[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6028084Y2 - Current control element - Google Patents

Current control element

Info

Publication number
JPS6028084Y2
JPS6028084Y2 JP1980167645U JP16764580U JPS6028084Y2 JP S6028084 Y2 JPS6028084 Y2 JP S6028084Y2 JP 1980167645 U JP1980167645 U JP 1980167645U JP 16764580 U JP16764580 U JP 16764580U JP S6028084 Y2 JPS6028084 Y2 JP S6028084Y2
Authority
JP
Japan
Prior art keywords
current
temperature coefficient
coefficient thermistor
positive temperature
control element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980167645U
Other languages
Japanese (ja)
Other versions
JPS5791205U (en
Inventor
幸治 高橋
Original Assignee
ティーディーケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーディーケイ株式会社 filed Critical ティーディーケイ株式会社
Priority to JP1980167645U priority Critical patent/JPS6028084Y2/en
Publication of JPS5791205U publication Critical patent/JPS5791205U/ja
Application granted granted Critical
Publication of JPS6028084Y2 publication Critical patent/JPS6028084Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【考案の詳細な説明】 本考案は、正の抵抗温度係数を有するチタン酸バリウム
系半導体磁器サーミスタ(以下正特性サーミスタと称す
)より構成される電流制御用素子゛に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current control element composed of a barium titanate semiconductor ceramic thermistor (hereinafter referred to as a positive temperature coefficient thermistor) having a positive temperature coefficient of resistance.

正特性サーミスタは、ある特定温度に達すると電気抵抗
値が急激に増加する正の抵抗温度特性を示し、自己発熱
を自動的に制御する自己温度制御機能および電流を制限
する電流制限機能の2犬機能を発揮する。
Positive characteristic thermistors exhibit positive resistance-temperature characteristics in which the electrical resistance increases rapidly when a certain temperature is reached, and have two functions: a self-temperature control function that automatically controls self-heating, and a current limit function that limits the current. Demonstrate function.

自己温度制御機能に着目したものとしては、各種の発熱
装置の発熱源として使用する正特性サーミスタ定温発熱
体が良く知られている;本考案に係る電流制御用素子は
、前述の正特性サーミスタの電流制限機能に着目したも
のであって、例えば電子機器や自動車搭載機器等の過電
流保護回路用として有用なものである。
As a device focusing on the self-temperature control function, a positive temperature coefficient thermistor constant temperature heating element used as a heat source in various heat generating devices is well known; The present invention focuses on the current limiting function, and is useful for overcurrent protection circuits in electronic equipment, automobile-mounted equipment, etc., for example.

ところで、正特性サーミスタは、放熱量が増減するとそ
れにつれて入力エネルギーも増減腰両者が等しくなる点
で熱平衡するから、正特性サーミスタを定温発熱体とし
て利用する場合は正特性サーミスタの両面に放熱板等を
密着させて放熱量を増大させ、入力エネルギー即ち発熱
量を増大させるのが普通である。
By the way, a positive temperature coefficient thermistor reaches thermal equilibrium at the point where the amount of heat dissipation increases or decreases, and the input energy also increases or decreases. Therefore, when using a positive coefficient thermistor as a constant temperature heating element, heat sinks etc. are installed on both sides of the positive coefficient thermistor. It is common practice to increase the amount of heat dissipation by bringing the materials into close contact with each other, thereby increasing the input energy, that is, the amount of heat generated.

ところが、電流制限用素子として利用する場合は、残留
電流をできるだけ小さくすることが最も重要な課題とな
るから、定温発熱体として用いる場合とは逆に、放熱量
を小さくし、正特性サーミスタの自己発熱温度を高い値
に保持して高抵抗領域で動作させることが必要となる。
However, when using it as a current limiting element, the most important issue is to minimize the residual current, so contrary to when using it as a constant temperature heating element, the amount of heat dissipated is small and the self It is necessary to maintain the heat generation temperature at a high value and operate in a high resistance region.

そこで従来の電流制御用素子は、第1図に示すように、
正特性サーミスタ1の両面に設けた電極2,3に、バネ
端子4,5接触的に接続するか、または第2図に示す如
く、正特性サーミスタ1の電極2,3にリード線6,7
を半田付け8゜9する構造とし、放熱量ができるだけ小
さくなるようにしてあった。
Therefore, the conventional current control element, as shown in Fig. 1,
Spring terminals 4 and 5 are connected in contact with the electrodes 2 and 3 provided on both sides of the PTC thermistor 1, or lead wires 6 and 7 are connected to the electrodes 2 and 3 of the PTC thermistor 1 as shown in FIG.
The structure was such that the parts were soldered at an angle of 8°9 to minimize the amount of heat dissipated.

