[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0432209A - Magnetic film - Google Patents

Magnetic film

Info

Publication number
JPH0432209A
JPH0432209A JP13870590A JP13870590A JPH0432209A JP H0432209 A JPH0432209 A JP H0432209A JP 13870590 A JP13870590 A JP 13870590A JP 13870590 A JP13870590 A JP 13870590A JP H0432209 A JPH0432209 A JP H0432209A
Authority
JP
Japan
Prior art keywords
film
magnetic
rare earth
magnetic film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13870590A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP13870590A priority Critical patent/JPH0432209A/en
Publication of JPH0432209A publication Critical patent/JPH0432209A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/133Amorphous metallic alloys, e.g. glassy metals containing rare earth metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve the permeability of a laser beam and obtain a magneto- optical effect by using alloy of rare earth elements and transition metals and oxide of the rare earth elements and/or transition metals as principal constituents and providing prismatic structure and vertical magnetic anisotropy. CONSTITUTION:A prismatic-structure magnetic film consists of, besides the same magnetic materials as conventional, amorphous oxide containing alloy of rare earth elements and transition metals in the form of particulates of diameter as large as 20-500Angstrom to improve the permeability of a laser beam and obtain a higher magneto-optical effect (Faraday effect). The prismatic structure of the magnetic film vertically magnetized provides higher vertical magnetic anisotropy. The prismatic structure of an a-rare-earth-element- transition-metal-alloy thin film containing the alloy of the rare earth elements and transition metals in particulate form forms a film vertically magnetized better than the same film not containing the alloy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性膜に関し、詳しくは、光磁気記録媒体とし
て特に有用であり、更には、レーザー光でなく磁気ヘッ
ドを用いた記録・再生を行なう磁気記録媒体や、その他
、書換え可能なホログラフィ−用メモリ媒体としても適
用可能な磁性膜に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic film, and more specifically, it is particularly useful as a magneto-optical recording medium, and furthermore, it is capable of recording and reproducing using a magnetic head instead of a laser beam. The present invention relates to a magnetic film that can be used as a magnetic recording medium for holography and other rewritable holography memory media.

(従来の技術〕 磁性膜(磁性体薄膜)を適当な基板(非磁性支持体)上
に形成したものは記録媒体(磁気記録媒体、光磁気記録
媒体)として広く利用されている。殊に、光磁気記録方
式に採用されている記録媒体(光磁気記録媒体)には、
記録感度が高いこと、磁気光学効果が大きいこと、大面
積のものが均質かつ安価に製作できること、安定性にす
ぐれたていること、等が要求される。これに加えて、磁
気光学効果の大きさを磁化の向きと光の進行方向とが平
行なとき最も大きくなり、また、面に垂直な磁化をもつ
という条件は垂直磁気記録の要件を満しているため高密
度記録にも適する。従って、記録媒体にあっては面に垂
直な磁化をもつ材料が選択されねばならない。
(Prior Art) A magnetic film (magnetic thin film) formed on a suitable substrate (non-magnetic support) is widely used as a recording medium (magnetic recording medium, magneto-optical recording medium).In particular, The recording medium (magneto-optical recording medium) used in the magneto-optical recording method includes:
It is required to have high recording sensitivity, a large magneto-optical effect, the ability to manufacture a large area uniformly and inexpensively, and excellent stability. In addition, the magnitude of the magneto-optic effect is greatest when the direction of magnetization and the direction of light travel are parallel, and the condition of having magnetization perpendicular to the plane satisfies the requirements for perpendicular magnetic recording. This makes it suitable for high-density recording. Therefore, a material with magnetization perpendicular to the plane must be selected for the recording medium.

