[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2739860B2 - MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM - Google Patents

MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM

Info

Publication number
JP2739860B2
JP2739860B2 JP1292366A JP29236689A JP2739860B2 JP 2739860 B2 JP2739860 B2 JP 2739860B2 JP 1292366 A JP1292366 A JP 1292366A JP 29236689 A JP29236689 A JP 29236689A JP 2739860 B2 JP2739860 B2 JP 2739860B2
Authority
JP
Japan
Prior art keywords
component
magnetic material
magnetic
magnet
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1292366A
Other languages
Japanese (ja)
Other versions
JPH03153852A (en
Inventor
伸嘉 今岡
久理真 小林
恭彦 入山
昭信 須藤
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP1292366A priority Critical patent/JP2739860B2/en
Publication of JPH03153852A publication Critical patent/JPH03153852A/en
Application granted granted Critical
Publication of JP2739860B2 publication Critical patent/JP2739860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はサマリウム(Sm)−鉄(Fe)−窒素(N)−
水素(H)−酸素(O)−M成分系組成を有する磁性材
料に関し、特に永久磁石材料として好適な磁性材料およ
びそれから成る磁石ならびにその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to samarium (Sm) -iron (Fe) -nitrogen (N)-
The present invention relates to a magnetic material having a hydrogen (H) -oxygen (O) -M component system composition, and more particularly to a magnetic material suitable as a permanent magnet material, a magnet comprising the same, and a method for producing the same.

[従来の技術] 永久磁石材料は小型モーター、アクチュエーター材料
などとして家庭電化製品、音響製品、自動車部品に利用
される一方、医療機器用大型磁石として使用されるなど
エレクトロニクスの種々の分野で広い用途がある。磁石
材料はどのような利用法においても小型化、軽量化がそ
の進展方向であり、現在もSm-Co系磁石からなり高い磁
気特性を有するNd-Fe-B系磁石へと大きく変換中であ
る。
[Prior art] Permanent magnet materials are used for home appliances, audio products and automobile parts as small motors and actuator materials, while they are widely used in various fields of electronics such as large magnets for medical equipment. is there. Regarding magnet materials, miniaturization and weight reduction are the direction of progress in any use method, and even now, there is a large conversion to Nd-Fe-B magnets consisting of Sm-Co magnets and having high magnetic properties .

ここにいう磁気特性とは材料の飽和磁化(4πIs)、
残留磁束密度(Br)、固有保磁力(iHc)、磁気異方性
エネルギー、角形比(Br/4πIs)、最大エネルギー積
[(BH)max]、キュリー温度、熱減磁率を言う。
The magnetic characteristics here are the saturation magnetization (4πIs) of the material,
Residual magnetic flux density (Br), intrinsic coercive force (iHc), magnetic anisotropy energy, squareness ratio (Br / 4πIs), maximum energy product [(BH) max ], Curie temperature, thermal demagnetization rate.

ところで、Sm-Co系はその原料価格もさることなが
ら、Smの供給量自体に限界があり、現状でも生産量がほ
ぼ飽和状態に達しており、このこともNd-Fe-B系への転
換をさらに押し進める原因にもなっている。
By the way, the Sm-Co system has a limit in the supply amount of Sm itself, besides the raw material price, and even now the production volume is almost saturated, and this is also the conversion to the Nd-Fe-B system. It is also the cause of pushing further.

このNd-Fe-B系磁石(例えば特開昭59-46008号公報)
はこれまでにない高い磁気特性を有し、かつ、Sm-Co系
に比較して原料供給が安定し安価であるという大きな長
所がある。しかし、一方で温度特性が劣り、キュリー点
が低く、かつ耐食性は劣悪であり、大きな短所となって
いる。
This Nd-Fe-B based magnet (for example, JP-A-59-46008)
Has a great advantage in that it has unprecedented high magnetic characteristics, and is more stable and cheaper in material supply than Sm-Co-based materials. However, on the other hand, the temperature characteristics are poor, the Curie point is low, and the corrosion resistance is poor, which is a major disadvantage.

この点を改良するためにFeをCoで一部置換する方法
(例えば特開昭59-132104号公報)やNdの一部を重希土
類元素に置換する方法も提案されている(例えば特開昭
60-34005号公報)。
In order to improve this point, a method of partially replacing Fe with Co (for example, JP-A-59-132104) and a method of partially replacing Nd with heavy rare-earth elements have been proposed (for example, JP-A-59-132104).
60-34005).

しかしながら、いずれも本質的な解決には至らず、現
状では結局コーティングやメッキなどの処理により、耐
食性の向上を図ることが実用化の必須条件となってい
る。このため、実用特性は低下し、Nd-Fe-B系の本来の
高磁気特性は引き出しきれていない。
However, none of these solutions has essentially solved the problem, and at present, it is an essential condition for practical use to improve the corrosion resistance by coating or plating. For this reason, the practical characteristics are deteriorated, and the original high magnetic characteristics of the Nd—Fe—B system cannot be fully extracted.

すなわち、Sm-Co系、Nd-Fe-B系とも優れた磁石材料で
はありながら実用上は多くの問題をかかえており、さら
に新規な磁石材料の出現が望まれている。
That is, although both Sm-Co-based and Nd-Fe-B-based magnet materials are excellent, they have many problems in practical use, and the appearance of new magnet materials is desired.

また、従来のSm-Co系、Nd-Fe-B系焼結磁石では、いず
れの場合も焼結後の熱処理によって強磁性粒子境界部分
に粒子内部と組成の異なる相が分離する。いわゆる2相
分離形の微構造を形成する。これは粒子内部、すなわち
磁性領域間の相互作用を弱め、それによって逆に磁気特
性は向上する。
In addition, in the case of the conventional Sm-Co-based and Nd-Fe-B-based sintered magnets, in any case, a phase having a composition different from that of the inside of the particles is separated at the ferromagnetic particle boundary by heat treatment after sintering. A so-called two-phase separation type microstructure is formed. This weakens the interaction inside the grains, i.e. between the magnetic domains, which in turn improves the magnetic properties.

Nd-Fe-B系ではこの熱処理工程なしでは保磁力、磁気
異方性が発現し難いことも知られている。
It is also known that in the Nd-Fe-B system, coercive force and magnetic anisotropy are hardly developed without this heat treatment step.

一方、新しい希土類系磁性材料として、Re-Fe-N系磁
性材料が提案されている。(例えば、欧州特許公開EP03
69097号参照)この材料は、2-17組成を有する菱面体晶
あるいは六方晶の結晶構造を有しており、磁化、異方性
磁界、キュリー点が高く、前述のSm-Co系やNd-Fe-B系磁
性材料の欠点を補う磁性材料として期待される。
On the other hand, a Re-Fe-N magnetic material has been proposed as a new rare earth magnetic material. (For example, European Patent Publication EP03
This material has a rhombohedral or hexagonal crystal structure having a 2-17 composition, high magnetization, high anisotropic magnetic field and Curie point, and has the above-mentioned Sm-Co and Nd- It is expected as a magnetic material that compensates for the disadvantages of Fe-B based magnetic materials.

しかし、この材料は、各種磁石材料に応用する際、保
磁力、角形比などの磁気特性、及びその安定性が充分で
あるといい難い。
However, when this material is applied to various magnet materials, it is difficult to say that its magnetic properties such as coercive force and squareness and its stability are sufficient.

Re-Fe-N組成を有する材料としては、特開昭60-131949
号公報に開示されており、また、これにM成分を加えRe
-Fe-M−N系とした材料としては、特開昭60-144906号公
報、特開昭60-144907号公報、特開昭62-136551号公報、
特開昭62-177101号公報、特開昭62-269303号公報などに
開示されている。さらにRe-Fe-M−N−H−O組成の材
料としては、特開昭61-9551号公報(M=Pd、Ge)に開
示されている。
As a material having a Re-Fe-N composition, JP-A-60-131949
In addition, the M component is added to this and Re
Examples of the -Fe-M-N based material include JP-A-60-144906, JP-A-60-144907, JP-A-62-136551,
These are disclosed in JP-A-62-177101 and JP-A-62-269303. Further, a material having a Re-Fe-M-N-H-O composition is disclosed in JP-A-61-9551 (M = Pd, Ge).

しかしながら、前述の各公報に開示されたRe-Fe-N
(−M−H−O)系材料では、各成分元素の含有量を特
定しているだけであって、その結晶構造や微構造は特定
されていない。また、前記公報の開示によれば、これら
の磁性材料は、各成分元素とこれらの窒化物とを溶融、
焼結するか、強磁性を有する結晶構造を保ち得ない高い
温度(700〜1100℃)で熱処理することにより製造され
るため、実際には窒化鉄、α−鉄、窒化希土類、M、及
びMの窒化物を多く含有するものであり、2-17組成を有
する菱面体晶または六方晶の結晶構造である相は存在し
ない。
However, Re-Fe-N disclosed in each of the aforementioned publications
In the (-MHO) -based material, only the content of each component element is specified, and the crystal structure and microstructure are not specified. Further, according to the disclosure of the above-mentioned publication, these magnetic materials melt each component element and their nitride,
Since it is manufactured by sintering or heat treatment at a high temperature (700 to 1100 ° C.) that cannot maintain a ferromagnetic crystal structure, iron nitride, α-iron, rare earth nitride, M, and M And a phase having a rhombohedral or hexagonal crystal structure having a 2-17 composition does not exist.

従って、保磁力を初めとする磁気特性は、改善される
よりむしろ、劣化することが多かった。
Therefore, magnetic properties such as coercive force often deteriorate rather than improve.

[発明が解決しようとする課題] 本発明はサマリウム−鉄−窒素−酸素−水素系磁気異
方性材料にM成分を加えることで、バルク磁石、特に焼
結磁石ならびにボンド磁石としての高い特性を引き出す
ことを検討し、磁性材料を構成する各元素の含有量を特
定するのみならず、その結晶構造が2-17構造からなり、
さらに微構造として2相分離型を特定することにより、
高い保磁力と角形比を有するサマリウム−鉄−窒素−水
素−酸素−M成分系磁性材料とその製造方法を提供しよ
うとするものである。
[Problems to be Solved by the Invention] The present invention provides a samarium-iron-nitrogen-oxygen-hydrogen-based magnetic anisotropic material by adding an M component to provide high properties as a bulk magnet, particularly a sintered magnet and a bonded magnet. Consider drawing out, not only specifying the content of each element constituting the magnetic material, its crystal structure consists of 2-17 structure,
Furthermore, by specifying the two-phase separation type as a microstructure,
An object of the present invention is to provide a samarium-iron-nitrogen-hydrogen-oxygen-M component magnetic material having a high coercive force and a squareness ratio and a method for producing the same.

[課題を解決するための手段] 磁性材料SmαFe(100−α−β−γ−δ−ε)β
γδεにおいて、Mを含有しない組成においては熱
処理、雰囲気処理を行っても、Sm-Co、Nd-Fe-B系で見ら
れるような2相分離型の微構造を有する磁性材料を調製
することは難しい。したがって、焼結磁石のようなバル
クとして、高い磁気特性を引き出すことが難しい。
[Means for Solving the Problems] Magnetic Material Sm α Fe (100-α-β-γ-δ-ε) N β H
In γ O δ M ε , a magnetic material having a two-phase separation type microstructure such as that found in Sm-Co and Nd-Fe-B systems can be obtained even if a heat treatment or an atmosphere treatment is performed in a composition not containing M. It is difficult to prepare. Therefore, it is difficult to bring out high magnetic properties as a bulk such as a sintered magnet.

