[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0236373B2 - PURASUCHITSUKUSEIKEIHOHO - Google Patents

PURASUCHITSUKUSEIKEIHOHO

Info

Publication number
JPH0236373B2
JPH0236373B2 JP6272685A JP6272685A JPH0236373B2 JP H0236373 B2 JPH0236373 B2 JP H0236373B2 JP 6272685 A JP6272685 A JP 6272685A JP 6272685 A JP6272685 A JP 6272685A JP H0236373 B2 JPH0236373 B2 JP H0236373B2
Authority
JP
Japan
Prior art keywords
resin composition
powder
conductive
resin
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6272685A
Other languages
Japanese (ja)
Other versions
JPS61220813A (en
Inventor
Takao Sakakibara
Tsunehiko Toyoda
Yoshihisa Nagashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Tokai Kogyo Co Ltd
Original Assignee
Dai Nippon Toryo KK
Tokai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Tokai Kogyo Co Ltd filed Critical Dai Nippon Toryo KK
Priority to JP6272685A priority Critical patent/JPH0236373B2/en
Publication of JPS61220813A publication Critical patent/JPS61220813A/en
Publication of JPH0236373B2 publication Critical patent/JPH0236373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0011Electromagnetic wave shielding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラスチツク成形体表面に、導電性
被膜とその上に形成された電波吸収性被膜、又は
電波吸収性被膜とその上に形成された導電性被膜
からなる多層被膜を形成させるプラスチツク成形
方法に関する。詳しくは、電磁波遮蔽、帯電防止
等の目的をもつたプラスチツク成形体を得る方法
に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a method for applying a conductive film and a radio wave absorbing film formed on the surface of a plastic molded article, or a radio wave absorbing film and a radio wave absorbing film formed thereon. The present invention relates to a plastic molding method for forming a multilayer coating consisting of a conductive coating. More specifically, the present invention relates to a method for obtaining a plastic molded body having the purpose of shielding electromagnetic waves, preventing static electricity, etc.

(従来技術) 近年、半導体素子を使用した電子機器の誤動作
の原因が、電磁波や静電気が原因して発生するこ
とが明らかになり、欧米諸国では発生源となる
ICやLSI素子を内蔵した電子機器に対する現制が
法令化され始めており、電子機器業界ではその対
策がせまられている。
(Prior art) In recent years, it has become clear that electromagnetic waves and static electricity are the cause of malfunctions in electronic devices that use semiconductor devices, and in Western countries, malfunctions are caused by electromagnetic waves and static electricity.
The current regulations regarding electronic devices that incorporate IC and LSI elements are beginning to become law, and the electronic device industry is urgently required to take countermeasures.

現在、これら妨害電磁波発生源をシールドする
方法の一つとして、例えば、プラスチツクに導電
性粉末を混練後、成形し、プラスチツク成形体そ
のものに導電性機能を付与する方法(例えば特公
昭35−9643号)が知られている。しかしながら、
該方法は作業が簡便であるという利点がある反
面、電気導電体を得るには導電性粉末を多量に含
有させる必要があり、その結果成形後のプラスチ
ツクの物理的強度の低下、重量の増加、成形上の
問題点等の如き、その他の各種欠点が生じるため
あまり実用化されていない。
Currently, one of the methods to shield these sources of interference electromagnetic waves is to knead conductive powder into plastic and then mold it, giving the plastic molded body itself a conductive function (for example, Japanese Patent Publication No. 35-9643 )It has been known. however,
Although this method has the advantage of being easy to work with, it requires the inclusion of a large amount of conductive powder in order to obtain an electrical conductor, resulting in a decrease in the physical strength of the plastic after molding, an increase in weight, and It has not been put into practical use much because of various other drawbacks such as problems in molding.

シールド方法の他の方法としては、電子機器ハ
ウジング内面に溶剤可溶型導電性塗料を刷毛ある
いはスプレー等で塗装する方法が知られている。
該方法においては、導電性塗料中に含まれる有機
溶剤による形状破損、変色等の対策、塗膜密着強
度向上や塗膜剥離防止のための下塗り対策等が必
要であるとともに、大気中への有機溶剤揮散によ
る臭気、人体に対する悪影響、火災等の危険性等
の問題点があつた。
Another known shielding method is to apply a solvent-soluble conductive paint to the inner surface of an electronic device housing with a brush or spray.
In this method, it is necessary to take measures against shape damage and discoloration caused by organic solvents contained in conductive paints, as well as undercoat measures to improve paint film adhesion strength and prevent paint film peeling. There were problems such as odor caused by solvent volatilization, adverse effects on the human body, and danger of fire.

最近では、電子機器ハウジング用成形金型内に
溶剤可溶型導電性塗料を刷毛又はスプレーガンで
塗装した後、金型内でプラスチツクを成形し、プ
ラスチツク成形体と導電性被膜を一体化する方法
も提案されている(例えば特公昭48−25061号)。
該方法によれば、成型金型内にグリース状の組成
物を塗布し、その上に黒鉛等の導電性粉末を吹付
けた後、液状合成樹脂を注入して硬化させ、所定
の個所を導電性とする絶縁性成形体を得る方法が
提案されている。しかしながら該方法では導電性
粉末はグリース状組成物との接触点以外では付着
力が弱いという基本的な問題があるため、樹脂注
入に際し、細心の注意力が必要であり、加えてそ
の注入速度も極めて遅いものとならざるを得ない
という作業上の問題点等があつた。
Recently, a method has been developed in which a solvent-soluble conductive paint is applied with a brush or a spray gun into a mold for electronic device housings, and then the plastic is molded within the mold to integrate the plastic molded body and the conductive coating. has also been proposed (for example, Special Publication No. 48-25061).
According to this method, a grease-like composition is applied inside a mold, a conductive powder such as graphite is sprayed on top of the composition, and then a liquid synthetic resin is injected and cured to make predetermined areas conductive. A method has been proposed for obtaining an insulating molded body with high properties. However, this method has the fundamental problem that the conductive powder has weak adhesion at points other than the points of contact with the grease-like composition, so careful attention is required when injecting the resin, and in addition, the injection speed is also limited. There were problems with the work, such as the fact that it was extremely slow.

それ故、この方法は射出成形方法の如き高速成
形方法に適用することは不可能である。
Therefore, this method cannot be applied to high-speed molding methods such as injection molding methods.

また、前記公知例中には前記導電性粉末の付着
力を高める目的で、更に合成樹脂接着剤を樹脂注
入前に使用する方法も併記されているが、この方
法を採用すると、前述した溶剤可溶型導電性塗料
を成形後塗布する場合の問題点は何一つ解決され
ないものであつた。
In addition, the above-mentioned known example also describes a method of using a synthetic resin adhesive before resin injection in order to increase the adhesion of the conductive powder, but if this method is adopted, the aforementioned solvent can be removed. None of the problems associated with applying a melt-molded conductive paint after molding have been solved.

一般に、溶剤可溶型塗料のもつ前記各種問題点
を解決する手段として、例えば溶剤を全く含有し
ない粉体塗料の使用が考えられる。
In general, as a means to solve the above-mentioned problems of solvent-soluble paints, it is conceivable to use, for example, powder paints that do not contain any solvent at all.

事実、成形の分野においても通常の着色顔料を
少量含有する粉末塗料を加熱、加圧成形用金型内
面に流動床あるいはスプレーによりあらかじめ付
着させた後、SMCやBMCを用いて圧縮成形し、
FRP表面に保護又は着色被膜を成形させる方法
が知られている(例えば、特公昭58−44459号、
特開昭57−181823号、特開昭58−124610号)。
In fact, even in the field of molding, a powder coating containing a small amount of normal color pigments is heated and applied to the inner surface of a pressure mold by a fluidized bed or spray, and then compression molded using SMC or BMC.
A method of forming a protective or colored film on the FRP surface is known (for example, Japanese Patent Publication No. 58-44459,
JP-A-57-181823, JP-A-58-124610).

しかして、これらの方法によつても、粉末の飛
散、金型外への付着、膜厚の不均一等の問題点が
あつた。
However, even with these methods, there are problems such as powder scattering, adhesion to the outside of the mold, and uneven film thickness.

一方、導電性被膜は、電磁波を反射する能力を
有するが吸収能力がなく、しかも高周波領域(低
波長)の電磁波のシールドには効果的でないとい
う問題があつた。
On the other hand, conductive films have the problem of having the ability to reflect electromagnetic waves but not absorbing them, and moreover, are not effective in shielding electromagnetic waves in the high frequency range (low wavelength).

更に、導電性の塗膜は導電性であるが故に、電
子機器ハウジング内に露出されて塗装された場
合、電流の流れている内蔵機器類との接触等によ
り、感電や漏電の危険性が大きいことも問題点の
一つとして挙げられる。
Furthermore, since conductive coatings are conductive, if they are exposed inside an electronic device housing, there is a high risk of electric shock or leakage due to contact with internal devices carrying current. This can also be cited as one of the problems.

(発明が解決しようとする問題点) 本発明は、有機溶剤揮散による安全、衛生上の
問題点や、粉末塗料の飛散、金型外への付着や膜
厚の不均一さ等の問題点を解決し、導電性微粉末
を高濃度に含有する粉末状樹脂組成物を効率良
く、かつ均一にプラスチツク表面に付着せしめ、
表面抵抗値が102オーム/□程度以下の導電性を
有するプラスチツク成形品の成形方法を提供しよ
とするものである。
(Problems to be Solved by the Invention) The present invention solves safety and hygiene problems caused by organic solvent volatilization, and problems such as scattering of powder paint, adhesion to the outside of the mold, and uneven film thickness. By solving this problem, a powdered resin composition containing a high concentration of conductive fine powder can be efficiently and uniformly attached to the plastic surface.
It is an object of the present invention to provide a method for molding a plastic molded article having electrical conductivity and a surface resistance value of about 10 2 ohms/□ or less.

更には、高周波領域の電磁波を吸収するととも
に、場合により導電性被膜の感電や漏電事故防止
機能を有する電波吸収性被膜を有する多層被膜を
形成させるプラスチツク成形方法を提供しようと
するものである。
Furthermore, it is an object of the present invention to provide a plastic molding method for forming a multilayer coating having a radio wave absorbing coating that absorbs electromagnetic waves in a high frequency range and, in some cases, has a function of preventing electric shocks and leakage accidents caused by conductive coatings.

(問題点を解決するための手段) 即ち、本発明は、プラスチツク成形方法におい
て、まず、導電性粉末状樹脂組成物及び電波吸収
性粉末状樹脂組成物のいずれか一方の粉末状樹脂
組成物を静電塗装により金型内に塗布し、ついで
その上に前記粉末状樹脂組成物のうち他方の粉末
状樹脂組成物を静電塗装により塗布した後、プラ
スチツクを成形し、導電性被膜と絶縁性被膜から
なる多層被膜をプラスチツク成形体表面に投錨密
着させるプラスチツクの成形方法に関するもので
ある。
(Means for Solving the Problems) That is, the present invention provides a plastic molding method in which first, a powdery resin composition of either a conductive powdery resin composition or a radio wave absorbing powdery resin composition is used. After applying the powdered resin composition into the mold by electrostatic coating, and then applying the other powdered resin composition among the powdered resin compositions by electrostatic coating, the plastic is molded, and a conductive film and an insulating film are formed. The present invention relates to a plastic molding method in which a multilayer film consisting of a film is brought into close contact with the surface of a plastic molded body.

