[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60159152A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPS60159152A
JPS60159152A JP59014671A JP1467184A JPS60159152A JP S60159152 A JPS60159152 A JP S60159152A JP 59014671 A JP59014671 A JP 59014671A JP 1467184 A JP1467184 A JP 1467184A JP S60159152 A JPS60159152 A JP S60159152A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
atmosphere
gaseous
curie point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59014671A
Other languages
Japanese (ja)
Inventor
Masaaki Tokunaga
徳永 雅亮
Noriaki Meguro
目黒 訓昭
Hiroshi Kogure
小暮 浩
Shigeo Tanigawa
茂穂 谷川
Masao Iwata
雅夫 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59014671A priority Critical patent/JPS60159152A/en
Publication of JPS60159152A publication Critical patent/JPS60159152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To increase the Curie point and coercive force (Hc) of a permanent magnet and to improve the thermal stability by substituting Si for part of B in the magnet made of an intermetallic compound consisting of a rare earth metal, Fe, Co and B. CONSTITUTION:An alloy having a composition represented by formula 1 (where R is one or more kinds of rare earth elements, 0<=x<=0.5, 0.02<=y<=0.3, 0.002<=z <=0.15, and 4<=A<=7.5) is melted in vacuum or a gaseous Ar atmosphere, and the molten alloy is cast into an ingot. This ingot is pulverized in a gaseous N2 atmosphere, and the resulting powder is press-molded in a magnetic field of 15kOe. The molded body is sintered in a gaseous Ar atmosphere, and the sintered body is rapidly cooled and heat treated at 400-800 deg.C. Thus, an intermetallic compound having a composition contg. Si substituted for part of B is formed, and a permanent magnet made of the compound consisting of rare earth metals, Fe, Co, B and Si is obtd. This permanent magnet has an increased Curie point, increased coercive force (Hc) and superior thermal stability.

Description

【発明の詳細な説明】 本発明は希土類金属(Rと以下略記する。)と1−0か
らなる金属間化合物永久磁石材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intermetallic compound permanent magnet material consisting of a rare earth metal (hereinafter abbreviated as R) and 1-0.

すCに知られているように、RFe合金、例えばR2F
e+7 はR−Cc金合金りも高い飽和磁化をイjし、
高価なCoを含有せず、永久磁石材料と、して高いボア
ンシトルを有する永久磁石拐わ[である。しかしながら
、永久磁石IJ flとして必要なLHCが得られず、
長い間装置されたままであった。近年、液体急冷技術の
進歩にともない、R−Fe合金に本方法を利用し、高い
保磁力を得ることに成功している。、(例えば、J 、
 J 、 Croat。
RFe alloys, e.g. R2F, as known from
e+7 has higher saturation magnetization than R-Cc gold alloy,
It is a permanent magnet material that does not contain expensive Co and has a high boron citre. However, the LHC required for the permanent magnet IJ fl could not be obtained,
It remained in place for a long time. In recent years, with the progress of liquid quenching technology, this method has been successfully applied to R-Fe alloys to obtain high coercive force. , (for example, J,
J., Croat.

Journal of At)plied Physi
cs 52< 3)Marct+ 1981.2509
”Magnetic propertiesOf me
lt−3pHn pr −Fe alloys” )ざ
らに、N、C,KOOllらはBを微量添加したR−F
e−B合金を超急冷し、600〜8oO℃にて時効結晶
化さけることにより高保磁力を実現している。(N、 
C,Koon et al Appl、phys 。
Journal of At) Plied Physi
cs 52< 3) Marct+ 1981.2509
”Magnetic properties of me
lt-3pHn pr -Fe alloys'') Zarani, N, C, KOOll et al.
A high coercive force is achieved by ultra-quenching the e-B alloy and avoiding aging crystallization at 600 to 8oO<0>C. (N,
C, Koon et al Appl, phys.

1−etter 39(10) 15 (1981) 
840 ”MaClnetiQp roper目as 
ofAmorphous and Crystalli
zed「%J12 Bo、+9 )o、q 丁bo、o
s l−ao、os ” 、4J 17tl l1j3
58−123853号公報)しかしながら上記作製法に
おいては結晶質と非晶質の混合状態が必要であり、得ら
れる材料の形態は一般に粉末ないし薄帯に限定される。
1-etter 39(10) 15 (1981)
840 “MaClnetiQproper eyes as
of Amorphous and Crystalli
zed "%J12 Bo, +9 ) o, q ding bo, o
s l-ao, os”, 4J 17tl l1j3
58-123853) However, the above manufacturing method requires a mixed state of crystalline and amorphous materials, and the form of the obtained material is generally limited to powder or ribbon.

