[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58204126A - Production of nondirectional electrical steel strip having excellent magnetic characteristic - Google Patents

Production of nondirectional electrical steel strip having excellent magnetic characteristic

Info

Publication number
JPS58204126A
JPS58204126A JP8628182A JP8628182A JPS58204126A JP S58204126 A JPS58204126 A JP S58204126A JP 8628182 A JP8628182 A JP 8628182A JP 8628182 A JP8628182 A JP 8628182A JP S58204126 A JPS58204126 A JP S58204126A
Authority
JP
Japan
Prior art keywords
hot
steel strip
annealing
rolled steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8628182A
Other languages
Japanese (ja)
Other versions
JPH0257125B2 (en
Inventor
Kazumi Morita
森田 和巳
Shigeo Kinoshita
木下 繁雄
Isao Matoba
的場 伊三夫
Yozo Ogawa
小川 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8628182A priority Critical patent/JPS58204126A/en
Publication of JPS58204126A publication Critical patent/JPS58204126A/en
Publication of JPH0257125B2 publication Critical patent/JPH0257125B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a titled steel strip, by using a slab contg. a limited compsn. of components, subjecting the same to hot rolling that ends in a specific temp. range, coiling the strip at a specific temp. or above and annealing the coiled strip for a short time at a specific temp. CONSTITUTION:Low carbon steel consisting, by weight %, <=0.02 C, <=1.5 Si or (Si+Al), <=1.5 Mn, <=0.2 P and the balance Fe and unavoidable impurities is hot- rolled and the hot rolling is completed at 600-700 deg.C, whereby a hot-rolled steel strip is produced. The strip is coiled at >=500 deg.C and the coiled strip is annealed for 30sec-15min at the A3 transformation point or below. The annealed strip is thereafter subjected to pickling, cold rolling and annealing by an ordinary method.

Description

【発明の詳細な説明】 本発明は磁気特性のすぐれた無方向性電磁鋼帯の製造方
法に係り、特に磁束密度が極めて高く、鉄損が低いフレ
プロセスまたはセミプロセス無方向性電磁鋼帯の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a non-oriented electrical steel strip with excellent magnetic properties, and in particular to a method for manufacturing a non-oriented electrical steel strip with extremely high magnetic flux density and low iron loss. Regarding the manufacturing method.

無方向性電磁鋼帯は発電機、電動機、小型変圧器および
安定器等の鉄心材料として使用される。
Non-oriented electrical steel strips are used as core materials for generators, electric motors, small transformers, ballasts, etc.

しかし昨今、省エネルギー化が強く叫ばれ電気機器の効
率向上もしくは小型化めため磁束密度が高く、かつ鉄損
の低い鉄心材料の要求がますます高まって来ている。
However, in recent years, there has been a strong demand for energy conservation, and in order to improve the efficiency or downsize electrical equipment, the demand for iron core materials with high magnetic flux density and low core loss is increasing.

無方向性電磁鋼帯製造の従来技術として冷間圧延前の素
材の結晶粒径を大きくしておくことが磁気特性の向上に
有効であることが知られている。
As a conventional technique for manufacturing non-oriented electrical steel strip, it is known that increasing the grain size of the material before cold rolling is effective in improving magnetic properties.

本発明者らは先に特願昭55−110314によって冷
間圧延前の結晶粒を粗大化する方法全開示した。この方
法は限穴範囲内の化学成分を有する鋼塊またはス長プを
熱延鋼帯に熱間圧延するに際し、熱間圧延終了温度を該
鋼の化学成分に応じて次の(1)式で表わされるAr3
変態点温度以上となし、(891−900(Cm)+5
0(Si4) −88(Mn%)+190(P%)+3
80(Ars))℃・・・・・・(1) 次いでこの熱延鋼帯を該鋼のA3変態点温度以下で30
秒間以上15分間以下の時間焼鈍することを主な特徴と
するものであって、この方法によってすぐれた磁気特性
の無方向性電磁銅帯の製造が可能となった。本発明者ら
の開示した上記方法ri、熱延鋼帯の結晶粒径を粗大化
するための熱延鋼帯の焼鈍には従来の箱焼鈍の如き長時
間焼鈍ではなく、また脱炭させる必要もなく% 15分
以下の短時間で比較的安価に、かつ容易に熱延鋼帯の結
晶粒の粗大化に成功したものである。
The present inventors previously disclosed in Japanese Patent Application No. 55-110314 a method for coarsening grains before cold rolling. In this method, when hot-rolling a steel ingot or strip having a chemical composition within the limit hole range into a hot-rolled steel strip, the hot rolling end temperature is determined according to the following formula (1) according to the chemical composition of the steel. Ar3 expressed as
Above the transformation point temperature, (891-900 (Cm) + 5
0(Si4) -88(Mn%)+190(P%)+3
80(Ars))℃・・・(1) Then, this hot-rolled steel strip is heated to 30℃ below the A3 transformation point temperature of the steel.
The main feature of this method is that it is annealed for a time of at least 1 second and at most 15 minutes, and this method has made it possible to manufacture a non-oriented electromagnetic copper strip with excellent magnetic properties. In the above method ri disclosed by the present inventors, the annealing of the hot rolled steel strip to coarsen the grain size of the hot rolled steel strip does not involve long annealing as in conventional box annealing, and also requires decarburization. This method successfully coarsened the grains of a hot rolled steel strip easily and relatively inexpensively in a short period of 15 minutes or less.