(発明の具体的説明) 本発明の方法に使用される導電性粉末状樹脂組
成物とは、導電性微粉末を含有する熱硬化性又は
熱可塑性樹脂組成物である。
(Specific Description of the Invention) The conductive powder resin composition used in the method of the present invention is a thermosetting or thermoplastic resin composition containing conductive fine powder.

前記熱硬化性樹脂としては、アクリル樹脂、ポ
リエステル樹脂、エポキシ樹脂、アルキド樹脂、
ウレタン樹脂、エポキシ変性ポリエステル樹脂、
アクリル変性ポリエステル樹脂等が一例として挙
げられる。特に、貯蔵安定性や塗膜の導電性等か
ら、アクリル樹脂、ポリエステル樹脂、エポキシ
樹脂が好ましい。
Examples of the thermosetting resin include acrylic resin, polyester resin, epoxy resin, alkyd resin,
Urethane resin, epoxy modified polyester resin,
An example is acrylic modified polyester resin. In particular, acrylic resins, polyester resins, and epoxy resins are preferred from the viewpoint of storage stability and conductivity of the coating film.

前記熱硬化性樹脂は、自己硬化型、硬化剤(架
橋剤)硬化型等の種々の型のものが使用し得る。
Various types of thermosetting resins can be used, such as a self-curing type and a curing agent (crosslinking agent) curing type.

前記熱硬化性樹脂の硬化剤としては、ジシアン
ジアミド、酸無水物、イミダゾール誘導体、芳香
族ジアミン、三フツ化ホウ素アミン錯化合物、ヒ
ドラジド類、デカメチレンジカルボン酸、ブロツ
クイソシアネート化合物、アミノ樹脂等の如き、
通常熱硬化性粉体塗料等に用いられるものが使用
可能である。
Examples of the curing agent for the thermosetting resin include dicyandiamide, acid anhydride, imidazole derivative, aromatic diamine, boron trifluoride amine complex compound, hydrazide, decamethylene dicarboxylic acid, blocked isocyanate compound, amino resin, etc.
Those normally used for thermosetting powder coatings can be used.

また、前記熱可塑性樹脂としては、アクリル樹
脂、エポキシ樹脂、ポリエステル樹脂、ポリエチ
レン樹脂、ポリプロピレン樹脂、スチレン重合
体、塩化ビニル重合体、ポリアミド樹脂、ブチラ
ール樹脂、繊維素樹脂、石油樹脂等公知のものが
挙げられる。
Further, as the thermoplastic resin, known ones such as acrylic resin, epoxy resin, polyester resin, polyethylene resin, polypropylene resin, styrene polymer, vinyl chloride polymer, polyamide resin, butyral resin, cellulose resin, and petroleum resin are used. Can be mentioned.

前記熱硬化性樹脂及び熱可塑性樹脂は各々単独
もしくは混合物として、あるいは必要に応じて熱
硬化性樹脂と熱可塑性樹脂とを組合せて使用する
ことが可能である。
The thermosetting resin and the thermoplastic resin can be used individually or as a mixture, or if necessary, the thermosetting resin and the thermoplastic resin can be used in combination.

本発明において前記粉末状樹脂組成物に使用さ
れる樹脂成分の軟化点は40〜160℃、融点は60〜
180℃、好ましくは軟化点60〜130℃、融点70〜
160℃程度のものである。
In the present invention, the resin component used in the powdered resin composition has a softening point of 40 to 160°C and a melting point of 60 to 160°C.
180℃, preferably softening point 60~130℃, melting point 70~
The temperature is about 160℃.

尚、前記軟化点はKofler′s法により、また融点
はDurran′s法により測定したものである。
The softening point was measured by Kofler's method, and the melting point was measured by Durran's method.

又、前記導電性微粉末とは、金、白金、パラジ
ウム、銀、銅、ニツケル等の金属粉末あるいは合
金粉末;ニツケルコーテイングマイカ粉末等の電
気的に不良導体である無機質粉末あるいはプラス
チツク粉末の表面を、電気良導体の金属で被覆し
たもの等の如き、電気的良導電性の微粉末で、粒
子径範囲が0.5〜100μm、好ましくは1〜50μm程
度のものである。該粉末は1種もしくは2種以上
の組合せで使用することが可能である。
The conductive fine powder refers to metal powder or alloy powder such as gold, platinum, palladium, silver, copper, or nickel; or the surface of inorganic powder or plastic powder that is an electrically poor conductor such as nickel-coated mica powder. It is a fine powder with good electrical conductivity, such as one coated with a metal that is a good electrical conductor, and has a particle size range of 0.5 to 100 μm, preferably about 1 to 50 μm. These powders can be used alone or in combination of two or more.

本発明の目的、即ち良導電性でかつ密着性の優
れた被膜を得るという目的に対し、特にデンドラ
イト形状(樹枝状)の金属微粉末が有効である。
Dendritic metal fine powder is particularly effective for the purpose of the present invention, that is, to obtain a film with good conductivity and excellent adhesion.

前記導電性微粉末は、導電性粉末状樹脂組成物
中に好ましくは70〜95重量%、より好ましくは75
〜90重量%の範囲で含有される。
The conductive fine powder is preferably 70 to 95% by weight, more preferably 75% by weight in the conductive powder resin composition.
It is contained in the range of ~90% by weight.

尚、本発明において導電性粉末状樹脂組成物と
は、個々の樹脂粉末の中に全ての導電性微粉末が
内包された組成物と、大部分の導電性微粉末を内
包した樹脂粉末と少部分の導電性微粉末の混合物
(但し、導電性微粉末の総量は前記範囲内にある)
とを意味するものである。後者の場合、粉末状態
で電気抵抗が静電塗装可能な程度に高いことが必
要であるのは当然である。
In the present invention, the conductive powder resin composition includes a composition in which all of the conductive fine powder is encapsulated in each individual resin powder, a resin powder in which most of the conductive fine powder is contained, and a resin powder in which a small amount of the conductive fine powder is contained. A mixture of conductive fine powders (however, the total amount of conductive fine powders is within the above range)
It means that. In the latter case, it is natural that the electrical resistance in the powder state must be high enough to allow electrostatic coating.

導電性粉末状樹脂組成物の導電性微粉末の量が
70重量%にみたない場合には、プラスチツク成形
体表面に良好な導電性被膜を形成せしめることが
出来ず、一方95重量%をこえる場合には、効率良
く静電塗装することが困難となるため、いずれも
あまり好ましない。
The amount of conductive fine powder in the conductive powder resin composition is
If it is less than 70% by weight, it will not be possible to form a good conductive film on the surface of the plastic molded object, while if it exceeds 95% by weight, it will be difficult to perform electrostatic coating efficiently. , I don't really like either of them.

本発明の方法に使用される導電性粉末状樹脂組
成物は、公知の粉体塗料等の製造方法により得ら
れる。
The conductive powdery resin composition used in the method of the present invention can be obtained by a known method for producing powder coatings and the like.

例えば、前記樹脂及び導電性粉末、及び其の他
必要により硬化剤、添加剤等を加熱溶融混合後、
冷却、粉砕、篩分けする機械粉砕法や、前記樹脂
及び導電性微粉末、其の他必要により硬化剤、添
加剤等を溶剤中に分散せしめた後、得られた分散
液を加熱空気中に噴霧するドライスプレー法等が
適用出来る。
For example, after heating and melting and mixing the resin and conductive powder, and other necessary hardening agents, additives, etc.,
After using a mechanical pulverization method of cooling, pulverizing, and sieving, or dispersing the resin, conductive fine powder, and other necessary hardening agents, additives, etc. in a solvent, the obtained dispersion is immersed in heated air. Dry spray method etc. can be applied.

しかして、より高濃度に導電性微粉末を含有さ
せた組成物を得る場合や、融点の低い樹脂を用い
る場合あるいは、粉末状樹脂組成物の凝集防止等
を考慮した場合以下に示す湿式造粒法による製造
方法が好ましい。
Therefore, when obtaining a composition containing conductive fine powder at a higher concentration, when using a resin with a low melting point, or when considering prevention of agglomeration of a powdered resin composition, the following wet granulation method is used. A manufacturing method using a method is preferred.

例えば、アルコール類、エチレングリコール誘
導体、ジエチレングリコール誘導体、エステル
類、ケトン類等の水可溶性溶媒(好ましくは、20
℃で水に対する溶解度が10〜30重量%)中に、前
記樹脂を溶解せしめ、ついで前記樹脂、及び導電
性微粉末、其の他必要により硬化剤、添加剤等を
混合して得られる液体組成物(以下分散液とい
う)を、該分散液中に含まれる全ての水可溶性溶
媒が溶解する量(分散液の約3〜40倍量)の水中
に乳化、分散する。乳化は、分散液を激しい撹拌
下にある水中に滴下、注入、噴霧する方法、ある
いは水と分散液をラインミキサーで混合する方法
等により行われる。
For example, water-soluble solvents such as alcohols, ethylene glycol derivatives, diethylene glycol derivatives, esters, and ketones (preferably 20
A liquid composition obtained by dissolving the resin in a solution with a solubility in water of 10 to 30% by weight at °C, and then mixing the resin, conductive fine powder, and other necessary curing agents, additives, etc. A substance (hereinafter referred to as a dispersion) is emulsified and dispersed in an amount of water (approximately 3 to 40 times the amount of the dispersion) in which all the water-soluble solvents contained in the dispersion are dissolved. Emulsification is carried out by dropping, pouring, or spraying the dispersion into water under vigorous stirring, or by mixing water and the dispersion using a line mixer.

前記撹拌もしくはラインミキサーでの混合は、
乳濁微粒子中の溶剤が水中に移行し、粒子が形成
される迄行う。
The above stirring or mixing with a line mixer is
This process is continued until the solvent in the emulsified fine particles migrates into the water and particles are formed.

かくして、乳濁微粒子中の溶剤が水中に抽出さ
れ、樹脂粒子が得られる。
In this way, the solvent in the emulsion fine particles is extracted into water, and resin particles are obtained.