しかし、このような点接触的な構造では、熱放散性がき
わめて悪く、しかもハネ端子4,5やリード線6,7の
接続部分となっている正特性サーミスタ1の中央部分に
電流が集中して流れることとなるため、局部的に発熱し
、低い電圧で簡単に破壊してしまうという欠点があった
However, such a point-contact structure has extremely poor heat dissipation, and moreover, current concentrates in the center of the PTC thermistor 1, where the spring terminals 4 and 5 and the lead wires 6 and 7 are connected. This has the disadvantage that it generates heat locally and is easily destroyed at low voltages.

特に、各種の電子機器や自動車搭載機器等に多用されて
いる12V電源、24V電源の直流回路用の電流制限用
素子を実現する場合、必要な電流制限特性を得るため、
全表面積が5cm以上でて厚みが10μm〜1000μ
mの範囲にある薄板状の正特性サーミスタを使用する必
要があるが、このような薄板状の正特性サーミスタでは
、前前述の電流集中による局部発熱を受は易く、15V
程度の低い電圧で簡単に破壊してしまうため、実用化が
困難視されていた。
In particular, when realizing current limiting elements for DC circuits of 12V power supplies and 24V power supplies that are often used in various electronic devices and automobile equipment, etc., in order to obtain the necessary current limiting characteristics,
Total surface area is 5cm or more and thickness is 10μm to 1000μ
It is necessary to use a thin plate-shaped positive temperature coefficient thermistor in the range of
It was considered difficult to put it into practical use because it was easily destroyed by low voltage.

本考案は上述する従来の欠点を除去し、破壊電圧が従来
の3倍以上も高く、各種の電子機器や自動車搭載機器等
の電源として多用されている12V電源、24V電源の
直流回路においても充分に使用に耐え得る電流制御用素
子を提供することを目的とする。
This invention eliminates the above-mentioned conventional drawbacks, and has a breakdown voltage that is more than three times higher than the conventional one, and is sufficient for 12V and 24V power supply DC circuits, which are often used as power sources for various electronic devices and automotive equipment. The purpose of the present invention is to provide a current control element that can be used for a long time.

上記目的を達成するため、本考案に係る電流制限用素子
は、表面積が5cm以上で厚みが10μm〜1000μ
mの範囲にある正特性サーミスタを備えて構成され、該
正特性サーミスタの厚み方向における両面の全面に、電
極板を兼ねる放熱板を面接触させたことを特徴とする。
In order to achieve the above object, the current limiting element according to the present invention has a surface area of 5 cm or more and a thickness of 10 μm to 1000 μm.
The present invention is characterized in that it is configured to include a positive temperature coefficient thermistor in the range of m, and that a heat dissipation plate that also serves as an electrode plate is brought into surface contact with the entire surface of both surfaces of the positive temperature coefficient thermistor in the thickness direction.

以下実施例たる添付図面を参照し、本考案の内容を具体
的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The content of the present invention will be specifically described below with reference to the accompanying drawings, which are examples.

第3図Aは本考案に係る電流制御用素子の正面図、第3
図Bは同じくその側面図である。
Figure 3A is a front view of the current control element according to the present invention;
Figure B is also a side view thereof.

この実施例では、全表面積が5C71!以上で厚みtが
10μm〜1000μmの範囲にある円板状の正特性サ
ーミスタ1を備えて構成し該正特性サーミスタ1の厚み
方向の両面にある電極2゜3の全面に、金属板より構成
された電極板兼用の放熱板10.11を密着して面接触
させである。
In this example, the total surface area is 5C71! As described above, the configuration includes a disk-shaped positive temperature coefficient thermistor 1 having a thickness t in the range of 10 μm to 1000 μm, and the entire surface of the electrodes 2° 3 on both sides of the positive temperature coefficient thermistor 1 in the thickness direction is made of a metal plate. Heat dissipating plates 10 and 11, which also serve as electrode plates, are brought into close surface contact.

正特性サーミスタ1の全表面積を5c7I!以上とし、
その厚みを10μm〜1000μmの範囲としたのは、
12V電源や24V電源の直流回路における過電流保護
に適した電流制限特性が得られるからである。
The total surface area of positive temperature coefficient thermistor 1 is 5c7I! As above,
The reason why the thickness was set in the range of 10 μm to 1000 μm was because
This is because current limiting characteristics suitable for overcurrent protection in a DC circuit of a 12V power supply or a 24V power supply can be obtained.

