139A (en) Electrostatically conductive premold coating
JPH0470966B2 (en)
JPS63159024A (en) Manufacture of plastic molded product
JPS62260093A (en) Method for plating plastic product
JPS62259828A (en) Method for molding plastic
JPS61126185A (en) Composition in powder
JPH03158216A (en) Method for molding plastic
JPH0358573B2 (en)
JPS62212115A (en) Plastic molding method
JPH0360296B2 (en)
US3151095A (en) Process of mixing glass flakes with a normally liquid resin in frozen, comminuted form
JPS63147618A (en) Preparation of plastic molding
JPS63147617A (en) Preparation of plastic molding
CA2614701A1 (en) Liquid low-temperature injection molding process
JP5603098B2 (en) Method for producing molded body and molded body
JPS61132317A (en) Method of molding plastic
US20030183987A1 (en) Method for fabricating molded resinous part with metal distributed in surface thereof