この樹脂粒子を濾過または遠心分離等により水
−溶剤混合物と分離し、さらに必要ならば水洗及
び分離を必要回数繰り返し、スラリー状ないし含
水ケーキ状の樹脂粒子を得る。ついで、必要によ
りボールミル、ポツトミル、サンドミル等により
調粒を行つた後、樹脂粒子が凝集しないよう乾
燥、好ましくは凍結乾燥、真空乾燥等により乾燥
し、必要により篩分けして本発明の導電性粉末状
樹脂組成物を得る。このような製造方法は、例え
ば特開昭48−52851号、特公昭54−5832号、同54
−26250号、同54−31492号、同56−5796号、同56
−29890号公報に詳述されている。
The resin particles are separated from the water-solvent mixture by filtration or centrifugation, and if necessary, water washing and separation are repeated a necessary number of times to obtain resin particles in the form of a slurry or a water-containing cake. Then, if necessary, the particles are adjusted using a ball mill, pot mill, sand mill, etc., and then dried to prevent the resin particles from agglomerating, preferably by freeze drying, vacuum drying, etc., and if necessary, sieved to obtain the conductive powder of the present invention. A resin composition is obtained. Such a manufacturing method is described, for example, in Japanese Patent Application Laid-open No. 48-52851, Japanese Patent Publication No. 54-5832, and Japanese Patent Publication No. 54-54.
-26250, 54-31492, 56-5796, 56
It is detailed in the -29890 publication.

更に、本発明の方法に使用される導電性粉末状
樹脂組成物の粒子径範囲は、0.5〜100μm程度、
好ましくは1〜50μm程度のものである。
Furthermore, the particle size range of the conductive powder resin composition used in the method of the present invention is about 0.5 to 100 μm,
Preferably it is about 1 to 50 μm.

一方、本発明の方法に使用される電磁吸収性粉
末状樹脂組成物とは、電波吸収性微粉末を含有す
る熱硬化性又は熱可塑性樹脂組成物である。
On the other hand, the electromagnetic absorbing powder resin composition used in the method of the present invention is a thermosetting or thermoplastic resin composition containing radio wave absorbing fine powder.

本発明の電波吸収性粉末状樹脂組成物に使用さ
れる展色剤としての樹脂は、前記導電性粉末状樹
脂組成物に使用されるものと同様の熱硬化性又は
熱可塑性樹脂が全て支障なく使用出来る。又、電
波吸収性粉末状樹脂組成物の製造方法としては、
前記導電性粉末状樹脂組成物を得る方法と同様の
方法が適用出来る。
The resin as a color vehicle used in the electromagnetic wave absorbing powder resin composition of the present invention may be any thermosetting or thermoplastic resin similar to that used in the conductive powder resin composition. Can be used. In addition, as a method for producing a radio wave absorbing powdered resin composition,
The same method as the method for obtaining the conductive powdery resin composition can be applied.

特に、高濃度の電波吸収性微粉末を含有した樹
脂組成物を得る場合や、電波吸収性粉末状樹脂組
成物の凝集防止等を考慮した場合には、前記湿式
造粒法による製造方法が好ましい。
In particular, when obtaining a resin composition containing a high concentration of radio wave absorbing fine powder, or when considering prevention of agglomeration of the radio wave absorbing powder resin composition, the production method using the wet granulation method is preferable. .

電波吸収性粉末状樹脂組成物に使用される樹脂
の軟化点及び融点、更に樹脂組成物の粒子径等
も、前記導電性粉末状樹脂組成物の場合と同様の
範囲内にあることが好ましい。
The softening point and melting point of the resin used in the electromagnetic wave absorbing powder resin composition, as well as the particle size of the resin composition, are preferably within the same range as in the case of the conductive powder resin composition.

前記電波吸収性粉末状樹脂組成物に使用される
電波吸収性微粉末としては、一般式 M2+O・(Fe2O3)〔MはNi、Zn、Mn等の2価
の金属を示す〕で表わされるスピネル型フエライ
ト粒子が好ましい。
The radio wave absorbing fine powder used in the radio wave absorbing powder resin composition has the general formula M 2+ O (Fe 2 O 3 ) [M represents a divalent metal such as Ni, Zn, Mn, etc. ] Preferably, spinel-type ferrite particles are represented by the following formula.

このような粒子としては、例えばNiFe2O4
ZnFe2O4、MnFe2O4、CuFe2O4、Fe3O4
CoFe2O4等、あるいはNi−Zn、Ni−Mn、Mn−
Zn等の複合型フエライト等が挙げられる。これ
らは一種もしくは二種以上の混合物として使用さ
れる。
Such particles include, for example, NiFe 2 O 4 ,
ZnFe 2 O 4 , MnFe 2 O 4 , CuFe 2 O 4 , Fe 3 O 4 ,
CoFe 2 O 4 etc., or Ni−Zn, Ni−Mn, Mn−
Examples include composite ferrites such as Zn. These may be used alone or as a mixture of two or more.

前記スピネル型フエライト微粒子の製造方法
は、一般に公知の方法、例えば「粉体及び粉末治
金」第29巻、第6号、第12頁に記載されている如
き方法により得ることが出来る。
The spinel type ferrite fine particles can be produced by a generally known method, for example, the method described in "Powder and Powder Metallurgy", Vol. 29, No. 6, Page 12.

本発明の方法に使用される電波吸収性微粒子
は、粒子径0.05〜10μm程度のものであり、該粒
子は電波吸収性粉末状樹脂組成物中好ましくは50
〜95重量%程度含有される。
The radio wave absorbing fine particles used in the method of the present invention have a particle size of about 0.05 to 10 μm, and the particles are preferably 50 μm in diameter in the radio wave absorbing powder resin composition.
Contains about 95% by weight.

前記範囲において、電波吸収性微粒子が50重量
%に満たない場合には、高周波領域の電磁波吸収
効果があまり期待出来ず、逆に95重量%をこえる
と均一な被膜が得難くなるためいずれもあまり好
ましない。
In the above range, if the radio wave-absorbing fine particles are less than 50% by weight, the effect of absorbing electromagnetic waves in the high frequency range cannot be expected to be very good.On the other hand, if the content exceeds 95% by weight, it becomes difficult to obtain a uniform coating. I don't like it.

本発明の電波吸収性粉末状樹脂組成物とは、
個々の樹脂粉末中に全ての電波吸収性微粉末が内
包された組成物と、大部分の電波吸収性微粉末を
内包した樹脂粉末と、少部分の電波吸収性微粉末
の混合物(但し、電波吸収性微粉末の総量は前記
範囲内になる)とを意味するものである。
The radio wave absorbing powdered resin composition of the present invention is
A composition in which all of the radio wave absorbing fine powder is encapsulated in each individual resin powder, and a mixture of a resin powder containing most of the radio wave absorbing fine powder and a small portion of the radio wave absorbing fine powder (however, a composition in which the radio wave absorbing fine powder is contained in each resin powder) This means that the total amount of absorbent fine powder falls within the above range.

前記電波吸収性粉末状樹脂組成物には、必要に
より前記成分以外にダレ防止剤、硬化促進剤、酸
化防止剤、体質顔料等の如き、一般に粉体塗料に
使用されている成分を添加混合することも出来
る。
In addition to the above-mentioned components, components generally used in powder coatings, such as anti-sag agents, curing accelerators, antioxidants, extender pigments, etc., may be added to the radio wave-absorbing powdered resin composition as necessary. You can also do that.

更に、前記電波吸収性粉末状樹脂組成物の粒子
径範囲は、0.5〜100μm程度、好ましくは1〜50μ
m程度のものである。
Furthermore, the particle size range of the radio wave absorbing powdered resin composition is about 0.5 to 100 μm, preferably 1 to 50 μm.
It is about m.

一方、本発明の方法が適用出来る成形方法とし
ては特に制限がなく、一般に行われている成形方
法、例えば圧縮成形方法、トランスフア成形方
法、積層成形方法、射出成形方法(リアクシヨン
及びリキツドインジエクシヨンモールデイング法
も含む)、ブロー成形方法、真空成形方法等が挙
げられる。
On the other hand, there are no particular restrictions on the molding method to which the method of the present invention can be applied, and commonly used molding methods such as compression molding, transfer molding, lamination molding, and injection molding (reaction and liquid injection molding) (including yon molding method), blow molding method, vacuum molding method, etc.

また、これらの成形方法に使用されるプラスチ
ツク素材としては、不飽和ポリエステル樹脂、フ
エノール樹脂、エポキシ樹脂、ユリア及びメラミ
ン樹脂、スチレン樹脂、アクリル樹脂、ビニル樹
脂、ポリエチレン樹脂、シリコーン樹脂、ABS
樹脂、ナイロン樹脂、ポリアセタール樹脂、ポリ
カーボネート樹脂、ポリフエニレンオキサイド樹
脂、ポリプロピレン樹脂等の如き、通常成形用に
使用される熱硬化性あるいは熱可塑性樹脂、及び
これらの樹脂に強化用繊維、充填材、硬化剤、安
定剤、着色剤、増粘剤、離型剤、発泡剤、難燃化
剤等を混練した樹脂組成物、更にシートモールデ
イングコンパウンド(SMC)、バルクモールデイ
ングコンパウンド(BMC)等が使用可能である。
Plastic materials used in these molding methods include unsaturated polyester resins, phenolic resins, epoxy resins, urea and melamine resins, styrene resins, acrylic resins, vinyl resins, polyethylene resins, silicone resins, and ABS.
Thermosetting or thermoplastic resins commonly used for molding, such as resins, nylon resins, polyacetal resins, polycarbonate resins, polyphenylene oxide resins, polypropylene resins, etc., and reinforcing fibers, fillers, Resin compositions kneaded with curing agents, stabilizers, colorants, thickeners, mold release agents, foaming agents, flame retardants, etc., as well as sheet molding compounds (SMC), bulk molding compounds (BMC), etc. Available for use.

次に、本発明の成形方法を説明する。 Next, the molding method of the present invention will be explained.

本発明の方法において、導電性粉末状樹脂組成
物及び電波吸収性粉末状樹脂組成物のいずれか一
方の粉末状樹脂組成物を金型内に静電塗装し、つ
いでその上に前記粉末状樹脂組成物のうち他方の
粉末状樹脂組成物を静電塗布する。
In the method of the present invention, either a conductive powder resin composition or a radio wave absorbing powder resin composition is electrostatically coated into a mold, and then the powder resin composition is applied onto the mold. The other powdered resin composition of the compositions is electrostatically applied.

つまり、(1)第一層目として電波吸収性粉末状樹
脂組成物を塗布した場合には、第二層目として導
電性粉末状樹脂組成物を、又、(2)第一層目として
導電性粉末状樹脂組成物を塗布した場合には、第
二層目として電波吸収性粉末状樹脂組成物を塗布
するものである。
In other words, (1) when a radio wave absorbing powder resin composition is applied as the first layer, a conductive powder resin composition is applied as the second layer, and (2) a conductive powder resin composition is applied as the first layer. When a radio wave absorbing powdered resin composition is applied, the radio wave absorbing powdered resin composition is applied as a second layer.

二層以上の複合層を得ることが出来るのは当然
のことであり、その場合には、前に塗布された粉
末状樹脂組成物とは異つた種類のものを塗り重ね
ていけばよい。
It is a matter of course that a composite layer of two or more layers can be obtained, and in that case, it is sufficient to apply a different type of powdered resin composition from the previously applied powdered resin composition.

更に、前記二層目の上に塗布される粉末状樹脂
組成物として着色顔料を含有するか、もしくは含
有しない着色もしくは透明な粉末状樹脂組成物を
塗布し、美装又は保護機能を発揮させることも可
能である。
Furthermore, a colored or transparent powdered resin composition containing or not containing a colored pigment is applied as a powdered resin composition to be applied on the second layer to exhibit an aesthetic or protective function. is also possible.