こうした要請から、光磁気記録媒体に有用な磁性膜材料
としては多くが提案されているが、その代表例として、
GdCo、 CdFe、 TbFe、 TbDyFeな
どアモルファス状の希土類元素・遷移金属合金が知られ
ている。だが、このアモルファス状希土類元素・遷移金
属合金(以降「a−希・遷合金」と略記することがある
)からなる磁性膜は希土類元素、遷移金属ともに酸化し
やすいため、経時とともに性能劣化が進行するといった
傾向がある。従って、a−希・遷合金膜が用いられる場
合には、その酸化防止として、この膜をパッシベーショ
ン膜で被覆する必要がある。また、a−希・遷合金膜は
安定性に欠け、500℃くらいの高温で結晶化し、特性
が劣化する傾向がある。
In response to these demands, many magnetic film materials useful for magneto-optical recording media have been proposed; representative examples include:
Amorphous rare earth element/transition metal alloys such as GdCo, CdFe, TbFe, and TbDyFe are known. However, in a magnetic film made of this amorphous rare earth element/transition metal alloy (hereinafter sometimes abbreviated as "a-rare/transition alloy"), both the rare earth element and the transition metal are easily oxidized, so the performance deteriorates over time. There is a tendency to do so. Therefore, when an a-rare transition alloy film is used, it is necessary to cover this film with a passivation film to prevent oxidation. Further, the a-rare transition alloy film lacks stability and tends to crystallize at a high temperature of about 500° C., resulting in deterioration of properties.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の第一の目的は、上記のような不都合な現象をも
たらさず殊に光磁気記録媒体に有用な磁性膜を提供する
ものである0本発明の第二の目的は、膜構造を制御する
ことによって光磁気記録媒体としての特性が更に向上で
き、また、容易には熱分解が起らない磁性膜を提供する
ものである。
The first object of the present invention is to provide a magnetic film that does not cause the above-mentioned disadvantageous phenomena and is particularly useful for magneto-optical recording media. By doing so, the characteristics as a magneto-optical recording medium can be further improved, and a magnetic film that does not easily undergo thermal decomposition is provided.

本発明の第三の目的は、特にファラデー効果による再生
効率が高められる磁性膜を提供するものである。
A third object of the present invention is to provide a magnetic film in which reproduction efficiency, particularly due to the Faraday effect, is enhanced.

〔課題を解決するための手段〕 本発明の磁性膜は、希土類元素・遷移金属合金とこれら
希土類元素及び/又は遷移金属の酸化物とを主成分とし
、柱状構造を呈し、かつ、垂直磁気異方性を有すること
を特徴としている。
[Means for Solving the Problems] The magnetic film of the present invention is mainly composed of a rare earth element/transition metal alloy and an oxide of these rare earth elements and/or transition metals, has a columnar structure, and has a perpendicular magnetic anisotropy. It is characterized by having tropism.

本発明の磁性膜をよく判りやすくいえば、希土類元素・
遷移金属合金を微粒子状にしてアモルファス状酸化物中
に含有せしめレーザー光の透過率を向上させ、かつ、磁
気光学効果を得ようとするものである。
To explain the magnetic film of the present invention in an easy-to-understand manner, it can be said that rare earth elements,
The purpose is to improve the transmittance of laser light and obtain a magneto-optical effect by making a transition metal alloy into fine particles and incorporating it into an amorphous oxide.

これを従来の磁性膜との比較においてより詳細に説明す
ると、従来の光磁気記録媒体のための磁性膜は磁気光学
効果のうちカー効果によったものがほとんどであり、カ
ー効果は磁性材料の種類によって定まったものである。
To explain this in more detail in comparison with conventional magnetic films, most of the magnetic films for conventional magneto-optical recording media are based on the Kerr effect among magneto-optical effects, and the Kerr effect is due to the effect of magnetic materials. It is determined by the type.

これに対し、本発明の磁性膜は磁気光学効果のうちファ
ラデー効果によったものである。なお、ファラデー効果
は磁性膜の膜厚を厚くすればファラデー回転角(θF)
が大きくなり、S/N比も大きくなる。
On the other hand, the magnetic film of the present invention is based on the Faraday effect among the magneto-optical effects. Furthermore, the Faraday effect can be reduced by increasing the Faraday rotation angle (θF) by increasing the thickness of the magnetic film.
becomes larger, and the S/N ratio also becomes larger.

