[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0358573B2 - - Google Patents

Info

Publication number
JPH0358573B2
JPH0358573B2 JP61104436A JP10443686A JPH0358573B2 JP H0358573 B2 JPH0358573 B2 JP H0358573B2 JP 61104436 A JP61104436 A JP 61104436A JP 10443686 A JP10443686 A JP 10443686A JP H0358573 B2 JPH0358573 B2 JP H0358573B2
Authority
JP
Japan
Prior art keywords
resin
composition
mold
molding method
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61104436A
Other languages
Japanese (ja)
Other versions
JPS62259829A (en
Inventor
Yoshihisa Nagashima
Takao Sakakibara
Toshikazu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo Co Ltd
Tokai Kogyo Co Ltd
Original Assignee
Dai Nippon Toryo Co Ltd
Tokai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo Co Ltd, Tokai Kogyo Co Ltd filed Critical Dai Nippon Toryo Co Ltd
Priority to JP10443686A priority Critical patent/JPS62259829A/en
Publication of JPS62259829A publication Critical patent/JPS62259829A/en
Publication of JPH0358573B2 publication Critical patent/JPH0358573B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0011Electromagnetic wave shielding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラスチツク成形体表面に、導電性
被膜とその上に形成された保護及び/又は美装被
膜から成る多層被膜を形成させるプラスチツク成
形方法に関する。詳しくは、電磁波遮蔽、帯電防
止、美装等の目的をもつたプラスチツク成形体を
得る方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a plastic molding method in which a multilayer coating consisting of a conductive coating and a protective and/or aesthetic coating formed on the conductive coating is formed on the surface of a plastic molded article. Regarding the method. More specifically, the present invention relates to a method for obtaining a plastic molded body for purposes such as shielding electromagnetic waves, preventing static electricity, and providing aesthetics.

(従来技術) 近年、半導体素子を使用した電子機器の誤動作
の原因が、電磁波や静電気が原因して発生するこ
とが明らかになり、欧米諸国では発生源となる
ICやLSI素子を内蔵した電子機器に対する規制が
法令化され始めており、電子機器業界ではその対
策がせまられている。
(Prior art) In recent years, it has become clear that electromagnetic waves and static electricity are the cause of malfunctions in electronic devices that use semiconductor devices, and in Western countries, malfunctions are caused by electromagnetic waves and static electricity.
Regulations for electronic devices with built-in IC and LSI elements are beginning to be enacted into law, and the electronic device industry is urged to take countermeasures.

現在、これら妨害電磁波発生源をシールドする
方法の一つとして、例えば、プラスチツクに静電
性粉末を混練後、成形し、プラスチツク成形体そ
のものに導電性機能を付与する方法(例えば特公
昭35−9643号)が知られている。しかしながら、
該方法は作業が簡便であるという利点がある反
面、電気導電体を得るには導電性微粉末を多量に
含有させる必要があり、その結果成形後のプラス
チツクの物理的強度の低下、重量の増加、成形上
の問題点等の如き、その他の各種欠点が生じるた
めあまり実用化されていない。
Currently, one of the methods for shielding these sources of interference electromagnetic waves is to knead electrostatic powder into plastic and then mold it to give the molded plastic body itself a conductive function (for example, Japanese Patent Publication No. 35-9643 No.) is known. however,
Although this method has the advantage of being easy to work with, it requires the inclusion of a large amount of conductive fine powder in order to obtain an electrical conductor, which results in a decrease in the physical strength of the plastic after molding and an increase in weight. , problems in molding, and other various drawbacks, so it is not put into practical use much.

シールド方法の他の方法としては、電子機器ハ
ウジング内面に溶剤可溶型導電性塗料を刷毛ある
いはスプレー等で塗装する方法が知られている。
該方法においては、導電性塗料中に含まれる有機
溶剤による形状破損、変色等の対策、塗膜密着強
度向上や塗膜剥離防止のための下塗り対策等が必
要であるとともに、均一な導電性被膜が得難い等
の問題点があつた。
Another known shielding method is to apply a solvent-soluble conductive paint to the inner surface of an electronic device housing with a brush or spray.
In this method, it is necessary to take measures against shape damage and discoloration caused by organic solvents contained in the conductive paint, as well as undercoat measures to improve the adhesion strength of the paint film and prevent paint peeling. There were problems such as difficulty in obtaining

最近では、電子機器ハウジング用成形金型内に
溶剤可溶型導電性塗料を刷毛又はスプレーガンで
塗装した後、金型内でプラスチツクを成形し、プ
ラスチツク成形体と導電性被膜を一体化する方法
も提案されている(例えば特公昭48−25061号)。
該方法によれば、成形金型内にグリース状の組成
物を塗布し、その上に黒鉛等の導電性粉末を吹付
けた後、液状合成樹脂を注入して硬化させ、所定
の個所を導電性とする絶縁性成形体を得る方法が
提案されている。しかしながら該方法では導電性
粉末はグリース状組成物との接触点以外では付着
力が弱いという基本的な問題があるため、樹脂注
入に際し、細心の注意力が必要であり、加えてそ
の注入速度も極めて遅いものとならざるを得ない
という作業上の問題点等があつた。
Recently, a method has been developed in which a solvent-soluble conductive paint is applied with a brush or a spray gun into a mold for electronic device housings, and then the plastic is molded within the mold to integrate the plastic molded body and the conductive coating. has also been proposed (for example, Special Publication No. 48-25061).
According to this method, a grease-like composition is applied inside a mold, a conductive powder such as graphite is sprayed onto it, and then a liquid synthetic resin is injected and hardened to make predetermined areas conductive. A method has been proposed for obtaining an insulating molded body with high properties. However, this method has the fundamental problem that the conductive powder has weak adhesion at points other than the points of contact with the grease-like composition, so careful attention is required when injecting the resin, and in addition, the injection speed is also limited. There were problems with the work, such as the fact that it was extremely slow.

それ故、この方法は射出成形方法の如き高速成
形方法に適用することは不能である。
Therefore, this method cannot be applied to high-speed molding methods such as injection molding methods.

また、前記公知例中には前記導電性粉末の付着
力を高める目的で、更に合成樹脂接着剤を樹脂注
入前に使用する方法も併記されているが、この方
法を採用すると、前述した溶剤可溶型導電性塗料
を成形後塗布する場合の問題点は何一つ解決され
ないものであつた。
In addition, the above-mentioned known example also describes a method of using a synthetic resin adhesive before resin injection in order to increase the adhesion of the conductive powder, but if this method is adopted, the aforementioned solvent can be removed. None of the problems associated with applying a melt-molded conductive paint after molding have been solved.

一般に、溶剤可溶型塗料のもつ前記各種問題点
を解決する手段として、例えば溶剤を全く含有し
ない粉体塗料の使用が考えられる。
In general, as a means to solve the above-mentioned problems of solvent-soluble paints, it is conceivable to use, for example, powder paints that do not contain any solvent at all.

事実、成形の分野においても通常の着色顔料を
少量含有する粉体塗料を加熱、加圧成形用金型内
面に流動床あるいはスプレーによりあらかじめ付
着させた後、SMCやBMCを用いて圧縮成形し、
FRP表面に保護又は着色被膜を成形させる方法
が知られている(例えば、特公昭58−44459号、
特開昭57−181823号、特開昭58−124610号)。
In fact, in the field of molding, powder coatings containing a small amount of ordinary color pigments are heated and applied to the inner surface of a pressure molding mold in a fluidized bed or by spraying, and then compression molded using SMC or BMC.
A method of forming a protective or colored film on the FRP surface is known (for example, Japanese Patent Publication No. 58-44459,
JP-A-57-181823, JP-A-58-124610).

しかして、これらの方法によつても、粉末の飛
散、金型外への付着、膜厚の不均一等の問題点が
あつた。
However, even with these methods, there are problems such as powder scattering, adhesion to the outside of the mold, and uneven film thickness.

更に、導電性の塗膜は導電性であるが故に、電
子機器ハウジング内に露出されて塗装された場
合、電流の流れている内蔵機器類との接触等によ
り、感電や漏電の危険性が大きいこと、又ハウジ
ング外に塗装された場合には、導電性微粉末の色
が限定されているが故に美装の点で大きな問題が
あること、更には導電性被膜の傷付き易さを保護
する必要性がある等種々の問題点があつた。
Furthermore, since conductive coatings are conductive, if they are exposed inside an electronic device housing, there is a high risk of electric shock or leakage due to contact with internal devices carrying current. Furthermore, if the outside of the housing is painted, the colors of the conductive fine powder are limited, so there is a big problem in terms of aesthetics, and furthermore, it is necessary to protect the conductive coating from being easily scratched. Various problems arose, including the necessity of the project.

(発明が解決しようとする問題点) 本発明は、粉末塗料の飛散、金型外への付着や
膜厚の不均一さ等の問題点を解決し、導電性微粉
末を高濃度に含有する粉末状樹脂組成物を効率良
く、かつ均一にプラスチツク表面に付着せしめ、
表面抵抗値が102オーム/□程度以下の導電性を
有するプラスチツク成形品の成形方法を提供しよ
うとするものである。
(Problems to be Solved by the Invention) The present invention solves problems such as scattering of powder paint, adhesion to the outside of the mold, and uneven film thickness, and the present invention solves problems such as powder paint scattering, adhesion to the outside of the mold, and uneven film thickness. Adheres powdered resin composition efficiently and uniformly to plastic surfaces,
The object of the present invention is to provide a method for molding a plastic molded article having electrical conductivity and a surface resistance value of about 10 2 ohms/□ or less.

更には、導電性被膜の保護及び/又は美装機能
を有する被膜を形成させるプラスチツク成形方法
を提供しようとするものである。
Furthermore, it is an object of the present invention to provide a plastic molding method for forming a film having protective and/or aesthetic functions for the conductive film.

(問題点を解決するための手段) 即ち、本発明は、導電性微粉末を高濃度に含有
する粉末状樹脂組成物を、静電塗装により金型内
に塗布した後、プラスチツクを成形し、導電性被
膜をプラスチツク成形体表面に投錨密着させた
後、更にその上に通常の塗料を塗布して仕上げる
プラスチツク成形方法に関するものである。
(Means for Solving the Problems) That is, the present invention applies a powdered resin composition containing a high concentration of conductive fine powder into a mold by electrostatic coating, and then molds the plastic. This invention relates to a plastic molding method in which a conductive film is brought into close contact with the surface of a plastic molded body by anchoring, and then a conventional paint is applied thereon for finishing.