したかつ−C1永久磁石祠料として利用する1京には圧
縮成形等によってバルク化をはかってやる必要がある。
Shikatsu-C1 To be used as a permanent magnet abrasive material, it is necessary to make it into bulk by compression molding or the like.

又、超急冷による粉末は等方性で角4°!が悪く着磁が
困難で実用の際問題が多い。
Also, the powder produced by ultra-quenching is isotropic and has an angle of 4°! It is difficult to magnetize and has many problems in practical use.

一方、併用らは結晶質のNd −Fe−8を用い磁場中
成形、焼結を用い異方性化をはかり高特性を得た。(第
29回3MConf、1983 booklet P 
110. 3 essionE B 、E B−1’″
N ew Materialfor permanen
t Magnets on a base of Nd
and Fe ” )得られた磁気特性は、35〜40
MGoeで希土類磁石の中では最も高い。しかしながら
公表された木材質は、キュリ一点が低く、熱安定性が悪
いという欠点を有しているものであり、この点が実用化
の上で大きな障害どなっていた。
On the other hand, in the combination, crystalline Nd-Fe-8 was used, and high properties were obtained by molding and sintering in a magnetic field to obtain anisotropy. (29th 3MConf, 1983 booklet P
110. 3 essionE B , E B-1'''
New Material for permanent
t Magnets on a base of Nd
and Fe”) obtained magnetic properties are 35-40
MGoe is the highest among rare earth magnets. However, the wood quality that has been published has the drawbacks of a low curri point and poor thermal stability, which has been a major obstacle to practical application.

本発明は、これらNd −「c −3合金の熱安定性の
改善のためになされたものであり、キュリ一点の向上お
よび Hcの向上を行うことにより、」−記欠点を解消
したものC゛ある。発明者らは種々の検討の結果、キュ
リ一点の向」−に重要な構成元素である13の81によ
る一部置換が有効であることを見いだした。
The present invention has been made to improve the thermal stability of these Nd-C-3 alloys, and has solved the drawbacks mentioned above by improving the Curie point and Hc. be. As a result of various studies, the inventors found that partial substitution of 13 with 81, which is an important constituent element toward the Curie point, is effective.

本発明の合金系はR(Fe1−X−2−7coえ Bア
Siy )A (ここでR:希土類元素の1種又は2種
以上の組合せ、0≦X≦0.5. 0.02≦y≦0.
3. 0.002≦z ≦0.15 、 4≦、A≦7
.5) T”あることを特徴とするものである。本発明
において、CO置換量×が0.5を越える場合は4πi
sの低下が大きく、一方o、oi未渦の場合でも、一応
本発明の効果は得られるが、キュリ一点の向上が不充分
であるため望ましくは0.01以上含iさせるのが良い
。B置換Myが0.02未満の場合キュリ一点が上Rぜ
ず、高いzl−ICも得られない。一方、yが0.3を
越える場合には逆にキュリ一点4π15が低下し、磁気
特性の好ましくない相の発生が見られる。Si置換Hz
が0.002未満の場合キュリ一点が上着せず、又、熱
処理性が改善されないため、焼結後高い エ11cが得
られない。2が0.15以上の場合、4πIsが低下(
)永久磁石材料どして好ましくない。Aが4未満の場合
、4π7sが低下し、7.5を越えるどFeに富lνだ
相が現われ工)−1Cが低下する。
The alloy system of the present invention is R(Fe1-X-2-7coeBASiy)A (where R: one type or a combination of two or more rare earth elements, 0≦X≦0.5. 0.02≦ y≦0.
3. 0.002≦z≦0.15, 4≦, A≦7
.. 5) T". In the present invention, when the CO substitution amount x exceeds 0.5, 4πi
Although the effect of the present invention can be obtained even in the case where the decrease in s is large and o and oi are not swirled, the improvement of one Curie point is insufficient, so it is preferable to include i of 0.01 or more. If the B substitution My is less than 0.02, the Curie point will not rise above R and high zl-IC will not be obtained. On the other hand, when y exceeds 0.3, the Curie point 4π15 decreases, and a phase with unfavorable magnetic properties appears. Si substitution Hz
If it is less than 0.002, a single Curie point will not be formed, and the heat treatability will not be improved, so that a high E11c cannot be obtained after sintering. When 2 is 0.15 or more, 4πIs decreases (
) Permanent magnetic materials are not desirable. When A is less than 4, 4π7s decreases, and as it exceeds 7.5, an Fe-rich lν phase appears and -1C decreases.

Si置換mはBとの複合が原則でB、Si mの和に対
する5in(原子比)奇が0.6以上の場合キュリ一点
のCoの置換もキュリ一点を向上させるが、前述した如
く過度の置換は4πIsの低下、角型の低下、zHcの
低下をまねく。しだがつて、磁気特性および必要とされ
る温度特性を加味して組成を決定する必要がある。
In principle, Si substitution m is combined with B, and if 5in (atomic ratio) odd to the sum of B and Si m is 0.6 or more, substitution of Co for one Curie point also improves Curie point, but as mentioned above, excessive Substitution causes a decrease in 4πIs, a decrease in squareness, and a decrease in zHc. However, it is necessary to determine the composition by taking into account the magnetic properties and required temperature properties.

本発明による永久磁石は一般に溶解によるインゴット作
成、l)砕、磁界中成形、焼結、熱処理の工程によって
製造される。−溶解は通常の方法で、Ar中ないし真空
中で行う。Bはフェロボロンを用いることも可能である
。粉砕は粗粉砕と微粉砕に工程的に分れるが、粗粉砕は
スタンプミル、ジョークプツシ1フ、ブラウンミル、デ
ィスクミルで、又微粉砕はジェットミル、振動ミル、ボ
ールミル等で行われる。いずれも酸化を防ぐために非酸
化性雰囲気中で行うが、有機溶媒や不活性ガスが用いら
れる。粉砕粒度は3〜5μm (F、S、S。
The permanent magnet according to the present invention is generally manufactured by the following steps: ingot creation by melting, l) crushing, forming in a magnetic field, sintering, and heat treatment. - The melting is carried out in the usual manner in Ar or in vacuum. It is also possible to use ferroboron for B. The process of pulverization is divided into coarse pulverization and fine pulverization. Coarse pulverization is performed using a stamp mill, jaw pusher, brown mill, disc mill, and fine pulverization is performed using a jet mill, vibration mill, ball mill, etc. Both are carried out in a non-oxidizing atmosphere to prevent oxidation, and organic solvents and inert gases are used. The grinding particle size is 3-5 μm (F, S, S.

S、)が望ましい。磁界中成形は配向度向上、異方性化
のために必要で、一般に縦磁場成形(加圧方向と磁場印
加方向が平行)Jシよび横磁場成形(加圧方向と磁場印
加方向が垂直)が用いられる。
S,) is desirable. Molding in a magnetic field is necessary to improve the degree of orientation and create anisotropy, and is generally used in vertical magnetic field forming (the direction of pressure and the direction of magnetic field application are parallel), and in horizontal magnetic field forming (the direction of pressure and the direction of magnetic field application are perpendicular). is used.

横磁場成形の方が縦磁場成形よりも配向2度は優れてい
る。焼結はAj、1−1e等の不活性ガス中又は爽空中
で行われる。さらにはH2ガス中の焼結も可能である。
Horizontal magnetic field forming is better than vertical magnetic field forming in terms of orientation 2 degrees. Sintering is performed in an inert gas such as Aj, 1-1e or in fresh air. Furthermore, sintering in H2 gas is also possible.

焼結後の冷却は急冷が望ましい。熱処理は用いる希土類
元素の種類や組成によって異なるが400〜800℃の
範囲で行われる。
Rapid cooling is preferable for cooling after sintering. The heat treatment is performed at a temperature in the range of 400 to 800°C, although it varies depending on the type and composition of the rare earth element used.

3i置換によるさらなる効果は焼結後の急冷によって 
、zl−I Cが充分得られ、熱処理を付加することな
く、高 ml」Cが得られる。
Further effects of 3i substitution can be obtained by rapid cooling after sintering.
, zl-IC can be obtained sufficiently, and high ml'C can be obtained without additional heat treatment.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 Pr (F(3,,9B、、1−Z S 17 ) 5
なる組成を有する合金をアーク溶解にて作製した。得ら
れたインボッ1〜をディスク・ミルで粗粉砕し、32メ
ツシユ以下に調整後、シェツト・ミルで微粉砕した。粉
砕媒体はN2ガスであり、粉砕粒度は3.5μm(F、
S、S、S、’)である。得られた微粉)砕粉を15K
Oeの磁場中で横磁場成形した。成形圧力は2tOn/
C1112である。得られた成形体をA r雰囲気中で
焼結し、焼結後Ar気流中に魚冷した。得られた磁気特
性は第1表に示す通りであった。S1置換によって得ら
れる □Hcの向上することがわかる。第2表に得られ
た磁石のキュリ一点を示す。
Example 1 Pr (F(3,,9B,,1-Z S 17 ) 5
An alloy having the following composition was produced by arc melting. The obtained ingots 1 to 1 were coarsely pulverized using a disk mill, adjusted to a size of 32 mesh or less, and then finely pulverized using a shedding mill. The grinding medium is N2 gas, and the grinding particle size is 3.5 μm (F,
S, S, S,'). The obtained fine powder) was crushed at 15K.
Transverse magnetic field molding was performed in a magnetic field of Oe. Molding pressure is 2tOn/
It is C1112. The obtained molded body was sintered in an Ar atmosphere, and after sintering, it was cooled in an Ar air flow. The magnetic properties obtained were as shown in Table 1. It can be seen that □Hc obtained by S1 substitution is improved. Table 2 shows the curri of the obtained magnet.

Si置換によってキュリ一点の向上が達成されているこ
とがわかる。
It can be seen that an improvement of one Curie point was achieved by the Si substitution.

第1表 第2表 実施例2 N d (F eol、 C0,4Boo、 S ’o
、o4 )5.5なる合金を実施例1ど同様の方法で溶
解、粉砕、成形した。
Table 1 Table 2 Example 2 N d (F eol, C0,4Boo, S 'o
, o4)5.5 was melted, crushed, and molded in the same manner as in Example 1.

得られた成形体を1100℃で2時間真空中焼結した。The obtained molded body was sintered in vacuum at 1100° C. for 2 hours.

得られた磁気特性は、 B r 〜11800G BHC〜103000゜ 1IJ10〜17000へ (3@ ) maX 〜34.2M G Oeであった
。キュリ一点は396℃であった。本磁石をiox 1
0x 10 (+no+)に加工しくP=−2,5)L
、150℃に加熱したところ、減till率は4.3%
であった。比較のため用いたN d (F eo、9’
 B、、、 )、、sは以下の特性を示した。
The obtained magnetic properties were B r ~11800G BHC ~103000°1IJ10~17000(3@) maX ~34.2M G Oe. One point of Curi was 396°C. This magnet iox 1
0x 10 (+no+) P=-2,5)L
, when heated to 150℃, the till reduction rate was 4.3%.
Met. N d (F eo, 9'
B, , , ), s exhibited the following characteristics.

Br−12500G 811C〜 85000s 工Hc〜 89000s (B l−1) max 〜37.IM GOeキュリ
一点〜294℃ 減磁率〜31.5%(150℃加熱) 実施例3 N d (F eo、g3C000T5 BO,l19
 S ’0.04 )b、3なる合金を実施例1ど同様
の方法で溶解、粉砕、成形した。
Br-12500G 811C ~ 85000s Engineering Hc ~ 89000s (B l-1) max ~37. IM GOe Curie point ~ 294℃ Demagnetization rate ~ 31.5% (heated at 150℃) Example 3 N d (F eo, g3C000T5 BO, l19
S'0.04) b, 3 alloy was melted, crushed and molded in the same manner as in Example 1.

jqられた成形体を1140℃で2時間、Ar雰囲気中
で焼結した。
The compacted body was sintered at 1140° C. for 2 hours in an Ar atmosphere.

得られた特性は、 Br−12100G BHC〜110000e zHC〜160000e (B t−4> max 〜35.4M G Oeであ
つlζ。キュリ一点は358℃で、150℃加熱後のi
l’l!磁率は6.8%であった。(P−−2,5)実
施例4 N ’0.S [:′rO,5(F eo、q2−I 
Bo、oBSix )6.1 なる合金を実施例1と同
様の方法で溶解、粉砕、成形した。得られた成形体を1
120℃で2時間水素中焼結した。得られた磁気特性を
第3表に示す。比較的Aの高い組成領域では3iの微量
添加効果が顕著であった。
The obtained characteristics are as follows:
l'l! The magnetic rate was 6.8%. (P--2,5) Example 4 N'0. S [:'rO, 5(F eo, q2-I
An alloy of Bo, oBSix)6.1 was melted, crushed, and molded in the same manner as in Example 1. The obtained molded body is 1
Sintering was carried out in hydrogen at 120° C. for 2 hours. The obtained magnetic properties are shown in Table 3. In a relatively high A composition region, the effect of adding a small amount of 3i was remarkable.