従って、本発明に係る磁性膜は、一部従来の同様な磁性
材料を用いているにしても、その構造は、希土類元素・
遷移金属合金をアモルファス状酸化物中に微粒子状(2
0〜500人)にして含有せしめ柱状状構造体にして、
レーザー光の透過率を向上させ、かつ、より良好な磁気
光学効果(ファラデー効果)を得るようにしている。
Therefore, even though the magnetic film according to the present invention uses some of the same conventional magnetic materials, its structure is different from that of rare earth elements.
A transition metal alloy is mixed into an amorphous oxide in the form of fine particles (2
0 to 500 people) and contained in a columnar structure,
The laser beam transmittance is improved and a better magneto-optical effect (Faraday effect) is obtained.

本発明の磁性膜は、既述のとおり、■垂直磁化膜であり
、かつ■柱状構造を呈しているが、これは、柱状構造が
採用されていることでより垂直磁気異方性に寄与してい
るともいえる。先に触れたように、a−希・遷合金薄膜
は良好な垂直磁化膜を形成するものであるが、これに希
土類元素・遷移金属合金の粒状物が含有されて柱状構造
として製膜されていると一層その傾向が強まる。
As mentioned above, the magnetic film of the present invention is (1) a perpendicular magnetization film and (2) exhibits a columnar structure, which contributes more to perpendicular magnetic anisotropy due to the columnar structure. It can be said that As mentioned earlier, the a-rare/transition alloy thin film forms a good perpendicular magnetization film, but it contains rare earth element/transition metal alloy particles and is formed into a columnar structure. This tendency becomes even stronger.

本発明においては、柱状構造を呈した磁性膜を垂直磁気
異方性をさらに高めるため1強磁性金属の窒化物である
ε相MxN(2<x≦3)[但し旧まFe、 C。
In the present invention, in order to further enhance the perpendicular magnetic anisotropy of the magnetic film exhibiting a columnar structure, the ε-phase MxN (2<x≦3), which is a nitride of a ferromagnetic metal, is used.

又はNiである]をC軸配向せしめて膜中に存在せしめ
ることが望ましい。これは窒化物粒子が柱状構造内部で
磁気的に密につながっているため、垂直磁気異方性を一
層強めるものと思われる。
or Ni] is preferably present in the film with C-axis orientation. This is thought to be due to the fact that the nitride particles are closely connected magnetically within the columnar structure, further enhancing the perpendicular magnetic anisotropy.

既述のとおり、本発明の磁性膜には希土類元素及び/又
は遷移金属の酸化物が当初から存在せしめられているた
め、更に希土類元素、遷移金属の酸化(錆の生成)の進
行が抑えられ化学的に安定である。また、希土類元素・
遷移金属合金酸化物のの存在により膜は硬く傷はつきに
くい。
As mentioned above, since rare earth elements and/or transition metal oxides are present in the magnetic film of the present invention from the beginning, the progress of oxidation (rust formation) of rare earth elements and transition metals is further suppressed. Chemically stable. In addition, rare earth elements
The presence of transition metal alloy oxides makes the film hard and scratch-resistant.

実際、本発明の磁性膜をX線回折法で調べても回折ピー
クは観察されないか又は観察できても微少な酸化物のピ
ークが見られる程度である。特に、ε相MxNの配向面
の回折ピークが観察できる膜は垂直磁気異方性が極めて
良好である。但し、この理由はいまだ明らかにされてい
ない。
In fact, when the magnetic film of the present invention is examined by X-ray diffraction, no diffraction peak is observed, or even if it is observed, only a minute oxide peak is observed. In particular, a film in which the diffraction peak of the ε-phase MxN orientation plane can be observed has extremely good perpendicular magnetic anisotropy. However, the reason for this has not yet been clarified.