そこで、本発明では、金属元素、半金属元素、無機化
合物をSm-Fe-N−H−O系磁性材料に加えることによっ
て、上記課題を解決したものである。
Therefore, the present invention has solved the above-mentioned problem by adding a metal element, a metalloid element, and an inorganic compound to an Sm-Fe-N-HO-based magnetic material.

すなわち、本発明の構成は、 (1)一般式SmαFe(100−α−β−γ−δ−ε)β
γδεで表わされる磁性材料であり、 MはMg、Ti、Zr、Hf、Cu、Zn、Al、Ga、In、Si、Ge、
Snの元素及びこれらの元素の酸化物、フッ化物、炭化
物、窒化物、水素化物のうち少なくとも一種、 α、β、γ、δ、εはそれぞれモル百分率で 5≦α≦20 5≦β≦25 0.01≦γ≦5 0.01≦δ≦10 0.1≦ε≦40 であって、Sm、Fe及びNを含んだ相が2-17構造からな
ることを特徴とする磁性材料、 (2)請求項(1)に記載の磁性材料のうち、δの範囲
が0.6≦δ≦10であることを特徴とする磁性材料、 (3)請求項(1)〜(2)の何れかに記載の磁性材料
の成分であるFeの0.01〜50モル%をCoで置換した組成を
有することを特徴とする磁性材料、 (4)請求項(1)〜(3)の何れかに記載の磁性材料
から成り、その組織の微構造の粒子境界部に上記一般式
で示した成分のうちMの含有量が多い相を有し、粒子中
心部にはMの含有量が少ないか、またはMを含有しない
相を有することを特徴とする2相分離型のバルク磁石、 (5)請求項(1)〜(3)の何れかに記載の磁性材料
または請求項(4)に記載のバルク磁石から成ることを
特徴とするボンド磁石、 (6)Sm、Fe、N、Hからなる磁性材料、または、Feの
0.01〜50モル%をCoで置換した材料に、M成分を添加し
微粉砕するか、微粉砕してからM成分を添加して、それ
を200〜650℃で焼結することによって、このM成分を主
に粒子境界部に拡散させ、反応させることを特徴とする
請求項(4)に記載の2相分離型のバルク磁石の製造方
法 である。
That is, the constitution of the present invention is as follows: (1) General formula Sm α Fe (100-α-β-γ-δ-ε) N β
H γ O δ M is a magnetic material represented by epsilon, M is Mg, Ti, Zr, Hf, Cu, Zn, Al, Ga, In, Si, Ge,
Sn element and at least one of oxides, fluorides, carbides, nitrides, and hydrides of these elements, α, β, γ, δ, and ε are each represented by mol percentage as 5 ≦ α ≦ 20 5 ≦ β ≦ 25 0.01 ≦ γ ≦ 5 0.01 ≦ δ ≦ 10 0.1 ≦ ε ≦ 40, wherein the phase containing Sm, Fe and N has a 2-17 structure, (2) a magnetic material, 3. The magnetic material according to claim 1, wherein the range of δ is 0.6 ≦ δ ≦ 10. (3) The component of the magnetic material according to any one of (1) to (2). A magnetic material having a composition in which 0.01 to 50 mol% of Fe is substituted with Co, (4) a magnetic material comprising the magnetic material according to any one of claims (1) to (3), Has a phase with a high content of M among the components represented by the above general formula at the grain boundary of the microstructure, and has a low content of M or a content of M in the center of the particle. (5) The magnetic material according to any one of claims (1) to (3) or the bulk magnet according to claim (4). (6) Sm, Fe, N, H magnetic material or Fe
By adding the M component to the material in which 0.01 to 50 mol% is replaced with Co and pulverizing, or by pulverizing and adding the M component and sintering it at 200 to 650 ° C., The method for producing a two-phase-separated bulk magnet according to claim 4, wherein the component is mainly diffused at a particle boundary and reacted.

ここに、上記でいう、2-17構造とは、Th2Zn17型菱面
体晶あるいはTh2Ni17型六方晶をさす。例えば、文献Han
dbook on the Physics and Chemistry of Rare-Earths,
Volume 2-Alloys and Intermetallics (North-Holland
Publishing Company,1979)の6ページに希土類−鉄の
2-17組成合金がTh2Zn17型菱面体晶あるいはTh2Ni17型六
方晶の結晶構造をとることが示されているが、これらの
いずれの構造をとるかは、主に希土類の種類によって決
まる。
Here, the 2-17 structure mentioned above refers to a Th 2 Zn 17 type rhombohedral or a Th 2 Ni 17 type hexagonal crystal. For example, reference Han
dbook on the Physics and Chemistry of Rare-Earths,
Volume 2-Alloys and Intermetallics (North-Holland
Publishing Company, 1979) on page 6
It has been shown that a 2-17 composition alloy has a crystal structure of Th 2 Zn 17- type rhombohedral or Th 2 Ni 17- type hexagonal, but which of these structures is mainly determined by the type of rare earth Depends on

また、M成分の混合方法としては、焼結、もしくは焼
鈍前の粉砕時に混入する方法が最も有効であり、かつこ
の添加方法によれば、焼結後の強磁性粒子境界部と内部
の2相分離型微構造を極めて効率よく、均一に作製でき
るため、焼結条件の制御、混合するM成分の種類により
種々の磁気特性を有する磁石を調製しうることが明らか
になった。
As the method of mixing the M component, the method of mixing during sintering or pulverization before annealing is most effective. According to this addition method, the ferromagnetic particle boundary after sintering and the internal two phase It has been clarified that since a separated microstructure can be produced extremely efficiently and uniformly, magnets having various magnetic properties can be prepared by controlling the sintering conditions and the type of the M component to be mixed.

なお、母合金鋳造の際、M成分を添加して、2-17構造
を有する主相にM成分を共存させることもできる。
At the time of casting of the master alloy, the M component can be added to the main phase having a 2-17 structure so as to coexist.

すなわち、本発明の製造方法の構成は、Sm、Feまたは
Fe+Co、N、H、Oからなる磁性材料の焼結前の微粉砕
の時、または、焼結の時にM成分を添加して、焼結させ
ることによって、このM成分を主に強磁性粒子境界部に
拡散させるか、若しくはさらに、反応させることを特徴
とする2相分離型のバルク磁石の製造方法、及び、母合
金合成時にM成分を混合添加させることを特徴とするSm
-Fe-N−H−O−M磁性材料の製造方法である。
That is, the configuration of the production method of the present invention is Sm, Fe or
By adding and sintering a magnetic material composed of Fe + Co, N, H, and O at the time of pulverization before sintering or at the time of sintering, the M component is mainly used as a ferromagnetic particle boundary. A method for producing a two-phase separation type bulk magnet characterized by diffusing or further reacting a part, and mixing and adding an M component during synthesis of a master alloy.
-Fe-N-HOM magnetic material.

以下、前者の製造方法について詳しく述べる。 Hereinafter, the former manufacturing method will be described in detail.

本磁性材料の成分のうち、Sm-Fe-N−H−Oのみで磁
性粉体を構成した場合は粉体としては良好な磁気特性が
得られるものの、それを焼結し、熱処理を加えてもSm-F
e-N−H−O系ではSm-Co系、Nd-Fe-B系で見られる有効
な相分離は起こらない。ところがこの系にM成分を加え
た場合、このM成分は強磁性粒子間領域に侵入し、焼結
条件に応じて主相間に分離層を設ける役割を演ずるか、
もしくはさらに主相と反応して低磁性特性領域を形成す
る。
When the magnetic powder is composed of only Sm-Fe-N-HO of the components of the present magnetic material, although good magnetic properties are obtained as the powder, it is sintered and subjected to heat treatment. Also Sm-F
In the eN-HO system, the effective phase separation observed in the Sm-Co system and the Nd-Fe-B system does not occur. However, when the M component is added to this system, the M component penetrates into the region between the ferromagnetic particles and plays a role of providing a separation layer between the main phases according to the sintering conditions.
Alternatively, it further reacts with the main phase to form a low magnetic characteristic region.

特にM成分として、融点500℃以下の低融点元素Mlが
少なくとも一種含まれていると、低磁気特性領域を形成
するのに有効である。
In particular, when at least one low-melting element Ml having a melting point of 500 ° C. or less is contained as the M component, it is effective to form a low magnetic characteristic region.

しかし、融点500℃以上の元素Mh、または無機化合物M
iを加えた場合でも強磁性粒子間に微分散させること
で、同様な効果を得ることができる。
However, element Mh with a melting point of 500 ° C or higher, or inorganic compound M
Even when i is added, the same effect can be obtained by finely dispersing between ferromagnetic particles.

勿論、このM成分はSm-Fe-N−H−O−M系における
熱処理で相分離をひき起こしさえすれば有効であり、後
述する様に母合金の合成時もしくは窒化・水素化の段階
で添加する方法も有効である。
Of course, this M component is effective as long as it causes phase separation by heat treatment in the Sm-Fe-N-HOM system, and as described later, at the time of synthesis of the mother alloy or at the stage of nitriding and hydrogenating. The method of adding is also effective.

このようにSm-Fe-N−H−O−M系磁性材料は、M成
分を含有しない場合に対して明瞭に区別でき、特に焼結
磁石において主として保磁力と角形比は顕著に向上す
る。
As described above, the Sm-Fe-N-HOM-based magnetic material can be clearly distinguished from the case where the M component is not contained, and particularly in a sintered magnet, the coercive force and the squareness are significantly improved.

以下本発明の永久磁石材料の組成について詳細に説明
する。
Hereinafter, the composition of the permanent magnet material of the present invention will be described in detail.

なお、本発明中で角組成の含有率はモル百分率で表記
する。ここでいうモル百分率α、β、γ、δ、εは、M
が単一元素あるいは2元以上の多元元素系である場合、
原子百分率と同義であるが、Mが酸化物、窒化物などの
無機化合物を含む場合は化学式あるいは組成式の定める
原子団の原子量の総和を1モルとし、Sm、Fe、N、H、
O系のそれぞれ1原子を1モルとしてモル百分率を計算
する。
In the present invention, the content of the corner composition is represented by mole percentage. The mole percentages α, β, γ, δ, and ε here are M
Is a single element or a multi-element system of two or more elements,
Synonymous with atomic percentage, but when M contains an inorganic compound such as an oxide or a nitride, the sum of the atomic weights of the atomic groups determined by the chemical formula or the composition formula is 1 mol, and Sm, Fe, N, H,
The mole percentage is calculated on the assumption that each atom of the O system is one mole.

また、前述のように、本発明のSm-Fe-N−H−O−M
系磁性材料では、2相分離型の微構造がその特徴の一つ
であるので微構造中の強磁性粒子境界部と、粒子内部で
は組成は変動する。従って、ここでいう組成とは全微構
造の平均の組成を言い、処理条件による微構造中での組
成変動は問わないこととする。
Further, as described above, the Sm-Fe-N-HOM of the present invention is used.
One of the features of the magnetic material is the two-phase separation type microstructure, so that the composition fluctuates at the ferromagnetic particle boundary in the microstructure and inside the particle. Therefore, the term “composition” as used herein refers to the average composition of all the microstructures, and there is no limitation on the composition variation in the microstructure due to the processing conditions.

本発明中のSmは5〜20モル%の範囲にあることが必要
である。5モル%未満では保磁力が小さくなってしまう
し、20モル%を越えると残留磁束密度が小さくなってし
まうので、実用的な永久磁石にはならない。又、本発明
におけるSmはその50原子%を他の希土類元素で置換して
もよい。
Sm in the present invention needs to be in the range of 5 to 20 mol%. If it is less than 5 mol%, the coercive force will be small, and if it exceeds 20 mol%, the residual magnetic flux density will be small, so that it will not be a practical permanent magnet. Further, 50 atom% of Sm in the present invention may be replaced with another rare earth element.