第3表Table 3

Claims (1)

【特許請求の範囲】 R(Fe Co B Si ) (ここで+−x−y−
z x y !ハ ロ:希土類元索の1種又は2種以上の組合せ、O≦×≦
0.5. 0.02≦y≦0.3. 0.002≦2≦
0.15.4≦A≦ 7.5)なる組成からなることを
特徴と覆る永久磁石合金。
[Claims] R(Fe Co B Si ) (where +-x-y-
z x y! Halo: One type or combination of two or more types of rare earth elements, O≦×≦
0.5. 0.02≦y≦0.3. 0.002≦2≦
0.15.4≦A≦7.5) A permanent magnetic alloy characterized by having the following composition.
JP59014671A 1984-01-30 1984-01-30 Permanent magnet alloy Pending JPS60159152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59014671A JPS60159152A (en) 1984-01-30 1984-01-30 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014671A JPS60159152A (en) 1984-01-30 1984-01-30 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS60159152A true JPS60159152A (en) 1985-08-20

Family

ID=11867676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014671A Pending JPS60159152A (en) 1984-01-30 1984-01-30 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS60159152A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2619931A1 (en) * 1987-08-31 1989-03-03 Mitsubishi Electric Corp METHOD FOR MANUFACTURING HEAT-RESISTANT MAGNETIC DETECTION MEMBER, AND DETECTION MEMBER THUS OBTAINED
WO1990016075A1 (en) * 1989-06-13 1990-12-27 Sps Technologies, Inc. Improved magnetic materials and process for producing the same
WO1991019300A1 (en) * 1990-06-08 1991-12-12 Sps Technologies, Incorporated Improved magnetic materials and process for producing the same
US5114502A (en) * 1989-06-13 1992-05-19 Sps Technologies, Inc. Magnetic materials and process for producing the same
US5244510A (en) * 1989-06-13 1993-09-14 Yakov Bogatin Magnetic materials and process for producing the same
US7090730B2 (en) 2002-11-14 2006-08-15 Shin-Etsu Chemical Co., Ltd. R-Fe-B sintered magnet
JP2014045044A (en) * 2012-08-24 2014-03-13 Minebea Co Ltd Rare earth-iron bonded magnet, and method for manufacturing rotor and electromagnetic device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2619931A1 (en) * 1987-08-31 1989-03-03 Mitsubishi Electric Corp METHOD FOR MANUFACTURING HEAT-RESISTANT MAGNETIC DETECTION MEMBER, AND DETECTION MEMBER THUS OBTAINED
WO1990016075A1 (en) * 1989-06-13 1990-12-27 Sps Technologies, Inc. Improved magnetic materials and process for producing the same
JPH04500887A (en) * 1989-06-13 1992-02-13 エスピーエス・テクノロジーズ・インコーポレーテッド Improved magnetic materials and their manufacturing methods
US5114502A (en) * 1989-06-13 1992-05-19 Sps Technologies, Inc. Magnetic materials and process for producing the same
US5122203A (en) * 1989-06-13 1992-06-16 Sps Technologies, Inc. Magnetic materials
US5244510A (en) * 1989-06-13 1993-09-14 Yakov Bogatin Magnetic materials and process for producing the same
WO1991019300A1 (en) * 1990-06-08 1991-12-12 Sps Technologies, Incorporated Improved magnetic materials and process for producing the same
US7090730B2 (en) 2002-11-14 2006-08-15 Shin-Etsu Chemical Co., Ltd. R-Fe-B sintered magnet
JP2014045044A (en) * 2012-08-24 2014-03-13 Minebea Co Ltd Rare earth-iron bonded magnet, and method for manufacturing rotor and electromagnetic device using the same

Similar Documents

Publication Publication Date Title
KR910001065B1 (en) Permanent magnet
JP2001189206A (en) Permanent magnet
JPH0617481B2 (en) Alloy powder for rare earth magnets and method for producing the same
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS60159152A (en) Permanent magnet alloy
JP3222482B2 (en) Manufacturing method of permanent magnet
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS6181603A (en) Preparation of rare earth magnet
JP3296507B2 (en) Rare earth permanent magnet
JP2017135268A (en) Hybrid magnet
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JPS62116756A (en) Permanent magnet alloy
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JPS61143553A (en) Production of material for permanent magnet
JPH03148803A (en) Permanent magnet
JPS61266551A (en) Permanent magnet alloy
JPS59215460A (en) Permanent magnet material and its production
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPS62158852A (en) Permanent magnet material
JPH05152115A (en) Manufacture of magnetic recording powder
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet
JPS60221551A (en) Permanent magnet alloy
JPS62188747A (en) Permanent magnet material made of alloy containing fluorine