本発明の磁性膜中には、希土類元素や遷移金属及びその
合金のがX線回折法では観察できない位の小さい微粒子
(50人程度と考えられる)で含有され、また、希土類
元素や遷移金属及びその合金の酸化物又は窒化物がやは
りX線回折法では観察されないくらいアモルファス的に
結合して含有されている(例えばFe−0,Co−0、
Fe−N、 Co−N等であり、これらが結晶ならば回
折ピークが出る)、但し。
The magnetic film of the present invention contains rare earth elements, transition metals, and their alloys in the form of fine particles (estimated to be about 50 particles) that are too small to be observed by X-ray diffraction. The oxides or nitrides of the alloy are contained in such an amorphous combination that they cannot be observed by X-ray diffraction (e.g. Fe-0, Co-0,
(Fe-N, Co-N, etc., and if these are crystals, diffraction peaks will appear).

ε相MxNのC軸配向粒子は明瞭に結晶化して含有され
ていると0面の強い回折ピークが観察され、このピーク
のロッキングカーブの半値巾が小さくなる程、即ち結晶
配向性が良くなる程垂直異方性磁界が大きくなるという
傾向がある。
When C-axis oriented particles of ε-phase MxN are clearly crystallized and contained, a strong diffraction peak of the zero plane is observed, and the smaller the half-width of the rocking curve of this peak, that is, the better the crystal orientation. There is a tendency for the perpendicular anisotropy field to increase.

本発明においては、柱状構造をもった磁性膜がより製膜
しやすくするため、予め下地層を基板(支持体)上に設
けておいてもよい。また必要に応じて、磁性層上に保護
層1反射層、潤滑層、誘電体層などが設けられてもよい
In the present invention, in order to make it easier to form a magnetic film having a columnar structure, an underlayer may be provided on the substrate (support) in advance. Further, a protective layer 1 reflective layer, a lubricating layer, a dielectric layer, etc. may be provided on the magnetic layer as necessary.

支持体としてはプラスチックフィルム、セラミック、金
属、ガラスなど適宜の非磁性材料を用いられる。ここで
の支持体用プラスチックスとしては、ポリイミド、ポリ
アミド、ポリエーテルサルホン等の耐熱性プラスチック
は勿論のこと、ポリエチレンテレフタレート、ポリ塩化
ビニル、三酢酸セルロース、ポリカーボネート、ポリメ
チルメタクリレートのごときプラスチックも使用できる
As the support, an appropriate non-magnetic material such as plastic film, ceramic, metal, glass, etc. can be used. The plastics used for the support here include not only heat-resistant plastics such as polyimide, polyamide, and polyethersulfone, but also plastics such as polyethylene terephthalate, polyvinyl chloride, cellulose triacetate, polycarbonate, and polymethyl methacrylate. can.

また、支持体の形状としては、シート状、カード状、デ
ィスク状、ドラム状、長尺テープ状等の任意の形状をと
ることができる。
Further, the shape of the support may be any shape such as a sheet, a card, a disk, a drum, or a long tape.

誘電体層(エンハンス効果に有効)としては5in2、
Tie、Ti0N、Ag5iO1TiN、AflSiN
、BN、SiN、AQN。
The dielectric layer (effective for enhancement effect) is 5in2,
Tie, Ti0N, Ag5iO1TiN, AflSiN
, BN, SiN, AQN.

AffSiON、 Sin、 5iONなどをあげるこ
とができる。
Examples include AffSiON, Sin, 5iON, etc.

潤滑層としてはカーボン層、二酸化モリブデン、二硫化
タングステン、α−オレフィン重合物、常温で液体の不
飽和炭化水素(n−オレフィン二重結合が末端の炭素に
結合した化合物;炭素数的20)。
The lubricating layer includes a carbon layer, molybdenum dioxide, tungsten disulfide, an α-olefin polymer, and an unsaturated hydrocarbon that is liquid at room temperature (a compound in which an n-olefin double bond is bonded to the terminal carbon; carbon number is 20).

炭素数12〜20の一塩基性脂肪酸と炭素数3〜12の
一価アルコールよりなる脂肪酸エステル類などをあげる
ことができる。
Examples include fatty acid esters consisting of a monobasic fatty acid having 12 to 20 carbon atoms and a monohydric alcohol having 3 to 12 carbon atoms.