本発明の目的は、本発明者らの開示した上記特願昭55
−110314の発明を更に改良した磁束密度が極めて
高く、鉄損も低いフルプロセスまたはセミプロセス無方
向性電磁鋼板の新規な製造方法を提供するにある。
The purpose of the present invention is to obtain
It is an object of the present invention to provide a novel method for manufacturing a fully processed or semi-processed non-oriented electrical steel sheet which has an extremely high magnetic flux density and a low core loss, which is a further improvement on the invention of No. 110314.

本発明の要旨とするところは次の如くである。The gist of the present invention is as follows.

低炭素鋼を熱間圧延して熱延鋼帯とする工程と、前記熱
延銅帯を焼鈍しだ後酸洗する工程と、前記酸洗鋼帯を1
回の冷間圧延もしくは中間焼鈍を挾む2回の冷間圧延に
より冷延鋼帯とする工程と、前記冷延鋼帯にフルプロセ
スまたはセミプロセスによる焼鈍を施す工程と、を有し
て成る無方向性電磁鋼板の製造方法において、前記低炭
素鋼は重量比にてC:0.02チ以下、Siもしくは(
Si+A/)のいずれかが1.5係以下、Mn:1.0
%以下、P:0、204以下を含み残部はFeおよび不
可避的不純物より成り、前記熱間圧延工程における圧延
終了温度を600〜700℃、捲取温度を500℃以上
の温度範囲で行ない、次いで前記捲取鋼帯をA3変態点
以下の温度で30秒間以上15分間以下の時間焼鈍する
ことを特徴とする特許ぐれた無方向性電磁銅帯の製造方
法である。
a step of hot rolling the low carbon steel into a hot rolled steel strip; a step of annealing the hot rolled copper strip and then pickling;
a step of forming a cold-rolled steel strip by two times of cold rolling or two times of intermediate annealing; and a step of subjecting the cold-rolled steel strip to full-process or semi-process annealing. In the method for manufacturing a non-oriented electrical steel sheet, the low carbon steel has a weight ratio of C: 0.02 or less, Si or (
Either Si+A/) is 1.5 or less, Mn: 1.0
% or less, P: 0, 204 or less, the remainder consisting of Fe and unavoidable impurities, the rolling end temperature in the hot rolling step is 600 to 700°C, the winding temperature is in the temperature range of 500°C or more, and then This is a patented method for manufacturing a non-oriented electromagnetic copper strip, characterized in that the rolled steel strip is annealed at a temperature below the A3 transformation point for a period of 30 seconds to 15 minutes.

本発明者らは、上記特願昭55−110314にて開示
した方法において、熱延鋼帯焼鈍により結晶粒が2次再
結晶的に粗大化する理由を一応次  :のように考えた
。すなわち、熱間圧延後の熱延鋼帯の結晶組織が微細で
あることから、この銅帯をA3変態点温度以下で焼鈍す
ることにより局部的にやや粗大な結晶粒が発生すると、
容易に微細なマトリックス結晶を喰って成長するものと
考えた。
In the method disclosed in the above-mentioned Japanese Patent Application No. 55-110314, the present inventors considered the reason why the crystal grains become coarser due to secondary recrystallization due to hot rolled steel strip annealing as follows. That is, since the crystal structure of the hot-rolled steel strip after hot rolling is fine, when this copper strip is annealed at a temperature below the A3 transformation temperature, slightly coarse crystal grains are generated locally.
It was thought that it would easily grow by eating fine matrix crystals.

このような当初微細な結晶組織を有する熱延鋼帯を得る
には熱間圧延終了温度をr相領域にすることが必要であ
り,、従ってr+α相領域および815℃以上のα相領
域における熱延条件では不可能であると考えた。
In order to obtain a hot-rolled steel strip with such an initially fine crystal structure, it is necessary to set the hot rolling finish temperature to the r-phase region. We thought that this would be impossible under extended conditions.

しかし、その後不発明者らは一般に行なわれている75
0℃以上の熱間圧延温度よりはるかに低温の580℃ま
で下げた極低温域の熱間圧延終了温度と熱延後の捲取温
度との組合わせについて研究した結果、熱間圧延終了温
度がr相領域でなくても熱間圧延温度温弯と捲取温度と
をある適正な範囲内に制御することにより、微細な結晶
組織を有する熱延鋼帯が得られるこ六を見出し本発明を
完成するに至った。
However, since then, non-inventors have
As a result of research on the combination of the hot rolling end temperature in the extremely low temperature range of 580°C, which is much lower than the hot rolling temperature of 0°C or higher, and the winding temperature after hot rolling, it was found that the hot rolling end temperature is We discovered that a hot rolled steel strip having a fine crystal structure can be obtained by controlling the hot rolling temperature curve and the winding temperature within a certain appropriate range even if it is not in the r-phase region. It was completed.

無方向性電磁銅帯は通常状の工程によって製造される。Non-oriented electromagnetic copper strips are manufactured by conventional processes.

すなわち、素材としては通常C:0.02係以下の低炭
素鋼スラブを公知の方法で熱間圧延し1.5〜3. 0
 mm板厚の熱延鋼帯に仕上げられる。
That is, the raw material is usually a low carbon steel slab with a C ratio of 0.02 or less, which is hot-rolled by a known method to give a roughness of 1.5 to 3. 0
It is finished into a hot rolled steel strip with a thickness of mm.

この熱延鋼帯はスケール除去のために酸洗する。This hot rolled steel strip is pickled to remove scale.