更に、正特性サーミスタ1は、常温の比抵抗が10Ω−
cm以下ものを使用する。
Furthermore, the positive characteristic thermistor 1 has a specific resistance of 10Ω- at room temperature.
Use one that is smaller than cm.

即ち、上記形状寸法の正特性サーミスタを自動車搭載用
として使用した場合のように、正特性サーミスタ12V
DCの直流電圧を印加して駆動する場合、正特性サーミ
スタを安定に動作させるには、その抵抗値を0.2Ω以
下にすることが必要であることが解った。
In other words, when a positive temperature coefficient thermistor with the above shape and dimensions is used in an automobile, a positive temperature coefficient thermistor of 12V
It has been found that in order to operate a positive temperature coefficient thermistor stably when it is driven by applying a DC voltage, its resistance value needs to be 0.2Ω or less.

本考案に係る正特性サーミスタは、表面積が5crl!
以上で、厚みが10μm〜1000μmの範囲にあるか
ら、その抵抗値を0.2Ω以下に押えるためには、対抵
抗は10−00以下であることが必要である。
The positive temperature coefficient thermistor according to the present invention has a surface area of 5 crl!
As mentioned above, since the thickness is in the range of 10 μm to 1000 μm, in order to suppress the resistance value to 0.2Ω or less, the resistance to resistance needs to be 10−00 or less.

上述のような構造であると、放熱板10.11による熱
放散と、電極板としての放熱板10,11の電流拡散作
用により、破壊電圧が従来の破壊電圧15Vの約3.3
倍に当る50Vまで上昇することがわかった。
With the above structure, the breakdown voltage is reduced to about 3.3V compared to the conventional breakdown voltage of 15V due to the heat dissipation by the heat sinks 10 and 11 and the current spreading effect of the heat sinks 10 and 11 as electrode plates.
It was found that the voltage rose to 50V, which is twice as high.

したがって、本考案によれば24V電源を使用する直流
電源回路にも充分に使用し得る電流制御用素子を提供す
ることができる。
Therefore, according to the present invention, it is possible to provide a current control element that can be satisfactorily used in a DC power supply circuit using a 24V power supply.

次に、第4図の実測データを参照して、本考案の効果を
更に具体的に説明する。
Next, the effects of the present invention will be explained in more detail with reference to the measured data shown in FIG.

第4図は電圧電流特性図を示し、横軸に印加電圧(DC
V)をとり、縦軸に電流Aをとっである。
Figure 4 shows a voltage-current characteristic diagram, where the horizontal axis shows the applied voltage (DC
V) and the current A is plotted on the vertical axis.

目盛は対数目盛である。The scale is a logarithmic scale.

曲線A4は第1図に示した従来の電流制限用素子(バネ
端子構造)の電圧電流特性、曲線へは第2図に示した従
来の電流制限用素子(リード線半田付構造)の電圧電流
特性、曲線へは本考案に係る電流制限用素子の電圧電流
特性をそれぞれ示している。
Curve A4 is the voltage-current characteristic of the conventional current-limiting element (spring terminal structure) shown in Figure 1, and curve A4 is the voltage-current characteristic of the conventional current-limiting element (lead soldering structure) shown in Figure 2. The characteristics and curves respectively show the voltage-current characteristics of the current limiting element according to the present invention.

正特性サーミスタとしては、曲線A□、A2? !’s
のいずれも、常温比抵抗ρ9=10Ω−o1常温抵抗R
20= 0.2Ωで、厚みt=0.1傭、直径D=2.
52cmである薄円板状のものを使用した。
For positive characteristic thermistors, curves A□ and A2? ! 's
In both cases, specific resistance at room temperature ρ9=10Ω−o1 resistance at room temperature R
20 = 0.2Ω, thickness t = 0.1Ω, diameter D = 2.
A thin disc-shaped one measuring 52 cm was used.

曲線A1.A2から明らかなように、第1図、第2図に
示した従来構造の電流制限用素子は、破壊電圧が15V
であったが、本考案に係る電流制限用素子は、曲線んか
ら明らかなように、破壊電圧が50Vとなっており、破
壊電圧が従来の3.3@以上も向上していることがかわ
かる。
Curve A1. As is clear from A2, the current limiting element of the conventional structure shown in FIGS. 1 and 2 has a breakdown voltage of 15V.
However, as is clear from the curve, the current limiting element according to the present invention has a breakdown voltage of 50V, which indicates that the breakdown voltage has been improved by more than 3.3@ compared to the conventional device. Recognize.