反射層の材料としてはAu、Afi、Ag、Pt、Cr
、Nd、Ge、Rh 、 Cu 、 TiNなどが用い
られる。
Materials for the reflective layer include Au, Afi, Ag, Pt, and Cr.
, Nd, Ge, Rh, Cu, TiN, etc. are used.

なお、磁性膜をはじめ前記各層は真空蒸着法、イオンプ
レーテング法、スパッタリング法、CVD法などの薄膜
形成法により作製される。各層の厚さは14以下好まし
くは0.05〜0.5I!s<らいが適当である。
The above-mentioned layers including the magnetic film are manufactured by a thin film forming method such as a vacuum evaporation method, an ion plating method, a sputtering method, or a CVD method. The thickness of each layer is 14 or less, preferably 0.05 to 0.5I! S<Leprosy is appropriate.

実際に、本発明に係る磁性膜をつくるには1例えばRF
スパッタ装置を用い、ターゲット材料に前記の強磁性金
属及び透明性物質(希土類元素及び/又は遷移金属の酸
化物)をターゲット材料とじて基板上に透明磁性膜を堆
積させるようにすればよい。
Actually, in order to make the magnetic film according to the present invention, for example, RF
A transparent magnetic film may be deposited on a substrate using a sputtering device using the above-mentioned ferromagnetic metal and transparent substance (oxide of a rare earth element and/or transition metal) as a target material.

〔実施例〕〔Example〕

実施例1 イオンビームスパッタ装置を用いてディスク状ポリカー
ボネート基板上に回転速度2rpmとして下記の条件で
厚さ約2000人の透明磁性膜を製膜した。
Example 1 A transparent magnetic film with a thickness of approximately 2000 mm was formed on a disk-shaped polycarbonate substrate using an ion beam sputtering apparatus at a rotation speed of 2 rpm and under the following conditions.

ターゲット       GdFe(Gd 10at+
s%)基板加熱        なし イオン化ガス      Ar(100%)導入ガス 
       エアー ベースプレッシャ8 X 1O−7Torrイオン銃電
流      1.2■A イオン銃電圧      9.5KV イオン入射角      30度 導入エアー圧力     2 X 10−’ Torr
ターゲット−基板間距離 14鳳隠 この磁性膜をX線回折法で調べたところ回折ピークは認
められなかった。断面をTEN法で調べたところ直径約
150〜300人の柱状構造が観察された。
Target GdFe (Gd 10at+
s%) Substrate heating None Ionized gas Ar (100%) introduced gas
Air base pressure 8 X 10-7 Torr Ion gun current 1.2 A Ion gun voltage 9.5 KV Ion incident angle 30 degrees Introduced air pressure 2 X 10-' Torr
Target-Substrate Distance 14 When this magnetic film was examined by X-ray diffraction, no diffraction peak was observed. When the cross section was examined using the TEN method, a columnar structure with a diameter of about 150 to 300 people was observed.

光透過率は45%(λ=800nm)であった。VSM
で調べた磁気特性はHe4 (抗磁力)=12000e
、 、Hc#(抗磁力)=3000s、 Ms(飽和磁
化)=520e+++u/ec、 5q1(角型比)=
0.22、Hx(垂直磁気異方性磁界)=4.I KO
eであり、垂直磁化膜であるのが確められた。補償温度
は190℃であった。
The light transmittance was 45% (λ=800 nm). VSM
The magnetic properties investigated were He4 (coercive force) = 12000e
, , Hc# (coercive force) = 3000s, Ms (saturation magnetization) = 520e+++u/ec, 5q1 (squareness ratio) =
0.22, Hx (perpendicular magnetic anisotropy field) = 4. I K.O.
e, and it was confirmed that it was a perpendicularly magnetized film. The compensation temperature was 190°C.

ついで、この磁性膜に最大12KOeの磁界を印加しな
がら半導体レーザー(λ=780nm)を用いてファラ
デー回転角を測定したところ1 、3deg/−であっ
た、この磁性膜を1ケ月間5%NaCQ溶液に浸漬した
後測定しても上記特性に変化はなかった。
Next, the Faraday rotation angle was measured using a semiconductor laser (λ = 780 nm) while applying a maximum magnetic field of 12 KOe to this magnetic film, and it was found to be 1.3 deg/-. Even when measured after being immersed in the solution, there was no change in the above characteristics.