この酸洗鋼帯を鋼種により1回の冷間圧延もしくは中間
焼鈍を挾む2回の冷間圧延により冷延鋼帯とする。冷間
圧延された冷延鋼帯に対し、いわゆる7〜プロセスまた
はセミプロセスによって異する焼鈍を施す。、無方向性
電磁鋼板は使用者側の鋼板の打抜作業の作業性から70
0℃未満の焼鈍では硬度が高く、また850’Cを越す
焼鈍では硬度が軟らか過ぎていずれも打抜性が悪いので
700〜850℃の温度範囲で焼鈍する。これがセミプ
ロセス焼鈍であり、打抜後、需要家において磁気特性回
復のため700〜850℃の同一温度で0、5〜3時間
の箱焼鈍を実施する。しかし、打抜後の焼鈍工程不要の
成品に対しては800〜950℃のいわゆるフルプロセ
ス焼鈍を行なう。これらの焼鈍温度は焼鈍時間に応じて
適当に決めればよく、その焼鈍方法は連続焼鈍、箱焼鈍
のいずれでもよい。
This pickled steel strip is made into a cold-rolled steel strip by cold rolling once or twice with intermediate annealing, depending on the steel type. The cold-rolled steel strip is subjected to different annealing processes according to the so-called 7-process or semi-process. , the non-oriented electrical steel sheet is 70%
Annealing below 0°C results in high hardness, and annealing above 850'C results in too soft hardness, resulting in poor punchability, so annealing is performed at a temperature in the range of 700 to 850°C. This is semi-process annealing, and after punching, the customer performs box annealing at the same temperature of 700 to 850° C. for 0.5 to 3 hours in order to recover the magnetic properties. However, for products that do not require an annealing process after punching, so-called full process annealing at 800 to 950°C is performed. These annealing temperatures may be appropriately determined depending on the annealing time, and the annealing method may be either continuous annealing or box annealing.

上記通常の無方向性電磁鋼板の製造方法において、本発
明では鋼成分のほか熱延条件、熱延鋼帯焼鈍条件を規制
することによってすぐれた磁気特性を得ることを見出し
たものである。以下本発明における上記限定理由につい
て説明する。
In the above-mentioned conventional method for manufacturing a non-oriented electrical steel sheet, the present invention has found that excellent magnetic properties can be obtained by regulating the hot rolling conditions and hot rolled steel strip annealing conditions in addition to the steel components. The reason for the above limitation in the present invention will be explained below.

先ず鋼素材の成分組成の限定理由について説明する。First, the reason for limiting the composition of the steel material will be explained.

C: Cは磁気特性上有害な元素であって少いほど好ましく、
少くとも0.02 %以下とすべきである。
C: C is a harmful element in terms of magnetic properties, and the less it is, the better.
It should be at least 0.02% or less.

すなわち、0.02%を越えると本発明による熱延鋼帯
焼鈍による結晶粒の粗大化が困難となると共に、最終成
品の段階でCの析出による磁気時効が著しくなり磁気特
性の劣化を来たすので0.021以下に限定した。
That is, if it exceeds 0.02%, it becomes difficult to coarsen the grains by annealing the hot rolled steel strip according to the present invention, and magnetic aging due to precipitation of C becomes significant in the final product stage, resulting in deterioration of magnetic properties. It was limited to 0.021 or less.

別もしくけ(Si+AI): SlもしくFi(別+1 )の倒れかが165俤を越え
ると本発明による熱間圧延業件では微細な結晶組織を有
する熱延鋼帯が得られなくなるので何れか1.54以下
に限定した。
Separate structure (Si + AI): If the fall of Sl or Fi (separate + 1) exceeds 165 circles, it will not be possible to obtain a hot rolled steel strip with a fine crystal structure in the hot rolling operation according to the present invention. It was limited to 1.54 or less.

Mn : Mnは脱酸剤として、またSによる赤熱脆性を防止する
ために必要であるが、1.01を越すと磁気特性を劣化
させるので1.0チ以下に限定した。
Mn: Mn is necessary as a deoxidizing agent and to prevent red heat embrittlement caused by S, but if it exceeds 1.01, the magnetic properties deteriorate, so it was limited to 1.0 or less.

P : Pは成品の硬度の調整や打抜性向上に効果がある元素で
あるが、0.20%を越すと脆くなり冷間圧延が困難と
なるので0.20 q6以下に限定した。
P: P is an element that is effective in adjusting the hardness of the product and improving punching properties, but if it exceeds 0.20%, it becomes brittle and cold rolling becomes difficult, so it was limited to 0.20 q6 or less.

次に本発明による熱延条件、特に熱間圧延終了温度、捲
取温度および該熱延鋼帯の焼鈍条件の限定理由を本発明
者らの実験結果に基づいて説明する。
Next, the reasons for limiting the hot rolling conditions according to the present invention, particularly the hot rolling end temperature, winding temperature, and annealing conditions for the hot rolled steel strip will be explained based on the experimental results of the present inventors.

第1表に示す如き組成の溶鋼からA、B、Cなる3個の
スラブを製造し、これを供試材とした。
Three slabs A, B, and C were manufactured from molten steel having the composition shown in Table 1 and were used as test materials.

第1表 上記3個の供試材A、B、Cを何れも1250℃に加熱
した後、第2表の如くそれぞれ異なる熱延条件で熱間圧
延した。
Table 1 The above three test materials A, B, and C were all heated to 1250° C. and then hot rolled under different hot rolling conditions as shown in Table 2.

第2表 これらの熱延鋼帯A、B、Cのそれぞれの結晶組織を第
1図(5)、(B)、(C)に示した。これらの熱延鋼
帯A、B、CをいずれもA3変態点温度以下の850℃
で5分間保持する熱延鋼帯焼鈍を施した。
Table 2 The crystal structures of these hot-rolled steel strips A, B, and C are shown in FIG. 1 (5), (B), and (C). These hot-rolled steel strips A, B, and C were heated to 850°C, which is below the A3 transformation point temperature.
The hot rolled steel strip was annealed for 5 minutes.

