[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60221551A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPS60221551A
JPS60221551A JP59054071A JP5407184A JPS60221551A JP S60221551 A JPS60221551 A JP S60221551A JP 59054071 A JP59054071 A JP 59054071A JP 5407184 A JP5407184 A JP 5407184A JP S60221551 A JPS60221551 A JP S60221551A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
magnetic field
intermetallic compound
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59054071A
Other languages
Japanese (ja)
Inventor
Masaaki Tokunaga
徳永 雅亮
Hiroshi Kogure
小暮 浩
Noriaki Meguro
目黒 訓昭
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59054071A priority Critical patent/JPS60221551A/en
Publication of JPS60221551A publication Critical patent/JPS60221551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet having superior magnetic characteristics by using a rare earth metal and an Fe-Co-B-P intermetallic compound as starting materials. CONSTITUTION:An intermetallic compound having a composition represented by a formula R(Fe1-X-Y-ZCoXBYPZ)A is refined. In the formula, R is one or more kinds of rare earth elements, 0<=X<=0.5, 0.02<=Y<=0.3, 0.0001<=Z<=0.03, and 4<= A<= 7.5. An ingot of the intermetallic compound is cooled and crushed, and the resulting powder is molded in a magnetic field and sintered at 1,100 deg.C for 2hr in an atmosphere of gaseous Ar. The sintered body is aged at 500 deg.C for 1hr and at 600 deg.C for 1hr to manufacture a permanent magnet having superior magnetic characteristics.

Description

【発明の詳細な説明】 本発明は希土類金属(Rと以下略記する。)とFeから
なる金属間化合物永久磁石材オ′1に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intermetallic compound permanent magnet material O'1 consisting of a rare earth metal (hereinafter abbreviated as R) and Fe.

すてに知られているように、R−Fe合金、例えばR2
Fe はR−GO台金にりも高い飽和磁1ヒを有し、高
価なCOを含有せず、永久磁石月利どして高いボデンシ
トルを有する永久磁石材料である。しかしながら、永久
磁石材料として必要なr l−1cが得られず、長い間
装置されたままであった。近年、液体急冷技術の進歩に
ともない、R−Fe合金に本方法を利用し、高い保磁力
を得ることに成功している。(例えば、J 、 J 、
 Croat。
As is well known, R-Fe alloys, such as R2
Fe is a permanent magnet material that has a higher saturation magnetic flux than the R-GO base metal, does not contain expensive CO, and has a high permanent magnet yield. However, the required r l-1c as a permanent magnet material could not be obtained, and the device remained in use for a long time. In recent years, with the progress of liquid quenching technology, this method has been successfully applied to R-Fe alloys to obtain high coercive force. (For example, J, J,
Croat.

Journal of Applied Physic
s 52(3)March 1981,2509”IV
la(]netiCPr0pretieSof mel
t−spun P r −F e allOys” )
ざらに、N、C,KoonらはBを微量添加したR−F
e−8合金を超急冷し、600= 800°Cにて時効
結晶化させることにより高保磁力を実現している(N、
C0Koon et al Appl、PhysLet
ter 39(10)15(1981) 840”Ma
gneticP ropret:es of A mo
rphous andCrystal l 1zed 
(F eO,82Bo4B )O,Q T bo、o5
 L ”o、o5 ”特開昭58−123853号公報
)。しかしながら上記作製法においては結晶質と非晶質
の混合状態が必要であり、得られる材料の形態は一般に
粉末ないし薄帯に限定される。したがって、永久磁石t
J ′Allとして利用する際には圧縮成形等によって
バルク化をはかつてやる必要がある。又、超急冷による
粉末は等方性で角型が悪く着磁が困難で実用の際問題が
多い。
Journal of Applied Physics
s 52(3) March 1981, 2509”IV
la(]netiCPr0pretieSof mel
t-sun Pr-Fe allOys”)
Zarani, N. C., Koon et al. added a small amount of B to R-F.
High coercive force is achieved by super-quenching the e-8 alloy and aging crystallizing it at 600 = 800°C (N,
C0Koon et al Appl, PhysLet
ter 39(10)15(1981) 840”Ma
gneticPropret:es of A mo
rphous and Crystal l 1zed
(F eO,82Bo4B)O,Q T bo,o5
L "o, o5" JP-A-58-123853). However, the above manufacturing method requires a mixed state of crystalline and amorphous materials, and the form of the obtained material is generally limited to powder or ribbon. Therefore, the permanent magnet t
When using it as J'All, it is necessary to bulk it by compression molding or the like. Further, the powder obtained by ultra-quenching is isotropic and has a poor square shape, making it difficult to magnetize and causing many problems in practical use.