実施例2 イオン化ガスとしてAr(75%)+N、 (25%)
を用いた以外は実施例1と全く同様(但し、イオン銃電
圧は9KV、イオン銃電流は2mAとした)にして透明
磁性膜を製膜した。
Example 2 Ar (75%) + N, (25%) as ionized gas
A transparent magnetic film was formed in the same manner as in Example 1 except that the ion gun voltage was 9 KV and the ion gun current was 2 mA.

この磁性膜にはFaxN(2<X≦3)の(002) 
(004)の回折ピークが観察された。また、柱状構造
の直径は150〜300人で実施例1とほぼ同じであっ
たが、柱状構造はより明瞭に観察された。光透過率も実
施例1と同じであった。
This magnetic film has (002) of FaxN (2<X≦3).
A (004) diffraction peak was observed. Moreover, the diameter of the columnar structure was 150 to 300 people and was almost the same as in Example 1, but the columnar structure was observed more clearly. The light transmittance was also the same as in Example 1.

VSMで調べた磁気特性はHc、=13500s、 H
c#=2900s、 Ms=500emu/cc、 S
g、=0.26、Hg=5.3 KOeであり、垂直磁
化膜であるのが確められた。補償温度は210℃であっ
た。ファラデー回転角は3.9deg/IJsであった
。この磁性膜を1ケ月間5%NaCQ溶液に浸漬した後
測定し、しかも上記特性に変化はなかった。
The magnetic properties investigated by VSM are Hc, = 13500s, H
c#=2900s, Ms=500emu/cc, S
g, = 0.26, Hg = 5.3 KOe, and it was confirmed that it was a perpendicularly magnetized film. The compensation temperature was 210°C. The Faraday rotation angle was 3.9 deg/IJs. This magnetic film was immersed in a 5% NaCQ solution for one month and then measured, and there was no change in the above characteristics.

比較例1 ターゲットとしてFe(99,99%)を用い、導入エ
アー圧力を8 X 10−’ Torrとした以外は実
施例1と全く同様にして透明磁性膜を製膜した。
Comparative Example 1 A transparent magnetic film was formed in the same manner as in Example 1, except that Fe (99.99%) was used as the target and the introduced air pressure was 8 x 10-' Torr.

この磁性膜の回折ピークはFeO(200)のピークと
α−Fe(110)のブロードなピークが観察された。
As for the diffraction peaks of this magnetic film, a peak of FeO (200) and a broad peak of α-Fe (110) were observed.

但し、実施例1と同様な柱状構造が不明瞭ながら観察さ
れた。透過率は44%(λ=800nm)であった。但
し、VSMで調べた磁性特性はHc、=2900e、 
Hc#=1300s、 Ms=660 emu/cc、
 sq、:o、1:l、Sq#”0.13、Hk=2゜
8 KOeであり、等方性磁化膜であるのが認められた
。 SOO℃までは磁化が0になることなく少しづつ減
少し、500℃では常温の飽和磁化の75%であった。
However, a columnar structure similar to that in Example 1 was observed although it was unclear. The transmittance was 44% (λ=800 nm). However, the magnetic properties investigated by VSM are Hc, = 2900e,
Hc#=1300s, Ms=660 emu/cc,
sq, :o, 1:l, Sq#"0.13, Hk=2°8 KOe, and it was recognized that it is an isotropic magnetized film. The magnetization does not become 0 until SOO℃, but slightly changes. The magnetization gradually decreased, and at 500° C., it was 75% of the saturation magnetization at room temperature.

ファラデー回転角は0.1deg/Ilaであった。し
かし、この磁性膜は1ケ月間NaCM溶液に浸漬した後
測定しても変化はなかった。
The Faraday rotation angle was 0.1 deg/Ila. However, there was no change in this magnetic film even when it was measured after being immersed in the NaCM solution for one month.