焼鈍後の結晶組織はそれぞれ第2図(8)、(B)、(
C)に示すとおりである。
The crystal structures after annealing are shown in Figure 2 (8), (B), and (
As shown in C).

第1図(5)、 (B) 、 (C)および第2図(5
)、(B)、(C)より明らかなとおり、圧延終了温度
を650℃とし、捲取温度を550℃とした後A3変態
点温度以下の850℃で5分間保持する焼鈍を行った供
試材Bは2次再結晶的な異常粒成長により粗大粒となっ
ており、圧延終了温度が600〜700℃の温度範囲で
熱間圧延した銅帯を500℃以上の温度にて捲取り1次
いでこの捲取鋼帯をA3変態点以下の850℃で5分間
熱延銅帯焼鈍を施すことにより、熱延のままでは微細ガ
結晶組織を有する熱延銅帯に2次再結晶的な異常粒成長
を生じ粗大粒となる。しかし、との熱延条件を外れた供
試材A、Cには結晶の粗大花が起らず、また供試材Bと
同一熱延条件であっても熱延鋼帯焼鈍をA3変態点温度
以上とすることによっても変態が起って粗大粒とならな
いことが判明した。
Figure 1 (5), (B), (C) and Figure 2 (5)
), (B), and (C), the test specimens were annealed at 850°C, below the A3 transformation point temperature, for 5 minutes after the rolling end temperature was 650°C and the winding temperature was 550°C. Material B has coarse grains due to abnormal grain growth due to secondary recrystallization, and is obtained by first rolling a copper strip hot-rolled at a rolling end temperature in the range of 600 to 700°C at a temperature of 500°C or higher. By subjecting this rolled steel strip to hot-rolled copper strip annealing for 5 minutes at 850°C below the A3 transformation point, the hot-rolled copper strip, which has a fine crystalline structure when hot-rolled, has abnormal grains due to secondary recrystallization. It grows and becomes coarse grains. However, coarse crystal flowers did not occur in specimens A and C, which were hot-rolled outside of the hot-rolling conditions, and even under the same hot-rolling conditions as specimen B, the hot-rolled steel strip was annealed to the A3 transformation point. It has been found that even if the temperature is higher than that, transformation does not occur and coarse grains do not form.

上記の実験結果によ□る知見をもとに本発明者らは数多
くの実験を行なった結果、熱間圧延終了温度が700℃
を越すと、熱延後の結晶粒径が大き。
Based on the findings from the above experimental results, the inventors conducted numerous experiments and found that the hot rolling end temperature was 700°C.
If it exceeds , the grain size after hot rolling becomes large.

く熱延鋼帯焼鈍と上記と同一条件で行っても2次再結晶
的粒成長が起らないので熱延終了温度の上限を700℃
とすべきであることが判明した。また熱延終了温度が6
00℃未満になると圧延機の負荷が大きくなり、圧延が
困難になるばかりではなく必然的に捲取温度も−低くな
り捲取後の自己焼鈍による再結晶が起らない。また熱延
終了温度を600℃未満とし、その結果、捲取温度も低
くなり、熱延鋼帯の自己焼鈍による再結晶が起らなくて
も該熱延鋼帯に別途焼鈍を施して微細な再結晶組織にし
た後、A3変態点温度以下の温度で熱延銅帯焼鈍を実施
すれば、母帯粒の粗大化は可能であるが、この方法は生
産価格面で不利となる。したがって熱延終了温度は60
0〜700℃の温度範囲に限定すべきである。また、熱
延後の捲取温度は500℃未満になると、供試材Cにお
ける場合の如く、熱延鋼帯の保有する熱エネルギーが不
足しで熱延鋼帯の再結晶が起らないので捲取温度の下限
は500℃とすべきである。
Even if the hot rolled steel strip is annealed under the same conditions as above, secondary recrystallization grain growth does not occur, so the upper limit of the hot rolling end temperature is set at 700°C.
It turned out that this should be done. Also, the hot rolling end temperature is 6
When the temperature is lower than 00°C, the load on the rolling mill increases, making rolling difficult, and the winding temperature is also inevitably low, so that recrystallization due to self-annealing after winding does not occur. In addition, the hot-rolling end temperature is set to less than 600°C, and as a result, the winding temperature is also low, and even if recrystallization does not occur due to self-annealing of the hot-rolled steel strip, the hot-rolled steel strip can be annealed separately to form fine particles. If the hot-rolled copper band is annealed at a temperature below the A3 transformation temperature after forming a recrystallized structure, it is possible to coarsen the mother band grains, but this method is disadvantageous in terms of production cost. Therefore, the hot rolling finish temperature is 60
It should be limited to a temperature range of 0-700°C. In addition, if the winding temperature after hot rolling is less than 500°C, as in the case of sample C, the hot rolled steel strip will not have enough thermal energy to recrystallize the hot rolled steel strip. The lower limit of the winding temperature should be 500°C.

而して上記熱間圧延終了温度および捲取温度の要件を満
足する熱延鋼帯であれば、次工程の熱延鋼帯焼鈍温度を
A3変態点温度以下にすることによ妙策2図(B)に示
した如き2次再結晶的異常粒成長により粗大粒になるこ
とが判明した。この熱延鋼帯焼鈍の保持時間は焼鈍方法
および鋼種によって異なるが30秒以−ヒ15分以下の
短時間で十分である。
If the hot-rolled steel strip satisfies the above-mentioned requirements for the hot rolling end temperature and winding temperature, the second step is to set the hot-rolled steel strip annealing temperature in the next step below the A3 transformation point temperature. It was found that coarse grains were formed due to abnormal grain growth due to secondary recrystallization as shown in (B). The holding time for annealing the hot rolled steel strip varies depending on the annealing method and the steel type, but a short time of 30 seconds to 15 minutes is sufficient.