一方、佐用らは結晶質のNd −Fe −Bを用い磁場
中成形、焼結を用い異方性化をはかり高特性を得た(第
29回3 M Conf、1983 booklet 
P 11(1、5essionE B、 E B−1”
New Materialfar Permanent
 Magnets on a base afNd a
nd Fe ” ) 、得られた磁気特性は、35〜4
0MGOeで希土類磁石の中では最も高い。しかしなが
ら公表された本材質はキュリ一点が低く、熱安定性が悪
いという欠点を有しているものであり、この点が実用化
の」二で大きな障害となっていた。
On the other hand, Sayo et al. used crystalline Nd-Fe-B to obtain high properties by forming it in a magnetic field and sintering it to make it anisotropic (29th 3M Conf, 1983 booklet).
P 11 (1, 5essionE B, E B-1”
New Materialfar Permanent
Magnets on a base afNd a
nd Fe”), the obtained magnetic properties are 35-4
0MGOe, the highest among rare earth magnets. However, the published material had the drawbacks of a low Curie point and poor thermal stability, which were major obstacles to its practical application.

本発明はこれらR−Fe、−B合金の熱安定性改善のた
めになされたものであり、I l−I Cの向上を行う
ことにより、上記欠点を解消したものである。
The present invention has been made to improve the thermal stability of these R-Fe and -B alloys, and eliminates the above-mentioned drawbacks by improving I l-I C.

発明者らは柾々の検討の結果、Pの添加がI l−I 
Cの向上tこイ〕効−Cあることを見出した。
As a result of extensive study, the inventors found that the addition of P
It has been found that there is an effect of improving C.

本発明の合金はR(Fe+−x−y−x Cox By
 p、)A(ここでR:希土類元素の1種又は2種以上
の組合せ、0≦X≦0.5. 0.02≦y≦0.3.
 0.0001≦7≦0.03,4≦△≦ 7.5)で
あることを特徴どするものである。本発明において、C
o置換ff1Xが0.5を越える場合は4πirの低下
が人さく、永久磁石材料として好ましくない。B@換聞
yが0.02未満の場合キュリ一点が上昇せず高い■H
cも得られない。一方、yが0.3を越える場合には逆
にキュリ一点、 4πIrが低下し、磁気特性の好まし
くない相の発生が見られる。保磁力を向上させる添加物
量2が0.0001未満の場合、IHCの向上を期待で
きず、一方、Zが0.03を越える揚台には4πIr(
Br)および角型性が低下し、永久磁石材料どして好ま
しくない。△か4未渦の揚台、4πl「が低下し、7.
5を越えるとFe、Ccに冨んだ相が現われI l−I
 Cが低下する。
The alloy of the present invention is R(Fe+-x-y-x Cox By
p,) A (where R: one type or a combination of two or more rare earth elements, 0≦X≦0.5. 0.02≦y≦0.3.
0.0001≦7≦0.03, 4≦△≦7.5). In the present invention, C
If the o-substitution ff1X exceeds 0.5, the 4πir decreases significantly, making it undesirable as a permanent magnet material. B@If y is less than 0.02, the Curie point will not increase and it will be high ■H
I can't get c either. On the other hand, when y exceeds 0.3, 4πIr decreases by one Curie point, and a phase with unfavorable magnetic properties appears. If the amount of additives 2 that improve coercive force is less than 0.0001, no improvement in IHC can be expected; on the other hand, 4πIr (
Br) and squareness are reduced, making it undesirable as a permanent magnet material. △ or 4 Unvortexed lifting platform, 4πl" has decreased, 7.
When the value exceeds 5, a phase rich in Fe and Cc appears, and I l-I
C decreases.

本発明による永久磁石は一般に溶解によるインゴット作
成、わ)砕、磁界中成形、焼結、熱処理の工程によって
IjA造される。溶解は通常の方法で、Ar中ないし真
空中で行う。Bはフェロボロンを用いることも可能であ
る。高周波溶解ではPの添加はFC,C:O,Bを溶解
後行い、希土類元素は最後に投入する。粉砕は粗粉砕と
微粉砕に工程的にはわかれるが、粗粉砕はスタンプミル
、ショークラッシャ、ブラウンミル、ディスクミルで、
又微粉砕はジェットミル、振動ミル、ボールミル等0行
4つれる。いずれも酸化を防ぐために非酸化性雰囲気中
で行うが、有機溶媒や不活性ガスが用いられる。粉砕粒
度は3〜5μm (r、S、S、S。
The permanent magnet according to the present invention is generally manufactured by IJA through the steps of melting into an ingot, crushing, forming in a magnetic field, sintering, and heat treatment. The melting is carried out in a conventional manner in Ar or vacuum. It is also possible to use ferroboron for B. In high-frequency melting, P is added after FC, C:O, and B are melted, and rare earth elements are added last. Grinding can be divided into coarse grinding and fine grinding, and coarse grinding is performed using stamp mills, show crushers, brown mills, and disc mills.
For fine grinding, there are four rows of jet mills, vibration mills, ball mills, etc. Both are carried out in a non-oxidizing atmosphere to prevent oxidation, and organic solvents and inert gases are used. The grinding particle size is 3-5 μm (r, S, S, S.

)が望ましい。(磁界中成形は配向度向上、異方性IL
のために必要で、一般に縦磁場成形(加圧方向と磁場印
加方向が平行)および横磁場成形(加圧方向と磁場印加
方向が垂直)か用いられる。横磁場成形の方がKlvA
場成形主成形配向度は優れている。’13’A結はAr
、1−IC等の不活性ノJス中又は真空中で行われる。
) is desirable. (Molding in a magnetic field improves the degree of orientation and anisotropic IL
Generally, either vertical magnetic field shaping (the direction of pressure and the direction of magnetic field application are parallel) or transverse magnetic field shaping (the direction of pressure and the direction of magnetic field application are perpendicular) are used. Horizontal magnetic field forming has better KlvA
The field forming main forming orientation degree is excellent. '13' A knot is Ar
, 1-IC or the like or in vacuum.

さらにはH2ガス中の焼結も可能−Cある。焼結後の冷
却は急冷が望ましいが、焼結後熱処理を施す場合は炉中
冷却でよい。熱処理は用いる希土類元素の種類や組成に
よって異なるが、400・〜1000℃の範囲で行われ
る。
Furthermore, sintering in H2 gas is also possible. Rapid cooling is preferable for cooling after sintering, but if heat treatment is performed after sintering, cooling in a furnace may be used. The heat treatment varies depending on the type and composition of the rare earth element used, but is performed at a temperature of 400 to 1000°C.

本発明における添加物Pの添加mzは、応用分野の種類
、プロセスによって、0.0001−0.03の範囲内
で適宜変えてよい。CO置換量との組合せも同様である
The addition mz of the additive P in the present invention may be changed as appropriate within the range of 0.0001-0.03 depending on the type of application field and process. The same applies to the combination with the amount of CO substitution.

以下、実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 N d (F e、、9−、 B、4 P 1 >5.
、なる合金をアーク溶解にて作製した。得られたインゴ
ットをスタンプミルおよびディスクミル粗粉砕し、32
メツシユ以下に調整後、ジエン[・ミルで微粉砕した。
Example 1 N d (F e, 9-, B, 4 P 1 >5.
An alloy consisting of , was prepared by arc melting. The obtained ingot was coarsely ground in a stamp mill and a disc mill, and
After adjusting to less than mesh size, it was finely pulverized in a diene mill.

t5)砕媒体はN2カスであり、粉砕粒石は3.3μ1
it(F。
t5) The crushing medium is N2 scum, and the crushed grain stone is 3.3μ1
it(F.

S、S、S、)であった。得られた微粉砕粉を15ko
eの磁場中で横磁場成形した。成形圧力は2jOl’1
/’Cm2である。成形体をAr雰囲気中で1100℃
×21゛焼結した。焼結後、500℃X1111・+6
00°C×111「の時効を加えた。得られた磁気特性
を第1表に示す・ 第1表 Pの添加にJ、すiHcの向上が見られる。しかし多量
の添加はかえって工l−1cの劣化をひきおこり。
S, S, S,). 15 ko of the obtained finely pulverized powder
Transverse magnetic field shaping was carried out in a magnetic field of e. Molding pressure is 2jOl'1
/'Cm2. The molded body was heated at 1100°C in an Ar atmosphere.
×21゛Sintered. After sintering, 500℃×1111・+6
The magnetic properties obtained are shown in Table 1. In Table 1, the addition of P shows an improvement in J and iHc.However, adding a large amount of Caused deterioration of 1c.

また、得られた試料をL/D=0.7の円柱に加[し、
120°C×柚「の加熱を行い、常温にて減磁率(%1
ass)を測定した。第2表に結果を示す。
In addition, the obtained sample was added to a cylinder with L/D = 0.7,
The demagnetization rate (%1) was heated at 120°C
ass) was measured. Table 2 shows the results.

第2表 P添加により工Hcが向上し、その結果減磁率が低下す
ることがわかる。
Table 2 shows that the addition of P improves the hardness Hc and, as a result, reduces the demagnetization rate.