〔発明の効果〕〔Effect of the invention〕

本発明の磁性膜は大きな垂直磁気異方性と磁気光学効果
(ファラデー効果)を有する透明磁性膜であり、更には
適当な補償温度を有する為に、高感度な記録・消去がで
き、かつ、化学的に安定であり、光磁気記録用磁性膜と
して有用なものである。
The magnetic film of the present invention is a transparent magnetic film that has large perpendicular magnetic anisotropy and magneto-optical effect (Faraday effect), and also has an appropriate compensation temperature, so that highly sensitive recording and erasing can be performed. It is chemically stable and useful as a magnetic film for magneto-optical recording.

特許出願人 株式会社 リ  コPatent applicant Rico Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)希土類元素・遷移金属合金とこれら希土類元素及
び/又は遷移金属の酸化物とを主成分とし、柱状構造を
呈し、かつ、垂直磁気異方性を有していることを特徴と
する磁性膜。
(1) Magnetism characterized by having a rare earth element/transition metal alloy and oxides of these rare earth elements and/or transition metals as main components, exhibiting a columnar structure, and having perpendicular magnetic anisotropy. film.
(2)前記柱状構造内部にC軸配向の遷移金属窒化物が
含有されている請求項1に記載の磁性膜。
(2) The magnetic film according to claim 1, wherein the columnar structure contains a C-axis oriented transition metal nitride.
JP13870590A 1990-05-29 1990-05-29 Magnetic film Pending JPH0432209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13870590A JPH0432209A (en) 1990-05-29 1990-05-29 Magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13870590A JPH0432209A (en) 1990-05-29 1990-05-29 Magnetic film

Publications (1)

Publication Number Publication Date
JPH0432209A true JPH0432209A (en) 1992-02-04

Family

ID=15228201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13870590A Pending JPH0432209A (en) 1990-05-29 1990-05-29 Magnetic film

Country Status (1)

Country Link
JP (1) JPH0432209A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2817318A1 (en) * 1977-05-25 1978-11-30 Tdk Electronics Co Ltd TAPE CASSETTE
JP2000018033A (en) * 1998-06-30 2000-01-18 Shin Daiwa Kogyo Co Ltd Exhaust structure of engine
CN109786080A (en) * 2019-03-11 2019-05-21 中国计量大学 A kind of light-operated integrated on-chip inductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2817318A1 (en) * 1977-05-25 1978-11-30 Tdk Electronics Co Ltd TAPE CASSETTE
JP2000018033A (en) * 1998-06-30 2000-01-18 Shin Daiwa Kogyo Co Ltd Exhaust structure of engine
CN109786080A (en) * 2019-03-11 2019-05-21 中国计量大学 A kind of light-operated integrated on-chip inductor

Similar Documents

Publication Publication Date Title
JPH0118506B2 (en)
JPH0432209A (en) Magnetic film
JPS63107008A (en) Thin-film having large kerr&#39;s angle of rotation and manufacture thereof
JPH03296202A (en) Magnetic film
JPH04265511A (en) Magnetic recording medium
JP3183965B2 (en) Magnetic recording film, magnetic recording medium, and magneto-optical recording medium
JP2738733B2 (en) Magnetic film
JPH0230104A (en) Vertically magnetized film
JP2824998B2 (en) Magnetic film
JPH04336404A (en) Magnetic film
JP2629062B2 (en) Medium for magneto-optical memory
JPH0470705B2 (en)
JPS6029996A (en) Photomagnetic recording carrier
JPS6137765B2 (en)
JP2777594B2 (en) Magnetic film
JPH01243225A (en) Magnetic recording medium
JPH01140446A (en) Magneto-optical memory medium
JPH0430166B2 (en)
JPH0311531B2 (en)
JP2829321B2 (en) Magneto-optical recording medium
JPS5996713A (en) Magnetic recording medium
JPH0387005A (en) Magnetic film
JPH05303780A (en) Magnetic film
JPS62165753A (en) Magnetooptic recording medium
JPH0612713A (en) Magnetic recording film, magnetic recording medium and magneto-optical recording medium