以下本発明の代表的な例として、前記(1)の場合
の方法について詳述する。
As a typical example of the present invention, the method for the case (1) will be described in detail below.

まず、前記の如くして得られた電波吸収性粉末
状樹脂組成物を静電粉末塗装機等により−30〜−
90KVに帯電させて金型内に塗布する。塗布膜厚
等は必要により決定されるが、通常10〜200μm
程度である。
First, the radio wave-absorbing powdered resin composition obtained as described above was coated with an electrostatic powder coater or the like at a temperature of -30 to -
Charge it to 90KV and apply it inside the mold. The coating film thickness etc. is determined depending on the need, but it is usually 10 to 200 μm.
That's about it.

ついで、その上に前記導電性粉末状樹脂組成物
を前記同様にして−30KV〜−90KVで静電塗装
する。膜厚は10〜200μm程度が好ましい。
Then, the conductive powder resin composition is electrostatically applied thereon at -30KV to -90KV in the same manner as described above. The film thickness is preferably about 10 to 200 μm.

最後に、金型内にプラスチツク素材を充填し、
各々所定の温度及び/又は圧力により成形する。
かくして、金型内の各粉末状樹脂組成物は、プラ
スチツク素材熱及び/又は成形等の熱により成形
プラスチツク表面に投錨密着され、表面に均一な
電波吸収性及び導電性被膜を有するプラスチツク
成形体が得られる。
Finally, fill the mold with plastic material,
Each is molded at a predetermined temperature and/or pressure.
In this way, each powdered resin composition in the mold is anchored and adhered to the molded plastic surface by the heat of the plastic material and/or the heat of molding, etc., and a plastic molded body having a uniform radio wave absorbing and conductive coating on the surface is formed. can get.

本発明の前記(1)の方法を代表的な射出成形方法
について図面により説明すると、第1図は本発明
の方法を示す概略図であり、第2図は第1図のE
工程の点線部分の拡大図であり、第3図は得られ
たプラスチツク成形体の要部拡大図である。
The method (1) of the present invention will be explained with reference to drawings regarding a typical injection molding method. FIG. 1 is a schematic diagram showing the method of the present invention, and FIG.
FIG. 3 is an enlarged view of the dotted line portion of the process, and FIG. 3 is an enlarged view of the main part of the obtained plastic molded article.

第1図に示すように、前工程Aにおいては固定
金型3aの不要部にマスキング材5を定着する。
As shown in FIG. 1, in the pre-process A, a masking material 5 is fixed to unnecessary parts of the fixed mold 3a.

塗布工程Bにおいて、静電塗装機6により電波
吸収性粉末状樹脂組成物2aを固定金型3aの表
面に塗布する。次いで、更に塗布工程Dにおい
て、静電塗装機6′により導電性粉末状樹脂組成
物4aを、電磁吸収性粉末状樹脂組成物被膜2a
上に塗布する。
In the coating step B, the electrostatic coating machine 6 coats the electromagnetic wave absorbing powdered resin composition 2a on the surface of the fixed mold 3a. Next, in a coating step D, the electroconductive powder resin composition 4a is coated with the electrostatic coating machine 6' to coat the electromagnetic absorbing powder resin composition coating 2a.
Apply on top.

最後に、マスキング材をはずし必要により、加
熱工程Eで加熱し、塗布された粉末状樹脂組成物
2a及び4aを可塑化する。
Finally, the masking material is removed and, if necessary, heated in a heating step E to plasticize the applied powdered resin compositions 2a and 4a.

ついで、成形工程Fでは、固定金型3a上に可
動金型3bを載置型閉し、型内間隙に充填孔3
b′より溶融プラスチツク素材を充填し成形すると
ともに、プラスチツク成形体1の表面に導電性被
膜4及び電波吸収性被膜2を投錨密着せしめる。
Next, in the molding process F, the movable mold 3b is placed on the fixed mold 3a and the mold is closed, and a filling hole 3 is formed in the gap in the mold.
The molten plastic material is filled and molded from b', and the conductive coating 4 and the radio wave absorbing coating 2 are anchored and adhered to the surface of the plastic molded body 1.

脱型工程Gでは、表面に導電性機能を具備した
被膜2と、電波吸収性機能を具備した被膜4を有
するプラスチツク成形体1を型開して取り出す。
In the demolding step G, the molded plastic body 1 having the coating 2 having a conductive function and the coating 4 having a radio wave absorbing function on its surface is opened and taken out.

かくして、均一な厚さの導電性被膜及び電波吸
収性被膜を有するプラスチツク成形体が効率良く
得られるのである。
In this way, a plastic molded article having a conductive coating and a radio wave absorbing coating of uniform thickness can be efficiently obtained.

尚、本発明の成形方法においては、金型をあら
かじめ予熱するか、常温の金型もしくは予熱温度
の低い金型の場合、粉末状樹脂組成物塗布後熱
風、電気、赤外線等により加熱することが好まし
い。かくすることにより、静電塗装により静電力
のみにより付着している粉末状樹脂組成物の飛散
等を防ぐことが出来る。
In addition, in the molding method of the present invention, the mold may be preheated in advance, or in the case of a mold at room temperature or a mold with a low preheating temperature, it may be heated with hot air, electricity, infrared rays, etc. after applying the powdered resin composition. preferable. By doing so, it is possible to prevent scattering of the powdered resin composition adhered only by electrostatic force by electrostatic coating.

尚、前記金型の予熱とは、外部から熱を加えた
りあるいはプラスチツク素材成形時の熱等により
金型温度が常温により高い場合をいう。
Note that the preheating of the mold refers to a case where the mold temperature is higher than room temperature due to heat applied from the outside or heat during molding of a plastic material.

又、前記粉末状樹脂組成物塗布後の加熱は、電
波吸収性粉末状樹脂組成物塗布後の加熱及び/又
は導電性粉末状樹脂組成物塗布後の加熱を云い、
樹脂組成物中の樹脂が一部軟化、溶融して粉末粒
子同志が付着し合う程度にすることが好ましい。
Further, the heating after applying the powdered resin composition refers to heating after applying the radio wave absorbing powdered resin composition and/or heating after applying the conductive powdered resin composition,
It is preferable that the resin in the resin composition partially softens and melts to such an extent that the powder particles adhere to each other.

本発明の方法において、特に、成形時にプラス
チツク素材を加圧注入したり、プラスチツク素材
が移動するような射出成形法、ブロー成形方法、
あるいは真空成形方法等においては、金型予熱温
度と、粉末状樹脂組成物中の樹脂の軟化点及び融
点とが、(融点+10℃)≧金型予熱温度≧軟化点の
範囲内にあることが特に好ましい。
In the method of the present invention, in particular, injection molding methods, blow molding methods in which the plastic material is injected under pressure or the plastic material moves during molding,
Alternatively, in a vacuum forming method, etc., the mold preheating temperature and the softening point and melting point of the resin in the powdered resin composition may be within the range of (melting point + 10°C) ≧ mold preheating temperature ≧ softening point. Particularly preferred.

金型予熱温度が樹脂の軟化点より低い場合に
は、金型と粉末状樹脂組成物との密着性が低くな
り、成形時にプラスチツク素材に加えられる圧力
によるプラスチツク素材の移動や射出時の注入速
度及び圧力等により、粉末状樹脂組成物が移動あ
るいは飛散するため均一な被膜を得難くなる。ま
た、金型予熱温度が(樹脂の融点+10℃)をこえ
ると、粉末状樹脂組成物は塗布後完全に溶融し、
流動性を示すようになり、前記と同様にプラスチ
ツク素材の移動や注入速度、圧力等により移動
し、均一な被膜が得難くなる。特に射出成形方法
においては、縞模様の被膜となつたり、特に注入
口(ノズル)付近は被膜の全くない成形品が得ら
れるというような好ましない問題が生じる可能性
がある。
If the mold preheating temperature is lower than the softening point of the resin, the adhesion between the mold and the powdered resin composition will be low, leading to the movement of the plastic material due to the pressure applied to the plastic material during molding and the injection speed during injection. The powdered resin composition moves or scatters due to pressure and the like, making it difficult to obtain a uniform coating. Additionally, if the mold preheating temperature exceeds (resin melting point + 10°C), the powdered resin composition will completely melt after application.
It becomes fluid and moves due to movement of the plastic material, injection speed, pressure, etc., as described above, making it difficult to obtain a uniform coating. Particularly in the injection molding method, undesirable problems may occur, such as a striped coating or a molded product having no coating at all, especially near the injection port (nozzle).

(発明の効果) 以上の如く、本発明の方法によれば、有機溶剤
揮散による安全、衛生上の問題点や、粉末塗料の
飛散、金型外への付着や膜厚の不均一さ等の問題
点は解消し、導電性微粉末を高濃度に含有する粉
末状樹脂組成物を効率良く、かつ均一にプラスチ
ツク表面に付着せしめることが出来るとともに、
高周波領域の電磁波を吸収出来、更に最外層に電
波吸収層を設けた場合には、導電性被膜のみの場
合に懸念される感電、漏電事故も防ぐことが出来
る。
(Effects of the Invention) As described above, according to the method of the present invention, safety and hygiene problems due to organic solvent volatilization, powder paint scattering, adhesion to the outside of the mold, uneven film thickness, etc. can be avoided. This problem has been solved, and the powdered resin composition containing a high concentration of conductive fine powder can be efficiently and uniformly attached to the plastic surface.
It can absorb electromagnetic waves in the high frequency range, and when a radio wave absorbing layer is provided as the outermost layer, it is possible to prevent electric shocks and leakage accidents that would occur if only a conductive film was used.

以下、本発明を実施例により詳細に説明する。
「部」又は「%」は「重量部」又は「重量%」を
もつて示す。実施例に先立つて、以下に示す配合
にて各粉末状樹脂組成物を製造した。
Hereinafter, the present invention will be explained in detail with reference to Examples.
"Parts" or "%" are expressed as "parts by weight" or "% by weight." Prior to Examples, powdered resin compositions were manufactured using the formulations shown below.

電波吸収性粉末状樹脂組成物の製造 〔配合1〕 エポキシ樹脂 45% ジシアンジアミド 4% Mn−Zn系フエライト粒子(平均粒子径約1〜2μ
m) 50% 流動助剤 1% 前記エポキシ樹脂はシエル化学(株)製商品名エピ
コート#1004(エポキシ当量875〜975、融点98℃、
軟化点70℃)を、流動助剤はモンサント社製商品
名モダフローを各々使用した。
Production of radio wave absorbing powdered resin composition [Formulation 1] Epoxy resin 45% Dicyandiamide 4% Mn-Zn ferrite particles (average particle size approximately 1 to 2 μm)
m) 50% Flow aid 1% The epoxy resin is manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1004 (epoxy equivalent: 875-975, melting point: 98°C,
Softening point: 70°C) was used, and Modaflow (trade name, manufactured by Monsanto) was used as a flow aid.