(発明の具体的な説明) 本発明の方法に使用される粉末状樹脂組成物と
は、導電性微粉末を70〜95重量%、好ましくは75
〜90重量%もの高濃度で含有する、熱硬化性もし
くは熱可塑性樹脂組成物である。
(Specific Description of the Invention) The powdered resin composition used in the method of the present invention contains 70 to 95% by weight of conductive fine powder, preferably 75% by weight.
It is a thermosetting or thermoplastic resin composition containing a high concentration of ~90% by weight.

前記導電性微粉末とは、金、白金、パラジウ
ム、銀、銅、ニツケル等の金属粉末あるいは合金
粉末;ニツケルコーテイングマイカ粉末等の電気
的に不良導体である無機質粉末あるいはプラスチ
ツク粉末の表面を、電気良導体の金属で被覆した
もの;グラフアイトカーボンの如き結晶性炭素;
アセチレンブラツク、ケツチエンブラツク等の非
結晶性炭素粉末等の如き、電気的良導電性の微粉
末で、粒子径範囲が0.5〜100μm好ましくは1〜
50μm程度のものである。該粉末は1種もしくは
2種以上の組合せで使用することが可能である。
The conductive fine powder refers to metal powder or alloy powder such as gold, platinum, palladium, silver, copper, or nickel; or inorganic powder or plastic powder that is an electrically poor conductor such as nickel-coated mica powder. Coated with a metal with good conductivity; crystalline carbon such as graphite carbon;
A fine powder with good electrical conductivity, such as amorphous carbon powder such as acetylene black or ketschen black, with a particle size range of 0.5 to 100 μm, preferably 1 to 100 μm.
It is about 50 μm. These powders can be used alone or in combination of two or more.

本発明の目的、即ち良導電性でかつ密着性の優
れた被膜を得るという目的に対し、特にデンドラ
イト形状(樹枝状)の金属微粉末が有効である。
Dendritic metal fine powder is particularly effective for the purpose of the present invention, that is, to obtain a film with good conductivity and excellent adhesion.

前記導電性微粉末は、粉末状樹脂組成物中に70
〜95重量%の範囲で含有される。
The conductive fine powder is contained in the powdered resin composition at a concentration of 70%.
It is contained in the range of ~95% by weight.

尚、本発明において導電性微粉末含有粉末状樹
脂組成物とは、個々の樹脂粉末の中に導電性微粉
末が内包された組成物と、大部分の導電性微粉末
を内包した樹脂粉末と少部分の導電性微粉末の混
合物(但し、導電性微粉末の総量は前記範囲内に
ある)とを意味するものである。後者の場合、粉
末状態で電気抵抗が静電塗装可能な程度に高いこ
とが必要であるのは当然である。
In the present invention, the powdered resin composition containing conductive fine powder includes a composition in which conductive fine powder is encapsulated in each individual resin powder, and a resin powder in which most of the conductive fine powder is encapsulated. A mixture of a small amount of conductive fine powder, provided that the total amount of conductive fine powder is within the above range. In the latter case, it is natural that the electrical resistance in the powder state must be high enough to allow electrostatic coating.

粉末状樹脂組成物中の導電性微粉末の量が70重
量%にみたない場合には、プラスチツク成形体表
面に良好な導電性被膜を形成せしめることが出来
ず、一方95重量%をこえる場合には、効率良く静
電塗装することが困難となるため、いずれも好ま
しくない。
If the amount of conductive fine powder in the powdered resin composition is less than 70% by weight, it will not be possible to form a good conductive film on the surface of the plastic molded product, while if it exceeds 95% by weight, Both are unfavorable because they make it difficult to perform electrostatic coating efficiently.

本発明の粉末状樹脂組成物に使用される展色剤
としての樹脂は、通常粉体塗料や粉末成形用等に
使用される熱硬化性あるいは熱可塑性樹脂が全て
使用可能である。
As the resin used as a color vehicle in the powdered resin composition of the present invention, any thermosetting or thermoplastic resin commonly used for powder coatings, powder molding, etc. can be used.

前記熱硬化性樹脂としては、アクリル樹脂、ポ
リエステル樹脂、エポキシ樹脂、アルキド樹脂、
ウレタン樹脂、エポキシ変性ポリエステル樹脂、
アクリル変性ポリエステル樹脂等が一例として挙
げられる。特に、貯蔵安定性や塗膜の付着性等か
ら、アクリル樹脂、ポリエステル樹脂、エポキシ
樹脂が好ましい。
Examples of the thermosetting resin include acrylic resin, polyester resin, epoxy resin, alkyd resin,
Urethane resin, epoxy modified polyester resin,
An example is acrylic modified polyester resin. In particular, acrylic resins, polyester resins, and epoxy resins are preferred from the viewpoint of storage stability and coating film adhesion.

前記熱硬化性樹脂は、自己硬化型、硬化剤(架
橋剤)硬化型等の種々の型のものが使用し得る。
Various types of thermosetting resins can be used, such as a self-curing type and a curing agent (crosslinking agent) curing type.

前記熱硬化性樹脂の硬化剤としては、ジシアン
ジアミド、酸無水物、イミダゾール誘導体、芳香
族ジアミン、三フツ化ホウ素アミン錯化合物、ヒ
ドラジド類、デカメチレンジカルボン酸、ブロツ
クイソシアネート化合物、アミノ樹脂等の如き、
通常熱硬化性粉体塗料用や粉末成形用等として用
いられるものが使用可能である。
Examples of the curing agent for the thermosetting resin include dicyandiamide, acid anhydride, imidazole derivative, aromatic diamine, boron trifluoride amine complex compound, hydrazide, decamethylene dicarboxylic acid, blocked isocyanate compound, amino resin, etc.
Those normally used for thermosetting powder coatings, powder molding, etc. can be used.

また、前記熱可塑性樹脂としては、アクリル樹
脂、エポキシ樹脂、ポリエステル樹脂、ポリエチ
レン樹脂、ポリプロピレン樹脂、スチレン重合
体、塩化ビニル重合体、ポリアミド樹脂、ブチラ
ール樹脂、繊維素樹脂、石油樹脂等公知のものが
挙げられる。
Further, as the thermoplastic resin, known ones such as acrylic resin, epoxy resin, polyester resin, polyethylene resin, polypropylene resin, styrene polymer, vinyl chloride polymer, polyamide resin, butyral resin, cellulose resin, and petroleum resin are used. Can be mentioned.

前記熱硬化性樹脂及び熱可塑性樹脂は各々単独
もしくは混合物として、あるいは必要に応じて熱
硬化性樹脂と熱可塑性樹脂とを組合せて使用する
ことが可能である。
The thermosetting resin and the thermoplastic resin can be used individually or as a mixture, or if necessary, the thermosetting resin and the thermoplastic resin can be used in combination.

前記粉末状樹脂組成物には、必要により前記成
分以外にダレ防止剤、硬化促進剤、酸化防止剤、
顔料等の如き、一般に粉体塗料等に使用されてい
る成分を添加、混合することも出来る。
In addition to the above-mentioned components, the powdered resin composition may contain an anti-sag agent, a curing accelerator, an antioxidant,
It is also possible to add and mix components such as pigments that are generally used in powder coatings.

本発明の方法に使用される導電性粉末状樹脂組
成物は、公知の粉体塗料等の製造方法により得ら
れる。
The conductive powdery resin composition used in the method of the present invention can be obtained by a known method for producing powder coatings and the like.

例えば、前記樹脂及び導電性粉末、及び其の他
必要により硬化剤、添加剤等を加熱溶融混合後、
冷却、粉砕、篩分けする機械粉砕法や、前記樹脂
及び導電性微粉末、其の他必要により硬化剤、添
加剤等を溶剤中に分散せしめた後、得られた分散
液を加熱空気中に噴霧するドライスプレー法等が
適用出来る。
For example, after heating and melting and mixing the resin and conductive powder, and other necessary hardening agents, additives, etc.,
After using a mechanical pulverization method of cooling, pulverizing, and sieving, or dispersing the resin, conductive fine powder, and other necessary hardening agents, additives, etc. in a solvent, the obtained dispersion is immersed in heated air. Dry spray method etc. can be applied.

しかして、より高濃度に導電性微粉末を含有さ
せた組成物を得る場合や、融点の低い樹脂を用い
る場合あるいは、粉末状樹脂組成物の凝集防止等
を考慮した場合以下に示す湿式造粒法による製造
方法が好ましい。
Therefore, when obtaining a composition containing conductive fine powder at a higher concentration, when using a resin with a low melting point, or when considering prevention of agglomeration of a powdered resin composition, the following wet granulation method is used. A manufacturing method using a method is preferred.

例えば、アルコール類、エチレングリコール誘
導体、ジエチレングリコール誘導体、エステル
類、ケトン類等の水可溶性溶媒(好ましくは、20
℃で水に対する溶解度が10〜30重量%)中に、前
記樹脂を溶解せしめ、ついで前記樹脂、及び導電
性微粉末、其の他必要により硬化剤、添加剤等を
混合して得られる液体組成物(以下分散液とい
う)を、該分散液中に含まれる全ての水可溶性溶
媒が溶解する量(分散液の約3〜40倍量)の水中
に乳化、分散する。乳化は、分散液を激しい撹拌
下にある水中に滴下、注入、噴霧する方法、ある
いは水と分散液をラインミキサーで混合する方法
等により行われる。
For example, water-soluble solvents such as alcohols, ethylene glycol derivatives, diethylene glycol derivatives, esters, and ketones (preferably 20
A liquid composition obtained by dissolving the resin in a solution with a solubility in water of 10 to 30% by weight at °C, and then mixing the resin, conductive fine powder, and other necessary curing agents, additives, etc. A substance (hereinafter referred to as a dispersion) is emulsified and dispersed in an amount of water (approximately 3 to 40 times the amount of the dispersion) in which all the water-soluble solvents contained in the dispersion are dissolved. Emulsification is carried out by dropping, pouring, or spraying the dispersion into water under vigorous stirring, or by mixing water and the dispersion using a line mixer.

前記撹拌もしくはラインミキサーでの混合は、
乳濁微粒子中の溶剤が水中に移行し、粒子が形成
される迄行う。
The above stirring or mixing with a line mixer is
This process is continued until the solvent in the emulsified fine particles migrates into the water and particles are formed.