かくの如く、上記熱延要件セよび捲取要件を満足する限
りA3変態点温度以下で15分間以下の短時間焼鈍によ
り2次再結晶的な異常成長により結晶の粗大化が容易に
起ることは全く新規な発見(11) である。その理由は明確ではないが、焼鈍前の熱延鋼帯
の結晶組織は第1図(B)に示した如く極めて微細な再
結晶組織であるので、微細粒中のやや大きい結晶粒が核
となり、他の微細なマトリックス粒を喰って2次再結晶
的な異常粒成長が起ることによるものと考えられる。
As described above, as long as the above-mentioned hot rolling requirements and winding requirements are satisfied, coarsening of crystals can easily occur due to secondary recrystallization-like abnormal growth by short-time annealing for 15 minutes or less at a temperature below the A3 transformation point temperature. is a completely new discovery (11). The reason for this is not clear, but since the crystal structure of the hot rolled steel strip before annealing is an extremely fine recrystallized structure as shown in Figure 1 (B), slightly larger crystal grains among the fine grains become nuclei. This is thought to be due to abnormal grain growth occurring due to secondary recrystallization by eating other fine matrix grains.

上記実験結果から無方向性電磁銅帯の製造に当り、上記
限定組成のスラブの熱間圧延に際しては圧延終了温度?
600〜700℃とし、かつ捲取温度を500℃以上と
し、該熱延銅帯をA3変態点以下の温度範囲で30秒間
以上15分間以下の熱延鋼帯焼鈍を施す午とによって第
2図但)にて示した如き粗大粒を形成し得ることが判明
したのでこの要件を本発明の限定条件とした。なお、上
記実験の熱延鋼帯焼鈍後のC含有量は0.005q6と
ほとんど脱炭されていなかったの−で1本発明による熱
延条件および熱延鋼帯焼鈍条件を満足する限り脱炭処理
は不要であることが判明した。      1次に本発
明要件による無方向性電磁鋼板の磁気特性を確認するた
めに、第2図に示した如き熱延(12) 銅帯焼鈍後の結晶組織を有する供試材A、B、Cの各熱
延鋼帯を同一条件で酸洗し、次いで冷間圧延によりいず
れも0.50m+n厚さにし750℃、2分間の光輝焼
鈍処理を行った後磁気特性を測定した結果は第3表に示
すとおりである。
From the above experimental results, when producing a non-oriented electromagnetic copper strip, the rolling end temperature should be determined when hot rolling a slab with the above limited composition.
600 to 700°C, and the winding temperature is 500°C or higher, and the hot rolled copper strip is annealed in a temperature range below the A3 transformation point for 30 seconds to 15 minutes, as shown in Figure 2. However, since it was found that coarse grains as shown in () could be formed, this requirement was made a limiting condition of the present invention. In addition, the C content after annealing of the hot rolled steel strip in the above experiment was 0.005q6, which was hardly decarburized. No treatment was found to be necessary. First, in order to confirm the magnetic properties of non-oriented electrical steel sheets according to the requirements of the present invention, test materials A, B, and C having the crystal structure after hot-rolled (12) copper band annealing as shown in FIG. The hot rolled steel strips were pickled under the same conditions, then cold rolled to a thickness of 0.50m+n, bright annealed at 750°C for 2 minutes, and their magnetic properties were measured. The results are shown in Table 3. As shown below.

第3表 第3表より明らかな如く、本発明による熱延要件および
熱延鋼帯焼鈍要件を満足して熱延鋼帯の結晶組織が第1
図(B)の如く極めて微細粒であり、熱延鋼帯焼鈍によ
り第2図(B)に示す如く粗大粒となった供試材Bは、
磁束密度Boo値が1.81Tと極めて高く、鉄損W1
鴨Fis、oaW/却と低く、本発明による限定要件を
満足しない供試材AおよびCよりもはるかにすぐれた磁
気特性を有していることが判明した。
Table 3 As is clear from Table 3, the crystal structure of the hot rolled steel strip satisfies the hot rolling requirements and hot rolled steel strip annealing requirements according to the present invention.
Sample B, which has extremely fine grains as shown in Figure (B), becomes coarse grained as shown in Figure 2 (B) by hot-rolled steel strip annealing.
The magnetic flux density Boo value is extremely high at 1.81T, and the iron loss W1
It was found that the duck Fis was very low in oaW and had much better magnetic properties than the test materials A and C, which did not satisfy the limiting requirements according to the present invention.

実施例I C:0,007q6、Si:0.29%、Mn:0.2
0チ、p:o、o1sチ、酸可溶性1:o、0007俤
の本発明による限定組成を有する溶鋼を転炉およびR,
H真空処理炉にて溶製し、連続鋳造で220℃厚のスラ
ブとした。このスラブを1250℃に加熱し熱間圧延す
るに当り、本発明材は熱間圧延終了温度を630℃、捲
取温度t″540℃とし。
Example I C: 0,007q6, Si: 0.29%, Mn: 0.2
Molten steel having a limited composition according to the present invention of 0, p:o, o1s, acid soluble 1:o, 0007 is heated in a converter and R,
It was melted in an H vacuum processing furnace and made into a slab with a thickness of 220°C by continuous casting. When this slab was heated to 1250°C and hot rolled, the hot rolling end temperature of the material of the present invention was 630°C, and the winding temperature t'' was 540°C.