以上述べたように、本考案に係る電流制限用素子は、全
表面積が55C71!以上で、厚みが10μm〜100
0μmの範囲にある正特性サーミスタを備えて構成され
、該正特性サーミスタの厚み方向における両面の全面に
、電極板を兼ねる放熱板を面接触させたことを特徴とす
るから、24V電源以下の直流電源回路において使用す
る場合に、それに適した電流制限特性を示し、しかも破
壊電圧が50Vにも達し、24V電電源の直流電源回路
の過電流保護用として充分に使用に耐え得る電流制限用
素子を提供することができる。
As mentioned above, the current limiting element according to the present invention has a total surface area of 55C71! Above, the thickness is 10 μm to 100 μm
It is configured with a positive temperature coefficient thermistor in the range of 0 μm, and is characterized in that a heat dissipation plate that also serves as an electrode plate is brought into surface contact with both surfaces of the positive temperature coefficient thermistor in the thickness direction. When used in a power supply circuit, we have developed a current-limiting element that exhibits suitable current-limiting characteristics, has a breakdown voltage of as much as 50V, and can withstand use as overcurrent protection for a DC power supply circuit of a 24V power supply. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電流制限用素子の正面図、第2図は同じ
く他の例の正面図、第3図Aは本考案に係る電流制限用
素子の正面図、第3図Bは同じくその側面図、第4図は
電圧電流特性図である。 1・・・・・・正特性サーミスタ、2,3・・・・・・
電極、10.11・・・・・・放熱板。
FIG. 1 is a front view of a conventional current limiting element, FIG. 2 is a front view of another example, FIG. 3A is a front view of a current limiting element according to the present invention, and FIG. 3B is a front view of the same. The side view and FIG. 4 are voltage-current characteristic diagrams. 1...Positive characteristic thermistor, 2, 3...
Electrode, 10.11... Heat sink.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 表面積が5al!以上で、厚みが10p、m乃至ioo
opmの範囲にあり、比抵抗が10Ω−α以下である正
特性サーミスタを備えて構成され、該正特性サーミスタ
の厚み方向における両面の全面に、電極板を兼ねる放熱
板を面接触させたことを特徴とする電流制御用素子。
The surface area is 5al! Above, the thickness is 10p, m to ioo
opm range and has a specific resistance of 10 Ω-α or less, the positive temperature coefficient thermistor is configured with a heat dissipation plate that also serves as an electrode plate in surface contact with the entire surface of both sides in the thickness direction of the positive temperature coefficient thermistor. Characteristic current control element.
JP1980167645U 1980-11-22 1980-11-22 Current control element Expired JPS6028084Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980167645U JPS6028084Y2 (en) 1980-11-22 1980-11-22 Current control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980167645U JPS6028084Y2 (en) 1980-11-22 1980-11-22 Current control element

Publications (2)

Publication Number Publication Date
JPS5791205U JPS5791205U (en) 1982-06-04
JPS6028084Y2 true JPS6028084Y2 (en) 1985-08-26

Family

ID=29526268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980167645U Expired JPS6028084Y2 (en) 1980-11-22 1980-11-22 Current control element

Country Status (1)

Country Link
JP (1) JPS6028084Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350818U (en) * 1976-10-04 1978-04-28

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055548U (en) * 1973-09-20 1975-05-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350818U (en) * 1976-10-04 1978-04-28

Also Published As

Publication number Publication date
JPS5791205U (en) 1982-06-04

Similar Documents

Publication Publication Date Title
US3976854A (en) Constant-temperature heater
WO2007060787A1 (en) Terminal box for solar battery panel
JPS6028084Y2 (en) Current control element
GB1116659A (en) Electric component with built-in thermal regulation
US3017522A (en) Electrical semiconductor cooling by use of peltier effect
JPS587042B2 (en) Kotaiden Atsugataseitokuseisa Mista
JP3060968B2 (en) Positive characteristic thermistor and positive characteristic thermistor device
JP2511538B2 (en) Semiconductor temperature sensor
TWM509495U (en) PTC ceramic heater
JPS586178A (en) Semiconductor memory unit
JPS63170877A (en) Temperature self-control far-infrared heater
JP4724838B2 (en) Current control resistor element
JP3283898B2 (en) PTC heating device
JPH0543442Y2 (en)
JPS59160991A (en) Positive temperature coefficient thermistor device
JP2008079440A (en) Charger
KR100359245B1 (en) Ptc resistance assembly of blower motor
JP2548202B2 (en) Circuit protection element
JPS62272822A (en) Electric source protector
JPH06203946A (en) Flat heater element
JPH06275370A (en) Heating tool and manufacture thereof
JPH0235761A (en) Thermoelectric converting module
KR20060105863A (en) Generator of heat using dc-voltage
JPS6122433B2 (en)
JPH0616433B2 (en) Heat collecting equipment