かくして、乳濁微粒子中の溶剤が水中に抽出さ
れ、樹脂粒子が得られる。
In this way, the solvent in the emulsion fine particles is extracted into water, and resin particles are obtained.

この樹脂粒子を濾過または遠心分離等により水
−溶剤混合物と分離し、さらに必要ならば水洗及
び分離を必要回数繰り返し、スラリー状ないし含
水ケーキ状の樹脂粒子を得る。ついで、必要によ
りボールミル、ポツトミル、サンドミル等により
調粒を行つた後、樹脂粒子が凝集しないよう乾
燥、好ましくは凍結乾燥、真空乾燥等により乾燥
し、必要により篩分けして本発明の導電性粉末状
樹脂組成物を得る。このような製造方法は、例え
ば特開昭48−52851号、特公昭54−5832号、同54
−26250号、同54−31492号、同56−5796号、同56
−29890号公報に詳述されている。
The resin particles are separated from the water-solvent mixture by filtration or centrifugation, and if necessary, water washing and separation are repeated a necessary number of times to obtain resin particles in the form of a slurry or a water-containing cake. Then, if necessary, the particles are adjusted using a ball mill, pot mill, sand mill, etc., and then dried to prevent the resin particles from agglomerating, preferably by freeze drying, vacuum drying, etc., and if necessary, sieved to obtain the conductive powder of the present invention. A resin composition is obtained. Such a manufacturing method is described, for example, in Japanese Patent Application Laid-open No. 48-52851, Japanese Patent Publication No. 54-5832, and Japanese Patent Publication No. 54-54.
-26250, 54-31492, 56-5796, 56
It is detailed in the -29890 publication.

かくして、高濃度に導電性微粉末を含有し、該
粉末の形状を維持しつつ、比較的球状に近い粉末
状樹脂組成物を得ることができる。
In this way, it is possible to obtain a powdered resin composition containing a high concentration of conductive fine powder and having a relatively nearly spherical shape while maintaining the shape of the powder.

本発明において前記粉末状樹脂組成物に使用さ
れる樹脂成分の軟化点は40〜160℃、融点は60〜
180℃、好ましくは軟化点60〜130℃、融点70〜
160℃程度のものである。
In the present invention, the resin component used in the powdered resin composition has a softening point of 40 to 160°C and a melting point of 60 to 160°C.
180℃, preferably softening point 60~130℃, melting point 70~
The temperature is about 160℃.

尚、前記軟化点はKofler's法により、また融点
はDurran's法により測定したものである。
The softening point was measured by Kofler's method, and the melting point was measured by Durran's method.

更に、本発明の方法に使用される導電性粉末状
樹脂組成物の粒子径範囲は、0.5〜100μm程度、
好ましくは1〜50μm程度のものである。
Furthermore, the particle size range of the conductive powder resin composition used in the method of the present invention is about 0.5 to 100 μm,
Preferably it is about 1 to 50 μm.

一方、本発明の方法が適用出来る成形方法とし
ては特に制限がなく、一般に行われている成形方
法、例えば圧縮成形方法、トランスフア成形方
法、積層成形方法、射出成形方法(リアクシヨン
及びリキツドインジエクシヨンモールデイング法
も含む)、ブロー成形方法、真空成形方法等が挙
げられる。
On the other hand, there are no particular restrictions on the molding method to which the method of the present invention can be applied, and commonly used molding methods such as compression molding, transfer molding, lamination molding, and injection molding (reaction and liquid injection molding) (including yon molding method), blow molding method, vacuum molding method, etc.

また、これらの成形方法に使用されるプラスチ
ツク素材としては、不飽和ポリエステル樹脂、フ
エノール樹脂、エポキシ樹脂、ユリア及びメラミ
ン樹脂、スチレン樹脂、アクリル樹脂、ビニル樹
脂、ポリエチレン樹脂、シリコーン樹脂、ABS
樹脂、ナイロン樹脂、ポリアセタール樹脂、ポリ
カーボネート樹脂、ポリフエニレンオキサイド樹
脂、ポリプロピレン樹脂等の如き、通常成形用に
使用される熱硬化性あるいは熱可塑性樹脂、及び
これらの樹脂に強化用繊維、充填材、硬化剤、安
定剤、着色剤、増粘剤、離型剤、発泡剤、難燃化
剤等を混練した樹脂組成物、更にシートモールデ
イングコンパウンド(SMC)、バルクモールデイ
ングコンパウンド(BMC)等が使用可能である。
Plastic materials used in these molding methods include unsaturated polyester resins, phenolic resins, epoxy resins, urea and melamine resins, styrene resins, acrylic resins, vinyl resins, polyethylene resins, silicone resins, and ABS.
Thermosetting or thermoplastic resins commonly used for molding, such as resins, nylon resins, polyacetal resins, polycarbonate resins, polyphenylene oxide resins, polypropylene resins, etc., and reinforcing fibers, fillers, Resin compositions kneaded with curing agents, stabilizers, colorants, thickeners, mold release agents, foaming agents, flame retardants, etc., as well as sheet molding compounds (SMC), bulk molding compounds (BMC), etc. Available for use.

更に、本発明の方法に使用される塗料とは常温
で液状の溶剤型塗料、無溶剤型塗料、水溶性ある
いは水分散性塗料等通常の塗料組成物である。
Further, the paint used in the method of the present invention is a conventional paint composition such as a solvent-based paint, a solvent-free paint, a water-soluble or water-dispersible paint, etc., which is liquid at room temperature.

該塗料組成物に使用される展色剤としての樹脂
は、例えばアルキド樹脂、アクリル樹脂、ビニル
樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステ
ル樹脂、フツ素樹脂、繊維素系樹脂、メラミン樹
脂等通常の液状塗料に使用されるものは全て使用
可能である。
The resin as a color vehicle used in the coating composition is a common liquid resin such as alkyd resin, acrylic resin, vinyl resin, epoxy resin, urethane resin, polyester resin, fluororesin, cellulose resin, melamine resin, etc. Anything used for paint can be used.

又、上記展色剤と組合せて使用される、ポリイ
ソシアネート、アミノ系化合物等の硬化剤を併用
してもよく、更に必要により体質顔料、着色顔
料、染料、各種添加剤、溶剤等を適宜組合せて用
いることも可能である。
In addition, a curing agent such as a polyisocyanate or an amino compound used in combination with the above color vehicle may be used in combination, and if necessary, extender pigments, coloring pigments, dyes, various additives, solvents, etc. may be appropriately combined. It is also possible to use

尚、前記塗料組成物は常温乾燥型塗料が好まし
いが、場合によつては促進加熱あるいは加熱硬化
型塗料組成物や紫外線や放射線硬化性組成物も使
用可能である。
The coating composition is preferably a coating that dries at room temperature, but accelerated heating or heat-curing coating compositions, and ultraviolet or radiation-curable compositions may also be used in some cases.

更に、本発明の方法において、前記塗料組成物
として以下に示す如き導電性粉末を1〜70重量%
程度含有した組成物を使用することにより、表面
に帯電防止被膜を形成することが可能である。
Furthermore, in the method of the present invention, the coating composition contains 1 to 70% by weight of a conductive powder as shown below.
By using a composition containing a certain amount, it is possible to form an antistatic coating on the surface.

前記導電性微粉末とは、導電性酸化亜鉛、酸化
錫、酸化アンチモン、酸化インジウム等の導電性
を示す金属酸化物;前記酸化物を少くとも1種類
以上含む混合物及び/又は固溶体;着色顔料と前
記導電性酸化物との混合物;前記導電性酸化物で
表面被覆された着色顔料等の化合物;あるいは グラフアイトカーボンの如き結晶性炭素、アセ
チレンブラツク、ケツチエンブラツク等の非結晶
性炭素粉末等の導電性カーボンの如き電気的良導
電性の微粉末で、平均粒子径は100μm以下、好
ましくは0.05〜50μm程度のものである。該粉末
は1種もしくは2種以上の組合せで使用すること
が可能である。
The conductive fine powder includes conductive metal oxides such as conductive zinc oxide, tin oxide, antimony oxide, and indium oxide; mixtures and/or solid solutions containing at least one of the above oxides; colored pigments; A mixture with the conductive oxide; a compound such as a colored pigment whose surface is coated with the conductive oxide; or a crystalline carbon such as graphite carbon, or amorphous carbon powder such as acetylene black or ketschen black. It is a fine powder with good electrical conductivity, such as conductive carbon, and has an average particle diameter of 100 μm or less, preferably about 0.05 to 50 μm. These powders can be used alone or in combination of two or more.

本発明の方法において、前記導電性微粉末は、
液状塗料組成物中に1〜70重量%の範囲で含有さ
れる。
In the method of the present invention, the conductive fine powder is
It is contained in the liquid coating composition in an amount of 1 to 70% by weight.

特に、本発明においては導電性微粉末として導
電性カーボンを使用する場合、その含有量は1〜
50重量%の範囲であり、その他の導電性微粉末を
使用する場合にはその含有量は20〜70重量%の範
囲にあることが好ましい。
In particular, in the present invention, when conductive carbon is used as conductive fine powder, the content is 1 to 1.
The content is preferably in the range of 50% by weight, and when other conductive fine powder is used, the content is preferably in the range of 20 to 70% by weight.

かくして、表面抵抗値が103オーム/□より大
きく、1011オーム/□以下程度の帯電防止被膜が
得られる。
In this way, an antistatic coating having a surface resistance value of more than 10 3 ohms/□ and less than 10 11 ohms/□ can be obtained.

次に、本発明の成形方法を説明する。 Next, the molding method of the present invention will be explained.

前記の如くして得られた導電性微粉末を70〜95
重量%含有する粉末状樹脂組成物を静電粉末塗装
機等により−60〜−90KVに帯電させて金型内に
塗布する。塗布膜厚等は必要により決定される
が、通常10〜200μm程度である。
The conductive fine powder obtained as described above was heated to 70 to 95
The powdered resin composition containing % by weight is charged to -60 to -90 KV using an electrostatic powder coater or the like and applied to the inside of the mold. The thickness of the coating film is determined depending on necessity, but is usually about 10 to 200 μm.