前記配合1からなる組成物を混合し、加熱ロー
ラーを用いて110℃以下で練合した後、練合物を
冷却し、粉砕機により粉砕した後、100メシユふ
るい通過分を電波吸収性粉末状樹脂組成物(A−
1)として作成した。
The composition of Formulation 1 is mixed and kneaded at 110°C or less using a heated roller, the kneaded mixture is cooled and pulverized by a pulverizer, and the portion that passes through a 100-mesh sieve is processed into radio wave absorbing powder. Resin composition (A-
1) was created.

〔配合2〕 エポキシ樹脂 10% メチルエチルケトン 50% Ni−Zn系フエライト粒子(平均粒子径約0.5〜1μ
m) 40% 前記エポキシ樹脂はシエル化学(株)製商品名エピ
コート#1002(エポキシ当量600〜700、融点83℃、
軟化点57℃)と#1004とを1:1の割合で混合し
たもの(融点92℃、軟化点65℃)を使用した。
[Formulation 2] Epoxy resin 10% Methyl ethyl ketone 50% Ni-Zn ferrite particles (average particle size approx. 0.5-1μ
m) 40% The epoxy resin is manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1002 (epoxy equivalent: 600-700, melting point: 83°C,
A mixture of #1004 (melting point: 92°C, softening point: 65°C) at a ratio of 1:1 was used.

前記配合2からなる組成物を、磁性ポツトミル
で2時間分散して液体組成物を得た。ついで、前
記液体組成物を高速撹拌下にある水温20℃以下の
水3000部中に噴霧し、前記液体組成物を乳化する
とともに溶剤を水中へ抽出して樹脂粒子を形成せ
しめた。
The composition consisting of Formulation 2 was dispersed for 2 hours using a magnetic pot mill to obtain a liquid composition. Next, the liquid composition was sprayed into 3000 parts of water at a temperature of 20° C. or less under high speed stirring to emulsify the liquid composition and extract the solvent into the water to form resin particles.

その後、濾過及び水洗を繰り返し、平均粒子径
約100μmの樹脂粒子を得た。含水率を50%前後
に調整した後、ボールミルで分散を行つて、前記
樹脂粒子を微粉砕し、スラリー状の粉末状樹脂組
成物を得た。更に水洗を3回以上繰り返した後、
濾過し、20℃以下の乾燥空気の下で乾燥し、粉
砕、篩分け(100メツシユ)して電波吸収性粉末
状樹脂組成物(A−2)を作成した。
Thereafter, filtration and water washing were repeated to obtain resin particles with an average particle diameter of about 100 μm. After adjusting the water content to around 50%, the resin particles were finely pulverized by dispersion using a ball mill to obtain a slurry-like powdered resin composition. After repeating water washing three times or more,
The mixture was filtered, dried under dry air at a temperature of 20° C. or lower, pulverized, and sieved (100 meshes) to prepare a radio wave absorbing powdered resin composition (A-2).

〔配合3〕 ポリエステル樹脂 10% Mn−Zn系フエライト粒子(平均粒子径約1〜2μ
m) 50% メチルエチルケトン 40% 前記ポリエステル樹脂は日本ユピカ(株)製商品名
GV−110(融点85℃、軟化点65℃)を使用した。
[Formulation 3] Polyester resin 10% Mn-Zn ferrite particles (average particle size approximately 1-2μ
m) 50% Methyl ethyl ketone 40% The above polyester resin is a trade name manufactured by Nippon U-Pica Co., Ltd.
GV-110 (melting point 85°C, softening point 65°C) was used.

前記配合3から成る組成物を配合2と同様にし
て、電波吸収性粉末状樹脂組成物(A−3)を作
成した。
A radio wave absorbing powdered resin composition (A-3) was prepared by using the composition of Formulation 3 in the same manner as Formulation 2.

〔配合4〕 アクリル樹脂 9% Ni−Zn系フエライト粒子(平均粒子径約0.5〜1μ
m) 51% メチルエチルケトン 40% 前記アクリル樹脂は、大日本インキ化学工業(株)
製商品名A−224S(融点114℃、軟化点70℃)を
使用した。
[Formulation 4] Acrylic resin 9% Ni-Zn ferrite particles (average particle size approximately 0.5-1μ
m) 51% Methyl ethyl ketone 40% The acrylic resin is manufactured by Dainippon Ink and Chemicals Co., Ltd.
Product name A-224S (melting point: 114°C, softening point: 70°C) was used.

前記配合4からなる組成物を配合2と同様にし
て、電波吸収性粉末状樹脂組成物(A−4)を作
成した。
A radio wave absorbing powdered resin composition (A-4) was prepared by using the composition of Formulation 4 in the same manner as Formulation 2.

導電性粉末状樹脂組成物の製造 〔配合5〕 エポキシ樹脂 12% デンドライト形状銅粉末 48% 流動助剤(配合1と同一) 1% メチルエチルケトン 39% エポキシ樹脂は、シエル化学(株)製商品名エピコ
ート#1002を、デンドライト形状銅粉末は、三井
金属鉱業(株)製電解銅粉商品名MD−1〔325メツシ
ユ(オープニング44μm)を80%以上通過〕を
夫々使用した。
Manufacture of conductive powder resin composition [Formulation 5] Epoxy resin 12% Dendrite-shaped copper powder 48% Flow aid (same as Formulation 1) 1% Methyl ethyl ketone 39% The epoxy resin is manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1002 was used as the dendrite-shaped copper powder, and electrolytic copper powder trade name MD-1 manufactured by Mitsui Mining & Smelting Co., Ltd. [more than 80% passing through 325 mesh (opening 44 μm)] was used.

上記配合からなる組成物を、磁性ポツトミルで
2時間分散して液体組成物を得た。
The composition consisting of the above formulation was dispersed in a magnetic pot mill for 2 hours to obtain a liquid composition.

ついで、前記液体組成物を高速撹拌下にある水
温20℃以下の水3000部中に噴霧し、前記液体組成
物を乳化するとともに溶剤を水中へ抽出して樹脂
粒子を形成せしめた。その後、濾過および水洗を
繰り返し、平均粒子径約100μmの樹脂粒子を得
た。含水率を50%前後に調整した後、更に樹脂粒
子を微粉砕調粒し、スラリー状の粉末状樹脂組成
物を得た。更に水洗を3回以上繰り返した後、濾
過し、20℃以下の乾燥空気の下で乾燥し、粉砕、
篩分(150メツシユ)して導電性粉末/樹脂=
80/20(重量比)の導電性粉末状樹脂組成物(B
−1)を作成した。
Next, the liquid composition was sprayed into 3000 parts of water at a temperature of 20° C. or less under high speed stirring to emulsify the liquid composition and extract the solvent into the water to form resin particles. Thereafter, filtration and water washing were repeated to obtain resin particles with an average particle diameter of about 100 μm. After adjusting the water content to around 50%, the resin particles were further finely pulverized to obtain a slurry-like powdered resin composition. After repeating water washing three times or more, filter, dry in dry air at 20℃ or less, crush,
Sieve (150 mesh) and conductive powder/resin =
80/20 (weight ratio) conductive powder resin composition (B
-1) was created.

〔配合6〕 エポキシ樹脂 9% デンドライト形状銅粉末 51% 流動助剤(配合1と同一) 1% メチルエチルケトン 39% エポキシ樹脂はシエル化学(株)製商品名エピコー
ト#1001(エポキシ当量450〜500、融点69℃、軟
化点50℃)を、デンドライト形状銅粉末は、三井
金属鉱業(株)製電解銅粉商品名MD−1とMF−D2
(重量平均粒子径8μm)を重量で1:1に混合し
たものを夫々使用した。
[Formulation 6] Epoxy resin 9% Dendrite-shaped copper powder 51% Flow aid (same as Formulation 1) 1% Methyl ethyl ketone 39% Epoxy resin is manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1001 (epoxy equivalent 450-500, melting point 69℃, softening point 50℃), and the dendrite-shaped copper powder is electrolytic copper powder manufactured by Mitsui Mining & Mining Co., Ltd. under the trade name MD-1 and MF-D 2.
(weight average particle diameter: 8 μm) were mixed in a 1:1 ratio by weight.

配合5と同じ方法で液体組成物を作成した後、
同様の方法で導電性微粉末/樹脂=85/15(重量
比)の導電性粉末状樹脂組成物(B−2)を作成
した。
After making the liquid composition in the same way as formulation 5,
A conductive powder resin composition (B-2) having a conductive fine powder/resin ratio of 85/15 (weight ratio) was prepared in the same manner.

〔配合7〕 エポキシ樹脂 6% デンドライト形状銅粉末 54% 流動助剤(配合1と同一) 1% メチルエチルケトン 39% エポキシ樹脂はチバガイギー(株)製商品名アラル
ダイト6097(エポキシ当量900〜1000、融点100℃、
軟化点80℃)を、デンドライト形状銅粉末は、三
井金属鉱業(株)製電解銅粉商品名MF−D2を夫々使
用した。
[Formulation 7] Epoxy resin 6% Dendrite-shaped copper powder 54% Flow aid (same as Formulation 1) 1% Methyl ethyl ketone 39% Epoxy resin is manufactured by Ciba Geigy Co., Ltd. under the trade name Araldite 6097 (epoxy equivalent 900-1000, melting point 100°C) ,
The dendrite-shaped copper powder used was electrolytic copper powder (trade name MF-D 2 , manufactured by Mitsui Mining & Mining Co., Ltd.).

上記配合よりなる組成物をペイントシエーカー
で1時間分散して液体組成物とした。
The composition having the above formulation was dispersed in a paint shaker for 1 hour to obtain a liquid composition.

ついで、配合5と同じ方法で導電性粉末状樹脂
組成物を作成した後、硬化剤として、イミダゾー
ル系エポキシ樹脂用硬化剤〔四国化成工業(株)製商
品名キユアゾールC11Z〕を、微粉末として4phr
の割合で乾式混合し、導電性微粉末/樹脂=90/
10(重量比)の導電性粉末状組成物(B−3)を
作成した。
Next, after creating a conductive powdered resin composition in the same manner as in Formulation 5, a hardening agent for imidazole-based epoxy resins [trade name: Kyuazol C 11 Z, manufactured by Shikoku Kasei Kogyo Co., Ltd.] was added as a fine powder. as4phr
Dry mix in the ratio of conductive fine powder/resin = 90/
A conductive powder composition (B-3) having a weight ratio of 10 (weight ratio) was prepared.

〔配合8〕 エポキシ樹脂 12% ニツケル粉末 48% メチルエチルケトン 40% エポキシ樹脂はシエル化学(株)製商品名エピコー
ト#1002、#1004、および#1007(エポキシ当量
1750〜2200、融点128℃、軟化点85℃)を1:
1:1(重量比)の割合で混合したもの(融点約
107℃、軟化点65℃)を、またニツケル紛末はイ
ンコ社製商品名#123(平均粒径約3〜7μm)と
#255(平均粒子径約2〜3μm)を1:1(重量
比)で混合したものを夫々使用した。
[Formulation 8] Epoxy resin 12% Nickel powder 48% Methyl ethyl ketone 40% Epoxy resins are manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1002, #1004, and #1007 (epoxy equivalent
1750-2200, melting point 128℃, softening point 85℃) 1:
Mixed at a ratio of 1:1 (weight ratio) (melting point approx.
107℃, softening point 65℃), and the nickel powder is Inco's product name #123 (average particle size of about 3 to 7 μm) and #255 (average particle size of about 2 to 3 μm) in a 1:1 (weight ratio). ) were used.