比較材は熱間圧延終了温度を810℃、捲取温度を57
0℃としていずれも2.3 onn厚の熱延鋼帯とじ九
。次いで本発明材は連続焼鈍炉にてA3変態点以下の8
50℃にて5分間加熱の熱延鋼帯焼鈍を施し、次いで通
常の酸洗後冷間圧延により0.50m厚とした後連続焼
鈍炉で800℃、2分間の光輝焼鈍を施して成品とする
、いわゆる1回冷延床によるフルプロセス品とした。比
較濁ハ熱延鋼帯焼鈍を施さす熱延鋼帯をそのまま通常の
酸洗後本発明材と同一条件で冷間圧延、光輝焼鈍を施し
て成品とした。
The comparative material had a hot rolling finish temperature of 810°C and a winding temperature of 57°C.
Both were bound to 2.3 onn thick hot-rolled steel strips at 0°C. Next, the material of the present invention is heated to a temperature of 8 below the A3 transformation point in a continuous annealing furnace.
The hot-rolled steel strip was annealed at 50°C for 5 minutes, then conventionally pickled and cold rolled to a thickness of 0.50 m, and then bright annealed at 800°C for 2 minutes in a continuous annealing furnace to produce a finished product. This is a full-process product using a so-called one-time cold rolling bed. A hot-rolled steel strip subjected to comparative annealing was subjected to ordinary pickling, then cold-rolled and bright annealed under the same conditions as the material of the present invention to obtain a finished product.

また参考として本発明の限定組成を有し、本発明による
熱延要件、捲取要件を満足する熱延鋼帯に熱延鋼帯焼鈍
を施さず、以後本発明材と同一処理工程で成品としたも
のを参考材とした。
As a reference, a hot-rolled steel strip having the limited composition of the present invention and satisfying the hot-rolling and winding requirements of the present invention was not subjected to hot-rolled steel strip annealing. This was used as reference material.

上記本発明材、比較材、参考材成品の磁気特性と、需要
家における再焼鈍を想定した750℃、2時間の焼鈍後
の磁気特性は第4表に示すとおりである。
The magnetic properties of the above-mentioned inventive material, comparative material, and reference material products, as well as the magnetic properties after annealing at 750° C. for 2 hours, assuming re-annealing at the customer, are as shown in Table 4.

第  4  表 第4表より明らかなとおり、熱間圧延終了温度が本発明
の限定要件よりも高く、かつ、熱延鋼帯焼鈍を行わない
比較材は成品および再焼鈍後の磁気特性とも本発明材よ
りはるかに劣り、熱間圧延終了温度および熱延後の捲取
温度を本発明材と同一に行っても、熱延鋼帯焼鈍を実施
しない参考材も本発明材より磁気特性がはるかに劣って
いる。本(15) 発明による要件をすべて満足して始めて極めてすぐれた
磁気特性を得ることができることを示している。
Table 4 As is clear from Table 4, the comparative material whose hot rolling finish temperature is higher than the limiting requirements of the present invention and which is not annealed hot rolled steel strip has magnetic properties both as a finished product and after reannealing as in accordance with the present invention. Even if the hot-rolling end temperature and the winding temperature after hot rolling were the same as the inventive material, the reference material, which was not annealed, had far superior magnetic properties than the inventive material. Inferior. Book (15) shows that extremely excellent magnetic properties can only be obtained by satisfying all the requirements according to the invention.

実施例2 実施例1と同様の方法でC:0.0OJt%、Sl:0
.3211. Mn : 0.23 %、P:0.07
6%、酸可溶性1:o、0004%の本発明による限定
組成を満足する溶鋼を溶製し、連続鋳造で220mm厚
のスラブとした。このスラブを1250℃に加熱して熱
間圧延するに当り、本発明材は熱間圧延、ビ゛ 終了温度fi−680℃、熱延後の捲取温度を560℃
として2.3 mm厚の熱延鋼帯とした。本発明材は次
いで850℃、5分間の熱延鋼帯焼鈍を行った後、酸洗
全行ない、通常の第1目塗間圧延を行った後、750℃
、2分間の連続焼鈍を挾んで圧下率8チの第2目塗間圧
延を実施して、いわゆる2目塗延法セミプロセス成品を
製造した。比較材は従来法によって熱間圧延終了温度8
20℃、捲取温度580℃とし同様に2.3 +nm厚
の熱延鋼帯とした。比較材は次いで熱延鋼帯焼鈍を施す
ことなく(16) 直ちに酸洗、第1目塗間圧延以降本発明材と同一工程で
2目塗延法セミプロセス成品を得た。
Example 2 C: 0.0 OJt%, Sl: 0 using the same method as Example 1
.. 3211. Mn: 0.23%, P: 0.07
A molten steel satisfying the limited composition according to the present invention of 6%, acid solubility 1:0, 0004% was melted and made into a 220 mm thick slab by continuous casting. When this slab was heated to 1250°C and hot rolled, the material of the present invention had a hot rolling finish temperature fi of -680°C and a winding temperature after hot rolling of 560°C.
A hot rolled steel strip with a thickness of 2.3 mm was used. The material of the present invention was then annealed at 850°C for 5 minutes, followed by full pickling, and then rolled at 750°C.
A so-called two-coat semi-processed product was produced by performing continuous annealing for 2 minutes and performing second-coat rolling at a rolling reduction of 8 inches. The comparative material was hot rolled at a temperature of 8 using the conventional method.
Similarly, the hot-rolled steel strip had a thickness of 2.3 nm with a winding temperature of 20°C and a winding temperature of 580°C. The comparative material was then immediately pickled without annealing the hot-rolled steel strip (16), and after the first coat rolling, a semi-processed product was obtained using the second coat rolling method in the same steps as the present invention material.