ついで、金型内にプラスチツク素材を充填し、
各々所定の温度及び/又は圧力により成形する。
かくして、金型内の粉末状樹脂組成物は、プラス
チツク素材熱及び/又は成形等の熱により成形プ
ラスチツク表面に投錨密着され、表面に均一な導
電性被膜を有するプラスチツク成形体が得られ
る。ついで脱型後前記塗料組成物をスプレー、エ
アレススプレー、刷毛、静電塗装等通常の方法に
より塗布後、乾燥して本発明の目的とするプラス
チツク成形体を得る。
Next, fill the mold with plastic material,
Each is molded at a predetermined temperature and/or pressure.
In this way, the powdered resin composition in the mold is anchored and adhered to the surface of the molded plastic by the heat of the plastic material and/or the heat of molding, etc., and a molded plastic product having a uniform conductive coating on the surface is obtained. Then, after demolding, the coating composition is applied by a conventional method such as spraying, airless spraying, brushing, electrostatic coating, etc., and then dried to obtain the plastic molded object of the present invention.

本発明の方法のうち成形工程迄を、代表的な射
出成形方法を用いて図面により説明すると、第1
図は射出成形時の概略図であり、第2図は第1図
のD工程の点線部分の拡大図であり、第3図は本
発明の方法により最終的に得られたプラスチツク
成形物を示す断面図である。
The process up to the molding process of the method of the present invention will be explained using drawings using a typical injection molding method.
The figure is a schematic diagram during injection molding, Figure 2 is an enlarged view of the dotted line part of step D in Figure 1, and Figure 3 shows the plastic molded product finally obtained by the method of the present invention. FIG.

第1図に示すように、前工程Aにおいては固定
金型3aの不要部にマスキング材4を定着する。
As shown in FIG. 1, in the pre-process A, a masking material 4 is fixed to unnecessary parts of the fixed mold 3a.

塗布工程Bにおいて、静電塗装機5により粉末
状樹脂組成物2aを固定金型3aの表面に塗布す
る。ついで、マスキング材をはずし必要により、
加熱工程Dで加熱し、塗布された粉末状樹脂組成
物2aを可塑化する。
In coating step B, the electrostatic coating machine 5 coats the powdered resin composition 2a on the surface of the fixed mold 3a. Next, remove the masking material and remove if necessary.
In heating step D, the applied powdered resin composition 2a is plasticized by heating.

ついで、成形工程Eでは、固定金型3a上に可
動金型3bを載置型閉し、型内間隙に充填孔3
b′より溶融プラスチツク素材を充填し成形すると
ともに、プラスチツク成形体1の表面に導電性塗
膜2を投錨密着せしめる。
Next, in the molding process E, the movable mold 3b is placed on the fixed mold 3a and the mold is closed, and a filling hole 3 is formed in the gap in the mold.
A molten plastic material is filled from b' and molded, and at the same time, the conductive coating film 2 is anchored and adhered to the surface of the plastic molded body 1.

ついで、脱型すると均一な厚さの導電性被膜を
有するプラスチツク成形体が効率よく得られるの
である。
Then, when the mold is demolded, a plastic molded article having a conductive coating of uniform thickness can be efficiently obtained.

脱型後、導電性被膜上に着色あるいはクリヤー
塗料6を塗布して、乾燥することにより、導電性
被膜が保護及び/又は美装仕上げされてプラスチ
ツク成形体が得られる。尚必要によりプライマー
塗料を先に塗布した後、前記塗料塗布してもよ
い。
After demolding, a colored or clear paint 6 is applied onto the conductive film and dried to protect and/or give an aesthetic finish to the conductive film and obtain a plastic molded body. If necessary, the primer paint may be applied first, and then the paint may be applied.

尚、本発明の成形方法においては、金型をあら
かじめ予熱するか、常温の金型もしくは予熱温度
の低い金型の場合、粉末状樹脂組成物塗布後熱
風、電気、赤外線等により加熱することが好まし
い。かくすることにより、静電塗装により静電力
のみにより付着している粉末状樹脂組成物の飛散
等を防ぐことが出来る。
In addition, in the molding method of the present invention, the mold may be preheated in advance, or in the case of a mold at room temperature or a mold with a low preheating temperature, it may be heated with hot air, electricity, infrared rays, etc. after applying the powdered resin composition. preferable. By doing so, it is possible to prevent scattering of the powdered resin composition adhered only by electrostatic force by electrostatic coating.

特に、成形時にプラスチツク素材を加圧注入し
たり、プラスチツク素材が移動するような射出成
形法、ブロー成形方法、あるいは真空成形方法等
においては、金型予熱温度と、粉末状樹脂組成物
中の樹脂の軟化点及び融点とが、(融点+10℃)≧
金型予熱温度≧軟化点の範囲内にあることが好ま
しい。
In particular, in injection molding methods, blow molding methods, vacuum forming methods, etc. in which the plastic material is injected under pressure or the plastic material moves during molding, the mold preheating temperature and the resin in the powdered resin composition are The softening point and melting point of (melting point + 10℃) ≧
Preferably, the mold preheating temperature is within the range of softening point.

金型予熱温度が樹脂の軟化点より低い場合に
は、金型と粉末状樹脂組成物との密着性が低くな
り、成形時にプラスチツク素材に加えられる圧力
によるプラスチツク素材の移動や射出時の注入速
度及び圧力等により、粉末状樹脂組成物が移動あ
るいは飛散するため均一な被膜を得難くなる。ま
た、金型予熱温度が(樹脂の融点+10℃)をこえ
ると、粉末状樹脂組成物は塗布後溶融し、流動性
を示すようになり、前記と同様にプラスチツク素
材の移動や注入速度、圧力等により移動し、均一
な被膜が得難くなる。特に射出成形方法において
は、縞模様の被膜となつたり、特に注入口(ノズ
ル)付近は被膜の全くない成形品が得られるとい
うような好ましくない問題が生じる可能性があ
る。
If the mold preheating temperature is lower than the softening point of the resin, the adhesion between the mold and the powdered resin composition will be low, leading to the movement of the plastic material due to the pressure applied to the plastic material during molding and the injection speed during injection. The powdered resin composition moves or scatters due to pressure and the like, making it difficult to obtain a uniform coating. Additionally, if the mold preheating temperature exceeds (resin melting point + 10°C), the powdered resin composition will melt after being applied and will exhibit fluidity, causing the movement of the plastic material, injection speed, pressure, etc. etc., making it difficult to obtain a uniform coating. Particularly in the injection molding method, undesirable problems may occur, such as a striped coating or a molded product having no coating at all, especially near the injection port (nozzle).

以上の如く、本発明の方法によれば、粉末塗料
の飛散、金型外への付着や膜厚の不均一さ等の問
題点は解消し、導電性微粉末を高濃度に含有する
粉末状樹脂組成物を効率良く、かつ均一にプラス
チツク表面に付着せしめることが出来るととも
に、得られた導電性被膜の保護及び/又は美装仕
上げが出来るのである。
As described above, according to the method of the present invention, problems such as scattering of powder paint, adhesion to the outside of the mold, and uneven film thickness are solved, and powder paint containing a high concentration of conductive fine powder can be used. The resin composition can be efficiently and uniformly adhered to the plastic surface, and the resulting conductive film can be protected and/or aesthetically finished.

以下、本発明を実施例により詳細に説明する。
「部」又は「%」は「重量部」又は「重量%」を
もつて示す。実施例に先立つて、以下に示す配合
にて粉末状樹脂組成物を製造した。
Hereinafter, the present invention will be explained in detail with reference to Examples.
"Parts" or "%" are expressed as "parts by weight" or "% by weight." Prior to the Examples, a powdered resin composition was manufactured using the formulation shown below.

〔配合 1〕 エポキシ樹脂 12% デンドライト形状銅粉末 48% 流動助剤 1% メチルエチルケトン 39% エポキシ樹脂は、シエル化学(株)製商品名エピコ
ート# 1002(エポキシ当量600〜700、融点83℃、
軟化点57℃)を、デンドライト形状銅粉末は三井
金属鉱業(株)製電解銅粉商品名MD−1〔325メツシ
ユ(オープニング44μm)を80%以上通過〕を、
流動助剤はモンサント社製商品名モダフローを
夫々使用した。
[Formulation 1] Epoxy resin 12% Dendrite-shaped copper powder 48% Flow aid 1% Methyl ethyl ketone 39% The epoxy resin is manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1002 (epoxy equivalent 600-700, melting point 83°C,
The dendrite-shaped copper powder is electrolytic copper powder manufactured by Mitsui Mining & Mining Co., Ltd., product name MD-1 [more than 80% passes through 325 mesh (opening 44 μm)].
As the flow aid, Modaflow (trade name, manufactured by Monsanto) was used.

上記配合からなる組成物を、磁性ポツトミルで
2時間分散して液体組成物を得た。
The composition consisting of the above formulation was dispersed in a magnetic pot mill for 2 hours to obtain a liquid composition.

ついで、前記液体組成物を高速撹拌下にある水
温20℃以下の水3000部中に噴霧し、前記液体組成
物を乳化するとともに溶剤を水中へ抽出して樹脂
粒子を形成せしめた。その後、濾過および水洗を
繰り返し、平均粒子径約100μmの樹脂粒子を得
た。含水率を50%前後に調整した後、更に樹脂粒
子を微粉砕調粒し、スラリー状の粉末樹脂組成物
を得た。更に水洗を3回以上繰り返した後、濾過
し、20℃以下の乾燥空気の下で乾燥し、粉砕、篩
分(150メツシユ)して導電性微粉末/樹脂=
80/20(重量比)の粉末状樹脂組成物(1)を作成し
た。
Next, the liquid composition was sprayed into 3000 parts of water at a temperature of 20° C. or less under high speed stirring to emulsify the liquid composition and extract the solvent into the water to form resin particles. Thereafter, filtration and water washing were repeated to obtain resin particles with an average particle diameter of about 100 μm. After adjusting the water content to around 50%, the resin particles were further finely pulverized to obtain a slurry-like powdered resin composition. Furthermore, after repeating water washing three times or more, it is filtered, dried under dry air at 20℃ or less, crushed, and sieved (150 meshes) to obtain conductive fine powder/resin.
A powdered resin composition (1) of 80/20 (weight ratio) was prepared.

