JPS6055535A - Photomagnetic recording medium - Google Patents
Photomagnetic recording mediumInfo
- Publication number
- JPS6055535A JPS6055535A JP16281883A JP16281883A JPS6055535A JP S6055535 A JPS6055535 A JP S6055535A JP 16281883 A JP16281883 A JP 16281883A JP 16281883 A JP16281883 A JP 16281883A JP S6055535 A JPS6055535 A JP S6055535A
- Authority
- JP
- Japan
- Prior art keywords
- anisotropy
- layer
- coercive force
- magneto
- foundation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、光磁気記録媒体、例えばレーザー光によって
書き換え可能な記録ができる光磁気ディスクに係わる。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magneto-optical recording medium, such as a magneto-optical disk on which rewritable recording can be performed using laser light.
背景技術とその問題点
レーザー光、例えば半導体レーザー光によって誉き込み
、読み出しを行うことができ、書き換え可能な光磁気デ
ィスクとして希土類金属と遷移金属とのアモルファス(
非晶質)合金による垂直磁化膜によるものが提案されて
いる。このような光磁気ディスク、すなわち光磁気記録
媒体は、通常非磁性基体上に−F述した希土類金属と遷
移金属との合金、または、夫々の単体で同時にスパッタ
リング、蒸着によってその垂@磁化膜が形成されてなる
。BACKGROUND TECHNOLOGY AND PROBLEMS Amorphous magneto-optical disks made of rare earth metals and transition metals are used as rewritable magneto-optical disks that can be read and written using laser light, such as semiconductor laser light.
A method using a perpendicularly magnetized film made of an amorphous (amorphous) alloy has been proposed. Such a magneto-optical disk, that is, a magneto-optical recording medium, is usually made by sputtering or vapor depositing an alloy of rare earth metals and transition metals mentioned above, or by sputtering or vapor-depositing each element alone, on a non-magnetic substrate. It is formed.
この種の光磁気記録媒体は、その磁化膜が安定な垂直磁
化膜として存在するためには、一般に高い保磁力Hcが
要求される。This type of magneto-optical recording medium generally requires a high coercive force Hc in order for its magnetization film to exist as a stable perpendicular magnetization film.
希土類−遷移金属磁化膜においては、保磁力が増大する
と磁化Mの大きさが減少するという相反する性質がある
。A rare earth-transition metal magnetized film has contradictory properties in that as the coercive force increases, the magnitude of magnetization M decreases.
Hcエニー−
M °“°−11,1
光磁気記録において、高密度記録(微小記録)を実現す
るためには、磁化M、保磁力l−1cとが共に大きいこ
とが要求される。すなわち、記録磁気バブルの径dは、
(珈lは磁壁エネルギー)
発明の目的
本発明は、光磁気記録媒体においてその保磁力をこの媒
体の記録層、すなわち垂直磁化膜の磁性体本来が有する
保磁力より充分大きくすることができるようにした光磁
気記録媒体を提供するものである。In magneto-optical recording, in order to realize high-density recording (micro-recording), both magnetization M and coercive force l-1c are required to be large. That is, The diameter d of the recording magnetic bubble is: (C is the domain wall energy) Purpose of the Invention The present invention provides a magneto-optical recording medium whose coercive force is greater than the coercive force originally possessed by the magnetic material of the recording layer of this medium, that is, the perpendicularly magnetized film. An object of the present invention is to provide a magneto-optical recording medium that can be made sufficiently large.
発明の概要
本発明は、非磁性基体上に、蒸着、スパッタリング等に
よって形成した下地層を介して、同様に蒸着、スパッタ
リング等によって垂直磁化膜、すなわち光磁気記録層を
形成するものである。この下地層は、これの上の光磁気
記録層に、これにおける磁気異方性を増加させる否異方
性をもたらしめる材料によって構成する。すなわち、礎
性材料における異方性磁界HKは、本来磁気異方性Ka
と磁化Msとにより決定される。Summary of the Invention In the present invention, a perpendicularly magnetized film, that is, a magneto-optical recording layer, is formed on a nonmagnetic substrate by vapor deposition, sputtering, etc. via an underlayer formed by vapor deposition, sputtering, etc. This underlayer is made of a material capable of imparting anti-anisotropy to the magneto-optical recording layer thereon, increasing the magnetic anisotropy therein. That is, the anisotropic magnetic field HK in the basic material is originally the magnetic anisotropy Ka
and magnetization Ms.