本発明材、比較材は、いずれもその後750℃、2時間
の焼鈍を行った後、磁気特性を測定した結果は第5表に
示すとおりである。
Both the present invention material and the comparative material were annealed at 750° C. for 2 hours, and then their magnetic properties were measured, and the results are shown in Table 5.

第5表 第5表より明らか、なとおり、どの:′□□場合も従来
法による高温圧延終了温度の熱間圧延、後熱延銅帯焼鈍
を施さない比軟材は、本発明材よりもはるかに磁気特性
が劣り、本発明による要件をすべて満足する場合には磁
束密度、鉄損ともすぐれたセミプロセス成品が得られる
ことを示している。
Table 5 It is clear from Table 5 that in any case, the comparatively soft material which is not subjected to hot rolling at the high temperature end temperature of rolling by the conventional method and annealing after hot rolling copper strip is superior to the material of the present invention. This shows that a semi-processed product with far inferior magnetic properties and excellent magnetic flux density and iron loss can be obtained if all the requirements of the present invention are satisfied.

実施例3 実施例1と同一方法で、C:0.005チ、Sl:1.
13%、Mn:0.361、P:0.0191゜A/:
0.25%の本発明による限定組成を満足する溶鋼を溶
製し、連続鋳造で220mm厚のスラブとした。このス
ラブを1250℃に加熱して熱間圧延するに当り、本発
明材は熱間圧延終了温度を650℃、熱延後の捲取温度
を550℃として2、3 mm厚の熱延鋼帯を製造した
。この熱延鋼帯に870℃、5分間の熱延鋼帯焼鈍を施
し、通常の酸洗後端間圧延により0.50皿浮きし、そ
の後連続焼鈍炉で850℃、2分間の光輝焼鈍を施して
成品とした。
Example 3 Using the same method as Example 1, C: 0.005 chi, Sl: 1.
13%, Mn: 0.361, P: 0.0191°A/:
Molten steel satisfying the limiting composition according to the present invention of 0.25% was melted and continuously cast into a slab with a thickness of 220 mm. When this slab was heated to 1250°C and hot rolled, the material of the present invention was made into a hot rolled steel strip with a thickness of 2 to 3 mm with a hot rolling end temperature of 650°C and a winding temperature after hot rolling of 550°C. was manufactured. This hot-rolled steel strip was annealed at 870°C for 5 minutes, lifted by 0.50 plate by end-to-end rolling after normal pickling, and then bright annealed at 850°C for 2 minutes in a continuous annealing furnace. The product was made into a finished product.

一方、比較材は従来法により熱間圧延終了温度835℃
、熱延−の捲取温度を600℃として2、3 mm厚の
熱延鋼帯を得、その後熱延銅帯焼鈍を施すことなく、そ
のまま通常の酸洗後、本発明材と同様に処理して0.5
0 mm厚成品を得た。かくして得た本発明材および比
較材の磁気特性を測定した結果は第6表に示すとおりで
ある。
On the other hand, the comparative material was hot rolled at a temperature of 835°C using the conventional method.
A hot-rolled steel strip with a thickness of 2 to 3 mm was obtained at a winding temperature of 600°C, and then the hot-rolled copper strip was pickled as it was without annealing, and then treated in the same manner as the material of the present invention. and 0.5
A 0 mm thick product was obtained. The results of measuring the magnetic properties of the thus obtained materials of the present invention and comparative materials are shown in Table 6.

第  6  表 第6表より明らかなとおり、本発明材は比較材よりも磁
束密度B10値および鉄損値W15,1’。とも、はる
かにすぐれていることがわかる。
Table 6 As is clear from Table 6, the present invention material has a higher magnetic flux density B10 value and iron loss value W15,1' than the comparative material. It turns out that both are far superior.

上記各実施例より明らかなとおり、本発明は成分組成を
限定したスラブを使用し、その熱間圧延に際しては圧延
終了温度を600〜700℃、熱延後の捲取温度を50
0℃以上に規制し、かつ熱延鋼帯を該鋼のA3変態点以
下の温度で30秒以上15分以下の短時間焼鈍する工程
を加え、その後酸洗および冷間圧延、焼鈍の各工程は通
常の方法によっても得られた成品は磁束密度が極めて高
く、かつ鉄損値の低いすぐれた無方向性電磁鋼帯を得る
ことができる効果を収め得た。
As is clear from the above examples, the present invention uses a slab with a limited composition, and during hot rolling, the rolling end temperature is 600 to 700°C, and the winding temperature after hot rolling is 50°C.
The temperature is regulated to 0°C or higher, and a step of annealing the hot rolled steel strip for a short time of 30 seconds or more and 15 minutes or less at a temperature below the A3 transformation point of the steel is added, followed by pickling, cold rolling, and annealing steps. The product obtained by the conventional method also had the effect of being able to obtain an excellent non-oriented electrical steel strip having an extremely high magnetic flux density and a low iron loss value.

