[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5996713A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS5996713A
JPS5996713A JP57206035A JP20603582A JPS5996713A JP S5996713 A JPS5996713 A JP S5996713A JP 57206035 A JP57206035 A JP 57206035A JP 20603582 A JP20603582 A JP 20603582A JP S5996713 A JPS5996713 A JP S5996713A
Authority
JP
Japan
Prior art keywords
film
copper
coercive force
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57206035A
Other languages
Japanese (ja)
Inventor
Motoharu Tanaka
元治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP57206035A priority Critical patent/JPS5996713A/en
Publication of JPS5996713A publication Critical patent/JPS5996713A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10593Details for improving read-out properties, e.g. polarisation of light

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain the one of a high coercive force and a large power-rotation angle by adding a specific amount of copper to a Tb-Fe film having an easy magnetization axis in a direction vertical to the film surface. CONSTITUTION:The one composed of a Tb-Fe alloy containing 0.5 atom% or more of copper and having the easy magnetization axis in the direction vertical to the film surface is used. A magneto-optical disc is manufactured by forming a Tb-Fe-Cu film containing 0.5-20atom% of copper on a non-magnetic substrate consisting of e.g. glass, plastic and ceramic by a sputtering method. Using composite method, a target is constructed by mounting a Tb and a Cu chip on an Fe disc, and the composition is controlled by the area ratio of the target surface. In case of the Tb-Fe film, a composition range of the large coercive force Hc is when Tb is at 15-32atom%, and a compensating composition is in the neighborhood of about 21atom% of Tb.

Description

【発明の詳細な説明】 技術分野 本発明は磁気的情報′t−磁気光学的に読取るのに適し
た磁気記録媒体に関する。
Description: TECHNICAL FIELD The present invention relates to a magnetic recording medium suitable for magneto-optically reading magnetic information.

従来技術 従来、磁気光学ディスク、磁気バブルメモリーなどに用
いらnる膜面と垂直な方向に磁化容易軸を有する強磁性
薄膜としてはMnB1に代表さ扛る多結晶金属薄膜、G
cl−Co%Gd−Feの非晶質金属薄膜、GIGに代
表される化付物単結晶薄膜が知らtている。こnらの薄
膜は種々の利点を有するが、MnB1はキューリ一点が
高いために薄膜の作製が技術的に困難であシ%また磁気
光学ディスクに利用した場合書き込みに大きなエネルギ
ーを必要とするという欠点がある@まfCs()d 、
−Oo%Gd−Feの非晶質金属薄膜は室温における保
磁力が小さく(300〜5000e)記録さ扛た情報が
不安定であるという欠点を有している。
Prior Art Conventionally, as a ferromagnetic thin film having an axis of easy magnetization in the direction perpendicular to the film plane used in magneto-optical disks, magnetic bubble memories, etc., polycrystalline metal thin films such as MnB1, G
Amorphous metal thin films of Cl-Co%Gd-Fe and compound single crystal thin films typified by GIG are known. Although these thin films have various advantages, MnB1 has a high Curie point, making it technically difficult to fabricate thin films.Also, when used in magneto-optical disks, it requires a large amount of energy to write. There is a drawback @mafCs()d,
An amorphous metal thin film of -Oo%Gd-Fe has a drawback in that the coercive force at room temperature is small (300 to 5000e) and recorded information is unstable.

そこで、上記のような従来の磁性薄膜記録媒体の欠点金
除去する新しい磁性薄膜記録媒体としてTb−Fe膜を
使用することが提案さnている(例えば、特開昭52−
31703号公報参照)。
Therefore, it has been proposed to use a Tb-Fe film as a new magnetic thin film recording medium that eliminates the drawbacks of conventional magnetic thin film recording media as described above (for example, in
(See Publication No. 31703).

Tb−Fe膜を含む磁気記録媒体は膜面と垂直な方向に
磁化容易、軸を有するため高密度の情報記憶が可能であ
シかつ室温において数KO9の大きな保磁力を有するた
め記憶さnた情報が極めて安定であるなどの釉々の利点
を有するものである。
A magnetic recording medium containing a Tb-Fe film is easily magnetized in the direction perpendicular to the film surface, and because it has an axis, it is possible to store high-density information, and it has a large coercive force of several KO9 at room temperature, so it is difficult to store information. It has many advantages such as extremely stable information.

しかしながら、磁気光学効果を用いて読出しを行なうと
すると反射タイプの場合はカー回転角が大きいことが必
要となるがTb−Fe膜ではカー回転角が0.15 c
lθgと小さく問題である。
However, if reading is to be performed using the magneto-optic effect, a large Kerr rotation angle is required in the case of a reflective type, but the Kerr rotation angle is 0.15 c in the case of a Tb-Fe film.
This is a problem because lθg is small.

目   的 本発明は上記問題に鑑みてなさ几たものであシ、その目
的は保磁力が大きくかつカー回転角の大きい磁気記録媒
体を提供することにある。
Purpose The present invention was devised in view of the above problems, and its purpose is to provide a magnetic recording medium having a large coercive force and a large Kerr rotation angle.

構成 上記目的を達成するために、本発明の磁気記録媒体は膜
面と垂直な方向に磁化容易軸を有するTb−Fe膜に少
なくとも0.5#子%の銅を含むものである。本発明に
おいて銅の含有液を少なくとも0.5原子%と限定する
のは、大きなカー回転角を得るためであ5.o、s原子
%未満では充分なカー回転角が得らnず本発明の効果が
達成さfない。一方、銅の含有せをあまシ大きくすると
保磁力(Hc )が小さくなシすぎてカー回転角(θk
)も小さくなるので0.5〜20原子%の範囲が好まし
い。
Structure In order to achieve the above object, the magnetic recording medium of the present invention contains at least 0.5 #% of copper in a Tb--Fe film having an axis of easy magnetization in a direction perpendicular to the film surface. In the present invention, the reason why the copper-containing liquid is limited to at least 0.5 atomic % is to obtain a large Kerr rotation angle5. If the amount is less than atomic percent o or s, a sufficient Kerr rotation angle will not be obtained and the effects of the present invention will not be achieved. On the other hand, if the copper content is slightly increased, the coercive force (Hc) becomes too small and the Kerr rotation angle (θk
) is also small, so a range of 0.5 to 20 atomic % is preferable.

本発明の磁気記録媒体を磁気光学ディスクに用いるとき
の一例を以下に説明する。ガラス、プラスチック、セラ
ミックなどからなる非磁性基板上に、スパッタ法、蒸着
法、イオンブレーティング法などによシ、少なくとも0
.5原子%の銅を含むTb−Fe−0u膜を形成させる
ことによシ作製する。Tb −Fe−Cu膜の作製はス
パッタ法によって行うのが望ましい。ターゲットはコン
ポジット法を用い、Fe円板の上にTbおよびOuチッ
プをのせて構成しそして組成はターゲット表面の面積比
でコントロールする。Tb−Fe膜の場合、第1図に示
すように、保磁力Hcの大きい組成範囲はT’bが15
〜32原子%のときであシ、そして補償組成はおよそ2
1原子%Tbの付近にある。
An example of using the magnetic recording medium of the present invention in a magneto-optical disk will be described below. On a non-magnetic substrate made of glass, plastic, ceramic, etc., at least zero
.. It is manufactured by forming a Tb-Fe-0u film containing 5 at % copper. Preferably, the Tb-Fe-Cu film is manufactured by sputtering. The target is constructed using a composite method, with Tb and Ou chips placed on an Fe disk, and the composition is controlled by the area ratio of the target surface. In the case of a Tb-Fe film, as shown in Figure 1, the composition range where the coercive force Hc is large is when T'b is 15
~32 atom%, and the compensation composition is approximately 2
It is around 1 atom% Tb.

実施例 1つの実施態様として、本発明の磁気記録媒体をTb−
Fe膜中のTl)の一部をCuで置換してすなわち組成
式Feo79(Tb1−XC’uX)0.21で表わさ
nるFe−Tb−0u膜中のXを変化して膜を形成する
ことによシ作製した。膜の評価はλ=633nmでのカ
ー回転角θにおよび保磁力Haを求めて行なった。
Example As one embodiment, the magnetic recording medium of the present invention is
A film is formed by replacing part of Tl) in the Fe film with Cu, that is, by changing X in the Fe-Tb-0u film represented by the compositional formula Feo79(Tb1-XC'uX)0.21. In particular, I made it. The film was evaluated by determining the Kerr rotation angle θ at λ=633 nm and the coercive force Ha.

残留ガス圧: 7 X 10−7TorrAr  ガス
圧: 2X 10−2Torr放電々力 :400W プレスパツタ時間:60分 メインスパッタ時間: 10分 上記のスパッタ条件でスライドガラス基板上に約+z2
o、oX厚の’[’b−Fe−cu膜を作製し、基板側
からHe、−Neレーザー(λ−=−sssnm)’t
=照gtしてカー効果によりカー回転角θにおよび保磁
力Hci求めた。
Residual gas pressure: 7 x 10-7 TorrAr Gas pressure: 2 x 10-2 Torr Discharge power: 400 W Press sputtering time: 60 minutes Main sputtering time: 10 minutes Approximately +z2 on the slide glass substrate under the above sputtering conditions
A '['b-Fe-cu film with o, oX thickness was prepared, and He, -Ne laser (λ-=-sssnm)'t was applied from the substrate side.
= gt, and the Kerr rotation angle θ and coercive force Hci were determined by the Kerr effect.

Ouの添7JO量に対するカー回転角θにおよび保磁力
Heの変化は第2図に示したようになる。
The changes in the Kerr rotation angle θ and the coercive force He with respect to the amount of O added 7JO are as shown in FIG.

この図から、Cuの添加量を増加していくとHaは小さ
くなるがθkが大きくなることがわかる。
From this figure, it can be seen that as the amount of Cu added increases, Ha decreases but θk increases.

本例ではT’bをCuで置換していったためCuを増す
と異方性に寄与しているT’bが減t) 、Hcは急激
に小さくなることからθにもX=0.17位から急激に
小さくなった。そのため、Ou!7)添加量をそ扛程上
げらtなかったが、Tbo量とFeの量の比を一定にし
てそ扛にOuを添加することを行えばHaの急激な減少
はな(Ouの添加量を多くできる。
In this example, T'b was replaced with Cu, so when Cu is increased, T'b, which contributes to anisotropy, decreases (t), and since Hc decreases rapidly, θ also has X=0.17. It suddenly decreased from 1. Therefore, Ou! 7) Although the amount added was not increased that much, if O was added to the layer while keeping the ratio of Tbo and Fe constant, there would be no rapid decrease in Ha (the amount of O added). You can do a lot of things.

実際にθにの比較を行なったところ、 Fe O,79Tb O,21θに=0.16aegF
eo79(Tbo、960uo、oa)o、21  θ
に=0.25degとなシカ−回転角θkが(uf添加
することによシ56%大きくなることが明らかである。
When we actually compared θ, we found that Fe O, 79Tb O, 21 θ = 0.16 aegF
eo79(Tbo, 960uo, oa)o, 21 θ
It is clear that the deer rotation angle θk, which is 0.25 deg, increases by 56% by adding (uf).

効果 上述のように構成さnた本発明の磁気記録媒体は保磁力
Haが大きくかつカー回転角θにの大きい材料を提供す
ることができる。
Effects The magnetic recording medium of the present invention constructed as described above can provide a material having a large coercive force Ha and a large Kerr rotation angle θ.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTb含有量と保磁力(He)との相関関係を示
すグラフであシそして第2図は本発明の光磁気記録媒体
の組成変化に対するカー回転角の大きさくθk)と保磁
力(He)との関係を示すグラフである。
Figure 1 is a graph showing the correlation between Tb content and coercive force (He), and Figure 2 is a graph showing the correlation between the Kerr rotation angle θk) and coercive force with respect to composition changes of the magneto-optical recording medium of the present invention. (He) is a graph showing the relationship with (He).

Claims (1)

【特許請求の範囲】[Claims] 少なくとも0.5原子%の銅を含有するTb−Fe会金
からなシ、かつ膜面に垂直な方向に磁化容易軸を有する
ことを特徴とする、磁気記録媒体。
1. A magnetic recording medium, characterized in that it is made of a Tb--Fe alloy containing at least 0.5 atomic percent copper, and has an axis of easy magnetization in a direction perpendicular to the film surface.
JP57206035A 1982-11-26 1982-11-26 Magnetic recording medium Pending JPS5996713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206035A JPS5996713A (en) 1982-11-26 1982-11-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206035A JPS5996713A (en) 1982-11-26 1982-11-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5996713A true JPS5996713A (en) 1984-06-04

Family

ID=16516814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206035A Pending JPS5996713A (en) 1982-11-26 1982-11-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5996713A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118107A (en) * 1984-07-04 1986-01-27 Ricoh Co Ltd Non-crystalline magneto-optical layer
JPS62132254A (en) * 1985-12-05 1987-06-15 Hitachi Maxell Ltd Photomagnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118107A (en) * 1984-07-04 1986-01-27 Ricoh Co Ltd Non-crystalline magneto-optical layer
JPS62132254A (en) * 1985-12-05 1987-06-15 Hitachi Maxell Ltd Photomagnetic recording medium

Similar Documents

Publication Publication Date Title
JPH0118506B2 (en)
JPS61117747A (en) 2-layer-film optical magnetic recording medium
JPS60117436A (en) Magnetooptic storage element
JPH0351082B2 (en)
JPS61258353A (en) Photomagnetic recording medium
JPS5996713A (en) Magnetic recording medium
JPS5996714A (en) Magnetic recording medium
JPS63179435A (en) Thin film magnetic recording medium
JPS595450A (en) Optical magnetic recording medium
JPH0343697B2 (en)
JP2680586B2 (en) Magneto-optical storage medium
JPS59227052A (en) Photomagnetic recording medium
JPH0782669B2 (en) Magneto-optical recording medium
JPS59168954A (en) Optical magnetic recording medium
JPS6184004A (en) Photo-magnetic recording medium
JPH0465523B2 (en)
JPH0470705B2 (en)
JPS60130806A (en) Amorphous magnetooptical layer
JPS61107555A (en) Optomagnetic recording medium
JP2948589B2 (en) Magneto-optical recording medium
JPH0432209A (en) Magnetic film
JPS6055535A (en) Photomagnetic recording medium
JPH0690813B2 (en) Amorphous magneto-optical layer
JPS6289254A (en) Photomagnetic recording medium
JPH0664759B2 (en) Amorphous magneto-optical layer