〔配合 2〕 エポキシ樹脂 9% デンドライト形状銅粉末 51% 流動助剤(配合1と同一) 1% メチルエチルケトン 39% エポキシ樹脂はシエル化学(株)製商品名エピコー
ト# 1001(エポキシ当量450〜500、融点69℃、軟
化点50℃)を、デンドライト形状銅粉末は三井金
属鉱業(株)製電解銅粉商品名MD−1とMF−D2
(重量平均粒子径8μm)を重量で1:1に混合し
たものを夫々使用した。
[Formulation 2] Epoxy resin 9% Dendrite-shaped copper powder 51% Flow aid (same as Formulation 1) 1% Methyl ethyl ketone 39% Epoxy resin is manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1001 (epoxy equivalent 450-500, melting point 69℃, softening point 50℃), and the dendrite-shaped copper powders are electrolytic copper powders manufactured by Mitsui Mining & Mining Co., Ltd. under the trade names MD-1 and MF-D 2.
(weight average particle diameter: 8 μm) were mixed in a 1:1 ratio by weight.

配合1と同じ方法で液体組成物を作成した後、
同様の方法で導電性微粉末/樹脂=85/15(重量
比)の粉末状樹脂組成物(2)を作成した。
After making the liquid composition in the same way as Formulation 1,
A powdered resin composition (2) having a conductive fine powder/resin ratio of 85/15 (weight ratio) was prepared in a similar manner.

〔配合 3〕 エポキシ樹脂 6% デンドライト形状銅粉末 54% 流動助剤(配合1と同一) 1% メチルエチルケトン 39% エポキシ樹脂はチバガイギー(株)製商品名アラル
ダイト6097(エポキシ当量900〜1000、融点100℃、
軟化点80℃)を、デンドライト形状銅粉末は三井
金属鉱業(株)製電解銅粉MF−D2を夫々使用した。
[Formulation 3] Epoxy resin 6% Dendrite-shaped copper powder 54% Flow aid (same as Formulation 1) 1% Methyl ethyl ketone 39% The epoxy resin is manufactured by Ciba Geigy Corporation under the trade name Araldite 6097 (epoxy equivalent 900-1000, melting point 100°C) ,
The dendrite-shaped copper powder used was electrolytic copper powder MF-D 2 manufactured by Mitsui Mining & Mining Co., Ltd., respectively.

上記配合よりなる組成物をペイントシエーカー
で1時間分散して液体組成物とした。
The composition having the above formulation was dispersed in a paint shaker for 1 hour to obtain a liquid composition.

ついで、配合1と同じ方法で粉末状樹脂組成物
を作成した後、硬化剤として、イミダゾール系エ
ポキシ樹脂用硬化剤〔四国化成工業(株)製商品名キ
ユアゾールC11Z〕を、微粉末として4phrの割合
で乾式混合し、導電性微粉末/樹脂=90/10(重
量比)の粉末状組成物(3)を作成した。
Next, after creating a powdered resin composition in the same manner as in Formulation 1, 4 phr of an imidazole-based epoxy resin curing agent [product name: Kyuazol C 11 Z, manufactured by Shikoku Kasei Kogyo Co., Ltd.] was added as a fine powder. A powder composition (3) with a conductive fine powder/resin ratio of 90/10 (weight ratio) was prepared by dry mixing at a ratio of 90/10 (weight ratio).

〔配合 4〕 エポキシ樹脂 15% ニツケル粉末 45% 流動助剤(配合1と同一) 1% メチルエチルケトン 39% エポキシ樹脂はシエル化学(株)製商品名エピコー
ト# 1001、# 1002、及び# 1004(エポキシ当量875
〜975、融点98℃、軟化点70℃)を各々1:1:
1(重量比)の割合で混合したもの(融点86℃、
軟化点58℃)を、またニツケル粉末はインコ社製
商品名# 255(平均粒子径約2〜3μm)を夫々使
用した。
[Formulation 4] Epoxy resin 15% Nickel powder 45% Flow aid (same as formulation 1) 1% Methyl ethyl ketone 39% Epoxy resins are manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1001, #1002, and #1004 (epoxy equivalent 875
~975, melting point 98℃, softening point 70℃) each at 1:1:
1 (weight ratio) (melting point 86℃,
(softening point: 58 DEG C.), and nickel powder manufactured by Inco Co., Ltd. under the trade name #255 (average particle size: approximately 2 to 3 .mu.m).

上記配合からなる組成物を、配合3と全く同じ
方法で液体組成物とし、配合1と同じ方法で、導
電性微粉末/樹脂=75/25(重量比)の粉末状樹
脂組成物(4)を作成した。
The composition consisting of the above formulation was made into a liquid composition in exactly the same manner as Formulation 3, and the powdered resin composition (4) with conductive fine powder/resin = 75/25 (weight ratio) was prepared in the same manner as Formulation 1. It was created.

〔配合 5〕 エポキシ樹脂 12% ニツケル粉末 48% メチルエチルケトン 40% エポキシ樹脂はシエル化学(株)製商品名エピコー
ト# 1002、# 1004、# 1007(エポキシ当量1750〜
2200、融点128℃、軟化点85℃)を1:1:1(重
量比)の割合で混合したもの(融点約107℃、軟
化点65℃)を、またニツケル粉末はインコ社製商
品名# 123(平均粒径約3〜7μm)と# 255を1:
1(重量比)で混合したものを夫々使用した。
[Composition 5] Epoxy resin 12% Nickel powder 48% Methyl ethyl ketone 40% Epoxy resin is manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1002, #1004, #1007 (epoxy equivalent: 1750~
2200 (melting point: 128°C, softening point: 85°C) in a ratio of 1:1:1 (weight ratio) (melting point: approximately 107°C, softening point: 65°C), and the nickel powder was manufactured by Inco, trade name # 123 (average particle size approximately 3 to 7 μm) and #255 in 1:
A mixture of 1 (weight ratio) was used.

上記配合からなる組成物を配合3と同じ方法で
分散せしめ、液体組成物を作成した。
The composition consisting of the above formulation was dispersed in the same manner as Formulation 3 to create a liquid composition.

次に配合1と同じ方法で、上記液体組成物か
ら、導電性微粉末/樹脂=80/20(重量比)の粉
末状樹脂組成物(5)を作成した。
Next, in the same manner as in Formulation 1, a powdered resin composition (5) having a conductive fine powder/resin ratio of 80/20 (weight ratio) was prepared from the liquid composition.

〔配合 6〕 エポキシ樹脂 9% ニツケル粉末(配合4と同一) 51% メチルエチルケトン 40% エポキシ樹脂はシエル化学(株)製商品名エピコー
ト# 1002、# 1004、# 1007、及び# 1009(エポキ
シ当量2400〜3300、融点約148℃、軟化点90℃)
を各々1:1:2:2(重量比)の割合で混合し
たもの(融点約135℃、軟化点75℃)を使用した。
[Formulation 6] Epoxy resin 9% Nickel powder (same as formulation 4) 51% Methyl ethyl ketone 40% Epoxy resin is manufactured by Ciel Chemical Co., Ltd. under the trade name Epicote #1002, #1004, #1007, and #1009 (epoxy equivalent 2400~ 3300, melting point approximately 148℃, softening point 90℃)
A mixture of 1:1:2:2 (weight ratio) (melting point: about 135°C, softening point: 75°C) was used.

上記配合からなる組成物を、配合3と同様の方
法で、導電性微粉末/樹脂=85/15(重量比)の
粉末状樹脂組成物(6)を作成した。
A powdered resin composition (6) having a conductive fine powder/resin ratio of 85/15 (weight ratio) was prepared using the composition having the above formulation in the same manner as in Formulation 3.

〔配合 7〕 エポキシ樹脂 5.7% グラフアイトカーボン粉末 14% メチルエチルケトン 80% ジシアンジアミド 0.3% エポキシ樹脂はエピコート# 1007を、グラフア
イトカーボン粉末は、(株)中越黒鉛工業所製商品名
CX−3000(粒子径中央値約3μm)を夫々使用し
た。
[Composition 7] Epoxy resin 5.7% Graphite carbon powder 14% Methyl ethyl ketone 80% Dicyandiamide 0.3% The epoxy resin is Epicoat #1007, and the graphite carbon powder is a product name manufactured by Chuetsu Graphite Industries Co., Ltd.
CX-3000 (median particle size approximately 3 μm) was used.

前記配合からなる組成物を、配合1と同様にし
て液体組成物を作成した後、該組成物100部に対
して更にメチルエチルケトン50部の割合で加え希
釈し、ついでスプレードライ法(空気流量:20
m2/分、液体組成物供給量200ml/分、入口空気
温度95℃、出口空気温度30℃)により、導電性微
粉末/樹脂=70/30(重量比)の粉末状樹脂組成
物(7)を作成した。
A liquid composition was prepared using the composition described above in the same manner as in Formulation 1, and then diluted by adding 50 parts of methyl ethyl ketone to 100 parts of the composition, followed by spray drying (air flow rate: 20 parts).
m2 /min, liquid composition supply rate 200ml/min, inlet air temperature 95°C, outlet air temperature 30°C), a powdered resin composition (70/30 (weight ratio) of conductive fine powder/resin) )It was created.

〔配合 8〕 ポリエステル樹脂 12% デンドライト形状銅粉末(配合2と同一) 48% メチルエチルケトン 40% ポリエステル樹脂は、大日本インキ化学製商品
名フアインデイツクM−8000(融点123℃、軟化点
75℃)を使用した。
[Blend 8] Polyester resin 12% Dendrite-shaped copper powder (same as Blend 2) 48% Methyl ethyl ketone 40%
75℃) was used.

上記配合からなる組成物を、磁性ポツトミルで
1時間半分散して液体組成物を作成し、配合1と
同じ方法で前記液体組成物より、導電性微粉末/
樹脂=80/20(重量比)の粉末状樹脂組成物(8)を
作成した。
A liquid composition was prepared by dispersing the composition consisting of the above formulation in a magnetic pot mill for 1.5 hours, and the conductive fine powder/
A powdered resin composition (8) with resin = 80/20 (weight ratio) was prepared.

〔配合例 9〕 ポリエステル樹脂(配合8と同一) 12% ニツケル粉末(配合5と同一) 48% メチルエチルケトン 40% 上記配合からなる組成物を配合7と同様にして
導電性微粉末/樹脂=80/20(重量比)の粉末状
樹脂組成物(9)を作成した。
[Formulation example 9] Polyester resin (same as formulation 8) 12% Nickel powder (same as formulation 5) 48% Methyl ethyl ketone 40% A composition consisting of the above formulation was prepared in the same manner as formulation 7 to obtain conductive fine powder/resin = 80/ A powdered resin composition (9) having a weight ratio of 20 was prepared.

〔配合 10〕 ポリエステル樹脂 9% 銅粉末 51% メチルエチルケトン 40% ポリエステル樹脂は日本ユピカ(株)製商品名GV
−110(融点85℃、軟化点65℃)を、銅粉末は福田
金属箔粉工業(株)製商品名4L3(350メツシユパス95
%以上)を夫々使用した。
[Composition 10] Polyester resin 9% Copper powder 51% Methyl ethyl ketone 40% Polyester resin is manufactured by Nippon U-Pica Co., Ltd. under the trade name GV
-110 (melting point 85℃, softening point 65℃), copper powder manufactured by Fukuda Metal Foil Powder Co., Ltd. under the trade name 4L3 (350 mesh pass 95
% or more) were used respectively.

上記配合からなる組成物を配合8と同様にし
て、導電性微粉末/樹脂=85/15(重量比)の粉
末状樹脂組成物(10)を作成した。
A powdered resin composition (10) with conductive fine powder/resin=85/15 (weight ratio) was prepared by using the composition consisting of the above formulation in the same manner as Formulation 8.

〔配合 11〕 アクリル樹脂 9% ニツケル粉末(配合4と同一) 51% メチルエチルケトン 40% アクリル樹脂は大日本インキ化学製商品名A−
224S(融点114℃、軟化点70℃)を使用した。
[Formulation 11] Acrylic resin 9% Nickel powder (same as formulation 4) 51% Methyl ethyl ketone 40% Acrylic resin is manufactured by Dainippon Ink Chemical under the trade name A-
224S (melting point 114°C, softening point 70°C) was used.

上記配合からなる組成物を配合5と同様にし
て、導電性微粉末/樹脂=85/15(重量比)の粉
末状樹脂組成物(11)を作成した。
A powdered resin composition (11) with conductive fine powder/resin=85/15 (weight ratio) was prepared by using the composition consisting of the above formulation in the same manner as in Formulation 5.

又、塗料組成物を以下の配合に従つて製造し
た。
A coating composition was also produced according to the following formulation.

〔配合 A〕[Formulation A]

スチレン系アクリル共重合体 22部 硝化綿(1/4秒) 12 アゾ系顔料(シンカシヤレツド) 6 溶剤(イソブチルアルコール、酢酸エチル、ト
ルエンを1:4:5に混合したもの) 55部 上記配合からなる組成物を、三本ローラーで分
散して、塗料組成物(A)を得た。
Styrenic acrylic copolymer 22 parts Nitrified cotton (1/4 second) 12 Azo pigment (Shinka Sharetsu) 6 Solvent (1:4:5 mixture of isobutyl alcohol, ethyl acetate, and toluene) 55 parts Consisting of the above formulation The composition was dispersed using three rollers to obtain a coating composition (A).

〔配合 B〕[Formulation B]

スチレン系アクリル共重合体 22部 硝化綿(1/4秒) 11 フタロシアニンブルー 6 溶剤(配合Aと同一) 56 上記配合からなる組成物を、三本ローラーで分
散して、塗料組成物(B)を得た。
Styrenic acrylic copolymer 22 parts Nitrified cotton (1/4 second) 11 Phthalocyanine blue 6 Solvent (same as formulation A) 56 The composition consisting of the above formulation was dispersed with three rollers to form a coating composition (B). I got it.

〔配合 C〕[Formulation C]

アクリルポリオール樹脂 40部 アゾ系赤顔料(シンカシヤレツド) 7 溶剤(配合Aと同一) 53 上記配合からなる組成物を、三本ローラーで分
散して、塗料組成物(C)を得た。
Acrylic polyol resin 40 parts Azo red pigment (Shinka Shared) 7 Solvent (same as formulation A) 53 The composition consisting of the above formulation was dispersed with three rollers to obtain a coating composition (C).

〔配合 D〕[Formulation D]

アクリルポリオール樹脂 40部 フタロシアニンブルー 7 溶剤(配合Aと同一) 53部 上記配合からなる組成物を、三本ローラーで分
散して、塗料組成物(D)を得た。
Acrylic polyol resin 40 parts Phthalocyanine blue 7 Solvent (same as formulation A) 53 parts The composition consisting of the above formulation was dispersed with three rollers to obtain a coating composition (D).

〔配合 E〕[Formulation E]

スチレン系アクリル共重合体 20部 硝化綿(1/4秒) 10 酸化チタン(ルチル型) 15 溶剤(配合Aと同一) 55 上記配合からなる組成物を、三本ローラーで分
散して、塗料組成物(E)を得た。
Styrenic acrylic copolymer 20 parts Nitrified cotton (1/4 second) 10 Titanium oxide (rutile type) 15 Solvent (same as formulation A) 55 The composition consisting of the above formulation was dispersed with three rollers to form a coating composition. Obtained item (E).

〔配合 F〕[Formulation F]

スチレン系アクリル共重合体 23部 硝化綿(1/4秒) 10 カーボンブラツク 2 溶剤(配合Aと同一) 65 上記配合からなる組成物を、三本ローラーで分
散して、塗料組成物(F)を得た。
Styrenic acrylic copolymer 23 parts Nitrified cotton (1/4 second) 10 Carbon black 2 Solvent (same as formulation A) 65 The composition consisting of the above formulation was dispersed with three rollers to form a coating composition (F). I got it.

〔配合 G〕[Formulation G]

アクリルポリオール樹脂 45部 溶剤(配合Aと同一) 55 上記配合からなる組成物を溶解、撹拌して塗料
組成物(G)を得た。
Acrylic polyol resin 45 parts Solvent (same as formulation A) 55 The composition consisting of the above formulation was dissolved and stirred to obtain a coating composition (G).

〔配合 H〕[Formulation H]

アクリル樹脂 10部 硝化綿(1/4秒) 6 酸化チタン(ルチル型) 7.85 カーボンブラツク 0.15 タルク 10 沈降性硫酸バリウム 12 溶剤(配合Aと同一) 54 上記配合からなる組成物を、磁性ポツトミルで
2時間分散して、塗料組成物(H)を得た。
Acrylic resin 10 parts Nitrified cotton (1/4 second) 6 Titanium oxide (rutile type) 7.85 Carbon black 0.15 Talc 10 Precipitated barium sulfate 12 Solvent (same as formulation A) 54 A composition consisting of the above formulation was heated in a magnetic pot mill for 2 hours. After time dispersion, a coating composition (H) was obtained.

〔配合 I〕[Formulation I]

ウレタン樹脂 20部 酸化チタン(ルチル型) 19 カーボンブラツク 1 沈降性硫酸バリウム 15 溶剤(メチルエチルケトン、キシレン、トルエ
ンを1:1:1で混合したもの) 45 上記配合からなる組成物を、磁性ポツトミルで
2時間分散して、塗料組成物(I)を得た。
Urethane resin 20 parts Titanium oxide (rutile type) 19 Carbon black 1 Precipitated barium sulfate 15 Solvent (1:1:1 mixture of methyl ethyl ketone, xylene, and toluene) 45 The composition consisting of the above formulation was mixed with a magnetic pot mill for 2 After time dispersion, a coating composition (I) was obtained.

実施例 1 予め、70℃に予熱した固定金型内非塗装部分を
マスキングした後、粉末状樹脂組成物(1)を−
80KVの電圧下で静電塗装し、塗膜を形成せし
め、ついでマスキングを外し、固定金型と移動金
型を密閉した。
Example 1 After masking the non-painted part in the fixed mold that was preheated to 70°C, the powdered resin composition (1) was poured into the mold.
Electrostatic painting was applied under a voltage of 80KV to form a coating film, and then the masking was removed and the stationary mold and moving mold were sealed.

ついで、樹脂温度270℃の耐熱ポリスチレン樹
脂液を、射出圧力約900Kg/cm2で射出成形した。
Then, a heat-resistant polystyrene resin liquid with a resin temperature of 270°C was injection molded at an injection pressure of about 900 kg/cm 2 .

かくして、膜厚42μm、表面抵抗値0.90オー
ム/□の均一で良導電性の被膜を有する耐熱性ポ
ポリスチレン成形体を得た。
In this way, a heat-resistant polystyrene molded article having a uniform and highly conductive film with a film thickness of 42 μm and a surface resistance value of 0.90 ohm/□ was obtained.

ついで、導電性被膜上に前記塗料組成物(A)をエ
アースプレー塗装し、乾燥せしめて膜厚30μmの
保護被膜を設けた。
Then, the coating composition (A) was air-sprayed onto the conductive film and dried to form a protective film with a thickness of 30 μm.

実施例 2 予め、60℃に予熱した固定金型内非塗装部分を
マスキングし、粉末状樹脂組成物(2)を、−70KV
の電圧下で静電塗装し、塗膜を形成せしめた後、
マスキングを外した。ついで、固定金型と移動金
型を密閉し、樹脂温度180℃の塩化ビニル樹脂液
を、射出圧力約750Kg/cm2で射出成形したところ、
膜厚55μm、表面抵抗値0.52オーム/□の均一で、
良導電の被膜を有する塩化ビニル樹脂成形体が得
られた。
Example 2 The non-painted parts of the fixed mold, which had been preheated to 60°C, were masked, and the powdered resin composition (2) was heated to -70KV.
After applying electrostatic coating under the voltage of , forming a coating film,
I removed the masking. Next, the fixed mold and the movable mold were sealed, and a vinyl chloride resin liquid with a resin temperature of 180°C was injection molded at an injection pressure of about 750 kg/cm 2 .
Uniform film thickness of 55 μm, surface resistance value of 0.52 ohm/□,
A vinyl chloride resin molded article having a highly conductive film was obtained.

ついで導電性被膜上に、前記塗料組成物(B)を実
施例1と同様に塗布し、膜厚25μmの美装仕上げ
被膜を得た。
Then, the coating composition (B) was applied onto the conductive film in the same manner as in Example 1 to obtain an aesthetically finished film with a thickness of 25 μm.

実施例 3 予め、90℃に予熱した成形型内の非塗装部分を
マスキングし、次いで粉末状樹脂組成物(3)を静電
塗装装置によつて−65KVの電圧下で、その型内
の塗装部分に塗装を行い、塗膜を形成せしめた後
マスキングを外した。そして加熱ヒータによつて
硬質塩化ビニルシートを125℃に加熱、軟化せし
め、これを上記成形型にクランプ枠によつて固定
し、次いで真空ポンプによつて型内の空気を真空
度720mmHgの圧力で吸出し、シートを型面に密
着、成形したところ、膜厚45μm、表面抵抗値
0.40オーム/□の均一で良導電性の被膜を有する
硬質塩化ビニル樹脂成形体が得られた。
Example 3 The non-painted parts in a mold that had been preheated to 90°C were masked, and then the powdered resin composition (3) was applied to the inside of the mold using an electrostatic coating device under a voltage of -65 KV. After painting the area and forming a paint film, the masking was removed. Then, the hard vinyl chloride sheet was heated to 125°C using a heater to soften it, and it was fixed to the above-mentioned mold with a clamp frame, and then the air inside the mold was pumped out with a vacuum level of 720 mmHg using a vacuum pump. When sucked out, the sheet was closely attached to the mold surface and molded, the film thickness was 45 μm and the surface resistance value was
A hard vinyl chloride resin molded body having a uniform and highly conductive film of 0.40 ohm/□ was obtained.

ついで、得られた導電性被膜上に前記塗料組成
物(C)を実施例1と同様に塗布して、膜厚30μmの
保護及び/又は美装仕上げ被膜を得た。
Then, the coating composition (C) was applied on the obtained conductive film in the same manner as in Example 1 to obtain a protective and/or aesthetic finishing film with a thickness of 30 μm.

実施例 4 予め、65℃に予熱した固定金型内非塗装部分を
マスキングし、粉末状樹脂組成物(4)を−60KVの
電圧下で静電塗装し、塗膜を形成せしめ、マスキ
ングを外した。ついで、固定金型と移動金型を密
閉し、樹脂温度220℃のポリエチレン樹脂液を射
出圧力約1100Kg/cm2で射出成形したところ、膜厚
50μm、表面抵抗値0.90オーム/□の均一で、良
導電性の被膜を有するポリエチレン樹脂成形体が
得られた。
Example 4 The unpainted parts of the fixed mold, which had been preheated to 65°C, were masked, and the powdered resin composition (4) was electrostatically applied under a voltage of -60KV to form a coating film, and the masking was removed. did. Next, the fixed mold and the movable mold were sealed, and a polyethylene resin liquid with a resin temperature of 220°C was injection molded at an injection pressure of approximately 1100 kg/ cm2 .
A polyethylene resin molded body having a uniform and highly conductive coating with a surface resistance of 50 μm and a surface resistance of 0.90 ohm/□ was obtained.

ついで、導電性被膜上に前記塗料組成物(D)を実
施例1と同様に塗布し、膜厚35μmの美装仕上げ
被膜を得た。
Then, the coating composition (D) was applied onto the conductive film in the same manner as in Example 1 to obtain an aesthetically finished film with a thickness of 35 μm.

実施例 5 温度、60℃の固定金型内非塗装部分をマスキン
グし、粉末状樹脂組成物(5)を−70KVの電圧下で
静電塗装した後、マスキングを外し、赤外線ヒー
ターで金型を95℃まで加熱し、塗膜を形成せしめ
た。ついで固定金型と移動金型を密閉し、樹脂温
度230℃のABS樹脂液を射出圧力約1000Kg/cm2
射出成形して、膜厚65μm、表面抵抗値0.35オー
ム/□の、均一で良導電性の被膜を有するABS
樹脂成形体を得た。
Example 5 After masking the unpainted part of the fixed mold at a temperature of 60°C and electrostatically coating the powdered resin composition (5) under a voltage of -70 KV, the masking was removed and the mold was heated with an infrared heater. It was heated to 95°C to form a coating film. Next, the fixed mold and the movable mold are sealed, and ABS resin liquid with a resin temperature of 230°C is injection molded at an injection pressure of approximately 1000 kg/cm 2 to form a uniform and good film with a thickness of 65 μm and a surface resistance value of 0.35 ohm/□. ABS with conductive coating
A resin molded body was obtained.

ついで前記導電性被膜上に前記塗料組成物(H)を
プライマー塗装し、ついで前記塗料組成物(E)を同
様に塗布した。かくして、全膜厚55μmの保護被
膜が得られた。
Next, the coating composition (H) was coated with a primer on the conductive film, and then the coating composition (E) was coated in the same manner. A protective coating with a total thickness of 55 μm was thus obtained.

実施例 6 予め、87℃に予熱した成形型内面の非塗装部分
にマスキングを処し、粉末状樹脂組成物(6)を静電
粉体塗装装置によつて−60KVの電圧下で成形型
内面の塗装部分を塗装し、そしてマスキングを外
してから型内面を赤外線ヒータで加熱し、塗膜を
形成せしめ195℃でチユーブ状に押出したポリプ
ロピレンを上記成形型にはさみ込み、チユーブ内
に3.5Kg/cm2の圧搾空気を吹き込んで膨張させて、
ポリプロピレンを成形型内面に密着、成形したと
ころ、膜厚65μm、表面抵抗値0.85オーム/□の
均一な良導電性の被膜を有するポリプロピレン樹
脂成形体が得られた。
Example 6 The unpainted part of the inner surface of the mold, which had been preheated to 87°C, was masked, and the powdered resin composition (6) was applied to the inner surface of the mold under a voltage of -60 KV using an electrostatic powder coating device. After painting the painted area and removing the masking, the inner surface of the mold is heated with an infrared heater to form a coating film. Polypropylene extruded into a tube shape at 195℃ is inserted into the above mold, and 3.5 kg / cm is placed inside the tube. Blow in the compressed air from Step 2 to inflate it.
When polypropylene was closely adhered to the inner surface of the mold and molded, a polypropylene resin molded body having a uniform and highly conductive film with a film thickness of 65 μm and a surface resistance value of 0.85 ohm/□ was obtained.

ついで、導電性被膜上に、塗料組成物(H)をプラ
イマー塗装した後、塗料組成物(F)を上塗りして仕
上げた。
Next, the conductive film was coated with a primer coat of the paint composition (H), and then finished with a top coat of the paint composition (F).

実施例 7 予め、125℃に予熱した成形型内の非塗装部分
にマスキングを処し、粉末状樹脂組成物(7)を静電
粉体塗装装置によつて−70KVの電圧下で、その
型内の塗装部分に塗装し塗膜を形成せしめた後マ
スキングを外し、成形型型内に116℃に予熱した
フエノール樹脂粉末を入れ、成形型を閉じて155
℃に加熱し180Kg/cm2の圧力で成形型を圧縮し成
形したところ、膜厚55μm、表面抵抗値250オー
ム/□の均一で良導電性の被膜を有するフエノー
ル樹脂成形体が得られた。
Example 7 The non-painted parts in a mold preheated to 125°C were masked, and the powdered resin composition (7) was applied inside the mold under a voltage of -70 KV using an electrostatic powder coating device. After painting the painted area and forming a coating film, remove the masking, put the phenol resin powder preheated to 116℃ into the mold, close the mold, and apply 155℃.
When heated to 180 kg/cm 2 and compressed using a mold, a phenolic resin molded article having a uniform and highly conductive coating with a thickness of 55 μm and a surface resistance of 250 ohms/□ was obtained.

ついで、前記実施例5と同様に仕上げて膜厚
60μmの美装仕上げ被膜を得た。
Then, the film thickness was adjusted in the same manner as in Example 5.
A beautiful finished film of 60 μm was obtained.

実施例 8 予め、120℃に予熱した金型内非塗装部分をマ
スキングし、粉末状樹脂組成物(8)を−70KVの電
圧下で静電塗装し、塗膜を形成せしめた後、マス
キングを外した。ついで固定金型と移動金型を密
閉し、樹脂温度260℃のポリカーボネート樹脂液
を射出圧力1500Kg/cm2で射出成形して、膜厚45μ
m、表面抵抗値1.5オーム/□の均一で良導電性
の被膜を有するポリカーボネート樹脂成形体を得
た。
Example 8 The non-painted parts of the mold were preheated to 120°C, and the powdered resin composition (8) was electrostatically applied under a voltage of -70KV to form a coating film, and then the masking was removed. I removed it. Then, the fixed mold and the movable mold were sealed, and a polycarbonate resin liquid with a resin temperature of 260°C was injection molded at an injection pressure of 1500 kg/cm 2 to form a film with a thickness of 45 μm.
A polycarbonate resin molded body having a uniform and highly conductive coating with a surface resistance value of 1.5 ohm/□ was obtained.

ついで、前記実施例5と同様にプライマー塗装
した後、塗料組成物(G)を塗布して、膜厚45μmの
保護被膜を得た。
Then, after primer coating in the same manner as in Example 5, coating composition (G) was applied to obtain a protective film with a thickness of 45 μm.

実施例 9 予め、150℃に予熱した金型内非塗装部分をマ
スキングし、前記粉末状樹脂組成物(9)を−60KV
の静電圧下で静電塗装し、塗膜を形成せしめた後
マスキングを外した。ついで固定金型と移動金型
を密閉し、樹脂温度330℃のPPO(ポリフエニレ
ンオキサイド)樹脂を射出圧力1500Kg/cm2で射出
成形して、PPO樹脂成形体を得た。表面導電性
被膜は、樹脂を射出するノズル近辺の塗膜面にや
やムラが発生したが、平均膜厚58μm、表面抵抗
値0.93オーム/□の良導電性の被膜であつた。
Example 9 The non-painted part in the mold, which was preheated to 150°C, was masked, and the powdered resin composition (9) was heated to -60KV.
After electrostatic painting was carried out under an electrostatic voltage of 100 mL to form a coating film, the masking was removed. Then, the fixed mold and the movable mold were sealed, and PPO (polyphenylene oxide) resin with a resin temperature of 330° C. was injection molded at an injection pressure of 1500 kg/cm 2 to obtain a PPO resin molded body. The surface conductive coating had a good electrical conductivity with an average thickness of 58 μm and a surface resistance value of 0.93 ohm/□, although some unevenness occurred on the coating surface near the nozzle where the resin was injected.

ついで、該被膜上に塗料組成物(I)をプライマー
塗装した後、塗料組成物(C)を上塗り塗装し、膜厚
50μmの美装仕上げ被膜を得た。
Then, after coating the coating composition (I) as a primer on the film, coating composition (C) is applied as a top coat to adjust the film thickness.
A beautiful finished film of 50 μm was obtained.

実施例 10 予め、90℃に予熱した成形型内面の非塗装部分
をマスキングを処し、粉末状樹脂組成物(10)を静電
粉体塗装装置によつてその成形型の塗装部分を塗
装した後マスキングを外し、塗膜を形成せしめ
175℃でチユーブ状に押出したポリエチレン樹脂
を上記成形型にはさみ込み、3.2Kg/cm2の圧搾空
気を吹き込み、チユーブを膨らませ型内面に密
着、成形したところ、膜厚50μm、表面抵抗値
0.65オーム/□の均一で良導電性の被膜を有する
ポリエチレン樹脂成形体が得られた。
Example 10 After masking the unpainted part of the inner surface of a mold that had been preheated to 90°C, the powdered resin composition (10) was applied to the painted part of the mold using an electrostatic powder coating device. Remove masking and form coating film
The polyethylene resin extruded into a tube shape at 175℃ was inserted into the above mold, and compressed air of 3.2 kg/cm 2 was blown into the tube to inflate it and adhere to the inner surface of the mold. When molded, the film thickness was 50 μm and the surface resistance value was
A polyethylene resin molded body having a uniform and highly conductive coating of 0.65 ohm/□ was obtained.

ついで、実施例9と同様にプライマー塗装した
後、塗料組成物(D)を上塗り塗装し、膜厚50μmの
美装仕上げ被膜を得た。
Then, after primer coating in the same manner as in Example 9, coating composition (D) was applied as a top coat to obtain a beautiful finished film with a thickness of 50 μm.

実施例 11 予め、105℃に予熱した金型内非塗装部分をマ
スキングし、前記粉末状樹脂組成物(11)を−80KV
の電圧で静電塗装し、塗膜を形成せしめた後マス
キングを外した。ついで固定金型と移動金型を密
閉し、樹脂温度240℃のポリプロピレン樹脂液を
射出圧力1500Kg/cm2で射出成形して、膜厚45μ
m、表面抵抗値0.31オーム/□の、均一で、良導
電性の被膜を有するポリプロピレン樹脂成形体を
得た。
Example 11 The non-painted part in the mold was preheated to 105°C, and the powdered resin composition (11) was heated to -80KV.
Electrostatic coating was applied at a voltage of 100 mL, and after a coating film had been formed, the masking was removed. Next, the fixed mold and the movable mold were sealed, and a polypropylene resin liquid with a resin temperature of 240°C was injection molded at an injection pressure of 1500 kg/cm 2 to form a film with a thickness of 45 μm.
A polypropylene resin molded body having a uniform and highly conductive coating with a surface resistance value of 0.31 ohm/□ was obtained.

ついで、実施例9と同様にプライマー塗装した
後、塗料組成物(A)を上塗り塗装し、膜厚45μmの
美装仕上げ被膜を得た。
Then, after primer coating in the same manner as in Example 9, coating composition (A) was applied as a top coat to obtain an aesthetically finished film with a thickness of 45 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Eは本発明方法の一例である射出成
形方法を示す工程概略図である。第2図は第1図
D工程における点線部分の拡大図、第3図は本発
明方法により得られたプラスチツク成形体の断面
図である。 1…プラスチツク成形体、2…導電性被膜、3
…成形金型、4…マスキング材、5…静電塗装
機、6…美装及び/又は保護被膜。
FIGS. 1A to 1E are process schematic diagrams showing an injection molding method that is an example of the method of the present invention. FIG. 2 is an enlarged view of the dotted line in step D in FIG. 1, and FIG. 3 is a sectional view of a plastic molded article obtained by the method of the present invention. 1... Plastic molded body, 2... Conductive film, 3
...Molding mold, 4. Masking material, 5. Electrostatic coating machine, 6. Beautiful decoration and/or protective coating.

Claims (1)

【特許請求の範囲】 1 プラスチツク成形方法において、導電性微粉
末を含有する粉末状熱硬化性又は熱可塑性樹脂組
成物を静電塗装により金型内に塗布した後、プラ
スチツク素材を充填成形し、充填素材熱及び/又
は成形時の熱により前記粉末状樹脂組成物を可塑
化圧縮して、成形プラスチツク表面に導電性の熱
硬化性又は熱可塑性樹脂被膜を形成し、脱型後、
該被膜上に常温で液状の塗料組成物を塗布、乾燥
せしめて保護及び/又は美装被膜を形成させるプ
ラスチツク成形方法。 2 プラスチツク成形方法が、射出成形方法、ブ
ロー成形方法、又は真空成形方法である特許請求
の範囲第1項記載のプラスチツク成形方法。 3 金型は、予め予熱されている金型である特許
請求の範囲第1項又は第2項記載のプラスチツク
成形方法。 4 粉末状熱硬化性又は熱可塑性樹脂組成物を静
電塗装により金型内に塗装し、ついで加熱により
前記粉末状樹脂組成物を融着、又は硬化させた
後、成形する特許請求の範囲第1項、第2項又は
第3項記載のプラスチツク成形方法。 5 粉末状樹脂組成物に使用する樹脂成分の融点
及び軟化点と、金型予熱温度とは、(融点+10℃)
≧金型予熱温度≧軟化点、の範囲である特許請求
の範囲第3項記載のプラスチツク生成方法。 6 粉末状樹脂組成物は、水可溶性溶媒、水不溶
性でかつ前記溶媒可溶性樹脂、及び導電性微粉末
からなる液体組成物を、水中で分散、造粒、溶媒
抽出した後、分離し、乾燥する湿式造粒法により
得られた粉末状樹脂組成物である特許請求の範囲
第1項記載のプラスチツク成形方法。 7 導電性微粉末は、デンドライト形状をした金
属微粉末である特許請求の範囲第1項記載のプラ
スチツク成形方法。 8 塗料組成物は、着色顔料を1〜70重量%含有
する組成物である特許請求の範囲第1項記載のプ
ラスチツク成形方法。 9 塗料組成物は、導電性カーボンを1〜50重量
%含有する特許請求の範囲第1項記載のプラスチ
ツク成形方法。 10 塗料組成物は、導電性カーボン以外の導電
性微粉末を20〜70重量%含有する特許請求の範囲
第1項記載のプラスチツク成形方法。
[Claims] 1. In a plastic molding method, a powdered thermosetting or thermoplastic resin composition containing conductive fine powder is applied into a mold by electrostatic coating, and then a plastic material is filled and molded, The powdered resin composition is plasticized and compressed using the heat of the filling material and/or the heat during molding to form a conductive thermosetting or thermoplastic resin coating on the surface of the molded plastic, and after demolding,
A plastic molding method in which a liquid paint composition is applied to the film at room temperature and dried to form a protective and/or aesthetic film. 2. The plastic molding method according to claim 1, wherein the plastic molding method is an injection molding method, a blow molding method, or a vacuum forming method. 3. The plastic molding method according to claim 1 or 2, wherein the mold is a preheated mold. 4. Claim No. 4, in which a powdered thermosetting or thermoplastic resin composition is applied inside a mold by electrostatic coating, and then the powdered resin composition is fused or cured by heating, and then molded. The plastic molding method according to item 1, item 2, or item 3. 5 The melting point and softening point of the resin component used in the powdered resin composition and the mold preheating temperature are (melting point + 10°C)
4. The method of producing plastics according to claim 3, wherein the range is ≧mold preheating temperature≧softening point. 6. The powdered resin composition is obtained by dispersing, granulating, and solvent extracting a liquid composition consisting of a water-soluble solvent, the water-insoluble and solvent-soluble resin, and a conductive fine powder in water, followed by separation and drying. The plastic molding method according to claim 1, which is a powdered resin composition obtained by a wet granulation method. 7. The plastic molding method according to claim 1, wherein the conductive fine powder is a dendrite-shaped metal fine powder. 8. The plastic molding method according to claim 1, wherein the coating composition is a composition containing 1 to 70% by weight of a colored pigment. 9. The plastic molding method according to claim 1, wherein the coating composition contains 1 to 50% by weight of conductive carbon. 10. The plastic molding method according to claim 1, wherein the coating composition contains 20 to 70% by weight of conductive fine powder other than conductive carbon.
JP10443686A 1986-05-07 1986-05-07 plastic molding method Granted JPS62259829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10443686A JPS62259829A (en) 1986-05-07 1986-05-07 plastic molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10443686A JPS62259829A (en) 1986-05-07 1986-05-07 plastic molding method

Publications (2)

Publication Number Publication Date
JPS62259829A JPS62259829A (en) 1987-11-12
JPH0358573B2 true JPH0358573B2 (en) 1991-09-05

Family

ID=14380612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10443686A Granted JPS62259829A (en) 1986-05-07 1986-05-07 plastic molding method

Country Status (1)

Country Link
JP (1) JPS62259829A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333688A (en) * 2000-05-24 2001-12-04 Rubutec Kk Method of applying release oil to baking plate for baking confectionery, bread and food

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236373B2 (en) * 1985-03-27 1990-08-16 Dainippon Toryo Kk PURASUCHITSUKUSEIKEIHOHO

Also Published As

Publication number Publication date
JPS62259829A (en) 1987-11-12

Similar Documents

Publication Publication Date Title
KR900003733B1 (en) Plastic molding method having a resin film on the surface
US5187220A (en) Thermosetting resin-based coating powders containing metal flakes
US7737197B2 (en) Bonding of powder coating compositions
CN1234781C (en) Antistatic powder coating compositions and their use
JPH0358573B2 (en)
JPH1180611A (en) Powder coating and film forming method using the powder coating
US4680139A (en) Electrostatically conductive premold coating
JPH0236373B2 (en) PURASUCHITSUKUSEIKEIHOHO
JPS63147617A (en) Method for manufacturing plastic molded bodies
JPH0470966B2 (en)
CN101534965A (en) Process for coating a substrate with a coating
CN111574913A (en) A kind of metal powder coating and preparation method thereof
JPS62260093A (en) How to plate plastic products
JPS63159024A (en) Manufacture of plastic molded product
JPS62259830A (en) Manufacture of plastic molded body
EP3919572A1 (en) Powder coating composition and substrate coated with such powder coating composition
JPS61132317A (en) Method of molding plastic
JPS62212115A (en) Plastic molding method
JPH03158216A (en) plastic molding method
JPS62259828A (en) Method for molding plastic
JPS61126185A (en) powder composition
JPS63147618A (en) Preparation of plastic molding
JPS588623A (en) Conductive injection molding method for resin parts
CN118681770B (en) A composite material powder spraying method
CN111286244A (en) High-finish-degree ABS plastic powder box spray paint and preparation process thereof