Feは本磁性材料の基本組成であり、含有量が90モル%
まで有効である。また、このFe分をCo原子で置換した場
合はFeの50モル%までの置換ならば物性を損なうことが
なく、組成、処理条件に応じて特異な物性値を引き出し
得る。
Fe is the basic composition of this magnetic material, and its content is 90 mol%
Valid up to. Further, when the Fe component is replaced with a Co atom, if the substitution is made up to 50 mol% of Fe, physical properties are not impaired, and specific physical property values can be derived according to the composition and processing conditions.

なお、これらSm-Fe組成については2-14、2-17組成な
ど、いくつかの構造を基本とすることが考えられるが、
とくに2-17構造を基礎にして、窒素、水素、酸素、Mを
加えていくのが磁気特性の面で好ましい。
Note that these Sm-Fe compositions may be based on several structures, such as 2-14 and 2-17 compositions,
In particular, it is preferable to add nitrogen, hydrogen, oxygen, and M based on the 2-17 structure in terms of magnetic properties.

窒素は5〜25モル%であることが必要である。5モル
%未満、25モル%を越えると磁気異方性が小さくなり、
保磁力も減少し、永久磁石材料としての実用性はない。
特に10〜20モル%の範囲は好ましい。
Nitrogen needs to be from 5 to 25 mol%. If it is less than 5 mol% or more than 25 mol%, the magnetic anisotropy decreases,
The coercive force also decreases, and is not practical as a permanent magnet material.
Particularly, the range of 10 to 20 mol% is preferable.

水素については0.01〜5モル%であることが必要であ
る。これ以外の組成領域では磁気特性は全般的に低下す
るとともに鉄のα相が析出し易くなる。これも特に0.02
〜4モル%の範囲が好ましい。
Hydrogen needs to be 0.01 to 5 mol%. In a composition region other than this, the magnetic properties are generally deteriorated and the α phase of iron is easily precipitated. This is also especially 0.02
The range of 44 mol% is preferred.

酸素については、0.01〜10モル%であると全般的に磁
気特性が高く、特に、実施例に示した如く0.6〜10モル
%に調整すると保磁力、角形比の優れた磁性材料とな
る。
As for oxygen, the magnetic properties are generally high when the oxygen content is 0.01 to 10 mol%. In particular, when the oxygen content is adjusted to 0.6 to 10 mol% as shown in Examples, a magnetic material having excellent coercive force and squareness ratio can be obtained.

M成分としては、Mg、Ti、Zr、Hf、Cu、Zn、Al、Ga、
In、Si、Ge、Snの元素及びこれらの元素の酸化物、フッ
化物、炭化物、窒化物、水素化物のうち少なくとも1種
存在していればよく、2種以上の共存系でも有効であ
る。無機化合物としては、MgO、Al2O3、ZrO2、TiO、Ti2
O3、希土類酸化物等の酸化物、AlF3、ZnF2、SnF2、Pb
F2、HfF4、希土類フッ化物等のフッ化物、SiC、TiC、Zr
C、Mg2C3、HfC、希土類炭化物等の炭化物、AlN、Si
3N4、Zn3N2、InN、GaN、Ge3N4、Sn3N2、TiN、Mg3N2、Hf
N、希土類窒化物等の窒化物、ZrH2、GeH、GeH2、希土類
水素化合物等の水素化物が挙げられる。その組成として
は0.1から40モル%まで考えられるが、30モル%以上で
はいずれのM成分でも磁化は減少し、保磁力が増加する
傾向が顕著になり、特殊な用途の磁気材料となる。40モ
ル%を越えるとこの傾向はさらに強まり永久磁石として
は実質的でない。0.1モル%未満では添加効果はほとん
ど見られない。
As the M component, Mg, Ti, Zr, Hf, Cu, Zn, Al, Ga,
It suffices that at least one of In, Si, Ge, and Sn elements and oxides, fluorides, carbides, nitrides, and hydrides of these elements be present, and a coexistence system of two or more kinds is effective. As inorganic compounds, MgO, Al 2 O 3 , ZrO 2 , TiO, Ti 2
O 3 , oxides such as rare earth oxides, AlF 3 , ZnF 2 , SnF 2 , Pb
F 2 , HfF 4 , fluorides such as rare earth fluorides, SiC, TiC, Zr
C, Mg 2 C 3 , HfC, carbides such as rare earth carbides, AlN, Si
3 N 4, Zn 3 N 2 , InN, GaN, Ge 3 N 4, Sn 3 N 2, TiN, Mg 3 N 2, Hf
N, nitrides such as rare earth nitrides, and hydrides such as ZrH 2 , GeH, GeH 2 , and rare earth hydrogen compounds. The composition can be considered from 0.1 to 40 mol%, but if it is 30 mol% or more, the magnetization tends to decrease in any of the M components, and the coercive force tends to increase, making it a magnetic material for special applications. If it exceeds 40 mol%, this tendency is further strengthened and is not substantial for a permanent magnet. If less than 0.1 mol%, the addition effect is hardly observed.

本節のはじめに述べたように、本発明で得られる、例
えば、焼結磁石の微構造では強磁性粒子の粒界部と粒内
で明らかに異なる組成の相が存在する。特に高い磁気特
性を有する試料ではM成分が粒界部に多く、粒内では濃
度が低い。この微構造は磁石特性の発現、向上に非常に
有用である。
As described at the beginning of this section, in the microstructure of, for example, a sintered magnet obtained by the present invention, a phase having a distinctly different composition exists between a grain boundary portion of ferromagnetic particles and a grain. Particularly, in a sample having high magnetic properties, the M component is large in the grain boundary portion, and the concentration is low in the grain. This microstructure is very useful for developing and improving magnet properties.

従って、本発明の試料組成は、とくにM成分について
その濃度に低い部分が各強磁性粒子の中央部に、その濃
度の高い部分が強磁性粒子表面及び粒界部に多く存在す
る2相型の微構造の平均を意味する。
Therefore, the sample composition of the present invention has a two-phase type in which a low concentration part is particularly present in the central part of each ferromagnetic particle, and a high concentration part is present in the ferromagnetic particle surface and the grain boundary part. Mean microstructure average.

M成分の種類と2相分離型のバルク磁石の微構造につ
いて、更に詳しく述べる。
The type of the M component and the microstructure of the two-phase separated bulk magnet will be described in more detail.

前述のように、M成分として放射性元素、及びVIII族
の一部の金属元素を除き、非磁性でさえあれば、どの元
素及びそれらの無機化合物の添加しても、主として角形
比、保磁力向上に寄与する。しかしながら、添加M成分
の種類によって磁気特性に与える効果及びバルク磁石の
微構造は異なる。
As described above, except for the radioactive element as the M component and some metal elements of the group VIII, the addition of any element and their inorganic compounds as long as they are non-magnetic, mainly improves the squareness ratio and the coercive force. To contribute. However, the effect on the magnetic properties and the microstructure of the bulk magnet differ depending on the type of the added M component.

M成分としてZn、Ga、Sn、In等のような低融点元素Ml
を加えた場合、焼結時にMlの融点以上の温度で熱処理す
ることにより強磁性粒子の粒界部にMlが容易に拡散し、
磁気特性の高い2相分離型のバルク磁石を得ることがで
きる。
Low melting element Ml such as Zn, Ga, Sn, In etc. as M component
When added, Ml easily diffuses into the grain boundaries of ferromagnetic particles by heat treatment at a temperature equal to or higher than the melting point of Ml during sintering,
A two-phase-separated bulk magnet having high magnetic properties can be obtained.

さらに、Zn、Ga、Snなどのように鉄と多くの化合物を
形成する物質を中心に添加した場合とInのように鉄主体
の組成で安定な化合物を形成し難い物質を中心に添加し
た場合では添加の効果は異なる。しかし、いずれの場合
でも焼結等の処理条件の最適化により永久磁石材料と称
し得る特性を付与することができる。
Furthermore, a case where a substance that forms many compounds with iron, such as Zn, Ga, and Sn, is mainly added, and a case that a compound that is mainly iron and hardly forms a stable compound, such as In, is mainly added. Then the effect of the addition is different. However, in any case, characteristics that can be called a permanent magnet material can be imparted by optimizing processing conditions such as sintering.

In-Ga、Ga-Zn、Sn-Znなどの低融点元素同志の2種以
上の合金あるいは混合物を用いた場合、多くは融点が変
化するために、より低温で処理しても高い磁気特性を付
与できる場合がある。さらに、共晶点組成のLa-Cu合金
のような高融点金属同志の組み合わせでも融点が低下す
るため、Mlと同様に扱う事が可能な場合がある。また、
In-Znのように常温で相分離する多元系でもM成分とし
て添加可能であるが、添加量比による磁気特性変化は上
記多元系と異なり特異的な挙動を示す場合があるので、
焼結条件の最適化には注意を要する。
When two or more alloys or mixtures of low-melting elements such as In-Ga, Ga-Zn, and Sn-Zn are used, the melting point changes in many cases, so high magnetic properties are obtained even at lower temperatures. In some cases, it can be granted. Further, even in the case of a combination of high-melting-point metals such as a La-Cu alloy having a eutectic point composition, the melting point is reduced, so that it may be possible to treat the same as Ml. Also,
Although it can be added as an M component even in a multi-component system such as In-Zn that separates phases at room temperature, the change in magnetic properties due to the addition ratio may be different from the above-mentioned multi-component system and may exhibit a specific behavior.
Care must be taken in optimizing the sintering conditions.

M成分として高融点元素Mhおよび無機化合物Miを添加
する場合は、強磁性体粒子の粒界に微分散させることに
より2相分離型の微構造を有するバルク磁石を得ること
ができ、主として角形比、保磁力向上に寄与する。とく
にMhおよびMiの添加系において、Ge、Al、Zr、Ti、Si、
Hf、MgO、Al2O3、AlF3、ZnF2、SiC、TiC、AlN、Si3N4
Zn3N2などをM成分として用いると、高い角形比ならび
に保磁力を付与することができる。微粉砕又は微粉調整
可能で安定なSi、MgO、Al2O3、Si3N4、SiC、TiCなどのM
hならびにMi成分は強磁性体粒子の粒界に微分散し易い
ため特に有効で、高い磁気特性を与える。また、Cu、Zr
H2などのMhならびにMiは高い残留磁束密度を付与せしめ
る。
When the high-melting element Mh and the inorganic compound Mi are added as the M component, a bulk magnet having a two-phase separation type microstructure can be obtained by finely dispersing the particles at the grain boundaries of the ferromagnetic particles. Contributes to the improvement of coercive force. Especially in the addition system of Mh and Mi, Ge, Al, Zr, Ti, Si,
Hf, MgO, Al 2 O 3 , AlF 3 , ZnF 2 , SiC, TiC, AlN, Si 3 N 4 ,
When Zn 3 N 2 or the like is used as the M component, a high squareness ratio and a high coercive force can be imparted. Pulverized or fine powder adjustable and stable M such as Si, MgO, Al 2 O 3 , Si 3 N 4 , SiC, TiC
The h and Mi components are particularly effective because they tend to be finely dispersed at the grain boundaries of ferromagnetic particles, and provide high magnetic properties. Also, Cu, Zr
Mh and Mi such as H 2 is allowed to impart a high residual magnetic flux density.

これら、高融点元素Mh、無機化合物Miは2種以上の組
み合わせも可能である。
These high melting element Mh and inorganic compound Mi can be used in combination of two or more.