上記配合からなる組成物を配合5と同じ方法で
分散せしめ、液体組成物を作成した。
The composition consisting of the above formulation was dispersed in the same manner as Formulation 5 to create a liquid composition.

次に配合5と同じ方法で、上記液体組成物か
ら、導電性微粉末/樹脂=80/20(重量比)の導
電性粉末状樹脂組成物(B−4)を作成した。
Next, in the same manner as in Formulation 5, a conductive powdery resin composition (B-4) having a conductive fine powder/resin ratio of 80/20 (weight ratio) was prepared from the liquid composition.

〔配合9〕 エポキシ樹脂 9% ニツケル粉末(配合8と同一) 51% メチルエチルケトン 40% エポキシ樹脂はシエル化学(株)商品名エピコート
#1002、#1004、#1007、及び#1009(エポキシ
当量2400〜3300、融点約148℃、軟化点90℃)を
各々1:1:2:2(重量比)の割合で混合した
もの(融点約135℃、軟化点75℃)を使用した。
[Formulation 9] Epoxy resin 9% Nickel powder (same as formulation 8) 51% Methyl ethyl ketone 40% Epoxy resins are manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1002, #1004, #1007, and #1009 (epoxy equivalent 2400-3300) (melting point: about 148°C, softening point: 90°C) in a ratio of 1:1:2:2 (weight ratio) (melting point: about 135°C, softening point: 75°C) was used.

上記配合からなる組成物を、配合5と同様の方
法で、導電性微粉末/樹脂=85/15(重量比)の
導電性粉末状樹脂組成物(B−5)を作成した。
A conductive powdery resin composition (B-5) having a conductive fine powder/resin ratio of 85/15 (weight ratio) was prepared using the composition having the above formulation in the same manner as in Formulation 5.

〔配合10〕 エポキシ樹脂 11% 銀粉末 48% メチルエチルケトン 40% ジシアンジアミド 1% エポキシ樹脂はエピコート#1007を、銀粉末は
福田金属箔粉工業(株)製導電性銀粉末(平均粒子径
約1μm)を夫々使用した。
[Formulation 10] Epoxy resin 11% Silver powder 48% Methyl ethyl ketone 40% Dicyandiamide 1% The epoxy resin was Epicoat #1007, and the silver powder was conductive silver powder (average particle size approximately 1 μm) manufactured by Fukuda Metal Foil & Powder Industries Co., Ltd. used each.

前記配合からなる組成物を、配合5と同様にし
て液体組成物を作成した後、該組成物100部に対
して更にメチルエチルケトン50部の割合で加え希
釈し、ついでスプレードライ法(空気流量:20
m3/分、液体組成物供給量200ml/分、入口空気
温度95℃、出口空気温度30℃)により、導電性微
粉末/樹脂=80/20(重量比)の導電性粉末状樹
脂組成物(B−6)を作成した。
A liquid composition was prepared using the composition described above in the same manner as in Formulation 5, and then diluted by adding 50 parts of methyl ethyl ketone to 100 parts of the composition, followed by spray drying (air flow rate: 20 parts).
conductive powder resin composition with conductive fine powder/resin = 80/20 ( weight ratio) (B-6) was created.

〔配合11〕 ポリエステル樹脂(配合3と同一) 12% デンドライト形状銅粉末(配合5と同一) 48% メチルエチルケトン 40% 上記配合からなる組成物を、磁性ポツトミルで
1時間半分散して液体組成物を作成し、配合5と
同じ方法で前記液体組成物より、導電性微粉末/
樹脂=80/20(重量比)の導電性粉末状樹脂組成
物(B−7)を作成した。
[Formulation 11] Polyester resin (same as formulation 3) 12% Dendrite-shaped copper powder (same as formulation 5) 48% Methyl ethyl ketone 40% The composition consisting of the above formulation was dispersed in a magnetic pot mill for 1.5 hours to form a liquid composition. From the liquid composition, conductive fine powder/
A conductive powdery resin composition (B-7) with resin=80/20 (weight ratio) was prepared.

〔配合12〕 アクリル樹脂(配合4と同一) 9% ニツケル粉末(配合8と同一) 51% メチルエチルケトン 40% 上記配合からなる組成物を配合5と同様にし
て、導電性微粉末/樹脂=85/15(重量比)の導
電性粉末状樹脂組成物(B−8)を作成した。
[Formulation 12] Acrylic resin (same as formulation 4) 9% Nickel powder (same as formulation 8) 51% Methyl ethyl ketone 40% A composition consisting of the above formulation was prepared in the same manner as formulation 5, and conductive fine powder/resin = 85/ A conductive powdery resin composition (B-8) having a weight ratio of 15 (weight ratio) was prepared.

実施例 1 予め80℃に予熱した固定金型内非塗装部分をマ
スキングした後、電波吸収性粉末状樹脂組成物
(A−1)を−80KVの電圧下で静電塗装し、塗
膜を形成せしめた。
Example 1 After masking the unpainted part in a fixed mold that had been preheated to 80°C, electrostatically applied the radio wave absorbing powdered resin composition (A-1) under a voltage of -80KV to form a coating film. I forced it.

ついで、最後に導電性被膜の表面抵抗値を測定
するため、成形品の両端に相当する部分のマスキ
ングを一部外した。
Then, in order to finally measure the surface resistance value of the conductive coating, a portion of the masking corresponding to both ends of the molded article was removed.

其の後、導電性粉末状樹脂組成物(B−1)を
−40KVの電圧下で静電塗装し、塗膜を形成せし
めた後残りのマスキングを外し、固定金型と移動
金型を密閉した。
After that, the conductive powdered resin composition (B-1) was electrostatically applied under a voltage of -40KV to form a coating film, the remaining masking was removed, and the stationary mold and movable mold were sealed. did.

ついで、樹脂温度270℃の耐熱ポリスチレン樹
脂液を、射出圧力約900Kg/cm2で射出成形した。
Then, a heat-resistant polystyrene resin liquid with a resin temperature of 270°C was injection molded at an injection pressure of about 900 kg/cm 2 .

かくて、膜厚40μm、表面抵抗値0.81オーム/
□の均一で良導電性の被膜とその上に60μmの電
波吸収性被膜を有する耐熱性ポリスチレン成形体
を得た。
Thus, the film thickness is 40 μm and the surface resistance value is 0.81 ohm/
A heat-resistant polystyrene molded body having a uniform and highly conductive coating □ and a 60 μm radio wave absorbing coating thereon was obtained.

実施例 2 予め70℃に予熱した固定金型内非塗装部分をマ
スキングし、電波吸収性粉末状樹脂組成物(A−
2)を−70KVの電圧下で静電塗装し、塗膜を形
成せしめた後、実施例1と同様にマスキングの一
部を外した。
Example 2 The unpainted part of the fixed mold, which had been preheated to 70°C, was masked and a radio wave absorbing powdered resin composition (A-
2) was electrostatically coated under a voltage of -70 KV to form a coating film, and then a part of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−2)を
−40KVの電圧下で静電塗装し、塗膜を形成せし
めた後、残りのマスキングを外した。
Next, the conductive powder resin composition (B-2) was electrostatically applied under a voltage of -40 KV to form a coating film, and then the remaining masking was removed.

其の後移動金型と可動金型を密閉し、樹脂温度
180℃の塩化ビニル樹脂液を、射出圧力約750Kg/
cm2で射出成形したところ、膜厚60μm、表面抵抗
値0.55オーム/□の均一で良導電性の被膜と、其
の上に膜厚40μmの電波吸収性被膜を有する塩化
ビニル樹脂成形体を得られた。
After that, the movable mold and movable mold are sealed, and the resin temperature is
PVC resin liquid at 180℃ is injected at a pressure of approximately 750Kg/
When injection molded in cm 2 , a vinyl chloride resin molded product was obtained which had a uniform and highly conductive film with a film thickness of 60 μm and a surface resistance value of 0.55 ohm/□, and a radio wave absorbing film with a film thickness of 40 μm on top of it. It was done.

実施例 3 予め、90℃に予熱した成形型内の非塗装部分を
マスキングし、次いで電波吸収性粉末状樹脂組成
物(A−1)を静電塗装装置によつて−65KVの
電圧下で、その型内の塗装部分に塗装を行い、塗
膜を形成せしめた後、実施例1と同様にマスキン
グの一部を外した。
Example 3 The non-painted parts in a mold preheated to 90°C were masked, and then the radio wave-absorbing powdered resin composition (A-1) was coated with an electrostatic coating device under a voltage of -65 KV. After coating the painted portion within the mold to form a coating film, a portion of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−3)を
−40KVの電圧下で静電塗装し、塗膜を形成せし
めた後、残りのマスキングを外した。其の後、加
熱ヒーターによつて硬質塩化ビニルシートを125
℃に加熱、軟化せしめ、これを上記成形型にクラ
ンプ枠によつて固定し、次いで真空ポンプによつ
て型内の空気を真空度720mmHgの圧力で吸出し、
シートを型面に密着、成形したところ、膜厚60μ
m、表面抵抗値0.47オーム/□の均一で良導電性
の被膜と、その上に膜厚40μmの電波吸収性被膜
を有する硬質塩化ビニル樹脂成形体を得られた。
Next, the conductive powder resin composition (B-3) was electrostatically applied under a voltage of -40 KV to form a coating film, and then the remaining masking was removed. After that, the hard vinyl chloride sheet was heated to 125 mm using a heating heater.
℃ to soften it, fix it to the mold with a clamp frame, and then use a vacuum pump to suck out the air inside the mold at a vacuum level of 720 mmHg.
When the sheet was closely attached to the mold surface and molded, the film thickness was 60μ
A hard vinyl chloride resin molded body was obtained, which had a uniform and highly conductive coating with a surface resistance value of 0.47 ohm/□ and a radio wave absorbing coating with a thickness of 40 μm thereon.

実施例 4 予め、70℃に予熱した固定金型内非塗装部分を
マスキングし、導電性粉末状樹脂組成物(B−
4)を−60KVの電圧下で静電塗装し、塗膜を形
成せしめた後、電波吸収性粉末状樹脂組成物(A
−2)を−40KVの電圧下で静電塗装し、塗膜を
形成せしめた後、マスキングを外した。
Example 4 The non-painted parts of the fixed mold, which had been preheated to 70°C, were masked and a conductive powdered resin composition (B-
4) was electrostatically coated under a voltage of -60KV to form a coating film, and then the radio wave absorbing powdered resin composition (A
-2) was electrostatically coated under a voltage of -40KV to form a coating film, and then the masking was removed.