a
HK=■ ・・・・(1)
一方、光磁気記録における光磁気バブルの径dしたがっ
て、高記録密度及び高解像度を得るために、できるだけ
そのバブル径dを小さくするには、保磁力He及び磁化
Msが、できるだけ太きいことが望まれる。a HK=■ ...(1) On the other hand, in order to make the bubble diameter d as small as possible in order to obtain high recording density and high resolution, the coercive force He It is desired that the magnetization and magnetization Ms are as large as possible.
基板上に蒸着した磁化膜の出気的性%、特に保磁力の大
きさを左右する異方性K“の大きさには、磁性体が本来
もっている異方性Kaに加えて基板と磁性体との相互の
関係より生じるφ異方性に、が関与している。The magnitude of the anisotropy K, which affects the magnetic flux of the magnetized film deposited on the substrate, especially the magnitude of the coercive force, depends on the anisotropy Ka that the magnetic material originally has, as well as the relationship between the substrate and the magnetism. is involved in the φ anisotropy caused by the mutual relationship with the body.
KへKa十Ka・・・・(31
本発明においては、上述したように、非磁性基体上に、
下地層を介して光磁気記録層を形成することによってこ
の下地層を1−て光71h気記録層にIi異方性に、の
関与をはかり、もって異方性K“、保磁力)[Cを向上
させ、バブル径dの縮小化、ひいては記録密度及び解像
度の向−にをはかるものである。to K, Ka + Ka... (31 In the present invention, as mentioned above, on a non-magnetic substrate,
By forming a magneto-optical recording layer through an underlayer, this underlayer is used to influence the optical 71h recording layer to Ii anisotropy. This aims to improve the bubble diameter d, reduce the bubble diameter d, and ultimately improve the recording density and resolution.
すなわち、非磁性基体の例えばガラス基板上に、直接的
に希土類−遷移金属合金、例えばTh −Feをスパッ
タリングして非晶質の磁性薄膜を形成したものにあって
は、
σ=E(α1−α2)ΔT ・・・・f4+の応力が生
じ、磁性薄膜には、
Kσ=−一λσ ・・・・(5)
(λは磁性薄膜の磁歪定数)
の歪異方性が生じる。この歪異方性の関与により、前記
(31式より磁性薄膜の異方性K”が得られ、異方性磁
界HKまたは保磁力H,cが決ることになるが、上述の
Tb −Feスパッタリング膜による磁性薄膜では前記
(3)式のにσが負であるがために、異方性KS′−比
較的小さい。ところが、本発明においてはスパッタリン
グ、蒸着等によって下地層を、垂直磁化膜、すなわち光
磁気記録層下に被着するものであり、この下地層として
、例えばこれが非出性基体上に被着されるに際しての凝
固時に体積膨張する材料によって構成するものであり、
このようにして体積膨張による歪が、これの上に形成さ
れる光磁気記録層に影響して、この光磁気記録層におけ
る前記(3)式の蕾異方性にσを正となして異方性に餐
を大となさしめる。しかしながら、この下地層は、凝固
時に体積膨張する材料によって構成する場合に限られる
ものではなく、上述したように、非磁性基体上に直接的
に希土類−遷移金属の光磁気記録層を被着する場合にお
ける負の異方性に、を緩衝する効果の得られる材料、例
えばFeによって構成することもできる。That is, when an amorphous magnetic thin film is formed by directly sputtering a rare earth-transition metal alloy such as Th-Fe on a non-magnetic substrate such as a glass substrate, σ=E(α1- α2) A stress of ΔT...f4+ is generated, and a strain anisotropy of Kσ=−−λσ (5) (λ is the magnetostriction constant of the magnetic thin film) is generated in the magnetic thin film. Due to the involvement of this strain anisotropy, the anisotropy K'' of the magnetic thin film is obtained from Equation 31, and the anisotropic magnetic field HK or coercive force H, c is determined. In a magnetic thin film made of a film, since σ in equation (3) is negative, the anisotropy KS' is relatively small.However, in the present invention, the underlayer is formed by sputtering, vapor deposition, etc. That is, it is deposited under the magneto-optical recording layer, and the underlayer is made of, for example, a material that expands in volume when it solidifies when deposited on the non-extractable substrate.