さらに、低融点元素Mlに高融点元素Mhまたは、および
無機化合物Miの組み合わせは特に有効である。Zr-Zn、C
u-Zn、Si-Zn、Ge-Zn、Hf-InなどのMl-Mh系、MgO-Zn、Al
F3‐Zn、TiC-Zn、Si3N4‐ZnなどのMi-Ml系、さらにMl-M
h-Mi系などの多元素系をM成分として用いると、強磁性
粒子の粒界部にM成分の分散性が良好な2相分離型の微
構造を有する高磁気特性の焼結磁石が得られる。
Further, a combination of the low melting element Ml with the high melting element Mh or the inorganic compound Mi is particularly effective. Zr-Zn, C
Ml-Mh based materials such as u-Zn, Si-Zn, Ge-Zn, Hf-In, MgO-Zn, Al
F 3 -Zn, TiC-Zn, Mi-Ml systems such as Si 3 N 4 -Zn, further Ml-M
When a multi-element system such as an h-Mi system is used as the M component, a sintered magnet having high magnetic properties and a two-phase separation type microstructure with good dispersibility of the M component at the grain boundaries of ferromagnetic particles can be obtained. Can be

高融点元素Mhにおいては、Mlと同様にAl、Zr、Si、Ti
などのような鉄と多くの化合物または固溶体を形成する
物質を中心に加えた場合と、Cuなどのように鉄主体の組
成で安定な化合物を形成し難い物質を中心に加えた場合
で添加の効果は異なる。しかし、いずれの場合でも焼結
等の処理条件の最適化により永久磁石と称し得る特性を
付与することができる。
In the high melting point element Mh, Al, Zr, Si, Ti
For example, when a substance that forms many compounds or a solid solution with iron, such as, for example, is mainly added, and when a substance that is difficult to form a stable compound with a composition mainly composed of iron, such as Cu, is mainly added, The effect is different. However, in any case, characteristics that can be called a permanent magnet can be imparted by optimizing processing conditions such as sintering.

〈製造方法〉 次に本発明の磁性材料の製造方法について説明をする
が、特にこれは限定はしない。
<Production Method> Next, a method for producing the magnetic material of the present invention will be described, but this is not particularly limited.

この製造方法のフローチャートを第1図に示す。 FIG. 1 shows a flowchart of this manufacturing method.

すなわち、 (1)母合金の合成ではサマリウム−鉄系合金を合成す
るが、この段階でM成分を添加することも可能である。
この場合、窒化粉砕後の磁性粉末の磁束密度が低下する
傾向にあるが、主に角形比と保磁力が向上する。(2)
粗粉砕、(3)窒化、水素化で本発明の磁気材料粉体を
作製し得る。ただし、ここまでの段階でM成分を含有せ
ず、次の(4)微粉砕ではじめて添加する方法もあり、
この方法においては、分解性、昇華性の高いM成分を添
加することが可能となり、特に有効である。またこの
(4)の工程で、酸素量を制御することができ、それに
より磁性粉体の特性を変化させ得る。磁場配向、成形を
経て、(5)焼結ではじめて焼結磁石が作製できる。さ
らに、着磁を行い、永久磁石のプロセスを完結する。ま
た(4)工程の後得られた磁性粉を用いてボンド磁石を
製造することもできる。
That is, (1) In the synthesis of the master alloy, a samarium-iron-based alloy is synthesized, but at this stage, the M component may be added.
In this case, although the magnetic flux density of the magnetic powder after nitriding and pulverization tends to decrease, mainly the squareness ratio and the coercive force are improved. (2)
The magnetic material powder of the present invention can be produced by coarse pulverization, (3) nitriding, and hydrogenation. However, there is also a method in which the M component is not contained at the stage so far and is added only in the next (4) pulverization,
In this method, it is possible to add an M component having high decomposability and sublimability, which is particularly effective. Further, in the step (4), the amount of oxygen can be controlled, thereby changing the characteristics of the magnetic powder. After the magnetic field orientation and molding, a sintered magnet can be produced only by (5) sintering. Further, magnetization is performed to complete the permanent magnet process. A bonded magnet can also be manufactured using the magnetic powder obtained after the step (4).

以下に各プロセスについて詳細に述べる。 The following describes each process in detail.

(1)母合金の合成 原料合金は高周波炉、アーク溶解炉によっても、又液
体超急冷法によっても作製できる。その組成はSmが5〜
25モル%、Feが75〜95モル%の範囲にあることが好まし
い。Smが5モル%未満では合金中にα‐Feの相が多く存
在し、高い保磁力が得られない。また、Smが25モル%を
越えると高い残留磁束密度が得られない。M成分もこの
段階で同時に合金中に添加することが可能である。
(1) Synthesis of mother alloy The raw material alloy can be produced by a high-frequency furnace or an arc melting furnace, or by a liquid quenching method. Its composition is Sm 5-5
It is preferred that 25 mol% and Fe are in the range of 75 to 95 mol%. If Sm is less than 5 mol%, a large amount of α-Fe phase is present in the alloy, and a high coercive force cannot be obtained. If Sm exceeds 25 mol%, a high residual magnetic flux density cannot be obtained. The M component can also be added to the alloy at this stage at the same time.

高周波炉及びアーク溶解炉を用いた場合、溶融状態か
ら合金が凝固する際にFeが析出し易く、このことは磁気
特性、特に保磁力の低下をひきおこす。そこでFe単体で
の相を消失させ、合金の組成の均一化および結晶性の向
上を目的として焼鈍を行うことが有効である。この焼鈍
は800℃〜1300℃で行う場合に効果が顕著である。この
方法で作製した合金は液体超急冷法などと比較して結晶
性が良好であり、高い残留磁束密度を有している。
When a high-frequency furnace and an arc melting furnace are used, Fe tends to precipitate when the alloy is solidified from a molten state, which causes a decrease in magnetic properties, particularly coercive force. Therefore, it is effective to perform annealing for the purpose of eliminating the phase of Fe alone and making the composition of the alloy uniform and improving the crystallinity. The effect is remarkable when this annealing is performed at 800 ° C. to 1300 ° C. The alloy produced by this method has good crystallinity and a high residual magnetic flux density as compared with a liquid quenching method or the like.

液体超急冷法、ロール回転法などの合金作製法でも、
目的組成の合金を作製できる。しかも、これらの方法に
より作製した合金の結晶粒は微細であり、条件によって
はサブミクロンの粒子も調製できる。ただし、冷却速度
が大きい場合には合金の非晶質化が起こり、窒化、水素
化後にも残留磁束密度、保磁力が他の方法ほど上昇しな
い。この場合にも焼鈍等の後処理が必要である。
Even with alloy manufacturing methods such as liquid quenching method and roll rotation method,
An alloy having a desired composition can be produced. In addition, the crystal grains of the alloy produced by these methods are fine, and submicron particles can be prepared depending on the conditions. However, when the cooling rate is high, the alloy becomes amorphous, and the residual magnetic flux density and the coercive force do not increase as much as other methods even after nitriding or hydrogenating. Also in this case, post-treatment such as annealing is necessary.

母合金はいずれの方法で合金にした場合でも300〜500
ppm程度の酸素を含有している。この段階におけるこの
程度の酸素含有量は工程中で行う通常の操作で導入され
るものである。
The master alloy is 300-500 regardless of the method used to form the alloy.
Contains about ppm of oxygen. This level of oxygen content at this stage is what is introduced in the normal operation performed in the process.

(2)粗粉砕 この段階の粉砕はジョークラッシャー、スタンプミル
のような粗粉のみを調製するような方法でもよいし、ボ
ールミル、ジェトミルによっても条件次第で可能であ
る。しかし、この粉砕は次の段階における窒化、水素化
を均一に行わしめるためのものであり、その条件とあわ
せて十分な反応性を有し、かつ酸化が顕著に進行しない
粉体状態に調製することが重要である。
(2) Coarse pulverization The pulverization at this stage may be a method of preparing only coarse powder such as a jaw crusher or a stamp mill, or a ball mill or a jet mill depending on the conditions. However, this pulverization is for uniformly performing nitriding and hydrogenation in the next stage, and has sufficient reactivity in accordance with the conditions, and is prepared in a powder state in which oxidation does not remarkably progress. This is very important.

M成分の混合についてはこの粉砕時に行うことも可能
である。
The mixing of the M component can be performed at the time of this pulverization.

この粗粉砕後の材料が含有する酸素量も母合金と大差
なく1000ppm以下である。
The amount of oxygen contained in the material after the coarse pulverization is 1000 ppm or less without much difference from the mother alloy.

(3)窒化、水素化 粉砕された原料母合金中に窒素及び水素を化合もしく
は含浸させる方法としては原料合金粉末をアンモニアガ
ス或いはアンモニアガスを含む還元性の混合ガス中で加
圧あるいは加熱処理する方法が有効である。合金中に含
まれる窒素及び水素量はアンモニアガス含有混合ガスの
混合成分比、及び加熱温度、加圧力、処理時間によって
制御し得る。
(3) Nitriding and hydrogenation As a method for compounding or impregnating nitrogen and hydrogen in the pulverized raw material mother alloy, the raw material alloy powder is pressurized or heated in an ammonia gas or a reducing mixed gas containing an ammonia gas. The method is effective. The amounts of nitrogen and hydrogen contained in the alloy can be controlled by the mixed component ratio of the mixed gas containing ammonia gas, the heating temperature, the pressure, and the processing time.

混合ガスとしては水素、ヘリウム、ネオン、窒素及び
アルゴンのいずれか、もしくは2種以上とアンモニアガ
スを混合したガスが有効である。混合比は処理条件との
関連で変化させ得るが、アンモニアガス分圧としては、
とくに0.02〜0.75atmが有効であり、処理温度は200〜65
0℃の範囲特に200〜500℃が好ましい。低温では侵入速
度が小さく、650℃を越える高温では鉄の窒化物が生成
し、磁気特性は低下する。加圧処理では10atm程度の加
圧でも窒素、水素の含有量を変化させ得る。
As the mixed gas, any one of hydrogen, helium, neon, nitrogen, and argon, or a mixture of two or more of them and ammonia gas is effective. The mixing ratio can be changed in relation to the processing conditions, but as the ammonia gas partial pressure,
Especially 0.02-0.75atm is effective, processing temperature is 200-65
A range of 0 ° C, particularly 200 to 500 ° C, is preferred. At low temperatures, the penetration rate is low, and at temperatures above 650 ° C, iron nitrides are formed, and the magnetic properties deteriorate. In the pressure treatment, the contents of nitrogen and hydrogen can be changed even with a pressure of about 10 atm.

アンモニアガス以外のガスを窒化、水素化雰囲気の主
成分とすると、反応効率は著しく低下する。しかし、た
とえば水素ガスと窒素ガスの混合ガスを用い長時間反応
を行うと窒素及び水素の導入は可能である。
When a gas other than ammonia gas is used as a main component in the nitriding or hydrogenating atmosphere, the reaction efficiency is significantly reduced. However, if a long-term reaction is performed using a mixed gas of hydrogen gas and nitrogen gas, nitrogen and hydrogen can be introduced.

窒化、水素化工程は低酸素分圧中で行われるが、工程
終了時の酸素量は多少増大し1000ppm前後となる。
The nitridation and hydrogenation steps are performed in a low oxygen partial pressure, but the amount of oxygen at the end of the steps is slightly increased to about 1000 ppm.

(4)微粉砕 Sm-Fe-N−H−O−M系磁性材料においてMの添加が
最も顕著な効果を示すのは、窒化、水素化に続く、この
段階でM成分を添加混合し、焼結する方法である。
(4) Finely pulverized In the Sm-Fe-N-HOM-based magnetic material, the most remarkable effect of the addition of M is that the M component is added and mixed at this stage following nitriding and hydrogenation. This is a method of sintering.

添加量は0.1モル%程度の少量から40モル%までそれ
ぞれ量に応じた添加効果が見られる。とくに2モル%〜
20モル%の範囲はM成分が磁気特性とくに焼結体の(B
H)max値を向上させるのに有効である。0.1〜2モル%
の範囲では残留磁束密度の低下が小さく保磁力は原料粉
体を少し上まわる程度である。
The amount of addition can be seen from the small amount of about 0.1 mol% to 40 mol%, and the addition effect according to each amount can be seen. Especially 2 mol% ~
In the range of 20 mol%, the M component has magnetic properties, especially (B
H) Effective for improving the max value. 0.1 to 2 mol%
In the range, the decrease in the residual magnetic flux density is small and the coercive force is slightly higher than that of the raw material powder.

一方、20モル%〜30モル%程度では保磁力、角形性に
比較的優れた磁石が得られるが残留磁束密度は低くな
る。30〜40モル%では保磁力が極めて大きくなるが磁化
は小さく、特殊な磁石材料である。40モル%を越えると
実用的ではない。
On the other hand, at about 20 mol% to 30 mol%, a magnet having relatively excellent coercive force and squareness can be obtained, but the residual magnetic flux density becomes low. At 30 to 40 mol%, the coercive force becomes extremely large, but the magnetization is small, and it is a special magnet material. If it exceeds 40 mol%, it is not practical.

微粉砕方法としてはボールミルで混合、粉砕すること
が最も有効であるが、カッターミル、ジェットミルなど
の方法では混合、粉砕することができる。この際、混合
粉砕条件は最終的な磁石物性に顕著な影響を与える。す
なわち、この段階で磁性粉体はM成分と混合すると同時
に粒子径、形態も変化するため、成分Mが拡散した後の
微構造はこの段階の処理条件の影響を受けるためであ
る。
Mixing and pulverizing with a ball mill is the most effective method for fine pulverization, but mixing and pulverization can be performed with a method such as a cutter mill or a jet mill. At this time, the mixing and pulverizing conditions significantly affect the final magnet properties. That is, at this stage, the magnetic powder mixes with the M component, and at the same time, the particle diameter and morphology change. Therefore, the microstructure after the component M is diffused is affected by the processing conditions at this stage.

微粉砕後の平均粒径は数μm〜10μm程度が望まし
く、サブミクロンに達すると、焼結時にM成分との反応
があまりに容易に起こったりして、焼結後の磁気特性は
あまり向上しない。また、サブミクロン粒子では酸化も
容易におこり、取扱いも難しくなる。
The average particle size after pulverization is desirably about several μm to 10 μm. When the average particle diameter reaches submicron, the reaction with the M component occurs too easily at the time of sintering, and the magnetic properties after sintering do not improve much. In addition, submicron particles are easily oxidized and difficult to handle.

一方、粒子径が数10μmになると、各粒子内に多数の
磁区が集合しているため、M成分の添加効果は小さくな
り保磁力が焼結によって顕著には向上しなくなる。
On the other hand, when the particle diameter is several tens of μm, since a large number of magnetic domains are aggregated in each particle, the effect of adding the M component is small, and the coercive force is not significantly improved by sintering.

なお、次の焼結プロセスを行わず、単なる熱処理のみ
を行った場合でも、磁気特性は大きく変化させることが
できる。従って例えばボンド磁石等への応用はこの段階
後の熱処理を経過した粉体を用いて行うことができる。
It should be noted that the magnetic properties can be greatly changed even when only a simple heat treatment is performed without performing the next sintering process. Therefore, for example, application to a bonded magnet or the like can be performed using powder that has undergone heat treatment after this stage.

この微粉砕工程においてグローブボックス中における
操作、空気中における操作等雰囲気中の酸素分圧を制御
することで物質が含む酸素量は変化する。また粉砕に用
いる溶媒、例えばエタノール、水、他の有機溶媒中の水
分及び酸素量によって、物質の含有する酸素量及びその
存在状態は変化する。以上例示した方法によれば、10μ
m以下に粉砕した磁性粉体の酸素量を3500ppm以上のレ
ベルで制御できる。
In this pulverizing step, the amount of oxygen contained in the substance changes by controlling the oxygen partial pressure in the atmosphere such as operation in a glove box and operation in air. The amount of oxygen contained in the substance and the state of its existence change depending on the amount of water and oxygen in the solvent used for pulverization, for example, ethanol, water, and other organic solvents. According to the method exemplified above, 10 μ
m can be controlled at a level of 3500 ppm or more.

(5)焼結 焼結は他の焼結磁石と同様、材料の充填密度を上げ、
残留磁束密度を高めたり、材料の機械的強度を上げる目
的で行う。その方法は一般の磁気異方性磁石と同様に、
外部磁場中で磁性粉を磁場配向させプレス体に成型した
後、熱処理すればよい。
(5) Sintering Sintering, like other sintered magnets, increases the packing density of the material,
This is performed for the purpose of increasing the residual magnetic flux density and increasing the mechanical strength of the material. The method is similar to a general magnetic anisotropic magnet,
The heat treatment may be performed after the magnetic powder is magnetically oriented in an external magnetic field and formed into a pressed body.

具体的な焼結法としては通常の常圧焼結、ホットプレ
ス、HIPなどが挙げられるが、ここでは磁気特性を向上
させ、かつ、HIP法などの大型の装置を必要としないホ
ットプレス法とくに雰囲気ホットプレスについて述べ
る。
Specific examples of the sintering method include ordinary normal pressure sintering, hot pressing, and HIP.However, in this case, a hot pressing method that improves magnetic properties and does not require a large device such as the HIP method is used. Atmospheric hot press is described.

本磁性材料は窒素、水素、酸素を含有しており、その
含有量及び存在形態で磁気特性が変化する。従ってその
含有量を制御することが重要である。
The magnetic material contains nitrogen, hydrogen, and oxygen, and the magnetic properties change depending on the content and the form of the content. Therefore, it is important to control its content.

先に述べたように、とくにNH3‐H2混合ガスは構造中
のN、H量を制御するために有効である。ただし、550
℃以下の温度領域で焼結を行う場合は、上記の雰囲気ガ
スに加えて、アルゴン、ヘリウムなどの不活性ガス雰囲
気中、真空中で焼鈍しても構造中のN、H量を制御する
ことが可能である。また、650℃以上の温度では雰囲気
によらず分解が進行し、α−Fe相を析出し、N、H量も
当初量から相当量変化する。従って、650℃以下好まし
くは500℃以下で焼結することが望ましく、かつ、ホッ
トプレスの圧力についてはダイス材質にもよるが10ton/
cm2前後で十分である。
As mentioned earlier, in particular NH 3 -H 2 mixed gas is effective to control the N, H of the structure. However, 550
When sintering in the temperature range of ℃ or lower, in addition to the above-mentioned atmosphere gas, the amount of N and H in the structure should be controlled even if annealing is performed in vacuum in an inert gas atmosphere such as argon and helium. Is possible. Further, at a temperature of 650 ° C. or more, decomposition proceeds regardless of the atmosphere, an α-Fe phase is precipitated, and the amounts of N and H change considerably from the initial amounts. Therefore, it is desirable to sinter at 650 ° C. or less, preferably 500 ° C. or less, and the pressure of the hot press is 10 ton /
Around cm 2 is enough.

条件の詳細はM成分として何を用いるかに大きく依存
する。例えば、420℃付近に融点を有するZnでは、この
温度前後から、Znの粒界への拡散は顕著になるが、この
拡散のみでは保磁力、角形比は大きく向上しない。ただ
し、30モル%以上のように多量に添加した場合は保磁力
は増大するが残留磁束密度は低下し、最終的な(BH)ma
x値は上昇しない。
The details of the condition largely depend on what is used as the M component. For example, in Zn having a melting point around 420 ° C., the diffusion of Zn to the grain boundary becomes remarkable from around this temperature, but the coercive force and the squareness ratio are not significantly improved by this diffusion alone. However, when added in a large amount such as 30 mol% or more, the coercive force increases but the residual magnetic flux density decreases, and the final (BH) ma
The x value does not increase.

ところが温度をさらに上昇させると粒子境界部分に新
たな反応相も生成し、その生成量の最適化により(BH)
max値は著しく向上する。
However, when the temperature was further increased, a new reaction phase was also formed at the particle boundary, and optimization of the amount produced resulted in (BH)
The max value is significantly improved.

焼結磁石およびボンド磁石の着磁は、通常用いられる
方法、例えば静磁場を発生する電磁石、パルス磁場を発
生するコンデンサー着磁器などによって行われる。十分
着磁を行わしめるための、磁場強度は、好ましくは15kO
e以上、さらに好ましくは30kOe以上である。
Magnetization of the sintered magnet and the bond magnet is performed by a commonly used method, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulsed magnetic field, or the like. The magnetic field strength for sufficiently magnetizing is preferably 15 kO
e or more, more preferably 30 kOe or more.

以上に例示した方法により、本発明の永久磁石材料を
作製することができる。
According to the method exemplified above, the permanent magnet material of the present invention can be manufactured.

ところで、材料の結晶性の完全さと磁気特性には密接
な関わりがあるといえる。本発明の材料の場合結晶性が
完全な程、すなわち、原子配列の乱れが少ない、あるい
は結晶中に欠陥が少ない程、残留磁束密度および磁気異
方性が良好である。そこで、本材料の結晶性を上げれ
ば、磁気特性を更に高めることができる。結晶性を上げ
るための具体的手段としては焼鈍がよい。焼鈍は第1図
中に示すように本材料製造工程中のどこで行っても効果
がある。
By the way, it can be said that perfection of the crystallinity of the material and magnetic properties are closely related. In the case of the material of the present invention, the residual magnetic flux density and the magnetic anisotropy are better as the crystallinity is perfect, that is, the disorder in the atomic arrangement is smaller or the number of defects in the crystal is smaller. Therefore, if the crystallinity of the material is increased, the magnetic properties can be further improved. Annealing is preferred as a specific means for increasing crystallinity. Annealing is effective no matter where in the material manufacturing process as shown in FIG.

焼鈍の温度および雰囲気は種々選択することができ
る。本発明のサマリウム−鉄−窒素−水素−酸素−M成
分系材料の焼鈍温度は、100〜650℃で行うことが好まし
い。100℃以下では焼鈍の効果が現れにくく、650℃以上
では材料中の窒素および水素の揮散が起りやすくなる。
焼鈍雰囲気は非酸化性雰囲気なら何でもよいが、特に水
素、アルゴン、窒素、およびアンモニアガスを含む雰囲
気ガス中または真空中で効果が大きい。また、300℃以
下の低温で焼鈍を行う場合、大気中などの酸化性雰囲気
でも効果がある。
The temperature and atmosphere of annealing can be variously selected. The annealing temperature of the samarium-iron-nitrogen-hydrogen-oxygen-M component material of the present invention is preferably 100 to 650 ° C. If the temperature is lower than 100 ° C., the effect of annealing is hardly exhibited, and if the temperature is higher than 650 ° C., volatilization of nitrogen and hydrogen in the material tends to occur.
The annealing atmosphere may be any non-oxidizing atmosphere, and is particularly effective in an atmosphere gas containing hydrogen, argon, nitrogen, and ammonia gas or in a vacuum. Further, when annealing is performed at a low temperature of 300 ° C. or less, the effect is obtained even in an oxidizing atmosphere such as the air.

原料合金の焼鈍、すなわち本発明において、窒素およ
び水素を導入する前に焼鈍を行う場合、焼鈍温度は500
〜1300℃で行うのが好ましい。このときの雰囲気はアル
ゴン等の不活性雰囲気や水素中または真空中で行うこと
が好ましい。
Annealing of the raw material alloy, that is, in the present invention, when performing annealing before introducing nitrogen and hydrogen, the annealing temperature is 500
It is preferably carried out at 1300 ° C. The atmosphere at this time is preferably performed in an inert atmosphere such as argon, in hydrogen, or in a vacuum.

焼鈍以外に結晶性を上げる方法としては、Sm-Fe系原
料合金に水素を吸蔵させた後、得られたSm-Fe-H合金の
微粉砕を行い、そして、Sm-Fe-Hに窒素・水素・酸素処
理を施す方法やSm-Fe系原料合金への水素吸蔵−脱着を
繰り返すことにより合金が粉化することを利用して微粉
砕した後に、窒素・水素・酸素処理を施す方法が挙げら
れる。
As a method of increasing the crystallinity other than annealing, after absorbing hydrogen in the Sm-Fe-based raw material alloy, finely pulverizing the obtained Sm-Fe-H alloy, and then adding nitrogen and Sm-Fe-H to the Sm-Fe-H. A method of performing a hydrogen / oxygen treatment or a method of performing a nitrogen / hydrogen / oxygen treatment after finely pulverizing by utilizing the fact that the alloy is powdered by repeating hydrogen absorption / desorption to the Sm-Fe-based raw material alloy is mentioned. Can be

前者において、水素を吸蔵せしめる方法としては、比
較的低温において、H2ガスまたはH2ガスを含む還元性混
合ガス(例えば、H2とN2と混合ガス、H2とArの混合ガス
あるいはH2とHeの混合ガスなど)の加圧下で行う方法
や、加熱した水素ガス流中または水素ガスを含む還元性
混合ガス流中において行うことができる。
In the former, as a method of absorbing hydrogen, at a relatively low temperature, a reducing gas mixture containing H 2 gas or H 2 gas (for example, a mixed gas of H 2 and N 2 , a mixed gas of H 2 and Ar, 2 and He), or in a heated hydrogen gas stream or a reducing gas mixture containing hydrogen gas.

後者において、水素の吸蔵−脱着を繰り返す方法とし
て例えばSm-Fe系合金をH2雰囲気中におき、温度の昇降
を繰り返すことで水素の吸蔵−脱着を繰り返すことがで
きる。
In the latter method, as a method of repeating the occlusion / desorption of hydrogen, for example, a Sm—Fe-based alloy is placed in an H 2 atmosphere, and the temperature is repeatedly raised and lowered, whereby the occlusion / desorption of hydrogen can be repeated.

上記方法により良好な結晶性を有する微粉体を得るこ
とができる理由は明らかではないが、その一つとして水
素が結晶格子間に侵入することにより、粉砕に必要なエ
ネルギーが小さくてすみ、その結果、結晶の受ける損傷
も小さくなるためではないかと考えられる。また、水素
吸蔵−脱着の繰り返しによる粉砕の場合は、機械的な衝
撃を結晶が受けないので、結晶性が乱されないものと考
えられる。
It is not clear why the fine powder having good crystallinity can be obtained by the above method, but one of the reasons is that hydrogen penetrates between crystal lattices, so that the energy required for pulverization can be reduced, and as a result, It is considered that the damage to the crystal is reduced. In the case of pulverization by repetition of hydrogen absorption and desorption, it is considered that the crystal is not disturbed because the crystal is not subjected to mechanical shock.

[実施例] 以下、実施例により本発明をさらに詳細に説明するが
本発明はこれらの例によってなんら限定されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

実施例1 純度99.9%のSmおよび純度99.9%のFeを用いてアルゴ
ン雰囲気中高周波炉で溶融混合し、次いで溶湯を鋳型に
流し込んで冷却し、さらに酸素分圧約10-5atmのアルゴ
ン雰囲気中において1250℃3時間焼鈍することにより、
モル百分率がSm 10.5%およびFe 89.5%からなるSm2Fe
17組成の結晶構造を有する合金を調製した。
Example 1 Melting and mixing were performed in a high-frequency furnace in an argon atmosphere using Sm having a purity of 99.9% and Fe having a purity of 99.9%. Then, the molten metal was poured into a mold and cooled, and further in an argon atmosphere having an oxygen partial pressure of about 10 -5 atm. By annealing at 1250 ° C for 3 hours,
Sm 2 Fe with mole percentage of 10.5% Sm and 89.5% Fe
Alloys having a crystal structure of 17 compositions were prepared.

この合金を窒素雰囲気中、ジョークラッシャーで粉砕
した後、さらにコーヒーミルによって平均粒径100μm
にまで粗粉砕した。
After crushing this alloy in a nitrogen atmosphere with a jaw crusher, the average particle size is furthermore 100 μm by a coffee mill.
To coarsely pulverized.

得られた合金粉末を管状炉中に入れ、450℃におい
て、アンモニアガス0.4atmおよび水素ガス0.6atmの混合
ガス流を該管状炉中に流して、45分間該合金粉末中に窒
素と水素を侵入せしめた。
The obtained alloy powder is placed in a tubular furnace, and at 450 ° C., a mixed gas flow of ammonia gas 0.4 atm and hydrogen gas 0.6 atm is passed through the tubular furnace, and nitrogen and hydrogen enter the alloy powder for 45 minutes. I was sorry.

続いて上記雰囲気中で室温まで徐冷することによりSm
8.5Fe72.1N17.0H2.1O0.3組成の合金粉末を得た。
Subsequently, Sm was gradually cooled to room temperature in the above atmosphere.
An alloy powder having a composition of 8.5 Fe 72.1 N 17.0 H 2.1 O 0.3 was obtained.

この結晶構造は主としてTh2Zn17型の菱面体構造であ
った。
This crystal structure was mainly a rhombohedral structure of Th 2 Zn 17 type.

この合金粉末にZnを10モル%添加し、振動ボールミル
を1時間施し平均粒径7μmの微粉体を得た。
10 mol% of Zn was added to the alloy powder, and a vibration ball mill was applied for 1 hour to obtain a fine powder having an average particle diameter of 7 μm.

この粉体を1軸磁場プレスを用いて1ton/cm2、15kOe
の条件で5×10×2mmの板状に磁場成形し、これをアン
モニアガス0.2atmおよび水素ガス0.8atmの混合ガス流
中、470℃で2時間焼結した。ただし、焼結時12ton/cm2
の圧力を加え続けた。
This powder is 1ton / cm 2 , 15kOe using a uniaxial magnetic field press.
The magnetic field was formed into a plate of 5 × 10 × 2 mm under the conditions described above, and this was sintered at 470 ° C. for 2 hours in a mixed gas flow of ammonia gas 0.2 atm and hydrogen gas 0.8 atm. However, at the time of sintering 12 ton / cm 2
Pressure was continued to be applied.

このようにして得た板状焼結体を約60kOeのパルス磁
場で着磁し、Sm7.8Fe65.4N15.3H0.8O0.7Zn10.0組成の焼
結磁石を得た。
The plate-like sintered body thus obtained was magnetized with a pulse magnetic field of about 60 kOe to obtain a sintered magnet having a composition of Sm 7.8 Fe 65.4 N 15.3 H 0.8 O 0.7 Zn 10.0 .

この結晶構造は、主としてTh2Zn17型の菱面体晶構造
であった。
This crystal structure was mainly a rhombohedral structure of Th 2 Zn 17 type.

この焼結磁石の残留磁束密度(Br)は9.3kG、保磁力
(iHc)は7.0kOe、(BH)maxは15.5MGOe、角形比(Br/4
πIs)は0.915であった。
The residual magnetic flux density (Br) of this sintered magnet is 9.3 kG, the coercive force (iHc) is 7.0 kOe, (BH) max is 15.5 MGOe, and the squareness ratio (Br / 4
πIs) was 0.915.

実施例2 純度99.9%のSm、純度99.9%のCoおよび純度99.9%の
Feを用いて、モル百分率がSm 10.5%、Co 9.0%およびF
e 80.5%からなる合金を酸素分圧約10-5atmのアルゴン
雰囲気下水冷銅ボート中でアーク溶融することにより調
製した。得られた合金は酸素分圧約10-5atmのアルゴン
雰囲気中において900℃で36時間焼鈍した。得られた合
金を窒素雰囲気中でジョークラッシャーで粗粉砕した
後、さらにコーヒーミルによって平均粒径100μmにま
で粉砕した。
Example 2 99.9% pure Sm, 99.9% pure Co and 99.9% pure
Using Fe, the mole percentages are Sm 10.5%, Co 9.0% and F
e An alloy consisting of 80.5% was prepared by arc melting in a water-cooled copper boat under an argon atmosphere with an oxygen partial pressure of about 10 -5 atm. The obtained alloy was annealed at 900 ° C. for 36 hours in an argon atmosphere having an oxygen partial pressure of about 10 −5 atm. The obtained alloy was roughly pulverized with a jaw crusher in a nitrogen atmosphere, and then further pulverized by a coffee mill to an average particle diameter of 100 μm.

得られた粉末を管状炉中においてアンモニアガスの分
圧が0.67atmおよび水素ガスの分圧0.33atmの混合ガス流
を流して反応温度470℃、反応時間60分間の条件で窒素
と水素を吸収させた。続いて、上記雰囲気中で室温まで
徐冷することによりSm8.3Fe63.1Co7.1N17.8H3.4O0.3
る組成の粉末を得た。
The obtained powder is allowed to absorb nitrogen and hydrogen at a reaction temperature of 470 ° C and a reaction time of 60 minutes by flowing a mixed gas flow having a partial pressure of ammonia gas of 0.67 atm and a partial pressure of hydrogen gas of 0.33 atm in a tubular furnace. Was. Subsequently, a powder having a composition of Sm 8.3 Fe 63.1 Co 7.1 N 17.8 H 3.4 O 0.3 was obtained by gradually cooling to room temperature in the above atmosphere.

この合金粉末にZnを10モル%添加し、振動ボールミル
を2時間施し平均粒径4.6μmの微粉体を得た。
10 mol% of Zn was added to this alloy powder, and a vibration ball mill was applied for 2 hours to obtain a fine powder having an average particle diameter of 4.6 μm.

この粉体を実施例1と同様にして磁場成形し、次いで
焼結を行い、着磁してSm7.6Fe57.9Co6.5N16.3H1.1O0.6Z
n10.0組成の焼結磁石を得た。
This powder was magnetically molded in the same manner as in Example 1, then sintered, magnetized, and Sm 7.6 Fe 57.9 Co 6.5 N 16.3 H 1.1 O 0.6 Z
A sintered magnet having a composition of n 10.0 was obtained.

この焼結磁石の残留磁束密度(Br)は9.9kG、保磁力
(iHc)は5.8kOe、(BH)maxは13.5MGOe、角形比(Br/4
πIs)は0.908であった。
The residual magnetic flux density (Br) of this sintered magnet is 9.9 kG, coercive force (iHc) is 5.8 kOe, (BH) max is 13.5 MGOe, squareness ratio (Br / 4
πIs) was 0.908.