其の後、固定金型と移動金型を密閉し、樹脂温
度220℃のポリエチレン樹脂液を射出圧力約1100
Kg/cm2で射出成形したところ、膜厚40μmの電波
吸収性被膜上に、膜厚60μmで、表面抵抗値1.0オ
ーム/□の均一な良導電性被膜を有するポリエチ
レン樹脂成形体を得られた。
After that, the fixed mold and the movable mold are sealed, and a polyethylene resin liquid with a resin temperature of 220°C is injected at a pressure of approximately 1100°C.
When injection molded at Kg/cm 2 , a polyethylene resin molded product was obtained that had a uniform, highly conductive coating with a thickness of 60 μm and a surface resistance value of 1.0 ohm/□ on a radio wave absorbing coating with a thickness of 40 μm. .

実施例 5 温度、80℃の固定金型内非塗装部分をマスキン
グし、電波吸収性粉末状樹脂組成物(A−1)を
−70KVの電圧下で静電塗装した後、実施例1と
同様にマスキングの一部を外した。
Example 5 After masking the unpainted part in the fixed mold at a temperature of 80°C and electrostatically painting the radio wave absorbing powdered resin composition (A-1) under a voltage of -70KV, the same procedure as in Example 1 was carried out. Part of the masking was removed.

ついで、導電性粉末状樹脂組成物(B−5)を
−40KVの電圧下で静電塗装し、塗膜を形成せし
めた後、残りのマスキングを外し、赤外線ヒータ
ーで金型を95℃まで加熱し、塗膜を形成せしめ
た。其の後、固定金型と移動金型を密閉し、樹脂
温度230℃のABS樹脂液を射出圧力約1000Kg/cm2
で射出成形して、膜厚60μm、表面抵抗値0.60オ
ーム/□の、均一で良導電性被膜と、その上に膜
厚50μmの電波吸収性被膜を有するABS樹脂成形
体を得た。
Next, the conductive powdered resin composition (B-5) was electrostatically applied under a voltage of -40KV to form a coating film, the remaining masking was removed, and the mold was heated to 95°C using an infrared heater. A coating film was formed. After that, the fixed mold and the movable mold are sealed, and ABS resin liquid with a resin temperature of 230℃ is injected at a pressure of approximately 1000Kg/cm 2
An ABS resin molded article was obtained by injection molding using a uniform and highly conductive film having a thickness of 60 μm and a surface resistance value of 0.60 ohm/□, and a radio wave absorbing film having a thickness of 50 μm thereon.

実施例 6 予め、87℃に予熱した成形型内面の非塗装部分
をマスキングを処し、電波吸収性粉末状樹脂組成
物(A−4)を静電粉体塗装装置によつて−
60KVの電圧下で成形型内面の塗装部分を塗装し
た後、実施例1と同様にマスキングの一部を外し
た。
Example 6 The unpainted part of the inner surface of the mold, which had been preheated to 87°C, was masked, and the radio wave absorbing powdered resin composition (A-4) was applied using an electrostatic powder coating device.
After the painted portion of the inner surface of the mold was painted under a voltage of 60 KV, a portion of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−4)を
−30KVの電圧下で静電塗装した後、残りのマス
キングを外し、型内面を赤外線ヒーターで加熱
し、成形型を100℃にした。
Then, after electrostatically coating the conductive powder resin composition (B-4) under a voltage of -30 KV, the remaining masking was removed, and the inner surface of the mold was heated with an infrared heater to bring the temperature of the mold to 100°C.

其の後、195℃でチユーブ状に押出したポリプ
ロピレンを上記成形型にはさみ込み、チユーブ内
に3.5Kg/cm2の圧搾空気を吹き込んで膨張させて、
ポリプロピレンを成形型内面に密着、成形したと
ころ、膜厚60μm、表面抵抗値0.10オーム/□の
均一な良導電性被膜と、その上に膜厚50μmの電
波吸収性被膜を有するポリプロピレン樹脂成形体
を得られた。
Thereafter, the polypropylene extruded into a tube shape at 195℃ was inserted into the mold, and 3.5Kg/cm 2 of compressed air was blown into the tube to expand it.
When polypropylene was adhered to the inner surface of the mold and molded, a polypropylene resin molded product was obtained, which had a uniform, highly conductive film with a film thickness of 60 μm and a surface resistance value of 0.10 ohm/□, and a radio wave absorbing film with a film thickness of 50 μm on top of that. Obtained.

実施例 7 予め、70℃に予熱した成形型内の非塗装部分に
マスキングを処し、導電性粉末状樹脂組成物(B
−6)を静電粉体塗装装置によつて−70KVの電
圧下で、その型内の塗装部分に塗装し塗膜を形成
せしめた後、電波吸収性粉末状樹脂組成物(A−
1)を−40KVの電圧下で静電塗装し、塗膜を形
成せしめた後、マスキングを外した。
Example 7 Masking was applied to the non-painted parts in a mold that had been preheated to 70°C, and a conductive powder resin composition (B
-6) was applied to the painted area in the mold under a voltage of -70KV using an electrostatic powder coating device to form a coating film, and then the radio wave absorbing powdered resin composition (A-
1) was electrostatically coated under a voltage of -40KV to form a coating film, and then the masking was removed.

其の後、成形型内に116℃に予熱したフエノー
ル樹脂粉末を入れ、成形型内を閉じて155℃に加
熱し180Kg/cm2の圧力で成形型を圧縮し成形した
ところ、膜厚50μmの電波吸収性被膜上に、膜厚
60μmで、表面抵抗値0.15オーム/□の均一な良
導電性被膜を有するフエノール樹脂成形体を得ら
れた。
After that, phenolic resin powder preheated to 116°C was placed in the mold, the mold was closed, heated to 155°C, and the mold was compressed at a pressure of 180 kg/ cm2 , resulting in a film with a thickness of 50 μm. The film thickness on the radio wave absorbing film
A phenolic resin molded article having a uniform and highly conductive coating with a surface resistance of 0.15 ohms/□ at 60 μm was obtained.

実施例 8 予め、750℃に予熱した金型内非塗装部分をマ
スキングし、電波吸収性粉末状樹脂組成物(A−
2)を−70KVの電圧下で静電塗装し、塗膜を形
成せしめた後、実施例1と同様にマスキングの一
部を外した。
Example 8 The unpainted parts of the mold, which had been preheated to 750°C, were masked and a radio wave absorbing powdered resin composition (A-
2) was electrostatically coated under a voltage of -70 KV to form a coating film, and then a part of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−7)を
−40KVの電圧下で静電塗装し、塗膜を形成せし
めた後、残りのマスキングを外した。其の後、固
定金型と移動金型を密閉し、樹脂温度260℃のポ
リカーボネート樹脂液を射出圧力1500Kg/cm2で射
出成形して、膜厚40μm、表面抵抗値1.1オーム/
□の均一で良導電性の被膜と、その上に膜厚50μ
mの電波吸収性被膜を有するポリカーボネート樹
脂成形体を得た。
Next, the conductive powder resin composition (B-7) was electrostatically applied under a voltage of -40 KV to form a coating film, and then the remaining masking was removed. After that, the fixed mold and the movable mold were sealed, and a polycarbonate resin liquid with a resin temperature of 260°C was injection molded at an injection pressure of 1500 kg/cm 2 to form a film with a film thickness of 40 μm and a surface resistance value of 1.1 ohm/cm.
□ Uniform and highly conductive film with a film thickness of 50μ on top
A polycarbonate resin molded body having a radio wave absorbing coating of m was obtained.

実施例 9 予め、85℃に予熱した金型内非塗装部分をマス
キングし、前記電波吸収性粉末状樹脂組成物(A
−1)を−60KVの電圧下で静電塗装し、塗膜を
形成せしめた後、前記実施例1と同様マスキング
の一部を外した。
Example 9 The non-painted part in the mold, which had been preheated to 85°C, was masked, and the radio wave-absorbing powdered resin composition (A
-1) was electrostatically coated under a voltage of -60 KV to form a coating film, and then a part of the masking was removed as in Example 1 above.

ついで、導電性粉末状樹脂組成物(B−8)を
−40KVの電圧下で静電塗装した後、残りのマス
キングを外した。其の後、固定金型と移動金型を
密閉し、樹脂温度330℃のPPO(ポリフエニレン
オキサイド)樹脂を射出圧力1500Kg/cm2で射出成
形し、平均膜厚50μm、表面抵抗値0.95オーム/
□の良導電性の被膜と、その上に膜厚40μmの電
波吸収性被膜を有するPPO樹脂成形体を得た。
Then, after electrostatically coating the conductive powder resin composition (B-8) under a voltage of -40 KV, the remaining masking was removed. After that, the fixed mold and the movable mold were sealed, and PPO (polyphenylene oxide) resin with a resin temperature of 330°C was injection molded at an injection pressure of 1500 kg/ cm2 , with an average film thickness of 50 μm and a surface resistance value of 0.95 ohm. /
A PPO resin molded body was obtained which had a highly conductive film □ and a radio wave absorbing film with a thickness of 40 μm thereon.

実施例 10 予め、80℃に予熱した成形型内面の非塗装部分
をマスキングを処し、電波吸収性粉末状樹脂組成
物(A−3)を静電粉体塗装装置によつてその成
形型の塗装部分を塗装した後、実施例1と同様に
マスキングの一部を外した。
Example 10 The unpainted part of the inner surface of a mold that was preheated to 80°C was masked, and the radio wave absorbing powdered resin composition (A-3) was applied to the mold using an electrostatic powder coating device. After painting the area, a portion of the masking was removed in the same manner as in Example 1.

ついで、導電性粉末状樹脂組成物(B−7)を
−40KVの電圧下で静電塗装した後、残りのマス
キングを外した。
Then, after electrostatically coating the conductive powder resin composition (B-7) under a voltage of -40 KV, the remaining masking was removed.

其の後、175℃でチユーブ状に押出したポリエ
チレン樹脂を上記成形型にはさみ込み、3.2Kg/
cm2の圧搾空気を吹き込み、チユーブを膨らませ型
内面に密着、成形したところ、膜厚60μm、表面
抵抗値0.67オーム/□の均一な良導電性被膜と、
その上に膜厚40μmの電波吸収性被膜を有するポ
リエチレン樹脂成形体を得られた。
After that, the polyethylene resin extruded into a tube shape at 175℃ was inserted into the above mold, and 3.2Kg/
When compressed air of cm 2 was blown into the tube and the tube was inflated and molded, it formed a uniform, highly conductive film with a film thickness of 60 μm and a surface resistance value of 0.67 ohm/□.
A polyethylene resin molded article having a radio wave absorbing coating with a thickness of 40 μm thereon was obtained.

実施例 11 予め、105℃に予熱した金型内非塗装部分をマ
スキングし、電波吸収性前記粉末状樹脂組成物
(A−4)を−80KVの電圧で静電塗装し、塗膜
を形成せしめた後、前記実施例1と同様にマスキ
ングの一部を外した。
Example 11 The non-painted parts of the mold were preheated to 105°C and masked, and the electromagnetic wave absorbing powdered resin composition (A-4) was electrostatically applied at a voltage of -80 KV to form a coating film. After that, a part of the masking was removed in the same manner as in Example 1 above.