In this way, the strain caused by the volume expansion affects the magneto-optical recording layer formed thereon, and the bud anisotropy of the above formula (3) in this magneto-optical recording layer is changed by setting σ to be positive. Make the meal bigger. However, this underlayer is not limited to the case where it is made of a material that expands in volume during solidification, and as described above, a magneto-optical recording layer of a rare earth-transition metal is directly deposited on a non-magnetic substrate. It can also be made of a material that has the effect of buffering the negative anisotropy in the case, such as Fe.
実施例
実施例I
ガラス基板上にTbを251の厚さにスパッタリングし
て下地層を形成し、続いてこれの上に22原子%Tb−
残部Fe合金をスパッタリングして垂直磁化膜を形成し
た。このようにして得た光磁気記録媒体の膜厚方向の磁
化B−磁界I■特性曲線を第1図に示す。この場合の保
磁力H,cは6KOeであった。Examples Example I A base layer is formed by sputtering Tb to a thickness of 251 nm on a glass substrate, and then 22 at % Tb-
The remaining Fe alloy was sputtered to form a perpendicular magnetization film. FIG. 1 shows the magnetization B-magnetic field I characteristic curve in the film thickness direction of the magneto-optical recording medium thus obtained. The coercive force H,c in this case was 6KOe.
第2図は、ガラス基板上に下地層を形成しないで直接的
に実施例1と同様の垂直磁化膜を形成した場合の膜厚方
向の磁化曲線である。FIG. 2 shows a magnetization curve in the film thickness direction when a perpendicularly magnetized film similar to that in Example 1 is directly formed on a glass substrate without forming an underlayer.
実施例2
実施例1と同様にして光磁気記録媒体を得るも、下地層
としてTbに代えてBi、Ge、Pbを用いた光磁気記
録媒体を夫々作成した。いずれの場合も、その保持力H
cは、下地層を形成しない従来のものに比し増大した。Example 2 A magneto-optical recording medium was obtained in the same manner as in Example 1, except that Bi, Ge, and Pb were used as the underlayer instead of Tb. In either case, the holding force H
c was increased compared to the conventional one in which no underlayer was formed.
実施例3
ガラス基板上にFeを150X蒸着し、これの上に実施
例1と同様のTb −Feによる垂直磁化膜を形成した
。この場合のHcは従来のものの2倍となった。Example 3 Fe was evaporated at 150× on a glass substrate, and a perpendicular magnetization film of Tb-Fe similar to that in Example 1 was formed thereon. Hc in this case was twice that of the conventional one.
第3図中曲線(1)及び(2)は、実施例1及び3にお
ける下地層のTb及びFeの厚さとHcとの関係をみた
ものである。この場合的@ 111においては、その厚
さが余り厚くなるとHcの低下がみられる。これは、そ
の厚さが余り厚いと、この下地層自体でその歪を吸収し
−CLまうことによるものと思われ、その厚さは数X〜
90X1好ましくはIOX〜80Xに被着することが良
いことがわかる。Curves (1) and (2) in FIG. 3 show the relationship between the thickness of Tb and Fe in the underlayer and Hc in Examples 1 and 3. In this case @111, when the thickness becomes too thick, a decrease in Hc is observed. This is thought to be due to the fact that if the thickness is too thick, the underlayer itself absorbs the strain and becomes -CL.
It can be seen that it is good to adhere to 90X1, preferably IOX to 80X.