実施例3〜10及び比較例1 実施例1で得たSm8.5Fe72.1N17.0H2.1O0.3磁性粉体に
第1表に示す低融点添加剤Ml(融点500℃以下)を10モ
ル%添加混合し、振動ボールミルで1時間粉砕した。こ
の微粉体を実施例1と同様に1軸磁場プレスで1ton/c
m2、15kOeの条件で10×5×2mmの板状に成形した。これ
を470℃、10ton/cm2でアンモニアガス0.2atmおよび水素
ガス0.8atmの混合ガス雰囲気中で、2時間ホットプレス
し、焼結磁石を得た。これらの磁石の残留磁束密度[Br
(kG)]、保磁力[iHc(kOe)]、(BH)max(MGO
e)、角形比(Br/4πIs)を第1表に示す。ただしOの
モル百分率約1mol%である。
Examples 3 to 10 and Comparative Example 1 To the Sm 8.5 Fe 72.1 N 17.0 H 2.1 O 0.3 magnetic powder obtained in Example 1, 10 mol% of a low melting point additive Ml (melting point of 500 ° C. or less) shown in Table 1 was added. The mixture was mixed and pulverized in a vibration ball mill for 1 hour. This fine powder was subjected to 1 ton / c by a uniaxial magnetic field press as in Example 1.
It was formed into a 10 × 5 × 2 mm plate under the conditions of m 2 and 15 kOe. This was hot-pressed at 470 ° C. and 10 ton / cm 2 in a mixed gas atmosphere of ammonia gas 0.2 atm and hydrogen gas 0.8 atm for 2 hours to obtain a sintered magnet. The residual magnetic flux density of these magnets [Br
(KG)], coercive force [iHc (kOe)], (BH) max (MGO
e) and the squareness ratio (Br / 4πIs) are shown in Table 1. However, the molar percentage of O is about 1 mol%.

実施例11〜20および比較例2 実施例1で得たSm8.5Fe72.1N17.0H2.1O0.3磁性粉体に
第2表に示す高融点添加剤Mhあるいは無機化合物Miを第
2表に示す量だけ添加混合し、振動ボールミルで約1時
間粉砕した。この微粉体を実施例3〜10と同様にして磁
場成形し、次いで焼結し、着磁して焼結磁石を得た。
Examples 11 to 20 and Comparative Example 2 The Sm 8.5 Fe 72.1 N 17.0 H 2.1 O 0.3 magnetic powder obtained in Example 1 was mixed with the high melting point additive Mh or the inorganic compound Mi shown in Table 2 in an amount shown in Table 2. And crushed with a vibrating ball mill for about 1 hour. This fine powder was magnetically molded in the same manner as in Examples 3 to 10, then sintered and magnetized to obtain a sintered magnet.

これらの磁石の残留磁束密度[Br(kG)]、保磁力
[iHc(kOe)]、(BH)max(MGOe)、角形比(Br/4πI
s)を第2表に示す。ただしOのモル百分率約1mol%で
ある。
The residual magnetic flux density [Br (kG)], coercive force [iHc (kOe)], (BH) max (MGOe), squareness ratio (Br / 4πI) of these magnets
Table 2 shows s). However, the molar percentage of O is about 1 mol%.

実施例21〜35および比較例3 実施例1で得たSm8.5Fe72.1N17.0H2.1O0.3磁性粉体に
第3表に示す添加剤MhおよびMl、MiおよびMlを第3表に
示す量添加混合し、振動ボールミルで約1時間粉砕し
た。この微粉体を実施例3〜10と同様にして磁場成形
し、次いで焼結し、着磁して焼結磁石を得た。これらの
磁石の残留磁束密度[Br(kG)]、保磁力[iHc(kO
e)]、(BH)max(MGOe)、角形比(Br/4πIs)を第3
表に示す。ただしOのモル百分率は約1mol%である。
Examples 21 to 35 and Comparative Example 3 The additives Mh and Ml, Mi and Ml shown in Table 3 were added to the Sm 8.5 Fe 72.1 N 17.0 H 2.1 O 0.3 magnetic powder obtained in Example 1 in the amounts shown in Table 3. The mixture was added and crushed with a vibrating ball mill for about 1 hour. This fine powder was magnetically molded in the same manner as in Examples 3 to 10, then sintered and magnetized to obtain a sintered magnet. The residual magnetic flux density [Br (kG)] and coercive force [iHc (kO
e)], (BH) max (MGOe), squareness ratio (Br / 4πIs)
It is shown in the table. However, the molar percentage of O is about 1 mol%.

実施例36 純度99.9%のSm、Fe、Znを用いて酸素分圧約10-5atm
のアルゴン雰囲気中高周波溶解炉で溶解混合し、次いで
溶湯を鋳型中に流し込んで冷却し、さらにアルゴン雰囲
気中において900℃36時間焼鈍することにより、モル百
分率がSm 10.6%、Fe 77.8%、Zn 11.6%からなる合金
を調製した。
Example 36 Oxygen partial pressure of about 10 −5 atm using Sm, Fe, and Zn having a purity of 99.9%
The mixture was melted and mixed in a high-frequency melting furnace in an argon atmosphere, cooled by pouring the molten metal into a mold, and further annealed in an argon atmosphere at 900 ° C. for 36 hours, so that the mole percentage was 10.6% for Sm, 77.8% for Fe, and 11.6% for Zn. % Was prepared.

この合金を実施例1と同様に粒径約100μmまで粗粉
砕した後、窒素化・水素化し、振動ボールミルで粒径6
μmまで微粉砕して、Sm8.6Fe63.4Zn9.4N15.2H2.7O0.7
の微粉体を得た。
This alloy was roughly pulverized to a particle size of about 100 μm in the same manner as in Example 1, then nitrogenated and hydrogenated, and then subjected to a vibration ball mill to obtain a particle size of 6 μm.
Micronized to μm, Sm 8.6 Fe 63.4 Zn 9.4 N 15.2 H 2.7 O 0.7
Was obtained.

次いでこの微粉体を実施例1と同様に磁場配向し、ア
ンモニアガス0.2atmおよび水素ガス0.8atmの混合ガス流
中470℃、12ton/cm2の条件で110分間焼結した。
Next, this fine powder was magnetically oriented in the same manner as in Example 1, and sintered in a mixed gas flow of ammonia gas 0.2 atm and hydrogen gas 0.8 atm at 470 ° C. and 12 ton / cm 2 for 110 minutes.

得られた焼結磁石の残留磁束密度(Br)は8.1kG、保
磁力(iHc)は5.0kOe、(BH)maxは10.4MGOe、角形比
(Br/4πIs)は0.893であった。
The residual magnetic flux density (Br) of the obtained sintered magnet was 8.1 kG, the coercive force (iHc) was 5.0 kOe, (BH) max was 10.4 MGOe, and the squareness ratio (Br / 4πIs) was 0.893.

実施例37及び比較例4 純度99.9%のSmおよび純度99.9%のFeを用いてアルゴ
ン雰囲気中高周波炉で溶解混合し、次いで溶湯を3mm幅
の鋳型中に流し込んで冷却し、さらに酸素分圧約10-5at
mのアルゴン雰囲気中において1030℃13時間焼鈍するこ
とにより、モル百分率がSm 10.5%およびFe 89.5%から
なる合金を調製した。
Example 37 and Comparative Example 4 Using Sm having a purity of 99.9% and Fe having a purity of 99.9%, the mixture was melted and mixed in a high-frequency furnace in an argon atmosphere, and then the molten metal was poured into a mold having a width of 3 mm and cooled. -5 at
An alloy consisting of 10.5% of Sm and 89.5% of Fe was prepared by annealing at 1030 ° C. for 13 hours in an argon atmosphere of 10 m.

この合金を窒素雰囲気中、コーヒーミルを用いて平均
粒径30μmまで粗粉砕した。
This alloy was roughly pulverized in a nitrogen atmosphere using a coffee mill to an average particle size of 30 μm.

得られた合金粉末を管状炉中に入れ、450℃におい
て、アンモニアガス0.4atmおよび水素ガス0.6atmの混合
ガス流を該管状炉中に2時間流して窒化・水素化し、次
いで同様に酸素分圧約10-4atmのアルゴン気流中で焼鈍
し、徐冷することによりSm8.9Fe75.2N15.4H0.2O0.3組成
の合金粉末を得た。
The obtained alloy powder was placed in a tube furnace, and at 450 ° C., a mixed gas flow of ammonia gas 0.4 atm and hydrogen gas 0.6 atm was passed through the tube furnace for 2 hours to perform nitriding / hydrogenation. Annealing was performed in an argon stream at 10 -4 atm, followed by slow cooling to obtain an alloy powder having a composition of Sm 8.9 Fe 75.2 N 15.4 H 0.2 O 0.3 .

この合金粉末を分級して粒径20〜38μmに調製した
後、これにZnを8モル%添加し、回転ボールミルを4時
間施して微粉末を得た。
This alloy powder was classified and adjusted to a particle size of 20 to 38 μm, Zn was added to the alloy powder in an amount of 8 mol%, and a rotary ball mill was applied for 4 hours to obtain a fine powder.

次いで、この微粉末を粉砕ポットから酸素濃度1%の
窒素流が出入りするグローブボックス中で取り出し、管
状炉中に入れ、酸素分圧が10-5atm以下のアルゴンガス
気流中420℃1.5時間焼鈍し、徐冷することによりSm7.8F
e66.8N13.9H0.05O3.5Zn8.0組成の微粉体Aを得た。
Next, the fine powder is taken out from the pulverizing pot in a glove box through which a nitrogen stream having an oxygen concentration of 1% flows in and out, and placed in a tubular furnace, and annealed at 420 ° C. for 1.5 hours in an argon gas stream having an oxygen partial pressure of 10 −5 atm or less. Sm 7.8 F
e 66.8 N 13.9 H 0.05 O 3.5 Zn 8.0 A fine powder A having a composition of 8.0 was obtained.

この粉体を1軸プレスを用いて1ton/cm2、15kOeの条
件で5×10×2mmの板状に成形し、この成形体にポリイ
ソプレンゴムのトルエン溶液を含浸させ、十分に乾燥さ
せた。次いでこの成形体に14ton/cm2の圧力を加え、圧
縮粉体成形ボンド磁石を得た。
This powder was formed into a plate of 5 × 10 × 2 mm using a uniaxial press under the conditions of 1 ton / cm 2 and 15 kOe, and the formed product was impregnated with a toluene solution of polyisoprene rubber and dried sufficiently. . Next, a pressure of 14 ton / cm 2 was applied to this compact to obtain a compacted powder compact bonded magnet.

このボンド磁石の残留磁束密度[Br(kG)]、保磁力
[iHc(kOe)]、(BH)max(MGOe)、角形比(Br/4πI
s)を第4表に示す。
Residual magnetic flux density [Br (kG)], coercive force [iHc (kOe)], (BH) max (MGOe), squareness ratio (Br / 4πI) of this bonded magnet
s) is shown in Table 4.

なお、第4表にはZnを添加せず、上記微粉体Aと同様
に微粉砕して得た微粉体Bを用いて、同様に磁場成形
し、ボンド磁石としたものの磁気物性値も示した。
Table 4 also shows the magnetic properties of a bonded magnet obtained by similarly forming a magnetic field using the fine powder B obtained by pulverizing in the same manner as the fine powder A without adding Zn. .

実施例38 実施例40で得た微粉体Aと、メタノール−クロロホル
ム混合溶媒に溶かした10重量%濃度のポリアミドエステ
ルエーテルエラストマー溶液を8:2重量比で混練し、15k
Oeの磁場中に置いた金型に仕込んで、溶媒を回収し、ペ
レットを作製した。
Example 38 The fine powder A obtained in Example 40 and a polyamide ester ether elastomer solution having a concentration of 10% by weight dissolved in a mixed solvent of methanol and chloroform were kneaded at an 8: 2 weight ratio, and 15 k
The solution was charged into a mold placed in a magnetic field of Oe, and the solvent was recovered to produce a pellet.