ついで、導電性粉末状樹脂組成物(B−8)を
−40KVの電圧下で静電塗装した後、残りのマス
キングを外した。
Then, after electrostatically coating the conductive powder resin composition (B-8) under a voltage of -40 KV, the remaining masking was removed.

其の後、固定金型と移動金型を密閉し、樹脂温
度240℃のポリプロピレン樹脂液を射出圧力1500
Kg/cm2で射出成形して、膜厚60μm、表面抵抗値
0.51オーム/□の、均一で、良導電性の被膜と、
その上に膜厚40μmの電波吸収性被膜を有するポ
リプロピレン樹脂成形体を得た。
After that, the fixed mold and the movable mold are sealed, and a polypropylene resin liquid with a resin temperature of 240°C is injected at a pressure of 1500°C.
Injection molded at Kg/ cm2 , film thickness 60μm, surface resistance value
A uniform, highly conductive coating of 0.51 ohm/□,
A polypropylene resin molded body having a radio wave absorbing coating having a thickness of 40 μm thereon was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Gは本発明方法の一例である射出成
形方法を示す工程概略図である。第2図は第1図
E工程における点線部分の拡大図、第3図は本発
明方法により得られたプラスチツク成形体の拡大
断面図である。 1……プラスチツク成形体、2……電波吸収性
被膜、3……成形金型、4……導電性被膜、5…
…マスキング材、6……静電塗装機。
FIGS. 1A to 1G are process schematic diagrams showing an injection molding method that is an example of the method of the present invention. FIG. 2 is an enlarged view of the dotted line in step E in FIG. 1, and FIG. 3 is an enlarged sectional view of a plastic molded article obtained by the method of the present invention. DESCRIPTION OF SYMBOLS 1... Plastic molded object, 2... Radio wave absorbing coating, 3... Molding mold, 4... Conductive coating, 5...
...Masking material, 6...Electrostatic coating machine.

Claims (1)

【特許請求の範囲】 1 プラスチツク成形方法において、まず、導電
性粉末状樹脂組成物及び電波吸収性粉末状樹脂組
成物のいずれか一方の粉末状樹脂組成物を静電塗
装により金型内に塗布し、ついでその上に前記粉
末状樹脂組成物のうち他方の粉末状樹脂組成物を
静電塗装により塗布した後、プラスチツク素材を
充填成形し、充填素材熱及び/又は成形時の熱に
より前記粉末状樹脂組成物を可塑化圧縮して、成
形プラスチツク表面に熱硬化性又は熱可塑性樹脂
被膜を投錨密着させることを特徴とする、プラス
チツク成形体表面に多層被膜を形成させるプラス
チツク成形方法。 2 導電性粉末状樹脂組成物は、導電性微粉末を
70〜95重量%の範囲で含有する熱可塑性又は熱硬
化性粉末状樹脂組成物である特許請求の範囲第1
項記載のプラスチツク成形方法。 3 電波吸収性粉末状樹脂組成物は、電波吸収性
微粉末を50〜95重量%の範囲で含有する熱可塑性
又は熱硬化性粉末状樹脂組成物である特許請求の
範囲第1項記載のプラスチツク成形方法。 4 プラスチツク成形方法が、射出成形方法、ブ
ロー成形方法、トランスフアー成形方法又は真空
成形方法である特許請求の範囲第1項記載のプラ
スチツク成形方法。 5 金型は、予め予熱されている金型である特許
請求の範囲第1項記載のプラスチツク成形方法。 6 プラスチツク素材を充填する前に、加熱する
ことにより導電性及び/又は電波吸収性粉末状樹
脂組成物を融着、又は硬化させる特許請求の範囲
第1項記載のプラスチツク成形方法。 7 導電性及び電波吸収性粉末状樹脂組成物に使
用する各樹脂成分の融点及び軟化点と、金型予熱
温度とは、(融点+10℃)≧金型予熱温度≧軟化
点、の範囲である特許請求の範囲第5項記載のプ
ラスチツク成形方法。 8 導電性粉末は、デンドライト形状をした金属
微粉末である特許請求の範囲第1項又は第2項記
載のプラスチツク成形方法。 9 電波吸収性粉末は、スピネル型フエライト粉
末である特許請求の範囲第1項又は第3項記載の
プラスチツク成形方法。 10 導電性粉末状樹脂組成物は、水可溶性溶
媒、水不溶性でかつ前記溶媒可溶性樹脂、及び導
電性微粉末からなる液体組成物を、水中で分散、
造粒、溶媒抽出した後、分離、乾燥する湿式造粒
法により得られた粉末状樹脂組成物である特許請
求の範囲第1項記載のプラスチツク成形方法。 11 電波吸収性粉末状樹脂組成物は、水可溶性
溶媒、水不溶性でかつ前記溶媒可溶性樹脂、及び
電波吸収性微粉末からなる液体組成物を、水中で
分散、造粒、溶媒抽出した後、分離し、乾燥する
湿式造粒法により得られた粉末状樹脂組成物であ
る特許請求の範囲第1項記載のプラスチツク成形
方法。
[Scope of Claims] 1 In the plastic molding method, first, a powdery resin composition, either a conductive powdery resin composition or a radio wave absorbing powdery resin composition, is applied into a mold by electrostatic coating. Then, after applying the other powdered resin composition of the powdered resin compositions on top of the powdered resin composition by electrostatic coating, a plastic material is filled and molded, and the powder is melted by the heat of the filling material and/or the heat during molding. 1. A plastic molding method for forming a multilayer coating on the surface of a plastic molded article, which method comprises plasticizing and compressing a resin composition to bring a thermosetting or thermoplastic resin coating into close contact with the surface of the molded plastic. 2 The conductive powder resin composition contains conductive fine powder.
Claim 1, which is a thermoplastic or thermosetting powdery resin composition containing in the range of 70 to 95% by weight.
Plastic molding method described in Section 1. 3. The plastic according to claim 1, wherein the radio wave absorbing powder resin composition is a thermoplastic or thermosetting powder resin composition containing radio wave absorbing fine powder in a range of 50 to 95% by weight. Molding method. 4. The plastic molding method according to claim 1, wherein the plastic molding method is an injection molding method, a blow molding method, a transfer molding method, or a vacuum molding method. 5. The plastic molding method according to claim 1, wherein the mold is a preheated mold. 6. The plastic molding method according to claim 1, wherein the conductive and/or radio wave absorbing powder resin composition is fused or hardened by heating before being filled with the plastic material. 7 The melting point and softening point of each resin component used in the conductive and radio wave absorbing powder resin composition and the mold preheating temperature are in the range of (melting point + 10 ° C) ≧ mold preheating temperature ≧ softening point. A plastic molding method according to claim 5. 8. The plastic molding method according to claim 1 or 2, wherein the conductive powder is a dendrite-shaped fine metal powder. 9. The plastic molding method according to claim 1 or 3, wherein the radio wave absorbing powder is spinel type ferrite powder. 10 The conductive powder resin composition is obtained by dispersing a liquid composition consisting of a water-soluble solvent, the water-insoluble and solvent-soluble resin, and conductive fine powder in water,
The plastic molding method according to claim 1, which is a powdered resin composition obtained by a wet granulation method in which the resin composition is granulated, extracted with a solvent, and then separated and dried. 11 The radio wave absorbing powdered resin composition is prepared by dispersing, granulating, and solvent extracting a liquid composition consisting of a water soluble solvent, the water insoluble and solvent soluble resin, and a radio wave absorbing fine powder in water, and then separating the composition. The plastic molding method according to claim 1, which is a powdered resin composition obtained by a wet granulation method in which the resin composition is granulated and dried.
JP6272685A 1985-03-27 1985-03-27 PURASUCHITSUKUSEIKEIHOHO Expired - Lifetime JPH0236373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6272685A JPH0236373B2 (en) 1985-03-27 1985-03-27 PURASUCHITSUKUSEIKEIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6272685A JPH0236373B2 (en) 1985-03-27 1985-03-27 PURASUCHITSUKUSEIKEIHOHO

Publications (2)

Publication Number Publication Date
JPS61220813A JPS61220813A (en) 1986-10-01
JPH0236373B2 true JPH0236373B2 (en) 1990-08-16

Family

ID=13208653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6272685A Expired - Lifetime JPH0236373B2 (en) 1985-03-27 1985-03-27 PURASUCHITSUKUSEIKEIHOHO

Country Status (1)

Country Link
JP (1) JPH0236373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410775U (en) * 1990-05-16 1992-01-29

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259829A (en) * 1986-05-07 1987-11-12 Dainippon Toryo Co Ltd Method for molding plastic
JPS63251206A (en) * 1987-04-07 1988-10-18 Sumitomo Chem Co Ltd Manufacture of multi-layer molded item
KR100708548B1 (en) * 2005-10-17 2007-04-18 채영규 The manufacturig method of a container in syntheticresins with mixing copper powder and the container in syntheticresins
JP4751248B2 (en) * 2006-06-26 2011-08-17 曙ブレーキ工業株式会社 Method for manufacturing friction member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410775U (en) * 1990-05-16 1992-01-29

Also Published As

Publication number Publication date
JPS61220813A (en) 1986-10-01

Similar Documents

Publication Publication Date Title
KR900003733B1 (en) Molding of plastic
ES2656009T3 (en) Powder coating method and apparatus for absorbing electromagnetic interference (EMI)
JP5156189B2 (en) Use of polyarylene ether ketone powder in a manufacturing method without using a mold based on a three-dimensional powder and a molded body produced therefrom
JPH0236373B2 (en) PURASUCHITSUKUSEIKEIHOHO
CN110256870B (en) Preparation method and production device of moisture-proof high-pressure-resistant high-temperature-resistant electrical-grade magnesium oxide
CA1249389A (en) Weldable polymer sealants for metals
US7335316B2 (en) Plastic magnet precursor, production method for the same, and plastic magnet
JPS6320270B2 (en)
JPH0470966B2 (en)
JPS61126185A (en) Composition in powder
DE19851166C2 (en) Foamable, electrically and thermally conductive sealants and adhesives, processes for production and their use
JPS63159024A (en) Manufacture of plastic molded product
JPH0360296B2 (en)
JPH0358573B2 (en)
JPS62259828A (en) Method for molding plastic
JPS63147617A (en) Preparation of plastic molding
JPH03158216A (en) Method for molding plastic
JPS62260093A (en) Method for plating plastic product
JPS62212115A (en) Plastic molding method
JPS63147618A (en) Preparation of plastic molding
JPS61132317A (en) Method of molding plastic
EP4162000A1 (en) Powder coating composition and substrate coated with such powder coating composition
JPH07153616A (en) Resin composite ferrite, manufacture thereof and material for electronic component
JP3258256B2 (en) Powder coating suitable for electrostatic fluidized immersion method
JP4181174B2 (en) Resin composition for molding and coating and noise suppression material using the same