実施1列 2 P r (F e、1.q Bo、(P、。、ol)5
 なる組成を有する合金を、実施例1と同様の方法で溶
解、粉砕、焼結した。焼結後Ar気流中に急冷した。得
られた磁気特性は以下の通りであった。
Implementation 1 column 2 P r (F e, 1.q Bo, (P, ., ol) 5
An alloy having the following composition was melted, crushed, and sintered in the same manner as in Example 1. After sintering, it was rapidly cooled in an Ar gas flow. The obtained magnetic properties were as follows.

Br−12300G aHc〜102000e 工Hc 〜14500Q2 (B H) max 〜34,7M G Oe得られた
試料を熱処理した場合の結果を第3表に示す。
Br-12300G aHc~102000e Engineering Hc ~14500Q2 (B H) max ~34,7M G Oe Table 3 shows the results when the obtained samples were heat treated.

第3表 時効を加えることによりI I@cは17kOeを越え
ることがわかる。また、本発明の合金は、従来合金に比
し熱安定性が優れていることがWi認でさた。
Table 3 shows that by adding aging, I@c exceeds 17 kOe. Furthermore, it was confirmed that the alloy of the present invention has superior thermal stability compared to conventional alloys.

実施例3 N d (F eo、、q COo、+、−B。、1P
0、ooj)51なる合金を、実施例1と同様の方法で
溶解、粉砕、焼結した。
Example 3 N d (F eo, q COo, +, -B., 1P
0, ooj) 51 was melted, crushed, and sintered in the same manner as in Example 1.

焼結後600℃xll+rの時効を加えた。iqられた
磁気特性は以下の通りであった。
After sintering, aging was performed at 600°C xll+r. The determined magnetic properties were as follows.

Br−12000G BHc〜980008 I Hc〜1400000 (3日) n1aX 〜34.3M G Oeまた、実
施例1と同様にして熱安定性を測定したどころ、従来合
金に比し、本発明合金のものは1畏れた特性を示した。
Br-12000G BHc ~ 980008 I Hc ~ 1400000 (3 days) n1aX ~ 34.3M G Oe Furthermore, while the thermal stability was measured in the same manner as in Example 1, the inventive alloy's 1. Exhibited impressive characteristics.

Claims (1)

【特許請求の範囲】[Claims] R(Fe1−%−γ−、Cox B、 P−iり八(こ
こでR:希土類元素の1種又は2種以上の組合せ、0≦
X≦0.5. 0.02≦y≦0.3. 0.0001
≦7≦0.03.4≦A≦ 7.5)なる組成からなる
ことを特徴どする永久磁石合金。
R (Fe1-%-γ-, Cox B, P-i R8 (where R: one or a combination of two or more rare earth elements, 0≦
X≦0.5. 0.02≦y≦0.3. 0.0001
7.03.4≦A≦7.5).
JP59054071A 1984-03-21 1984-03-21 Permanent magnet alloy Pending JPS60221551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59054071A JPS60221551A (en) 1984-03-21 1984-03-21 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59054071A JPS60221551A (en) 1984-03-21 1984-03-21 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS60221551A true JPS60221551A (en) 1985-11-06

Family

ID=12960383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59054071A Pending JPS60221551A (en) 1984-03-21 1984-03-21 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS60221551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210377A (en) * 2005-01-25 2006-08-10 Tdk Corp Rtb-based sintered magnet and manufacturing method thereof
US8157927B2 (en) 2005-01-25 2012-04-17 Tdk Corporation Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210377A (en) * 2005-01-25 2006-08-10 Tdk Corp Rtb-based sintered magnet and manufacturing method thereof
JP4543940B2 (en) * 2005-01-25 2010-09-15 Tdk株式会社 Method for producing RTB-based sintered magnet
US8157927B2 (en) 2005-01-25 2012-04-17 Tdk Corporation Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof

Similar Documents

Publication Publication Date Title
JPH0216368B2 (en)
JPS6110209A (en) Permanent magnet
JPS61263201A (en) Manufacture of generator
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS60221551A (en) Permanent magnet alloy
JPS60159152A (en) Permanent magnet alloy
JPH0146575B2 (en)
JP3053187B2 (en) Manufacturing method of permanent magnet
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JPS62116756A (en) Permanent magnet alloy
JPH05144621A (en) Rare earth element-bonded magnet
JPS60165702A (en) Manufacture of permanent magnet
JPS62158852A (en) Permanent magnet material
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPS6347301A (en) Production of permanent magnet powder
JPS62158854A (en) Permanaent magnet material
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPS60171703A (en) Manufacture of permanent magnet
JPS63216307A (en) Alloy powder for magnets
JPS61143553A (en) Production of material for permanent magnet
JPS60162755A (en) Permanent magnet alloy
JPS63115307A (en) Manufacture of rare-earth magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP3138927B2 (en) Rare earth magnet manufacturing method
JPH0246658B2 (en)