次いで窒素気流中、200℃で30分間このペレットに10t
on/cm2の圧力を加え、圧縮成形ボンド磁石を作製した。
Then, in a nitrogen stream at 200 ° C for 30 minutes, add 10 t
A pressure of on / cm 2 was applied to produce a compression-molded bonded magnet.

得られた圧縮成形ボンド磁石の残留磁束密度(Br)は
8.6kG、保磁力は7.7kOe、(BH)maxは15.9MGOe、角形比
(Br/4πIs)は0.958であった。
The residual magnetic flux density (Br) of the obtained compression-molded bonded magnet is
8.6 kG, coercive force was 7.7 kOe, (BH) max was 15.9 MGOe, and squareness ratio (Br / 4πIs) was 0.958.

実施例39 実施例37で得た微粉体Aと6−ナイロンを9:1の重量
比で、窒素雰囲気中、280℃で、混練し、3〜5mm長のペ
レットに裁断した。
Example 39 Fine powder A and 6-nylon obtained in Example 37 were kneaded at a weight ratio of 9: 1 in a nitrogen atmosphere at 280 ° C., and cut into pellets having a length of 3 to 5 mm.

2mmノズル径を有する12mm径のシリンダーに該ペレッ
トを充填し、次いでアルゴン雰囲気中290℃で融解させ
た後、75kg/cm2の圧で10mm×5mmの断面を有する金型に
打ち込んだ。この時、金型には4.5〜6kOeの磁場を与え
続けた。
The pellets were filled in a 12 mm diameter cylinder having a 2 mm nozzle diameter, then melted at 290 ° C. in an argon atmosphere, and then punched into a mold having a cross section of 10 mm × 5 mm at a pressure of 75 kg / cm 2 . At this time, a magnetic field of 4.5 to 6 kOe was continuously applied to the mold.

得られた射出成形ボンド磁石の残留磁束密度(Br)は
5.6kG、保磁力は6.1kOe、(BH)maxは5.1MGOe、角形比
(Br/4πIs)は0.795であった。
The residual magnetic flux density (Br) of the obtained injection-molded bonded magnet is
5.6 kG, coercive force was 6.1 kOe, (BH) max was 5.1 MGOe, and squareness ratio (Br / 4πIs) was 0.795.

比較例5 窒化温度を700℃とする以外は、実施例39と同様にし
てSm-Fe-N−H−O−M系焼結磁石を得た。
Comparative Example 5 An Sm-Fe-N-HOM-based sintered magnet was obtained in the same manner as in Example 39 except that the nitriding temperature was changed to 700 ° C.

この磁石の固有保磁力は0.4kOeであった。 The intrinsic coercivity of this magnet was 0.4 kOe.

また、この材料の結晶構造をX線回折法により解析し
た結果、α−鉄、窒化鉄に対応する回折線が主に検出さ
れ、Th2Zn17構造、Th2Ni17構造に対応した回折線は認め
られなかった。
Further, as a result of analyzing the crystal structure of this material by an X-ray diffraction method, diffraction lines corresponding to α-iron and iron nitride were mainly detected, and diffraction lines corresponding to the Th 2 Zn 17 structure and the Th 2 Ni 17 structure were detected. Was not found.

比較例6 実施例1で得られた、平均粒径約7μmのSm-Fe-N−
H−O−M系粉体を、2ton/cm2、15kOeの条件で磁場成
形した後、アルゴン雰囲気下、1100℃、1時間の条件で
熱処理した。これを急冷した後の成形体の固有保持力は
0.02kOeであった。
Comparative Example 6 Sm-Fe-N- having an average particle size of about 7 μm obtained in Example 1
The HOM powder was magnetically molded under the conditions of 2 ton / cm 2 and 15 kOe, and then heat-treated at 1100 ° C. for 1 hour in an argon atmosphere. After quenching this, the intrinsic holding power of the compact is
It was 0.02 kOe.

また、この材料の検出構造をX線回折法により解析し
た結果、α−鉄、窒化鉄に対応する回折線が主に検出さ
れ、Th2Zn17構造、Th2Ni17構造に対応した回折線は認め
られなかった。
As a result of analyzing the detection structure of this material by X-ray diffraction, diffraction lines corresponding to α-iron and iron nitride were mainly detected, and diffraction lines corresponding to the Th 2 Zn 17 structure and the Th 2 Ni 17 structure were detected. Was not found.

[発明の効果] 以上説明したように、本発明によれば特別な工程を付
加しないでも十分な保磁力、角形化および飽和磁束密度
を有する2相分離型のバルク磁石、ならびにボンド磁石
とその材料を作製することができる。
[Effects of the Invention] As described above, according to the present invention, a two-phase-separated bulk magnet having sufficient coercive force, squareness, and saturation magnetic flux density without adding a special process, and a bonded magnet and its material Can be produced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の焼結磁石を作製するための一方法を例
示した工程図である。
FIG. 1 is a process diagram illustrating one method for producing a sintered magnet of the present invention.

フロントページの続き (72)発明者 須藤 昭信 静岡県富士市鮫島2番地の1 旭化成工 業株式会社内 (56)参考文献 特開 昭60−131949(JP,A) 特開 昭60−144906(JP,A) 特開 昭61−9551(JP,A) 特開 昭62−136551(JP,A)Continuation of the front page (72) Inventor Akinobu Sudo 2-1, Samejima, Fuji-shi, Shizuoka Prefecture Asahi Kasei Corporation (56) References JP-A-60-131949 (JP, A) JP-A-60-144906 (JP) , A) JP-A-61-9551 (JP, A) JP-A-62-136551 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式SmαFe
(100−α−β−γ−δ−ε)βγδεで表わ
される磁性材料であり、 MはMg、Ti、Zr、Hf、Cu、Zn、Al、Ga、In、Si、Ge、Sn
の元素及びこれらの元素の酸化物、フッ化物、炭化物、
窒化物、水素化物のうち少なくとも一種、 α、β、γ、δ、εはそれぞれモル百分率で 5≦α≦20 5≦β≦25 0.01≦γ≦5 0.01≦δ≦10 0.1≦ε≦40 であって、Sm、Fe及びNを含んだ相が2-17構造からなる
ことを特徴とする磁性材料。
1. The general formula Sm α Fe
A magnetic material represented by (100-α-β-γ -δ-ε) N β H γ O δ M ε, M is Mg, Ti, Zr, Hf, Cu, Zn, Al, Ga, In, Si , Ge, Sn
Elements and oxides, fluorides, carbides of these elements,
At least one of nitrides and hydrides, α, β, γ, δ, and ε are each represented by a molar percentage of 5 ≦ α ≦ 20 5 ≦ β ≦ 25 0.01 ≦ γ ≦ 5 0.01 ≦ δ ≦ 10 0.1 ≦ ε ≦ 40. A magnetic material characterized in that a phase containing Sm, Fe and N has a 2-17 structure.
【請求項2】請求項(1)に記載の磁性材料のうち、δ
の範囲が0.6≦δ≦10であることを特徴とする磁性材
料。
2. The magnetic material according to claim 1, wherein δ
Is in the range of 0.6 ≦ δ ≦ 10.
【請求項3】請求項(1)〜(2)の何れかに記載の磁
性材料の成分であるFeの0.01〜50モル%をCoで置換した
組成を有することを特徴とする磁性材料。
3. A magnetic material having a composition in which 0.01 to 50 mol% of Fe, which is a component of the magnetic material according to any one of (1) and (2), is substituted by Co.
【請求項4】請求項(1)〜(3)の何れかに記載の磁
性材料からなり、その組織の微構造の粒子境界部に上記
一般式で示した成分のうちMの含有量が多い相を有し、
粒子中心部にはMの含有量が少ないか、またはMを含有
しない相を有することを特徴とする2相分離型のバルク
磁石。
(4) The magnetic material according to any one of (1) to (3), wherein the content of M among the components represented by the above general formula is large at the grain boundary of the microstructure of the structure. Having a phase,
A two-phase separation type bulk magnet, characterized in that a M content is low or a phase containing no M is present in a particle central portion.
【請求項5】請求項(1)〜(3)の何れかに記載の磁
性材料または請求項(4)に記載のバルク磁石から成る
ことを特徴とするボンド磁石。
5. A bonded magnet comprising the magnetic material according to any one of (1) to (3) or the bulk magnet according to (4).
【請求項6】Sm、Fe、N、H、Oからなる磁性材料、ま
たは、Feの0.01〜50モル%をCoで置換した材料に、M成
分を添加し微粉砕するか、微粉砕してからM成分を添加
して、それを200〜650℃で焼結することによって、この
M成分を主に粒子境界部に拡散させ、反応させることを
特徴とする請求項(4)に記載の2相分離型のバルク磁
石の製造方法。
6. An M component is added to a magnetic material composed of Sm, Fe, N, H, and O, or a material in which 0.01 to 50 mol% of Fe is replaced with Co, and the mixture is pulverized or pulverized. 5. The method according to claim 4, wherein the M component is added, and the M component is sintered at a temperature of 200 to 650 ° C., whereby the M component is diffused mainly at the grain boundaries and reacted. A method for manufacturing a phase-separated bulk magnet.
JP1292366A 1989-11-13 1989-11-13 MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM Expired - Lifetime JP2739860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1292366A JP2739860B2 (en) 1989-11-13 1989-11-13 MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292366A JP2739860B2 (en) 1989-11-13 1989-11-13 MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM

Publications (2)

Publication Number Publication Date
JPH03153852A JPH03153852A (en) 1991-07-01
JP2739860B2 true JP2739860B2 (en) 1998-04-15

Family

ID=17780874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292366A Expired - Lifetime JP2739860B2 (en) 1989-11-13 1989-11-13 MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM

Country Status (1)

Country Link
JP (1) JP2739860B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3304726B2 (en) * 1995-11-28 2002-07-22 住友金属鉱山株式会社 Rare earth-iron-nitrogen magnet alloy
JP5339644B2 (en) * 2012-02-17 2013-11-13 旭化成ケミカルズ株式会社 Manufacturing method of solid material for magnet
JP6614647B2 (en) * 2015-09-11 2019-12-04 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet
JP7201332B2 (en) * 2018-04-09 2023-01-10 トヨタ自動車株式会社 Rare earth magnet manufacturing method and manufacturing apparatus used therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131949A (en) * 1983-12-19 1985-07-13 Hitachi Metals Ltd Iron-rare earth-nitrogen permanent magnet
JPS60144906A (en) * 1984-01-06 1985-07-31 Daido Steel Co Ltd Permanent magnet material
JPS619551A (en) * 1984-06-26 1986-01-17 Toshiba Corp Rare earth element-iron type permanent magnet alloy
JPS62136551A (en) * 1985-12-10 1987-06-19 Daido Steel Co Ltd Permanent magnet material

Also Published As

Publication number Publication date
JPH03153852A (en) 1991-07-01

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP3540438B2 (en) Magnet and manufacturing method thereof
JPH06207203A (en) Production of rare earth permanent magnet
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
Kuhrt Processing of permanent magnet materials based on rare earth-transition metal intermetallics
JP3645312B2 (en) Magnetic materials and manufacturing methods
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP3053187B2 (en) Manufacturing method of permanent magnet
JP3037917B2 (en) Radial anisotropic bonded magnet
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JP2005286175A (en) R-t-b-based sintered magnet and its manufacturing method
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JP2926161B2 (en) Manufacturing method of permanent magnet
JPH0521219A (en) Production of rare-earth permanent magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH06112019A (en) Nitride magnetic material
JPH05205921A (en) Manufacture of magnet material powder and manufacture of bondded magnet using the powder
JP3209292B2 (en) Magnetic material and its manufacturing method
JP3200201B2 (en) Nitride magnetic powder and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12