尚、上述した例では、非磁性基体がガラス基板である場
合であるが、その他アクリル基板、高分子フィルム、例
えばポリエチレンテレフタート、ボリアミド、ポリアミ
ドイミド、ポリイミドの各フィルムを用!ることもでき
る。In the above example, the non-magnetic substrate is a glass substrate, but other acrylic substrates, polymer films such as polyethylene tereftate, polyamide, polyamideimide, and polyimide films may also be used! You can also
発明の効果
上述したように本発明によれば下地層を設けることによ
って薄膜の異方性を高める効果を得てncの向上、した
がってバブル径の縮小化を図ることができる。Effects of the Invention As described above, according to the present invention, by providing the underlayer, it is possible to obtain the effect of increasing the anisotropy of the thin film, thereby improving the nc and thereby reducing the bubble diameter.
第1図及び第2図は夫々本発明及び従来の光磁気記録媒
体の磁化曲線図、第3図は下地層の膜厚−保研力の測定
曲線図である。
第1図
第3図
s: (A)1 and 2 are magnetization curve diagrams of the present invention and a conventional magneto-optical recording medium, respectively, and FIG. 3 is a measurement curve diagram of the film thickness of the underlayer versus the sharpening force. Figure 1 Figure 3 s: (A)
Claims (1)
を主体とする垂直磁化膜が形成され、上記下地層は、上
記垂直磁化膜の保磁力を増加させる歪異方性をもたらし
める材料層よりなる光磁気記録媒体。A perpendicularly magnetized film mainly composed of rare earth metals and transition metals is formed on the nonmagnetic substrate via an underlayer, and the underlayer can provide strain anisotropy that increases the coercive force of the perpendicularly magnetized film. A magneto-optical recording medium consisting of a material layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16281883A JPS6055535A (en) | 1983-09-05 | 1983-09-05 | Photomagnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16281883A JPS6055535A (en) | 1983-09-05 | 1983-09-05 | Photomagnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6055535A true JPS6055535A (en) | 1985-03-30 |
Family
ID=15761810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16281883A Pending JPS6055535A (en) | 1983-09-05 | 1983-09-05 | Photomagnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6055535A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6236758A (en) * | 1985-08-09 | 1987-02-17 | Ricoh Co Ltd | Photomagnetic recording medium |
JPS63292440A (en) * | 1987-05-25 | 1988-11-29 | Toshiba Corp | Information recording medium and its production |
-
1983
- 1983-09-05 JP JP16281883A patent/JPS6055535A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6236758A (en) * | 1985-08-09 | 1987-02-17 | Ricoh Co Ltd | Photomagnetic recording medium |
JPS63292440A (en) * | 1987-05-25 | 1988-11-29 | Toshiba Corp | Information recording medium and its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6032331B2 (en) | magneto-optical recording medium | |
JPH0123927B2 (en) | ||
JPH0118506B2 (en) | ||
JPS61117747A (en) | 2-layer-film optical magnetic recording medium | |
JPS59178641A (en) | Photomagnetic recording medium | |
JPS60117436A (en) | Magnetooptic storage element | |
JPS5837608B2 (en) | magnetic recording medium | |
JPS6055535A (en) | Photomagnetic recording medium | |
JPH0351082B2 (en) | ||
JPS61165847A (en) | Photomagnetic recording medium | |
JPS6131533B2 (en) | ||
JPH0782672B2 (en) | Magnetic thin film recording medium | |
JP2680586B2 (en) | Magneto-optical storage medium | |
JPS595450A (en) | Optical magnetic recording medium | |
US5529854A (en) | Magneto-optic recording systems | |
JPH0470705B2 (en) | ||
JPH0465523B2 (en) | ||
JPS6243848A (en) | Photomagnetic recording medium | |
JPS59168954A (en) | Optical magnetic recording medium | |
JPS5996713A (en) | Magnetic recording medium | |
JPS5857645A (en) | Disk medium for vertical magnetic recording | |
JPS5996714A (en) | Magnetic recording medium | |
JPS6122451A (en) | Photomagnetic recording medium | |
JPS6137765B2 (en) | ||
JP2659708B2 (en) | Magneto-optical memory media |