これは本発明法による場合の熱延鋼帯の結晶組織は極め
て微細であり、これtAs変態点以下の温度で熱延鋼帯
焼鈍を行なうことにより2次再結晶的な異常粒成長によ
り粗大粒を得ることができたことによるものであって本
発明の大きな特徴である。また、本発明によれば熱間圧
延終了温度が600〜700℃と従来法に比し著しく低
温であ(19) るほか、熱延鋼帯焼鈍もA3変態点以下の温度で15分
間以下の短時間で十分であるので省エネルギーとなり製
造コストも低減し得る副次的効果もある。
This is because the crystal structure of the hot-rolled steel strip obtained by the method of the present invention is extremely fine, and by annealing the hot-rolled steel strip at a temperature below the tAs transformation point, coarse grains are formed due to abnormal grain growth due to secondary recrystallization. This is due to the fact that it was possible to obtain this, which is a major feature of the present invention. Furthermore, according to the present invention, the hot rolling end temperature is 600 to 700°C, which is significantly lower than that of conventional methods (19), and the hot rolled steel strip can be annealed for 15 minutes or less at a temperature below the A3 transformation point. Since it only takes a short time, it also has the secondary effect of saving energy and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(5)、@、ρ)は本発明の基本実験における第
2表にて示した供試材A、B、Cのそれぞれの熱延鋼帯
の結晶組織を示す30倍の顕微鏡写真、第2図(5)、
(B)、(C)は供試材A、B、Cの熱延鋼帯に850
℃、5分間の熱延鋼帯焼鈍を施した後のそれぞれの結晶
組織を示す30倍の顕微鏡写真である。 代理人  中 路 武 雄 (20)
Figure 1 (5), @, ρ) is a 30x micrograph showing the crystal structure of each hot-rolled steel strip of test materials A, B, and C shown in Table 2 in the basic experiment of the present invention. , Figure 2 (5),
(B) and (C) are the hot rolled steel strips of test materials A, B, and C.
It is a 30x micrograph showing each crystal structure after hot-rolled steel strip annealing at ℃ for 5 minutes. Agent Takeo Nakaji (20)

Claims (1)

【特許請求の範囲】[Claims] (1)低炭素鋼を熱間圧延して熱延鋼帯とする工程と、
前記熱延鋼帯を焼鈍した後酸洗する工程と、前記酸洗鋼
帯を1回の冷間圧延もしくは中間焼鈍を挾む2回の冷間
圧延により冷延鋼帯とする工程と、前記冷延鋼帯にフル
プロセスまたはセミプロセスによる焼鈍を施す工程と、
を有して成る無方向性電磁鋼板の製造方法において、前
記低炭素鋼は重量比にてC:0.02%以下、Siもし
くは(Si +A/ )(7)いずれかが1.51以下
、Mn:1.0チ以下、p:o、2o係以下を含み残部
はFeおよび不可避的不純物より成り、前記熱間圧延工
程における圧延終了温度を600〜700℃、捲取温度
を500’C以上の温度範囲で行ない1次いで前記捲取
鋼帯をA3変初点以下の温度で30秒間以上15分間以
下の時間焼鈍することを特徴とする特許
(1) A process of hot rolling low carbon steel into a hot rolled steel strip;
a step of annealing and then pickling the hot rolled steel strip; a step of forming the pickled steel strip into a cold rolled steel strip by one cold rolling or two cold rollings sandwiching intermediate annealing; a step of annealing the cold-rolled steel strip by a full process or a semi-process;
In the method for producing a non-oriented electrical steel sheet, the low carbon steel has a weight ratio of C: 0.02% or less, and either Si or (Si + A/ ) (7) 1.51 or less, Mn: 1.0 or less, p: o, 2o or less, the remainder consisting of Fe and unavoidable impurities, the rolling end temperature in the hot rolling process is 600 to 700°C, and the winding temperature is 500'C or more. First, the rolled steel strip is annealed at a temperature below the A3 initial point for a period of 30 seconds or more and 15 minutes or less.
JP8628182A 1982-05-21 1982-05-21 Production of nondirectional electrical steel strip having excellent magnetic characteristic Granted JPS58204126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8628182A JPS58204126A (en) 1982-05-21 1982-05-21 Production of nondirectional electrical steel strip having excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8628182A JPS58204126A (en) 1982-05-21 1982-05-21 Production of nondirectional electrical steel strip having excellent magnetic characteristic

Publications (2)

Publication Number Publication Date
JPS58204126A true JPS58204126A (en) 1983-11-28
JPH0257125B2 JPH0257125B2 (en) 1990-12-04

Family

ID=13882439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8628182A Granted JPS58204126A (en) 1982-05-21 1982-05-21 Production of nondirectional electrical steel strip having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS58204126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032323A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JPH0331420A (en) * 1989-06-29 1991-02-12 Nippon Steel Corp Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
FR2665181A1 (en) * 1990-07-30 1992-01-31 Ugine Aciers PROCESS FOR MANUFACTURING MAGNETIC STEEL SHEET WITH NON - ORIENT GRAINS AND THE SAME OBTAINED BY THIS METHOD.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032323A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JPH0331420A (en) * 1989-06-29 1991-02-12 Nippon Steel Corp Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
FR2665181A1 (en) * 1990-07-30 1992-01-31 Ugine Aciers PROCESS FOR MANUFACTURING MAGNETIC STEEL SHEET WITH NON - ORIENT GRAINS AND THE SAME OBTAINED BY THIS METHOD.

Also Published As

Publication number Publication date
JPH0257125B2 (en) 1990-12-04

Similar Documents

Publication Publication Date Title
JPH0753885B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH03219020A (en) Production of nonoriented silicon steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS58136718A (en) Manufacture of nonoriented electrical band steel with superior magnetic characteristic
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JPH055126A (en) Production of nonoriented silicon steel sheet
JPS58204126A (en) Production of nondirectional electrical steel strip having excellent magnetic characteristic
JPH11236618A (en) Production of low core loss nonoriented silicon steel sheet
JPH0814015B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and surface properties and method for producing the same
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JP7288215B2 (en) Non-oriented electrical steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
KR100817156B1 (en) A method for grain-oriented electrical steel sheet with good magnetic properties
JP3885240B2 (en) Method for producing unidirectional silicon steel sheet
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet